]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/cadence_gem.c
Include migration/vmstate.h less
[mirror_qemu.git] / hw / net / cadence_gem.c
1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "migration/vmstate.h"
31 #include "qapi/error.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "sysemu/dma.h"
35 #include "net/checksum.h"
36
37 #ifdef CADENCE_GEM_ERR_DEBUG
38 #define DB_PRINT(...) do { \
39 fprintf(stderr, ": %s: ", __func__); \
40 fprintf(stderr, ## __VA_ARGS__); \
41 } while (0)
42 #else
43 #define DB_PRINT(...)
44 #endif
45
46 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
47 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
48 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
49 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
50 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
51 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
52 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
53 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
54 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
55 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
56 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
57 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
58 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
59 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
60 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
61 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
62 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
63 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
64 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
65 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
66 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
67 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
68 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
69 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
70 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
71 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
72 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
73 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
74 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
75 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
76 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
77 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
78 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
79 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
80 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
81 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
82 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
83 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
84 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
85 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
86 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
87 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
88 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
89 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
90 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
91 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
92 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
93 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
94 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
95 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
96 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
97 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
98 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
99 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
100 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
101 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
102 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
103 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
104 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
105 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
106 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
107 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
108 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
109 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
110 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
111 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
112 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
113 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
114 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
115 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
116 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
117 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
118 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
119 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
120 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
121 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
122 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
123 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
124 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
125 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
126 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
127
128 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
129 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
130 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
131 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
132 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
133 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
134 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
135 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
136 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
137 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
138 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
139 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
140
141 /* Design Configuration Registers */
142 #define GEM_DESCONF (0x00000280/4)
143 #define GEM_DESCONF2 (0x00000284/4)
144 #define GEM_DESCONF3 (0x00000288/4)
145 #define GEM_DESCONF4 (0x0000028C/4)
146 #define GEM_DESCONF5 (0x00000290/4)
147 #define GEM_DESCONF6 (0x00000294/4)
148 #define GEM_DESCONF6_64B_MASK (1U << 23)
149 #define GEM_DESCONF7 (0x00000298/4)
150
151 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
152 #define GEM_INT_Q1_MASK (0x00000640 / 4)
153
154 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
155 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
156
157 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
158 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
159
160 #define GEM_TBQPH (0x000004C8 / 4)
161 #define GEM_RBQPH (0x000004D4 / 4)
162
163 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
164 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
165
166 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
167 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
168
169 #define GEM_INT_Q1_MASK (0x00000640 / 4)
170 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
171
172 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
173
174 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
175 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
176 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
177 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
178 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
179 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
180 #define GEM_ST1R_QUEUE_SHIFT (0)
181 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
182
183 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
184
185 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
186 #define GEM_ST2R_COMPARE_A_SHIFT (13)
187 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
188 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
189 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
190 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
191 + 1)
192 #define GEM_ST2R_QUEUE_SHIFT (0)
193 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
194
195 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
196 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
197
198 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
199 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
200 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
201 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
202
203 /*****************************************/
204 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
205 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
206 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
