]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/cadence_gem.c
hw/net/cadence_gem: use FIELD to describe DMACFG register fields
[mirror_qemu.git] / hw / net / cadence_gem.c
1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42 if (CADENCE_GEM_ERR_DEBUG) { \
43 qemu_log(": %s: ", __func__); \
44 qemu_log(__VA_ARGS__); \
45 } \
46 } while (0)
47
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49 FIELD(NWCTRL, LOOPBACK , 0, 1)
50 FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51 FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52 FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53 FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54 FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55 FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56 FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57 FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58 FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59 FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60 FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61 FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62 FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63 FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64 FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65 FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66 FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67 FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68 FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69 FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70 FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71 FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72 FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73 FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74 FIELD(NWCTRL, PFC_CTRL , 25, 1)
75 FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76 FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77 FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78 FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79 FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80
81 REG32(NWCFG, 0x4) /* Network Config reg */
82 FIELD(NWCFG, SPEED, 0, 1)
83 FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84 FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85 FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86 FIELD(NWCFG, PROMISC, 4, 1)
87 FIELD(NWCFG, NO_BROADCAST, 5, 1)
88 FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89 FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90 FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91 FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92 FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93 FIELD(NWCFG, PCS_SELECT, 11, 1)
94 FIELD(NWCFG, RETRY_TEST, 12, 1)
95 FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96 FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97 FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98 FIELD(NWCFG, FCS_REMOVE, 17, 1)
99 FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100 FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101 FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102 FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103 FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104 FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105 FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106 FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107 FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108 FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109 FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115 FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116 FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117 FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118 FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119 FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120 FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121 FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122 FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123 FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124 FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125 FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126 FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127 FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128 FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129 FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130 FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131 FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
133
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
136 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
137 REG32(RXSTATUS, 0x20) /* RX Status reg */
138 REG32(ISR, 0x24) /* Interrupt Status reg */
139 REG32(IER, 0x28) /* Interrupt Enable reg */
140 REG32(IDR, 0x2c) /* Interrupt Disable reg */
141 REG32(IMR, 0x30) /* Interrupt Mask reg */
142 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
143 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
144 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
145 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
146 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
147 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
148 REG32(HASHLO, 0x80) /* Hash Low address reg */
149 REG32(HASHHI, 0x84) /* Hash High address reg */
150 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
151 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
152 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
153 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
154 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
155 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
156 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
157 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
158 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
159 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
160 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
161 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
162 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
163 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
164 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
165 REG32(MODID, 0xfc) /* Module ID reg */
166 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
167 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
168 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
169 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
170 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
171 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
172 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
173 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
174 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
175 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
176 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
177 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
178 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
179 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
180 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
181 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
182 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
183 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
184 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
185 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
186 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
187 REG32(OCTRXHI, 0x154) /* Octects Received register High */
188 REG32(RXCNT, 0x158) /* Error-free Frames Received */
189 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
190 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
191 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
192 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
193 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
194 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
195 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
196 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
197 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
198 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
199 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
200 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
201 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
202 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
203 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
204 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
205 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
206 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
207 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
208 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
209 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
210 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
211
212 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
213 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
214 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
215 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
216 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
217 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
218 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
219 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
220 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
221 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
222 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
223 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
224
225 /* Design Configuration Registers */
226 REG32(DESCONF, 0x280)
227 REG32(DESCONF2, 0x284)
