]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/cadence_gem.c
net: cadence_gem: Fix debug statements
[mirror_qemu.git] / hw / net / cadence_gem.c
1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "qapi/error.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 #include "sysemu/dma.h"
36 #include "net/checksum.h"
37
38 #define CADENCE_GEM_ERR_DEBUG 0
39 #define DB_PRINT(...) do {\
40 if (CADENCE_GEM_ERR_DEBUG) { \
41 qemu_log(": %s: ", __func__); \
42 qemu_log(__VA_ARGS__); \
43 } \
44 } while (0)
45
46 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
47 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
48 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
49 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
50 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
51 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
52 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
53 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
54 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
55 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
56 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
57 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
58 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
59 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
60 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
61 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
62 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
63 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
64 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
65 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
66 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
67 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
68 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
69 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
70 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
71 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
72 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
73 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
74 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
75 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
76 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
77 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
78 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
79 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
80 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
81 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
82 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
83 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
84 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
85 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
86 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
87 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
88 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
89 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
90 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
91 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
92 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
93 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
94 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
95 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
96 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
97 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
98 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
99 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
100 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
101 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
102 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
103 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
104 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
105 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
106 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
107 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
108 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
109 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
110 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
111 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
112 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
113 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
114 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
115 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
116 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
117 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
118 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
119 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
120 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
121 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
122 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
123 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
124 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
125 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
126 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
127
128 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
129 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
130 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
131 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
132 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
133 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
134 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
135 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
136 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
137 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
138 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
139 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
140
141 /* Design Configuration Registers */
142 #define GEM_DESCONF (0x00000280/4)
143 #define GEM_DESCONF2 (0x00000284/4)
144 #define GEM_DESCONF3 (0x00000288/4)
145 #define GEM_DESCONF4 (0x0000028C/4)
146 #define GEM_DESCONF5 (0x00000290/4)
147 #define GEM_DESCONF6 (0x00000294/4)
148 #define GEM_DESCONF6_64B_MASK (1U << 23)
149 #define GEM_DESCONF7 (0x00000298/4)
150
151 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
152 #define GEM_INT_Q1_MASK (0x00000640 / 4)
153
154 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
155 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
156
157 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
158 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
159
160 #define GEM_TBQPH (0x000004C8 / 4)
161 #define GEM_RBQPH (0x000004D4 / 4)
162
163 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
164 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
165
166 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
167 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
168
169 #define GEM_INT_Q1_MASK (0x00000640 / 4)
170 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
171
172 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
173
174 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
175 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
176 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
177 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
178 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
179 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
180 #define GEM_ST1R_QUEUE_SHIFT (0)
181 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
182
183 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
184
185 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
186 #define GEM_ST2R_COMPARE_A_SHIFT (13)
187 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
188 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
189 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
190 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
191 + 1)
192 #define GEM_ST2R_QUEUE_SHIFT (0)
193 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
194
195 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
196 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
197
198 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
199 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
200 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
201 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
202
203 /*****************************************/
204 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
205 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
206 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
207 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
208
209 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
210 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
211 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
212 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