228 REG32(DESCONF3, 0x288)
229 REG32(DESCONF4, 0x28c)
230 REG32(DESCONF5, 0x290)
231 REG32(DESCONF6, 0x294)
232 #define GEM_DESCONF6_64B_MASK (1U << 23)
233 REG32(DESCONF7, 0x298)
234
235 REG32(INT_Q1_STATUS, 0x400)
236 REG32(INT_Q1_MASK, 0x640)
237
238 REG32(TRANSMIT_Q1_PTR, 0x440)
239 REG32(TRANSMIT_Q7_PTR, 0x458)
240
241 REG32(RECEIVE_Q1_PTR, 0x480)
242 REG32(RECEIVE_Q7_PTR, 0x498)
243
244 REG32(TBQPH, 0x4c8)
245 REG32(RBQPH, 0x4d4)
246
247 REG32(INT_Q1_ENABLE, 0x600)
248 REG32(INT_Q7_ENABLE, 0x618)
249
250 REG32(INT_Q1_DISABLE, 0x620)
251 REG32(INT_Q7_DISABLE, 0x638)
252
253 REG32(SCREENING_TYPE1_REG0, 0x500)
254 FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
255 FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
256 FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
257 FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
258 FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
259 FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
260
261 REG32(SCREENING_TYPE2_REG0, 0x540)
262 FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
263 FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
264 FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
265 FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
266 FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
267 FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
268 FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
269 FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
270 FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
271 FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
272 FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
273 FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
274
275 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
276
277 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
278 FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
279 FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
280
281 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
282 FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
283 FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
284 FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
285 FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
286
287 /*****************************************/
288
289 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
290 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
291
292 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
293 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
294
295 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
296 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
297 #define GEM_INT_AMBA_ERR 0x00000040
298 #define GEM_INT_TXUSED 0x00000008
299 #define GEM_INT_RXUSED 0x00000004
300 #define GEM_INT_RXCMPL 0x00000002
301
302 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
303 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
304 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
305 #define GEM_PHYMNTNC_ADDR_SHFT 23
306 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
307 #define GEM_PHYMNTNC_REG_SHIFT 18
308
309 /* Marvell PHY definitions */
310 #define BOARD_PHY_ADDRESS 0 /* PHY address we will emulate a device at */
311
312 #define PHY_REG_CONTROL 0
313 #define PHY_REG_STATUS 1
314 #define PHY_REG_PHYID1 2
315 #define PHY_REG_PHYID2 3
316 #define PHY_REG_ANEGADV 4
317 #define PHY_REG_LINKPABIL 5
318 #define PHY_REG_ANEGEXP 6
319 #define PHY_REG_NEXTP 7
320 #define PHY_REG_LINKPNEXTP 8
321 #define PHY_REG_100BTCTRL 9
322 #define PHY_REG_1000BTSTAT 10
323 #define PHY_REG_EXTSTAT 15
324 #define PHY_REG_PHYSPCFC_CTL 16
325 #define PHY_REG_PHYSPCFC_ST 17
326 #define PHY_REG_INT_EN 18
327 #define PHY_REG_INT_ST 19
328 #define PHY_REG_EXT_PHYSPCFC_CTL 20
329 #define PHY_REG_RXERR 21
330 #define PHY_REG_EACD 22
331 #define PHY_REG_LED 24
332 #define PHY_REG_LED_OVRD 25
333 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
334 #define PHY_REG_EXT_PHYSPCFC_ST 27
335 #define PHY_REG_CABLE_DIAG 28
336
337 #define PHY_REG_CONTROL_RST 0x8000
338 #define PHY_REG_CONTROL_LOOP 0x4000
339 #define PHY_REG_CONTROL_ANEG 0x1000
340 #define PHY_REG_CONTROL_ANRESTART 0x0200
341
342 #define PHY_REG_STATUS_LINK 0x0004
343 #define PHY_REG_STATUS_ANEGCMPL 0x0020
344
345 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
346 #define PHY_REG_INT_ST_LINKC 0x0400
347 #define PHY_REG_INT_ST_ENERGY 0x0010
348
349 /***********************************************************************/
350 #define GEM_RX_REJECT (-1)
351 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
352 #define GEM_RX_BROADCAST_ACCEPT (-3)
353 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
354 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
355
356 #define GEM_RX_SAR_ACCEPT 0
357
358 /***********************************************************************/
359
360 #define DESC_1_USED 0x80000000
361 #define DESC_1_LENGTH 0x00001FFF
362
363 #define DESC_1_TX_WRAP 0x40000000
364 #define DESC_1_TX_LAST 0x00008000
365
366 #define DESC_0_RX_WRAP 0x00000002
367 #define DESC_0_RX_OWNERSHIP 0x00000001
368
369 #define R_DESC_1_RX_SAR_SHIFT 25
370 #define R_DESC_1_RX_SAR_LENGTH 2
371 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
372 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
373 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
374 #define R_DESC_1_RX_BROADCAST (1 << 31)
375
376 #define DESC_1_RX_SOF 0x00004000
377 #define DESC_1_RX_EOF 0x00008000
378
379 #define GEM_MODID_VALUE 0x00020118
380
381 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
382 {
383 uint64_t ret = desc[0];
384
385 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
386 ret |= (uint64_t)desc[2] << 32;
387 }
388 return ret;
389 }
390
391 static inline unsigned tx_desc_get_used(uint32_t *desc)
392 {
393 return (desc[1] & DESC_1_USED) ? 1 : 0;
394 }
395
396 static inline void tx_desc_set_used(uint32_t *desc)
397 {
398 desc[1] |= DESC_1_USED;
399 }
400
401 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
402 {
403 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
404 }
405
406 static inline unsigned tx_desc_get_last(uint32_t *desc)
407 {
408 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
409 }
410
411 static inline unsigned tx_desc_get_length(uint32_t *desc)
412 {
413 return desc[1] & DESC_1_LENGTH;
414 }
415
416 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
417 {
418 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
419 DB_PRINT("bufaddr: 0x%08x\n", *desc);
420 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
421 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
422 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
423 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
424 }
425
426 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
427 {
428 uint64_t ret = desc[0] & ~0x3UL;
429
430 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
431 ret |= (uint64_t)desc[2] << 32;
432 }
433 return ret;
434 }
435
436 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
437 {
438 int ret = 2;
439
440 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
441 ret += 2;
442 }
443 if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
444 : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
445 ret += 2;
446 }
447
448 assert(ret <= DESC_MAX_NUM_WORDS);
449 return ret;
450 }
451
452 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
453 {
454 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
455 }
456
457 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
458 {
459 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
460 }
461
462 static inline void rx_desc_set_ownership(uint32_t *desc)
463 {
464 desc[0] |= DESC_0_RX_OWNERSHIP;
465 }
466
467 static inline void rx_desc_set_sof(uint32_t *desc)
468 {
469 desc[1] |= DESC_1_RX_SOF;
470 }
471
472 static inline void rx_desc_clear_control(uint32_t *desc)
473 {
474 desc[1] = 0;
475 }
476
477 static inline void rx_desc_set_eof(uint32_t *desc)
478 {
479 desc[1] |= DESC_1_RX_EOF;
480 }
481
482 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
483 {
484 desc[1] &= ~DESC_1_LENGTH;
485 desc[1] |= len;
486 }
487
488 static inline void rx_desc_set_broadcast(uint32_t *desc)
489 {
490 desc[1] |= R_DESC_1_RX_BROADCAST;
491 }
492
493 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
494 {
495 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
496 }
497
498 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
499 {
500 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
501 }
502
503 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
504 {
505 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
506 sar_idx);
507 desc[1] |= R_DESC_1_RX_SAR_MATCH;
508 }
509
510 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
511 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
512
513 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
514 {
515 uint32_t size;
516 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
517 size = s->regs[R_JUMBO_MAX_LEN];
518 if (size > s->jumbo_max_len) {
519 size = s->jumbo_max_len;
520 qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
521 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
522 }
523 } else if (tx) {
524 size = 1518;
525 } else {
526 size = FIELD_EX32(s->regs[R_NWCFG],
527 NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
528 }
529 return size;
530 }
531
532 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
533 {
534 if (q == 0) {
535 s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
536 } else {
537 s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
538 ~(s->regs[R_INT_Q1_MASK + q - 1]);
539 }
540 }
541
542 /*
543 * gem_init_register_masks:
544 * One time initialization.
545 * Set masks to identify which register bits have magical clear properties
546 */
547 static void gem_init_register_masks(CadenceGEMState *s)
548 {
549 unsigned int i;
550 /* Mask of register bits which are read only */
551 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
552 s->regs_ro[R_NWCTRL] = 0xFFF80000;
553 s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
554 s->regs_ro[R_DMACFG] = 0x8E00F000;
555 s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
556 s->regs_ro[R_RXQBASE] = 0x00000003;
557 s->regs_ro[R_TXQBASE] = 0x00000003;
558 s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
559 s->regs_ro[R_ISR] = 0xFFFFFFFF;
560 s->regs_ro[R_IMR] = 0xFFFFFFFF;
561 s->regs_ro[R_MODID] = 0xFFFFFFFF;
562 for (i = 0; i < s->num_priority_queues; i++) {
563 s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
564 s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
565 s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
566 s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
567 }
568
569 /* Mask of register bits which are clear on read */
570 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
571 s->regs_rtc[R_ISR] = 0xFFFFFFFF;
572 for (i = 0; i < s->num_priority_queues; i++) {
573 s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
574 }
575
576 /* Mask of register bits which are write 1 to clear */
577 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
578 s->regs_w1c[R_TXSTATUS] = 0x000001F7;
579 s->regs_w1c[R_RXSTATUS] = 0x0000000F;
580
581 /* Mask of register bits which are write only */
582 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
583 s->regs_wo[R_NWCTRL] = 0x00073E60;
584 s->regs_wo[R_IER] = 0x07FFFFFF;
585 s->regs_wo[R_IDR] = 0x07FFFFFF;
586 for (i = 0; i < s->num_priority_queues; i++) {
587 s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
588 s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
589 }
590 }
591
592 /*
593 * phy_update_link:
594 * Make the emulated PHY link state match the QEMU "interface" state.
595 */
596 static void phy_update_link(CadenceGEMState *s)
597 {
598 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
599
600 /* Autonegotiation status mirrors link status. */
601 if (qemu_get_queue(s->nic)->link_down) {
602 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
603 PHY_REG_STATUS_LINK);
604 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
605 } else {
606 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
607 PHY_REG_STATUS_LINK);
608 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
609 PHY_REG_INT_ST_ANEGCMPL |
610 PHY_REG_INT_ST_ENERGY);
611 }
612 }
613
614 static bool gem_can_receive(NetClientState *nc)
615 {
616 CadenceGEMState *s;
617 int i;
618
619 s = qemu_get_nic_opaque(nc);
620
621 /* Do nothing if receive is not enabled. */
622 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
623 if (s->can_rx_state != 1) {
624 s->can_rx_state = 1;
625 DB_PRINT("can't receive - no enable\n");
626 }
627 return false;
628 }
629
630 for (i = 0; i < s->num_priority_queues; i++) {
631 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
632 break;
633 }
634 };
635
636 if (i == s->num_priority_queues) {
637 if (s->can_rx_state != 2) {
638 s->can_rx_state = 2;
639 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
640 }
641 return false;
642 }
643
644 if (s->can_rx_state != 0) {
645 s->can_rx_state = 0;
646 DB_PRINT("can receive\n");
647 }
648 return true;
649 }
650
651 /*
652 * gem_update_int_status:
653 * Raise or lower interrupt based on current status.
654 */
655 static void gem_update_int_status(CadenceGEMState *s)
656 {
657 int i;
658
659 qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
660
661 for (i = 1; i < s->num_priority_queues; ++i) {
662 qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
663 }
664 }
665
666 /*
667 * gem_receive_updatestats:
668 * Increment receive statistics.
669 */
670 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
671 unsigned bytes)
672 {
673 uint64_t octets;
674
675 /* Total octets (bytes) received */
676 octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
677 s->regs[R_OCTRXHI];
678 octets += bytes;
679 s->regs[R_OCTRXLO] = octets >> 32;
680 s->regs[R_OCTRXHI] = octets;
681
682 /* Error-free Frames received */
683 s->regs[R_RXCNT]++;
684
685 /* Error-free Broadcast Frames counter */
686 if (!memcmp(packet, broadcast_addr, 6)) {
687 s->regs[R_RXBROADCNT]++;
688 }
689
690 /* Error-free Multicast Frames counter */
691 if (packet[0] == 0x01) {
692 s->regs[R_RXMULTICNT]++;
693 }
694
695 if (bytes <= 64) {
696 s->regs[R_RX64CNT]++;
697 } else if (bytes <= 127) {
698 s->regs[R_RX65CNT]++;
699 } else if (bytes <= 255) {
700 s->regs[R_RX128CNT]++;
701 } else if (bytes <= 511) {
702 s->regs[R_RX256CNT]++;
703 } else if (bytes <= 1023) {
704 s->regs[R_RX512CNT]++;
705 } else if (bytes <= 1518) {
706 s->regs[R_RX1024CNT]++;
707 } else {
708 s->regs[R_RX1519CNT]++;
709 }
710 }
711
712 /*
713 * Get the MAC Address bit from the specified position
714 */
715 static unsigned get_bit(const uint8_t *mac, unsigned bit)
716 {
717 unsigned byte;
718
719 byte = mac[bit / 8];
720 byte >>= (bit & 0x7);
721 byte &= 1;
722
723 return byte;
724 }
725
726 /*
727 * Calculate a GEM MAC Address hash index
728 */
729 static unsigned calc_mac_hash(const uint8_t *mac)
730 {
731 int index_bit, mac_bit;
732 unsigned hash_index;
733
734 hash_index = 0;
735 mac_bit = 5;
736 for (index_bit = 5; index_bit >= 0; index_bit--) {
737 hash_index |= (get_bit(mac, mac_bit) ^
738 get_bit(mac, mac_bit + 6) ^
739 get_bit(mac, mac_bit + 12) ^
740 get_bit(mac, mac_bit + 18) ^
741 get_bit(mac, mac_bit + 24) ^
742 get_bit(mac, mac_bit + 30) ^
743 get_bit(mac, mac_bit + 36) ^
744 get_bit(mac, mac_bit + 42)) << index_bit;
745 mac_bit--;
746 }
747
748 return hash_index;
749 }
750
751 /*
752 * gem_mac_address_filter:
753 * Accept or reject this destination address?