213 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
214 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
215 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
216 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
217
218 #define GEM_DMACFG_ADDR_64B (1U << 30)
219 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
220 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
221 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
222 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
223 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
224 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
225
226 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
227 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
228
229 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
230 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
231
232 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
233 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
234 #define GEM_INT_TXUSED 0x00000008
235 #define GEM_INT_RXUSED 0x00000004
236 #define GEM_INT_RXCMPL 0x00000002
237
238 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
239 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
240 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
241 #define GEM_PHYMNTNC_ADDR_SHFT 23
242 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
243 #define GEM_PHYMNTNC_REG_SHIFT 18
244
245 /* Marvell PHY definitions */
246 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
247
248 #define PHY_REG_CONTROL 0
249 #define PHY_REG_STATUS 1
250 #define PHY_REG_PHYID1 2
251 #define PHY_REG_PHYID2 3
252 #define PHY_REG_ANEGADV 4
253 #define PHY_REG_LINKPABIL 5
254 #define PHY_REG_ANEGEXP 6
255 #define PHY_REG_NEXTP 7
256 #define PHY_REG_LINKPNEXTP 8
257 #define PHY_REG_100BTCTRL 9
258 #define PHY_REG_1000BTSTAT 10
259 #define PHY_REG_EXTSTAT 15
260 #define PHY_REG_PHYSPCFC_CTL 16
261 #define PHY_REG_PHYSPCFC_ST 17
262 #define PHY_REG_INT_EN 18
263 #define PHY_REG_INT_ST 19
264 #define PHY_REG_EXT_PHYSPCFC_CTL 20
265 #define PHY_REG_RXERR 21
266 #define PHY_REG_EACD 22
267 #define PHY_REG_LED 24
268 #define PHY_REG_LED_OVRD 25
269 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
270 #define PHY_REG_EXT_PHYSPCFC_ST 27
271 #define PHY_REG_CABLE_DIAG 28
272
273 #define PHY_REG_CONTROL_RST 0x8000
274 #define PHY_REG_CONTROL_LOOP 0x4000
275 #define PHY_REG_CONTROL_ANEG 0x1000
276 #define PHY_REG_CONTROL_ANRESTART 0x0200
277
278 #define PHY_REG_STATUS_LINK 0x0004
279 #define PHY_REG_STATUS_ANEGCMPL 0x0020
280
281 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
282 #define PHY_REG_INT_ST_LINKC 0x0400
283 #define PHY_REG_INT_ST_ENERGY 0x0010
284
285 /***********************************************************************/
286 #define GEM_RX_REJECT (-1)
287 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
288 #define GEM_RX_BROADCAST_ACCEPT (-3)
289 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
290 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
291
292 #define GEM_RX_SAR_ACCEPT 0
293
294 /***********************************************************************/
295
296 #define DESC_1_USED 0x80000000
297 #define DESC_1_LENGTH 0x00001FFF
298
299 #define DESC_1_TX_WRAP 0x40000000
300 #define DESC_1_TX_LAST 0x00008000
301
302 #define DESC_0_RX_WRAP 0x00000002
303 #define DESC_0_RX_OWNERSHIP 0x00000001
304
305 #define R_DESC_1_RX_SAR_SHIFT 25
306 #define R_DESC_1_RX_SAR_LENGTH 2
307 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
308 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
309 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
310 #define R_DESC_1_RX_BROADCAST (1 << 31)
311
312 #define DESC_1_RX_SOF 0x00004000
313 #define DESC_1_RX_EOF 0x00008000
314
315 #define GEM_MODID_VALUE 0x00020118
316
317 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
318 {
319 uint64_t ret = desc[0];
320
321 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
322 ret |= (uint64_t)desc[2] << 32;
323 }
324 return ret;
325 }
326
327 static inline unsigned tx_desc_get_used(uint32_t *desc)
328 {
329 return (desc[1] & DESC_1_USED) ? 1 : 0;
330 }
331
332 static inline void tx_desc_set_used(uint32_t *desc)
333 {
334 desc[1] |= DESC_1_USED;
335 }
336
337 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
338 {
339 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
340 }
341
342 static inline unsigned tx_desc_get_last(uint32_t *desc)
343 {
344 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
345 }
346
347 static inline void tx_desc_set_last(uint32_t *desc)
348 {
349 desc[1] |= DESC_1_TX_LAST;
350 }
351
352 static inline unsigned tx_desc_get_length(uint32_t *desc)
353 {
354 return desc[1] & DESC_1_LENGTH;
355 }
356
357 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
358 {
359 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
360 DB_PRINT("bufaddr: 0x%08x\n", *desc);
361 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
362 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
363 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
364 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
365 }
366
367 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
368 {
369 uint64_t ret = desc[0] & ~0x3UL;
370
371 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
372 ret |= (uint64_t)desc[2] << 32;
373 }
374 return ret;
375 }
376
377 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
378 {
379 int ret = 2;
380
381 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
382 ret += 2;
383 }
384 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
385 : GEM_DMACFG_TX_BD_EXT)) {
386 ret += 2;
387 }
388
389 assert(ret <= DESC_MAX_NUM_WORDS);
390 return ret;
391 }
392
393 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
394 {
395 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
396 }
397
398 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
399 {
400 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
401 }
402
403 static inline void rx_desc_set_ownership(uint32_t *desc)
404 {
405 desc[0] |= DESC_0_RX_OWNERSHIP;
406 }
407
408 static inline void rx_desc_set_sof(uint32_t *desc)
409 {
410 desc[1] |= DESC_1_RX_SOF;
411 }
412
413 static inline void rx_desc_clear_control(uint32_t *desc)
414 {
415 desc[1] = 0;
416 }
417
418 static inline void rx_desc_set_eof(uint32_t *desc)
419 {
420 desc[1] |= DESC_1_RX_EOF;
421 }
422
423 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
424 {
425 desc[1] &= ~DESC_1_LENGTH;
426 desc[1] |= len;
427 }
428
429 static inline void rx_desc_set_broadcast(uint32_t *desc)
430 {
431 desc[1] |= R_DESC_1_RX_BROADCAST;
432 }
433
434 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
435 {
436 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
437 }
438
439 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
440 {
441 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
442 }
443
444 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
445 {
446 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
447 sar_idx);
448 desc[1] |= R_DESC_1_RX_SAR_MATCH;
449 }
450
451 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
452 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
453
454 /*
455 * gem_init_register_masks:
456 * One time initialization.
457 * Set masks to identify which register bits have magical clear properties
458 */
459 static void gem_init_register_masks(CadenceGEMState *s)
460 {
461 /* Mask of register bits which are read only */
462 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
463 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
464 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
465 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
466 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
467 s->regs_ro[GEM_RXQBASE] = 0x00000003;
468 s->regs_ro[GEM_TXQBASE] = 0x00000003;
469 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
470 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
471 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
472 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
473
474 /* Mask of register bits which are clear on read */
475 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
476 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
477
478 /* Mask of register bits which are write 1 to clear */
479 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
480 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
481 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
482
483 /* Mask of register bits which are write only */
484 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
485 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
486 s->regs_wo[GEM_IER] = 0x07FFFFFF;
487 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
488 }
489
490 /*
491 * phy_update_link:
492 * Make the emulated PHY link state match the QEMU "interface" state.