754 * Returns:
755 * GEM_RX_REJECT: reject
756 * >= 0: Specific address accept (which matched SAR is returned)
757 * others for various other modes of accept:
758 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
759 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
760 */
761 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
762 {
763 uint8_t *gem_spaddr;
764 int i, is_mc;
765
766 /* Promiscuous mode? */
767 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
768 return GEM_RX_PROMISCUOUS_ACCEPT;
769 }
770
771 if (!memcmp(packet, broadcast_addr, 6)) {
772 /* Reject broadcast packets? */
773 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
774 return GEM_RX_REJECT;
775 }
776 return GEM_RX_BROADCAST_ACCEPT;
777 }
778
779 /* Accept packets -w- hash match? */
780 is_mc = is_multicast_ether_addr(packet);
781 if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
782 (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
783 uint64_t buckets;
784 unsigned hash_index;
785
786 hash_index = calc_mac_hash(packet);
787 buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
788 if ((buckets >> hash_index) & 1) {
789 return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
790 : GEM_RX_UNICAST_HASH_ACCEPT;
791 }
792 }
793
794 /* Check all 4 specific addresses */
795 gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
796 for (i = 3; i >= 0; i--) {
797 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
798 return GEM_RX_SAR_ACCEPT + i;
799 }
800 }
801
802 /* No address match; reject the packet */
803 return GEM_RX_REJECT;
804 }
805
806 /* Figure out which queue the received data should be sent to */
807 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
808 unsigned rxbufsize)
809 {
810 uint32_t reg;
811 bool matched, mismatched;
812 int i, j;
813
814 for (i = 0; i < s->num_type1_screeners; i++) {
815 reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
816 matched = false;
817 mismatched = false;
818
819 /* Screening is based on UDP Port */
820 if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
821 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
822 if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
823 matched = true;
824 } else {
825 mismatched = true;
826 }
827 }
828
829 /* Screening is based on DS/TC */
830 if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
831 uint8_t dscp = rxbuf_ptr[14 + 1];
832 if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
833 matched = true;
834 } else {
835 mismatched = true;
836 }
837 }
838
839 if (matched && !mismatched) {
840 return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
841 }
842 }
843
844 for (i = 0; i < s->num_type2_screeners; i++) {
845 reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
846 matched = false;
847 mismatched = false;
848
849 if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
850 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
851 int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
852 ETHERTYPE_REG_INDEX);
853
854 if (et_idx > s->num_type2_screeners) {
855 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
856 "register index: %d\n", et_idx);
857 }
858 if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
859 et_idx]) {
860 matched = true;
861 } else {
862 mismatched = true;
863 }
864 }
865
866 /* Compare A, B, C */
867 for (j = 0; j < 3; j++) {
868 uint32_t cr0, cr1, mask, compare;
869 uint16_t rx_cmp;
870 int offset;
871 int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
872 R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
873
874 if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
875 R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
876 continue;
877 }
878
879 if (cr_idx > s->num_type2_screeners) {
880 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
881 "register index: %d\n", cr_idx);
882 }
883
884 cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
885 cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
886 offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
887
888 switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
889 case 3: /* Skip UDP header */
890 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
891 "unimplemented - assuming UDP\n");
892 offset += 8;
893 /* Fallthrough */
894 case 2: /* skip the IP header */
895 offset += 20;
896 /* Fallthrough */
897 case 1: /* Count from after the ethertype */
898 offset += 14;
899 break;
900 case 0:
901 /* Offset from start of frame */
902 break;
903 }
904
905 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
906 mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
907 compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
908
909 if ((rx_cmp & mask) == (compare & mask)) {
910 matched = true;
911 } else {
912 mismatched = true;
913 }
914 }
915
916 if (matched && !mismatched) {
917 return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
918 }
919 }
920
921 /* We made it here, assume it's queue 0 */
922 return 0;
923 }
924
925 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
926 {
927 uint32_t base_addr = 0;
928
929 switch (q) {
930 case 0:
931 base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
932 break;
933 case 1 ... (MAX_PRIORITY_QUEUES - 1):
934 base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
935 R_RECEIVE_Q1_PTR) + q - 1];
936 break;
937 default:
938 g_assert_not_reached();
939 };
940
941 return base_addr;
942 }
943
944 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
945 {
946 return gem_get_queue_base_addr(s, true, q);
947 }
948
949 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
950 {
951 return gem_get_queue_base_addr(s, false, q);
952 }
953
954 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
955 {
956 hwaddr desc_addr = 0;
957
958 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
959 desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
960 }
961 desc_addr <<= 32;
962 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
963 return desc_addr;
964 }
965
966 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
967 {
968 return gem_get_desc_addr(s, true, q);
969 }
970
971 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
972 {
973 return gem_get_desc_addr(s, false, q);
974 }
975
976 static void gem_get_rx_desc(CadenceGEMState *s, int q)
977 {
978 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
979
980 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
981
982 /* read current descriptor */
983 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
984 s->rx_desc[q],
985 sizeof(uint32_t) * gem_get_desc_len(s, true));
986
987 /* Descriptor owned by software ? */
988 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
989 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
990 s->regs[R_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
991 gem_set_isr(s, q, GEM_INT_RXUSED);
992 /* Handle interrupt consequences */
993 gem_update_int_status(s);
994 }
995 }
996
997 /*
998 * gem_receive:
999 * Fit a packet handed to us by QEMU into the receive descriptor ring.
1000 */
1001 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1002 {
1003 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1004 unsigned rxbufsize, bytes_to_copy;
1005 unsigned rxbuf_offset;
1006 uint8_t *rxbuf_ptr;
1007 bool first_desc = true;
1008 int maf;
1009 int q = 0;
1010
1011 /* Is this destination MAC address "for us" ? */
1012 maf = gem_mac_address_filter(s, buf);
1013 if (maf == GEM_RX_REJECT) {
1014 return size; /* no, drop silently b/c it's not an error */
1015 }
1016
1017 /* Discard packets with receive length error enabled ? */
1018 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1019 unsigned type_len;
1020
1021 /* Fish the ethertype / length field out of the RX packet */
1022 type_len = buf[12] << 8 | buf[13];
1023 /* It is a length field, not an ethertype */
1024 if (type_len < 0x600) {
1025 if (size < type_len) {
1026 /* discard */
1027 return -1;
1028 }
1029 }
1030 }
1031
1032 /*
1033 * Determine configured receive buffer offset (probably 0)
1034 */
1035 rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1036
1037 /* The configure size of each receive buffer. Determines how many
1038 * buffers needed to hold this packet.
1039 */
1040 rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1041 rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1042
1043 bytes_to_copy = size;
1044
1045 /* Hardware allows a zero value here but warns against it. To avoid QEMU
1046 * indefinite loops we enforce a minimum value here
1047 */
1048 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1049 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1050 }
1051
1052 /* Pad to minimum length. Assume FCS field is stripped, logic
1053 * below will increment it to the real minimum of 64 when
1054 * not FCS stripping
1055 */
1056 if (size < 60) {
1057 size = 60;
1058 }
1059
1060 /* Strip of FCS field ? (usually yes) */
1061 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1062 rxbuf_ptr = (void *)buf;
1063 } else {
1064 unsigned crc_val;
1065
1066 if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1067 size = MAX_FRAME_SIZE - sizeof(crc_val);
1068 }
1069 bytes_to_copy = size;
1070 /* The application wants the FCS field, which QEMU does not provide.
1071 * We must try and calculate one.
1072 */
1073
1074 memcpy(s->rx_packet, buf, size);
1075 memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1076 rxbuf_ptr = s->rx_packet;
1077 crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1078 memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1079
1080 bytes_to_copy += 4;
1081 size += 4;
1082 }
1083
1084 DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1085
1086 /* Find which queue we are targeting */
1087 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1088
1089 if (size > gem_get_max_buf_len(s, false)) {
1090 qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1091 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1092 return -1;
1093 }
1094
1095 while (bytes_to_copy) {
1096 hwaddr desc_addr;
1097
1098 /* Do nothing if receive is not enabled. */
1099 if (!gem_can_receive(nc)) {
1100 return -1;
1101 }
1102
1103 DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1104 MIN(bytes_to_copy, rxbufsize),
1105 rx_desc_get_buffer(s, s->rx_desc[q]));
1106
1107 /* Copy packet data to emulated DMA buffer */
1108 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1109 rxbuf_offset,
1110 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1111 MIN(bytes_to_copy, rxbufsize));
1112 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1113 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1114
1115 rx_desc_clear_control(s->rx_desc[q]);
1116
1117 /* Update the descriptor. */
1118 if (first_desc) {
1119 rx_desc_set_sof(s->rx_desc[q]);
1120 first_desc = false;
1121 }
1122 if (bytes_to_copy == 0) {
1123 rx_desc_set_eof(s->rx_desc[q]);
1124 rx_desc_set_length(s->rx_desc[q], size);
1125 }
1126 rx_desc_set_ownership(s->rx_desc[q]);
1127
1128 switch (maf) {
1129 case GEM_RX_PROMISCUOUS_ACCEPT:
1130 break;
1131 case GEM_RX_BROADCAST_ACCEPT:
1132 rx_desc_set_broadcast(s->rx_desc[q]);
1133 break;
1134 case GEM_RX_UNICAST_HASH_ACCEPT:
1135 rx_desc_set_unicast_hash(s->rx_desc[q]);
1136 break;
1137 case GEM_RX_MULTICAST_HASH_ACCEPT:
1138 rx_desc_set_multicast_hash(s->rx_desc[q]);
1139 break;
1140 case GEM_RX_REJECT:
1141 abort();
1142 default: /* SAR */
1143 rx_desc_set_sar(s->rx_desc[q], maf);
1144 }
1145
1146 /* Descriptor write-back. */
1147 desc_addr = gem_get_rx_desc_addr(s, q);
1148 address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1149 s->rx_desc[q],
1150 sizeof(uint32_t) * gem_get_desc_len(s, true));
1151
1152 /* Next descriptor */
1153 if (rx_desc_get_wrap(s->rx_desc[q])) {
1154 DB_PRINT("wrapping RX descriptor list\n");
1155 s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1156 } else {
1157 DB_PRINT("incrementing RX descriptor list\n");
1158 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1159 }
1160
1161 gem_get_rx_desc(s, q);
1162 }
1163
1164 /* Count it */
1165 gem_receive_updatestats(s, buf, size);
1166
1167 s->regs[R_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1168 gem_set_isr(s, q, GEM_INT_RXCMPL);
1169
1170 /* Handle interrupt consequences */
1171 gem_update_int_status(s);
1172
1173 return size;
1174 }
1175
1176 /*
1177 * gem_transmit_updatestats:
1178 * Increment transmit statistics.