493 */
494 static void phy_update_link(CadenceGEMState *s)
495 {
496 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
497
498 /* Autonegotiation status mirrors link status. */
499 if (qemu_get_queue(s->nic)->link_down) {
500 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
501 PHY_REG_STATUS_LINK);
502 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
503 } else {
504 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
505 PHY_REG_STATUS_LINK);
506 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
507 PHY_REG_INT_ST_ANEGCMPL |
508 PHY_REG_INT_ST_ENERGY);
509 }
510 }
511
512 static bool gem_can_receive(NetClientState *nc)
513 {
514 CadenceGEMState *s;
515 int i;
516
517 s = qemu_get_nic_opaque(nc);
518
519 /* Do nothing if receive is not enabled. */
520 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
521 if (s->can_rx_state != 1) {
522 s->can_rx_state = 1;
523 DB_PRINT("can't receive - no enable\n");
524 }
525 return false;
526 }
527
528 for (i = 0; i < s->num_priority_queues; i++) {
529 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
530 break;
531 }
532 };
533
534 if (i == s->num_priority_queues) {
535 if (s->can_rx_state != 2) {
536 s->can_rx_state = 2;
537 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
538 }
539 return false;
540 }
541
542 if (s->can_rx_state != 0) {
543 s->can_rx_state = 0;
544 DB_PRINT("can receive\n");
545 }
546 return true;
547 }
548
549 /*
550 * gem_update_int_status:
551 * Raise or lower interrupt based on current status.
552 */
553 static void gem_update_int_status(CadenceGEMState *s)
554 {
555 int i;
556
557 if (!s->regs[GEM_ISR]) {
558 /* ISR isn't set, clear all the interrupts */
559 for (i = 0; i < s->num_priority_queues; ++i) {
560 qemu_set_irq(s->irq[i], 0);
561 }
562 return;
563 }
564
565 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
566 * check it again.
567 */
568 if (s->num_priority_queues == 1) {
569 /* No priority queues, just trigger the interrupt */
570 DB_PRINT("asserting int.\n");
571 qemu_set_irq(s->irq[0], 1);
572 return;
573 }
574
575 for (i = 0; i < s->num_priority_queues; ++i) {
576 if (s->regs[GEM_INT_Q1_STATUS + i]) {
577 DB_PRINT("asserting int. (q=%d)\n", i);
578 qemu_set_irq(s->irq[i], 1);
579 }
580 }
581 }
582
583 /*
584 * gem_receive_updatestats:
585 * Increment receive statistics.
586 */
587 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
588 unsigned bytes)
589 {
590 uint64_t octets;
591
592 /* Total octets (bytes) received */
593 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
594 s->regs[GEM_OCTRXHI];
595 octets += bytes;
596 s->regs[GEM_OCTRXLO] = octets >> 32;
597 s->regs[GEM_OCTRXHI] = octets;
598
599 /* Error-free Frames received */
600 s->regs[GEM_RXCNT]++;
601
602 /* Error-free Broadcast Frames counter */
603 if (!memcmp(packet, broadcast_addr, 6)) {
604 s->regs[GEM_RXBROADCNT]++;
605 }
606
607 /* Error-free Multicast Frames counter */
608 if (packet[0] == 0x01) {
609 s->regs[GEM_RXMULTICNT]++;
610 }
611
612 if (bytes <= 64) {
613 s->regs[GEM_RX64CNT]++;
614 } else if (bytes <= 127) {
615 s->regs[GEM_RX65CNT]++;
616 } else if (bytes <= 255) {
617 s->regs[GEM_RX128CNT]++;
618 } else if (bytes <= 511) {
619 s->regs[GEM_RX256CNT]++;
620 } else if (bytes <= 1023) {
621 s->regs[GEM_RX512CNT]++;
622 } else if (bytes <= 1518) {
623 s->regs[GEM_RX1024CNT]++;
624 } else {
625 s->regs[GEM_RX1519CNT]++;
626 }
627 }
628
629 /*
630 * Get the MAC Address bit from the specified position
631 */
632 static unsigned get_bit(const uint8_t *mac, unsigned bit)
633 {
634 unsigned byte;
635
636 byte = mac[bit / 8];
637 byte >>= (bit & 0x7);
638 byte &= 1;
639
640 return byte;
641 }
642
643 /*
644 * Calculate a GEM MAC Address hash index
645 */
646 static unsigned calc_mac_hash(const uint8_t *mac)
647 {
648 int index_bit, mac_bit;
649 unsigned hash_index;
650
651 hash_index = 0;
652 mac_bit = 5;
653 for (index_bit = 5; index_bit >= 0; index_bit--) {
654 hash_index |= (get_bit(mac, mac_bit) ^
655 get_bit(mac, mac_bit + 6) ^
656 get_bit(mac, mac_bit + 12) ^
657 get_bit(mac, mac_bit + 18) ^
658 get_bit(mac, mac_bit + 24) ^
659 get_bit(mac, mac_bit + 30) ^
660 get_bit(mac, mac_bit + 36) ^
661 get_bit(mac, mac_bit + 42)) << index_bit;
662 mac_bit--;
663 }
664
665 return hash_index;
666 }
667
668 /*
669 * gem_mac_address_filter:
670 * Accept or reject this destination address?
671 * Returns:
672 * GEM_RX_REJECT: reject
673 * >= 0: Specific address accept (which matched SAR is returned)
674 * others for various other modes of accept:
675 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
676 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
677 */
678 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
679 {
680 uint8_t *gem_spaddr;
681 int i;
682
683 /* Promiscuous mode? */
684 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
685 return GEM_RX_PROMISCUOUS_ACCEPT;
686 }
687
688 if (!memcmp(packet, broadcast_addr, 6)) {
689 /* Reject broadcast packets? */
690 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
691 return GEM_RX_REJECT;
692 }
693 return GEM_RX_BROADCAST_ACCEPT;
694 }
695
696 /* Accept packets -w- hash match? */
697 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
698 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
699 unsigned hash_index;
700
701 hash_index = calc_mac_hash(packet);
702 if (hash_index < 32) {
703 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
704 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
705 GEM_RX_UNICAST_HASH_ACCEPT;
706 }
707 } else {
708 hash_index -= 32;
709 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
710 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
711 GEM_RX_UNICAST_HASH_ACCEPT;
712 }
713 }
714 }
715
716 /* Check all 4 specific addresses */
717 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
718 for (i = 3; i >= 0; i--) {
719 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
720 return GEM_RX_SAR_ACCEPT + i;
721 }
722 }
723
724 /* No address match; reject the packet */
725 return GEM_RX_REJECT;
726 }
727
728 /* Figure out which queue the received data should be sent to */
729 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
730 unsigned rxbufsize)
731 {
732 uint32_t reg;
733 bool matched, mismatched;
734 int i, j;
735
736 for (i = 0; i < s->num_type1_screeners; i++) {
737 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
738 matched = false;
739 mismatched = false;
740
741 /* Screening is based on UDP Port */
742 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
743 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
744 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
745 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
746 matched = true;
747 } else {
748 mismatched = true;
749 }
750 }
751
752 /* Screening is based on DS/TC */
753 if (reg & GEM_ST1R_DSTC_ENABLE) {
754 uint8_t dscp = rxbuf_ptr[14 + 1];
755 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
756 GEM_ST1R_DSTC_MATCH_WIDTH)) {
757 matched = true;
758 } else {
759 mismatched = true;
760 }
761 }
762
763 if (matched && !mismatched) {
764 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
765 }
766 }
767
768 for (i = 0; i < s->num_type2_screeners; i++) {
769 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
770 matched = false;
771 mismatched = false;
772
773 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
774 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
775 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
776 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
777
778 if (et_idx > s->num_type2_screeners) {
779 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
780 "register index: %d\n", et_idx);
781 }
782 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
783 et_idx]) {
784 matched = true;
785 } else {
786 mismatched = true;
787 }
788 }
789
790 /* Compare A, B, C */
791 for (j = 0; j < 3; j++) {
792 uint32_t cr0, cr1, mask;
793 uint16_t rx_cmp;
794 int offset;
795 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
796 GEM_ST2R_COMPARE_WIDTH);
797
798 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
799 continue;
800 }
801 if (cr_idx > s->num_type2_screeners) {
802 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
803 "register index: %d\n", cr_idx);
804 }
805
806 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
807 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
808 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
809 GEM_T2CW1_OFFSET_VALUE_WIDTH);
810
811 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
812 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
813 case 3: /* Skip UDP header */
814 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
815 "unimplemented - assuming UDP\n");
816 offset += 8;
817 /* Fallthrough */
818 case 2: /* skip the IP header */
819 offset += 20;
820 /* Fallthrough */
821 case 1: /* Count from after the ethertype */
822 offset += 14;
823 break;
824 case 0:
825 /* Offset from start of frame */
826 break;
827 }
828
829 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
830 mask = extract32(cr0, 0, 16);
831
832 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
833 matched = true;
834 } else {
835 mismatched = true;
836 }
837 }
838
839 if (matched && !mismatched) {
840 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
841 }
842 }
843
844 /* We made it here, assume it's queue 0 */
845 return 0;
846 }
847
848 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
849 {
850 hwaddr desc_addr = 0;
851
852 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
853 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
854 }
855 desc_addr <<= 32;
856 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
857 return desc_addr;
858 }
859
860 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
861 {
862 return gem_get_desc_addr(s, true, q);
863 }
864
865 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
866 {
867 return gem_get_desc_addr(s, false, q);
868 }
869
870 static void gem_get_rx_desc(CadenceGEMState *s, int q)
871 {
872 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
873
874 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
875
876 /* read current descriptor */
877 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
878 s->rx_desc[q],
879 sizeof(uint32_t) * gem_get_desc_len(s, true));
880
881 /* Descriptor owned by software ? */
882 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
883 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
884 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
885 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
886 /* Handle interrupt consequences */
887 gem_update_int_status(s);
888 }
889 }
890
891 /*
892 * gem_receive:
893 * Fit a packet handed to us by QEMU into the receive descriptor ring.
894 */
895 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
896 {
897 CadenceGEMState *s;
898 unsigned rxbufsize, bytes_to_copy;
899 unsigned rxbuf_offset;
900 uint8_t rxbuf[2048];
901 uint8_t *rxbuf_ptr;
902 bool first_desc = true;
903 int maf;
904 int q = 0;
905
906 s = qemu_get_nic_opaque(nc);
907
908 /* Is this destination MAC address "for us" ? */
909 maf = gem_mac_address_filter(s, buf);
910 if (maf == GEM_RX_REJECT) {
911 return -1;
912 }
913
914 /* Discard packets with receive length error enabled ? */
915 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
916 unsigned type_len;
917
918 /* Fish the ethertype / length field out of the RX packet */
919 type_len = buf[12] << 8 | buf[13];
920 /* It is a length field, not an ethertype */
921 if (type_len < 0x600) {
922 if (size < type_len) {
923 /* discard */
924 return -1;
925 }
926 }
927 }
928
929 /*
930 * Determine configured receive buffer offset (probably 0)
931 */
932 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
933 GEM_NWCFG_BUFF_OFST_S;
934
935 /* The configure size of each receive buffer. Determines how many
936 * buffers needed to hold this packet.