1179 */
1180 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1181 unsigned bytes)
1182 {
1183 uint64_t octets;
1184
1185 /* Total octets (bytes) transmitted */
1186 octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1187 s->regs[R_OCTTXHI];
1188 octets += bytes;
1189 s->regs[R_OCTTXLO] = octets >> 32;
1190 s->regs[R_OCTTXHI] = octets;
1191
1192 /* Error-free Frames transmitted */
1193 s->regs[R_TXCNT]++;
1194
1195 /* Error-free Broadcast Frames counter */
1196 if (!memcmp(packet, broadcast_addr, 6)) {
1197 s->regs[R_TXBCNT]++;
1198 }
1199
1200 /* Error-free Multicast Frames counter */
1201 if (packet[0] == 0x01) {
1202 s->regs[R_TXMCNT]++;
1203 }
1204
1205 if (bytes <= 64) {
1206 s->regs[R_TX64CNT]++;
1207 } else if (bytes <= 127) {
1208 s->regs[R_TX65CNT]++;
1209 } else if (bytes <= 255) {
1210 s->regs[R_TX128CNT]++;
1211 } else if (bytes <= 511) {
1212 s->regs[R_TX256CNT]++;
1213 } else if (bytes <= 1023) {
1214 s->regs[R_TX512CNT]++;
1215 } else if (bytes <= 1518) {
1216 s->regs[R_TX1024CNT]++;
1217 } else {
1218 s->regs[R_TX1519CNT]++;
1219 }
1220 }
1221
1222 /*
1223 * gem_transmit:
1224 * Fish packets out of the descriptor ring and feed them to QEMU
1225 */
1226 static void gem_transmit(CadenceGEMState *s)
1227 {
1228 uint32_t desc[DESC_MAX_NUM_WORDS];
1229 hwaddr packet_desc_addr;
1230 uint8_t *p;
1231 unsigned total_bytes;
1232 int q = 0;
1233
1234 /* Do nothing if transmit is not enabled. */
1235 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1236 return;
1237 }
1238
1239 DB_PRINT("\n");
1240
1241 /* The packet we will hand off to QEMU.
1242 * Packets scattered across multiple descriptors are gathered to this
1243 * one contiguous buffer first.
1244 */
1245 p = s->tx_packet;
1246 total_bytes = 0;
1247
1248 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1249 /* read current descriptor */
1250 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1251
1252 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1253 address_space_read(&s->dma_as, packet_desc_addr,
1254 MEMTXATTRS_UNSPECIFIED, desc,
1255 sizeof(uint32_t) * gem_get_desc_len(s, false));
1256 /* Handle all descriptors owned by hardware */
1257 while (tx_desc_get_used(desc) == 0) {
1258
1259 /* Do nothing if transmit is not enabled. */
1260 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1261 return;
1262 }
1263 print_gem_tx_desc(desc, q);
1264
1265 /* The real hardware would eat this (and possibly crash).
1266 * For QEMU let's lend a helping hand.
1267 */
1268 if ((tx_desc_get_buffer(s, desc) == 0) ||
1269 (tx_desc_get_length(desc) == 0)) {
1270 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1271 packet_desc_addr);
1272 break;
1273 }
1274
1275 if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1276 (p - s->tx_packet)) {
1277 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1278 HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1279 packet_desc_addr, tx_desc_get_length(desc),
1280 gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1281 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1282 break;
1283 }
1284
1285 /* Gather this fragment of the packet from "dma memory" to our
1286 * contig buffer.
1287 */
1288 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1289 MEMTXATTRS_UNSPECIFIED,
1290 p, tx_desc_get_length(desc));
1291 p += tx_desc_get_length(desc);
1292 total_bytes += tx_desc_get_length(desc);
1293
1294 /* Last descriptor for this packet; hand the whole thing off */
1295 if (tx_desc_get_last(desc)) {
1296 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1297 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1298
1299 /* Modify the 1st descriptor of this packet to be owned by
1300 * the processor.
1301 */
1302 address_space_read(&s->dma_as, desc_addr,
1303 MEMTXATTRS_UNSPECIFIED, desc_first,
1304 sizeof(desc_first));
1305 tx_desc_set_used(desc_first);
1306 address_space_write(&s->dma_as, desc_addr,
1307 MEMTXATTRS_UNSPECIFIED, desc_first,
1308 sizeof(desc_first));
1309 /* Advance the hardware current descriptor past this packet */
1310 if (tx_desc_get_wrap(desc)) {
1311 s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1312 } else {
1313 s->tx_desc_addr[q] = packet_desc_addr +
1314 4 * gem_get_desc_len(s, false);
1315 }
1316 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1317
1318 s->regs[R_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1319 gem_set_isr(s, q, GEM_INT_TXCMPL);
1320
1321 /* Handle interrupt consequences */
1322 gem_update_int_status(s);
1323
1324 /* Is checksum offload enabled? */
1325 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1326 net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1327 }
1328
1329 /* Update MAC statistics */
1330 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1331
1332 /* Send the packet somewhere */
1333 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1334 LOOPBACK_LOCAL)) {
1335 qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1336 total_bytes);
1337 } else {
1338 qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1339 total_bytes);
1340 }
1341
1342 /* Prepare for next packet */
1343 p = s->tx_packet;
1344 total_bytes = 0;
1345 }
1346
1347 /* read next descriptor */
1348 if (tx_desc_get_wrap(desc)) {
1349 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1350 packet_desc_addr = s->regs[R_TBQPH];
1351 packet_desc_addr <<= 32;
1352 } else {