937 */
938 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
939 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
940 bytes_to_copy = size;
941
942 /* Hardware allows a zero value here but warns against it. To avoid QEMU
943 * indefinite loops we enforce a minimum value here
944 */
945 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
946 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
947 }
948
949 /* Pad to minimum length. Assume FCS field is stripped, logic
950 * below will increment it to the real minimum of 64 when
951 * not FCS stripping
952 */
953 if (size < 60) {
954 size = 60;
955 }
956
957 /* Strip of FCS field ? (usually yes) */
958 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
959 rxbuf_ptr = (void *)buf;
960 } else {
961 unsigned crc_val;
962
963 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
964 size = sizeof(rxbuf) - sizeof(crc_val);
965 }
966 bytes_to_copy = size;
967 /* The application wants the FCS field, which QEMU does not provide.
968 * We must try and calculate one.
969 */
970
971 memcpy(rxbuf, buf, size);
972 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
973 rxbuf_ptr = rxbuf;
974 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
975 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
976
977 bytes_to_copy += 4;
978 size += 4;
979 }
980
981 DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
982
983 /* Find which queue we are targeting */
984 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
985
986 while (bytes_to_copy) {
987 hwaddr desc_addr;
988
989 /* Do nothing if receive is not enabled. */
990 if (!gem_can_receive(nc)) {
991 return -1;
992 }
993
994 DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
995 MIN(bytes_to_copy, rxbufsize),
996 rx_desc_get_buffer(s, s->rx_desc[q]));
997
998 /* Copy packet data to emulated DMA buffer */
999 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1000 rxbuf_offset,
1001 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1002 MIN(bytes_to_copy, rxbufsize));
1003 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1004 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1005
1006 rx_desc_clear_control(s->rx_desc[q]);
1007
1008 /* Update the descriptor. */
1009 if (first_desc) {
1010 rx_desc_set_sof(s->rx_desc[q]);
1011 first_desc = false;
1012 }
1013 if (bytes_to_copy == 0) {
1014 rx_desc_set_eof(s->rx_desc[q]);
1015 rx_desc_set_length(s->rx_desc[q], size);
1016 }
1017 rx_desc_set_ownership(s->rx_desc[q]);
1018
1019 switch (maf) {
1020 case GEM_RX_PROMISCUOUS_ACCEPT:
1021 break;
1022 case GEM_RX_BROADCAST_ACCEPT:
1023 rx_desc_set_broadcast(s->rx_desc[q]);
1024 break;
1025 case GEM_RX_UNICAST_HASH_ACCEPT:
1026 rx_desc_set_unicast_hash(s->rx_desc[q]);
1027 break;
1028 case GEM_RX_MULTICAST_HASH_ACCEPT:
1029 rx_desc_set_multicast_hash(s->rx_desc[q]);
1030 break;
1031 case GEM_RX_REJECT:
1032 abort();
1033 default: /* SAR */
1034 rx_desc_set_sar(s->rx_desc[q], maf);
1035 }
1036
1037 /* Descriptor write-back. */
1038 desc_addr = gem_get_rx_desc_addr(s, q);
1039 address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1040 s->rx_desc[q],
1041 sizeof(uint32_t) * gem_get_desc_len(s, true));
1042
1043 /* Next descriptor */
1044 if (rx_desc_get_wrap(s->rx_desc[q])) {
1045 DB_PRINT("wrapping RX descriptor list\n");
1046 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1047 } else {
1048 DB_PRINT("incrementing RX descriptor list\n");
1049 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1050 }
1051
1052 gem_get_rx_desc(s, q);
1053 }
1054
1055 /* Count it */
1056 gem_receive_updatestats(s, buf, size);
1057
1058 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1059 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1060
1061 /* Handle interrupt consequences */
1062 gem_update_int_status(s);
1063
1064 return size;
1065 }
1066
1067 /*
1068 * gem_transmit_updatestats:
1069 * Increment transmit statistics.
1070 */
1071 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1072 unsigned bytes)
1073 {
1074 uint64_t octets;
1075
1076 /* Total octets (bytes) transmitted */
1077 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1078 s->regs[GEM_OCTTXHI];
1079 octets += bytes;
1080 s->regs[GEM_OCTTXLO] = octets >> 32;
1081 s->regs[GEM_OCTTXHI] = octets;
1082
1083 /* Error-free Frames transmitted */
1084 s->regs[GEM_TXCNT]++;
1085
1086 /* Error-free Broadcast Frames counter */
1087 if (!memcmp(packet, broadcast_addr, 6)) {
1088 s->regs[GEM_TXBCNT]++;
1089 }
1090
1091 /* Error-free Multicast Frames counter */
1092 if (packet[0] == 0x01) {
1093 s->regs[GEM_TXMCNT]++;
1094 }
1095
1096 if (bytes <= 64) {
1097 s->regs[GEM_TX64CNT]++;
1098 } else if (bytes <= 127) {
1099 s->regs[GEM_TX65CNT]++;
1100 } else if (bytes <= 255) {
1101 s->regs[GEM_TX128CNT]++;
1102 } else if (bytes <= 511) {
1103 s->regs[GEM_TX256CNT]++;
1104 } else if (bytes <= 1023) {
1105 s->regs[GEM_TX512CNT]++;
1106 } else if (bytes <= 1518) {
1107 s->regs[GEM_TX1024CNT]++;
1108 } else {
1109 s->regs[GEM_TX1519CNT]++;
1110 }
1111 }
1112
1113 /*
1114 * gem_transmit:
1115 * Fish packets out of the descriptor ring and feed them to QEMU
1116 */
1117 static void gem_transmit(CadenceGEMState *s)
1118 {
1119 uint32_t desc[DESC_MAX_NUM_WORDS];
1120 hwaddr packet_desc_addr;
1121 uint8_t tx_packet[2048];
1122 uint8_t *p;
1123 unsigned total_bytes;
1124 int q = 0;
1125
1126 /* Do nothing if transmit is not enabled. */
1127 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1128 return;
1129 }
1130
1131 DB_PRINT("\n");
1132
1133 /* The packet we will hand off to QEMU.
1134 * Packets scattered across multiple descriptors are gathered to this
1135 * one contiguous buffer first.
1136 */
1137 p = tx_packet;
1138 total_bytes = 0;
1139
1140 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1141 /* read current descriptor */
1142 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1143
1144 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1145 address_space_read(&s->dma_as, packet_desc_addr,
1146 MEMTXATTRS_UNSPECIFIED, desc,
1147 sizeof(uint32_t) * gem_get_desc_len(s, false));
1148 /* Handle all descriptors owned by hardware */
1149 while (tx_desc_get_used(desc) == 0) {
1150
1151 /* Do nothing if transmit is not enabled. */
1152 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1153 return;
1154 }
1155 print_gem_tx_desc(desc, q);
1156
1157 /* The real hardware would eat this (and possibly crash).
1158 * For QEMU let's lend a helping hand.
1159 */
1160 if ((tx_desc_get_buffer(s, desc) == 0) ||
1161 (tx_desc_get_length(desc) == 0)) {
1162 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1163 packet_desc_addr);
1164 break;
1165 }
1166
1167 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1168 (p - tx_packet)) {
1169 DB_PRINT("TX descriptor @ 0x%" HWADDR_PRIx \
1170 " too large: size 0x%x space 0x%zx\n",
1171 packet_desc_addr, tx_desc_get_length(desc),
1172 sizeof(tx_packet) - (p - tx_packet));
1173 break;
1174 }
1175
1176 /* Gather this fragment of the packet from "dma memory" to our
1177 * contig buffer.
1178 */
1179 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1180 MEMTXATTRS_UNSPECIFIED,
1181 p, tx_desc_get_length(desc));
1182 p += tx_desc_get_length(desc);
1183 total_bytes += tx_desc_get_length(desc);
1184
1185 /* Last descriptor for this packet; hand the whole thing off */
1186 if (tx_desc_get_last(desc)) {
1187 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1188 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1189
1190 /* Modify the 1st descriptor of this packet to be owned by
1191 * the processor.
1192 */
1193 address_space_read(&s->dma_as, desc_addr,
1194 MEMTXATTRS_UNSPECIFIED, desc_first,
1195 sizeof(desc_first));
1196 tx_desc_set_used(desc_first);
1197 address_space_write(&s->dma_as, desc_addr,
1198 MEMTXATTRS_UNSPECIFIED, desc_first,
1199 sizeof(desc_first));
1200 /* Advance the hardware current descriptor past this packet */
1201 if (tx_desc_get_wrap(desc)) {
1202 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1203 } else {
1204 s->tx_desc_addr[q] = packet_desc_addr +
1205 4 * gem_get_desc_len(s, false);
1206 }
1207 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1208
1209 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1210 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1211
1212 /* Update queue interrupt status */
1213 if (s->num_priority_queues > 1) {
1214 s->regs[GEM_INT_Q1_STATUS + q] |=
1215 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1216 }
1217
1218 /* Handle interrupt consequences */
1219 gem_update_int_status(s);
1220
1221 /* Is checksum offload enabled? */
1222 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1223 net_checksum_calculate(tx_packet, total_bytes);
1224 }
1225
1226 /* Update MAC statistics */
1227 gem_transmit_updatestats(s, tx_packet, total_bytes);
1228
1229 /* Send the packet somewhere */
1230 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1231 GEM_NWCTRL_LOCALLOOP)) {
1232 gem_receive(qemu_get_queue(s->nic), tx_packet,
1233 total_bytes);
1234 } else {
1235 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1236 total_bytes);
1237 }
1238
1239 /* Prepare for next packet */
1240 p = tx_packet;
1241 total_bytes = 0;
1242 }
1243
1244 /* read next descriptor */
1245 if (tx_desc_get_wrap(desc)) {
1246 tx_desc_set_last(desc);
1247
1248 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
1249 packet_desc_addr = s->regs[GEM_TBQPH];
1250 packet_desc_addr <<= 32;
1251 } else {
1252 packet_desc_addr = 0;
1253 }
1254 packet_desc_addr |= s->regs[GEM_TXQBASE];
1255 } else {
1256 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1257 }
1258 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1259 address_space_read(&s->dma_as, packet_desc_addr,
1260 MEMTXATTRS_UNSPECIFIED, desc,
1261 sizeof(uint32_t) * gem_get_desc_len(s, false));
1262 }
1263
1264 if (tx_desc_get_used(desc)) {
1265 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1266 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1267 gem_update_int_status(s);
1268 }
1269 }
1270 }
1271
1272 static void gem_phy_reset(CadenceGEMState *s)
1273 {