1353 packet_desc_addr = 0;
1354 }
1355 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1356 } else {
1357 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1358 }
1359 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1360 address_space_read(&s->dma_as, packet_desc_addr,
1361 MEMTXATTRS_UNSPECIFIED, desc,
1362 sizeof(uint32_t) * gem_get_desc_len(s, false));
1363 }
1364
1365 if (tx_desc_get_used(desc)) {
1366 s->regs[R_TXSTATUS] |= GEM_TXSTATUS_USED;
1367 /* IRQ TXUSED is defined only for queue 0 */
1368 if (q == 0) {
1369 gem_set_isr(s, 0, GEM_INT_TXUSED);
1370 }
1371 gem_update_int_status(s);
1372 }
1373 }
1374 }
1375
1376 static void gem_phy_reset(CadenceGEMState *s)
1377 {
1378 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1379 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1380 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1381 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1382 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1383 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1384 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1385 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1386 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1387 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1388 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1389 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1390 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1391 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1392 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1393 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1394 s->phy_regs[PHY_REG_LED] = 0x4100;
1395 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1396 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1397
1398 phy_update_link(s);
1399 }
1400
1401 static void gem_reset(DeviceState *d)
1402 {
1403 int i;
1404 CadenceGEMState *s = CADENCE_GEM(d);
1405 const uint8_t *a;
1406 uint32_t queues_mask = 0;
1407
1408 DB_PRINT("\n");
1409
1410 /* Set post reset register values */
1411 memset(&s->regs[0], 0, sizeof(s->regs));
1412 s->regs[R_NWCFG] = 0x00080000;
1413 s->regs[R_NWSTATUS] = 0x00000006;
1414 s->regs[R_DMACFG] = 0x00020784;
1415 s->regs[R_IMR] = 0x07ffffff;
1416 s->regs[R_TXPAUSE] = 0x0000ffff;
1417 s->regs[R_TXPARTIALSF] = 0x000003ff;
1418 s->regs[R_RXPARTIALSF] = 0x000003ff;
1419 s->regs[R_MODID] = s->revision;
1420 s->regs[R_DESCONF] = 0x02D00111;
1421 s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1422 s->regs[R_DESCONF5] = 0x002f2045;
1423 s->regs[R_DESCONF6] = GEM_DESCONF6_64B_MASK;
1424 s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1425 s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1426
1427 if (s->num_priority_queues > 1) {
1428 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1429 s->regs[R_DESCONF6] |= queues_mask;
1430 }
1431
1432 /* Set MAC address */
1433 a = &s->conf.macaddr.a[0];
1434 s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1435 s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1436
1437 for (i = 0; i < 4; i++) {
1438 s->sar_active[i] = false;
1439 }
1440
1441 gem_phy_reset(s);
1442
1443 gem_update_int_status(s);
1444 }
1445
1446 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1447 {
1448 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1449 return s->phy_regs[reg_num];
1450 }
1451
1452 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1453 {
1454 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1455
1456 switch (reg_num) {
1457 case PHY_REG_CONTROL:
1458 if (val & PHY_REG_CONTROL_RST) {
1459 /* Phy reset */
1460 gem_phy_reset(s);
1461 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1462 s->phy_loop = 0;
1463 }
1464 if (val & PHY_REG_CONTROL_ANEG) {
1465 /* Complete autonegotiation immediately */
1466 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1467 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1468 }
1469 if (val & PHY_REG_CONTROL_LOOP) {
1470 DB_PRINT("PHY placed in loopback\n");
1471 s->phy_loop = 1;
1472 } else {
1473 s->phy_loop = 0;
1474 }
1475 break;
1476 }
1477 s->phy_regs[reg_num] = val;
1478 }
1479
1480 /*
1481 * gem_read32:
1482 * Read a GEM register.
1483 */
1484 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1485 {
1486 CadenceGEMState *s;
1487 uint32_t retval;
1488 s = opaque;
1489
1490 offset >>= 2;
1491 retval = s->regs[offset];
1492
1493 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1494
1495 switch (offset) {
1496 case R_ISR:
1497 DB_PRINT("lowering irqs on ISR read\n");
1498 /* The interrupts get updated at the end of the function. */
1499 break;
1500 case R_PHYMNTNC:
1501 if (retval & GEM_PHYMNTNC_OP_R) {
1502 uint32_t phy_addr, reg_num;
1503
1504 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1505 if (phy_addr == s->phy_addr) {
1506 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1507 retval &= 0xFFFF0000;
1508 retval |= gem_phy_read(s, reg_num);
1509 } else {
1510 retval |= 0xFFFF; /* No device at this address */
1511 }
1512 }
1513 break;
1514 }
1515
1516 /* Squash read to clear bits */
1517 s->regs[offset] &= ~(s->regs_rtc[offset]);
1518
1519 /* Do not provide write only bits */
1520 retval &= ~(s->regs_wo[offset]);
1521
1522 DB_PRINT("0x%08x\n", retval);
1523 gem_update_int_status(s);
1524 return retval;
1525 }
1526
1527 /*
1528 * gem_write32:
1529 * Write a GEM register.