1274 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1275 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1276 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1277 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1278 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1279 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1280 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1281 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1282 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1283 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1284 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1285 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1286 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1287 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1288 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1289 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1290 s->phy_regs[PHY_REG_LED] = 0x4100;
1291 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1292 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1293
1294 phy_update_link(s);
1295 }
1296
1297 static void gem_reset(DeviceState *d)
1298 {
1299 int i;
1300 CadenceGEMState *s = CADENCE_GEM(d);
1301 const uint8_t *a;
1302 uint32_t queues_mask = 0;
1303
1304 DB_PRINT("\n");
1305
1306 /* Set post reset register values */
1307 memset(&s->regs[0], 0, sizeof(s->regs));
1308 s->regs[GEM_NWCFG] = 0x00080000;
1309 s->regs[GEM_NWSTATUS] = 0x00000006;
1310 s->regs[GEM_DMACFG] = 0x00020784;
1311 s->regs[GEM_IMR] = 0x07ffffff;
1312 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1313 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1314 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1315 s->regs[GEM_MODID] = s->revision;
1316 s->regs[GEM_DESCONF] = 0x02500111;
1317 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1318 s->regs[GEM_DESCONF5] = 0x002f2045;
1319 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1320
1321 if (s->num_priority_queues > 1) {
1322 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1323 s->regs[GEM_DESCONF6] |= queues_mask;
1324 }
1325
1326 /* Set MAC address */
1327 a = &s->conf.macaddr.a[0];
1328 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1329 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1330
1331 for (i = 0; i < 4; i++) {
1332 s->sar_active[i] = false;
1333 }
1334
1335 gem_phy_reset(s);
1336
1337 gem_update_int_status(s);
1338 }
1339
1340 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1341 {
1342 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1343 return s->phy_regs[reg_num];
1344 }
1345
1346 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1347 {
1348 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1349
1350 switch (reg_num) {
1351 case PHY_REG_CONTROL:
1352 if (val & PHY_REG_CONTROL_RST) {
1353 /* Phy reset */
1354 gem_phy_reset(s);
1355 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1356 s->phy_loop = 0;
1357 }
1358 if (val & PHY_REG_CONTROL_ANEG) {
1359 /* Complete autonegotiation immediately */
1360 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1361 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1362 }
1363 if (val & PHY_REG_CONTROL_LOOP) {
1364 DB_PRINT("PHY placed in loopback\n");
1365 s->phy_loop = 1;
1366 } else {
1367 s->phy_loop = 0;
1368 }
1369 break;
1370 }
1371 s->phy_regs[reg_num] = val;
1372 }
1373
1374 /*
1375 * gem_read32:
1376 * Read a GEM register.
1377 */
1378 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1379 {
1380 CadenceGEMState *s;
1381 uint32_t retval;
1382 s = (CadenceGEMState *)opaque;
1383
1384 offset >>= 2;
1385 retval = s->regs[offset];
1386
1387 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1388
1389 switch (offset) {
1390 case GEM_ISR:
1391 DB_PRINT("lowering irqs on ISR read\n");
1392 /* The interrupts get updated at the end of the function. */
1393 break;
1394 case GEM_PHYMNTNC:
1395 if (retval & GEM_PHYMNTNC_OP_R) {
1396 uint32_t phy_addr, reg_num;
1397
1398 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1399 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1400 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1401 retval &= 0xFFFF0000;
1402 retval |= gem_phy_read(s, reg_num);
1403 } else {
1404 retval |= 0xFFFF; /* No device at this address */
1405 }
1406 }
1407 break;
1408 }
1409
1410 /* Squash read to clear bits */
1411 s->regs[offset] &= ~(s->regs_rtc[offset]);
1412
1413 /* Do not provide write only bits */
1414 retval &= ~(s->regs_wo[offset]);
1415
1416 DB_PRINT("0x%08x\n", retval);
1417 gem_update_int_status(s);
1418 return retval;
1419 }
1420
1421 /*
1422 * gem_write32:
1423 * Write a GEM register.
1424 */
1425 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1426 unsigned size)
1427 {
1428 CadenceGEMState *s = (CadenceGEMState *)opaque;
1429 uint32_t readonly;
1430 int i;
1431
1432 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1433 offset >>= 2;
1434
1435 /* Squash bits which are read only in write value */
1436 val &= ~(s->regs_ro[offset]);
1437 /* Preserve (only) bits which are read only and wtc in register */
1438 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1439
1440 /* Copy register write to backing store */
1441 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1442
1443 /* do w1c */
1444 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1445
1446 /* Handle register write side effects */
1447 switch (offset) {
1448 case GEM_NWCTRL:
1449 if (val & GEM_NWCTRL_RXENA) {
1450 for (i = 0; i < s->num_priority_queues; ++i) {
1451 gem_get_rx_desc(s, i);
1452 }
1453 }
1454 if (val & GEM_NWCTRL_TXSTART) {
1455 gem_transmit(s);
1456 }
1457 if (!(val & GEM_NWCTRL_TXENA)) {
1458 /* Reset to start of Q when transmit disabled. */
1459 for (i = 0; i < s->num_priority_queues; i++) {
1460 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1461 }
1462 }
1463 if (gem_can_receive(qemu_get_queue(s->nic))) {
1464 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1465 }
1466 break;
1467
1468 case GEM_TXSTATUS:
1469 gem_update_int_status(s);
1470 break;
1471 case GEM_RXQBASE:
1472 s->rx_desc_addr[0] = val;
1473 break;
1474 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1475 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1476 break;
1477 case GEM_TXQBASE:
1478 s->tx_desc_addr[0] = val;
1479 break;
1480 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1481 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1482 break;
1483 case GEM_RXSTATUS:
1484 gem_update_int_status(s);
1485 break;
1486 case GEM_IER:
1487 s->regs[GEM_IMR] &= ~val;
1488 gem_update_int_status(s);
1489 break;
1490 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1491 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1492 gem_update_int_status(s);
1493 break;
1494 case GEM_IDR:
1495 s->regs[GEM_IMR] |= val;
1496 gem_update_int_status(s);
1497 break;
1498 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1499 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1500 gem_update_int_status(s);
1501 break;
1502 case GEM_SPADDR1LO:
1503 case GEM_SPADDR2LO:
1504 case GEM_SPADDR3LO:
1505 case GEM_SPADDR4LO:
1506 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1507 break;
1508 case GEM_SPADDR1HI:
1509 case GEM_SPADDR2HI:
1510 case GEM_SPADDR3HI:
1511 case GEM_SPADDR4HI:
1512 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1513 break;
1514 case GEM_PHYMNTNC:
1515 if (val & GEM_PHYMNTNC_OP_W) {
1516 uint32_t phy_addr, reg_num;
1517
1518 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1519 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1520 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1521 gem_phy_write(s, reg_num, val);
1522 }
1523 }
1524 break;
1525 }
1526
1527 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1528 }
1529
1530 static const MemoryRegionOps gem_ops = {
1531 .read = gem_read,
1532 .write = gem_write,
1533 .endianness = DEVICE_LITTLE_ENDIAN,
1534 };
1535
1536 static void gem_set_link(NetClientState *nc)
1537 {
1538 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1539
1540 DB_PRINT("\n");
1541 phy_update_link(s);
1542 gem_update_int_status(s);
1543 }
1544
1545 static NetClientInfo net_gem_info = {
1546 .type = NET_CLIENT_DRIVER_NIC,
1547 .size = sizeof(NICState),
1548 .can_receive = gem_can_receive,
1549 .receive = gem_receive,
1550 .link_status_changed = gem_set_link,
1551 };
1552
1553 static void gem_realize(DeviceState *dev, Error **errp)
1554 {
1555 CadenceGEMState *s = CADENCE_GEM(dev);
1556 int i;
1557
1558 address_space_init(&s->dma_as,
1559 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1560
1561 if (s->num_priority_queues == 0 ||
1562 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1563 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1564 s->num_priority_queues);
1565 return;
1566 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1567 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1568 s->num_type1_screeners);
1569 return;
1570 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1571 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1572 s->num_type2_screeners);
1573 return;
1574 }
1575
1576 for (i = 0; i < s->num_priority_queues; ++i) {
1577 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1578 }
1579
1580 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1581
1582 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1583 object_get_typename(OBJECT(dev)), dev->id, s);
1584 }
1585
1586 static void gem_init(Object *obj)
1587 {
1588 CadenceGEMState *s = CADENCE_GEM(obj);
1589 DeviceState *dev = DEVICE(obj);
1590
1591 DB_PRINT("\n");
1592
1593 gem_init_register_masks(s);
1594 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1595 "enet", sizeof(s->regs));
1596
1597 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1598
1599 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1600 (Object **)&s->dma_mr,
1601 qdev_prop_allow_set_link_before_realize,
1602 OBJ_PROP_LINK_STRONG);
1603 }
1604
1605 static const VMStateDescription vmstate_cadence_gem = {
1606 .name = "cadence_gem",
1607 .version_id = 4,
1608 .minimum_version_id = 4,
1609 .fields = (VMStateField[]) {
1610 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1611 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1612 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1613 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1614 MAX_PRIORITY_QUEUES),
1615 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1616 MAX_PRIORITY_QUEUES),
1617 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1618 VMSTATE_END_OF_LIST(),
1619 }
1620 };
1621
1622 static Property gem_properties[] = {
1623 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1624 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1625 GEM_MODID_VALUE),
1626 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1627 num_priority_queues, 1),
1628 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1629 num_type1_screeners, 4),
1630 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1631 num_type2_screeners, 4),
1632 DEFINE_PROP_END_OF_LIST(),
1633 };
1634
1635 static void gem_class_init(ObjectClass *klass, void *data)
1636 {
1637 DeviceClass *dc = DEVICE_CLASS(klass);
1638
1639 dc->realize = gem_realize;
1640 device_class_set_props(dc, gem_properties);
1641 dc->vmsd = &vmstate_cadence_gem;
1642 dc->reset = gem_reset;
1643 }
1644
1645 static const TypeInfo gem_info = {
1646 .name = TYPE_CADENCE_GEM,
1647 .parent = TYPE_SYS_BUS_DEVICE,
1648 .instance_size = sizeof(CadenceGEMState),
1649 .instance_init = gem_init,
1650 .class_init = gem_class_init,
1651 };
1652
1653 static void gem_register_types(void)
1654 {
1655 type_register_static(&gem_info);
1656 }
1657
1658 type_init(gem_register_types)