1530 */
1531 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1532 unsigned size)
1533 {
1534 CadenceGEMState *s = (CadenceGEMState *)opaque;
1535 uint32_t readonly;
1536 int i;
1537
1538 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1539 offset >>= 2;
1540
1541 /* Squash bits which are read only in write value */
1542 val &= ~(s->regs_ro[offset]);
1543 /* Preserve (only) bits which are read only and wtc in register */
1544 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1545
1546 /* Copy register write to backing store */
1547 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1548
1549 /* do w1c */
1550 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1551
1552 /* Handle register write side effects */
1553 switch (offset) {
1554 case R_NWCTRL:
1555 if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1556 for (i = 0; i < s->num_priority_queues; ++i) {
1557 gem_get_rx_desc(s, i);
1558 }
1559 }
1560 if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1561 gem_transmit(s);
1562 }
1563 if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1564 /* Reset to start of Q when transmit disabled. */
1565 for (i = 0; i < s->num_priority_queues; i++) {
1566 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1567 }
1568 }
1569 if (gem_can_receive(qemu_get_queue(s->nic))) {
1570 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1571 }
1572 break;
1573
1574 case R_TXSTATUS:
1575 gem_update_int_status(s);
1576 break;
1577 case R_RXQBASE:
1578 s->rx_desc_addr[0] = val;
1579 break;
1580 case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1581 s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1582 break;
1583 case R_TXQBASE:
1584 s->tx_desc_addr[0] = val;
1585 break;
1586 case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1587 s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1588 break;
1589 case R_RXSTATUS:
1590 gem_update_int_status(s);
1591 break;
1592 case R_IER:
1593 s->regs[R_IMR] &= ~val;
1594 gem_update_int_status(s);
1595 break;
1596 case R_JUMBO_MAX_LEN:
1597 s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1598 break;
1599 case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1600 s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1601 gem_update_int_status(s);
1602 break;
1603 case R_IDR:
1604 s->regs[R_IMR] |= val;
1605 gem_update_int_status(s);
1606 break;
1607 case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1608 s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1609 gem_update_int_status(s);
1610 break;
1611 case R_SPADDR1LO:
1612 case R_SPADDR2LO:
1613 case R_SPADDR3LO:
1614 case R_SPADDR4LO:
1615 s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1616 break;
1617 case R_SPADDR1HI:
1618 case R_SPADDR2HI:
1619 case R_SPADDR3HI:
1620 case R_SPADDR4HI:
1621 s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1622 break;
1623 case R_PHYMNTNC:
1624 if (val & GEM_PHYMNTNC_OP_W) {
1625 uint32_t phy_addr, reg_num;
1626
1627 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1628 if (phy_addr == s->phy_addr) {
1629 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1630 gem_phy_write(s, reg_num, val);
1631 }
1632 }
1633 break;
1634 }
1635
1636 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1637 }
1638
1639 static const MemoryRegionOps gem_ops = {
1640 .read = gem_read,
1641 .write = gem_write,
1642 .endianness = DEVICE_LITTLE_ENDIAN,
1643 };
1644
1645 static void gem_set_link(NetClientState *nc)
1646 {
1647 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1648
1649 DB_PRINT("\n");
1650 phy_update_link(s);
1651 gem_update_int_status(s);
1652 }
1653
1654 static NetClientInfo net_gem_info = {
1655 .type = NET_CLIENT_DRIVER_NIC,
1656 .size = sizeof(NICState),
1657 .can_receive = gem_can_receive,
1658 .receive = gem_receive,
1659 .link_status_changed = gem_set_link,
1660 };
1661
1662 static void gem_realize(DeviceState *dev, Error **errp)
1663 {
1664 CadenceGEMState *s = CADENCE_GEM(dev);
1665 int i;
1666
1667 address_space_init(&s->dma_as,
1668 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1669
1670 if (s->num_priority_queues == 0 ||
1671 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1672 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1673 s->num_priority_queues);
1674 return;
1675 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1676 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1677 s->num_type1_screeners);
1678 return;
1679 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1680 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1681 s->num_type2_screeners);
1682 return;
1683 }
1684
1685 for (i = 0; i < s->num_priority_queues; ++i) {
1686 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1687 }
1688
1689 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1690
1691 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1692 object_get_typename(OBJECT(dev)), dev->id, s);
1693
1694 if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1695 error_setg(errp, "jumbo-max-len is greater than %d",
1696 MAX_FRAME_SIZE);
1697 return;
1698 }
1699 }
1700
1701 static void gem_init(Object *obj)
1702 {
1703 CadenceGEMState *s = CADENCE_GEM(obj);
1704 DeviceState *dev = DEVICE(obj);
1705
1706 DB_PRINT("\n");
1707
1708 gem_init_register_masks(s);
1709 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1710 "enet", sizeof(s->regs));
1711
1712 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1713 }
1714
1715 static const VMStateDescription vmstate_cadence_gem = {
1716 .name = "cadence_gem",
1717 .version_id = 4,
1718 .minimum_version_id = 4,
1719 .fields = (VMStateField[]) {
1720 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1721 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1722 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1723 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1724 MAX_PRIORITY_QUEUES),
1725 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1726 MAX_PRIORITY_QUEUES),
1727 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1728 VMSTATE_END_OF_LIST(),
1729 }
1730 };
1731
1732 static Property gem_properties[] = {
1733 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1734 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1735 GEM_MODID_VALUE),
1736 DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1737 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1738 num_priority_queues, 1),
1739 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1740 num_type1_screeners, 4),
1741 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1742 num_type2_screeners, 4),
1743 DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1744 jumbo_max_len, 10240),
1745 DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1746 TYPE_MEMORY_REGION, MemoryRegion *),
1747 DEFINE_PROP_END_OF_LIST(),
1748 };
1749
1750 static void gem_class_init(ObjectClass *klass, void *data)
1751 {
1752 DeviceClass *dc = DEVICE_CLASS(klass);
1753
1754 dc->realize = gem_realize;
1755 device_class_set_props(dc, gem_properties);
1756 dc->vmsd = &vmstate_cadence_gem;
1757 dc->reset = gem_reset;
1758 }
1759
1760 static const TypeInfo gem_info = {
1761 .name = TYPE_CADENCE_GEM,
1762 .parent = TYPE_SYS_BUS_DEVICE,
1763 .instance_size = sizeof(CadenceGEMState),
1764 .instance_init = gem_init,
1765 .class_init = gem_class_init,
1766 };
1767
1768 static void gem_register_types(void)
1769 {
1770 type_register_static(&gem_info);
1771 }
1772
1773 type_init(gem_register_types)