207 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
208
209 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
210 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
211 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
212 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
213 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
214 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
215 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
216 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
217
218 #define GEM_DMACFG_ADDR_64B (1U << 30)
219 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
220 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
221 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
222 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
223 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
224 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
225
226 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
227 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
228
229 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
230 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
231
232 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
233 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
234 #define GEM_INT_TXUSED 0x00000008
235 #define GEM_INT_RXUSED 0x00000004
236 #define GEM_INT_RXCMPL 0x00000002
237
238 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
239 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
240 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
241 #define GEM_PHYMNTNC_ADDR_SHFT 23
242 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
243 #define GEM_PHYMNTNC_REG_SHIFT 18
244
245 /* Marvell PHY definitions */
246 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
247
248 #define PHY_REG_CONTROL 0
249 #define PHY_REG_STATUS 1
250 #define PHY_REG_PHYID1 2
251 #define PHY_REG_PHYID2 3
252 #define PHY_REG_ANEGADV 4
253 #define PHY_REG_LINKPABIL 5
254 #define PHY_REG_ANEGEXP 6
255 #define PHY_REG_NEXTP 7
256 #define PHY_REG_LINKPNEXTP 8
257 #define PHY_REG_100BTCTRL 9
258 #define PHY_REG_1000BTSTAT 10
259 #define PHY_REG_EXTSTAT 15
260 #define PHY_REG_PHYSPCFC_CTL 16
261 #define PHY_REG_PHYSPCFC_ST 17
262 #define PHY_REG_INT_EN 18
263 #define PHY_REG_INT_ST 19
264 #define PHY_REG_EXT_PHYSPCFC_CTL 20
265 #define PHY_REG_RXERR 21
266 #define PHY_REG_EACD 22
267 #define PHY_REG_LED 24
268 #define PHY_REG_LED_OVRD 25
269 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
270 #define PHY_REG_EXT_PHYSPCFC_ST 27
271 #define PHY_REG_CABLE_DIAG 28
272
273 #define PHY_REG_CONTROL_RST 0x8000
274 #define PHY_REG_CONTROL_LOOP 0x4000
275 #define PHY_REG_CONTROL_ANEG 0x1000
276
277 #define PHY_REG_STATUS_LINK 0x0004
278 #define PHY_REG_STATUS_ANEGCMPL 0x0020
279
280 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
281 #define PHY_REG_INT_ST_LINKC 0x0400
282 #define PHY_REG_INT_ST_ENERGY 0x0010
283
284 /***********************************************************************/
285 #define GEM_RX_REJECT (-1)
286 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
287 #define GEM_RX_BROADCAST_ACCEPT (-3)
288 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
289 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
290
291 #define GEM_RX_SAR_ACCEPT 0
292
293 /***********************************************************************/
294
295 #define DESC_1_USED 0x80000000
296 #define DESC_1_LENGTH 0x00001FFF
297
298 #define DESC_1_TX_WRAP 0x40000000
299 #define DESC_1_TX_LAST 0x00008000
300
301 #define DESC_0_RX_WRAP 0x00000002
302 #define DESC_0_RX_OWNERSHIP 0x00000001
303
304 #define R_DESC_1_RX_SAR_SHIFT 25
305 #define R_DESC_1_RX_SAR_LENGTH 2
306 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
307 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
308 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
309 #define R_DESC_1_RX_BROADCAST (1 << 31)
310
311 #define DESC_1_RX_SOF 0x00004000
312 #define DESC_1_RX_EOF 0x00008000
313
314 #define GEM_MODID_VALUE 0x00020118
315
316 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
317 {
318 uint64_t ret = desc[0];
319
320 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
321 ret |= (uint64_t)desc[2] << 32;
322 }
323 return ret;
324 }
325
326 static inline unsigned tx_desc_get_used(uint32_t *desc)
327 {
328 return (desc[1] & DESC_1_USED) ? 1 : 0;
329 }
330
331 static inline void tx_desc_set_used(uint32_t *desc)
332 {
333 desc[1] |= DESC_1_USED;
334 }
335
336 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
337 {
338 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
339 }
340
341 static inline unsigned tx_desc_get_last(uint32_t *desc)
342 {
343 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
344 }
345
346 static inline void tx_desc_set_last(uint32_t *desc)
347 {
348 desc[1] |= DESC_1_TX_LAST;
349 }
350
351 static inline unsigned tx_desc_get_length(uint32_t *desc)
352 {
353 return desc[1] & DESC_1_LENGTH;
354 }
355
356 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
357 {
358 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
359 DB_PRINT("bufaddr: 0x%08x\n", *desc);
360 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
361 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
362 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
363 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
364 }
365
366 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
367 {
368 uint64_t ret = desc[0] & ~0x3UL;
369
370 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
371 ret |= (uint64_t)desc[2] << 32;
372 }
373 return ret;
374 }
375
376 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
377 {
378 int ret = 2;
379
380 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
381 ret += 2;
382 }
383 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
384 : GEM_DMACFG_TX_BD_EXT)) {
385 ret += 2;
386 }
387
388 assert(ret <= DESC_MAX_NUM_WORDS);
389 return ret;
390 }
391
392 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
393 {
394 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
395 }
396
397 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
398 {
399 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
400 }
401
402 static inline void rx_desc_set_ownership(uint32_t *desc)
403 {
404 desc[0] |= DESC_0_RX_OWNERSHIP;
405 }
406
407 static inline void rx_desc_set_sof(uint32_t *desc)
408 {
409 desc[1] |= DESC_1_RX_SOF;
410 }
411
412 static inline void rx_desc_set_eof(uint32_t *desc)
413 {
414 desc[1] |= DESC_1_RX_EOF;
415 }
416
417 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
418 {
419 desc[1] &= ~DESC_1_LENGTH;
420 desc[1] |= len;
421 }
422
423 static inline void rx_desc_set_broadcast(uint32_t *desc)
424 {
425 desc[1] |= R_DESC_1_RX_BROADCAST;
426 }
427
428 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
429 {
430 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
431 }
432
433 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
434 {
435 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
436 }
437
438 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
439 {
440 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
441 sar_idx);
442 desc[1] |= R_DESC_1_RX_SAR_MATCH;
443 }
444
445 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
446 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
447
448 /*
449 * gem_init_register_masks:
450 * One time initialization.
451 * Set masks to identify which register bits have magical clear properties
452 */
453 static void gem_init_register_masks(CadenceGEMState *s)
454 {
455 /* Mask of register bits which are read only */
456 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
457 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
458 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
459 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
460 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
461 s->regs_ro[GEM_RXQBASE] = 0x00000003;
462 s->regs_ro[GEM_TXQBASE] = 0x00000003;
463 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
464 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
465 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
466 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
467
468 /* Mask of register bits which are clear on read */
469 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
470 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
471
472 /* Mask of register bits which are write 1 to clear */
473 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
474 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
475 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
476
477 /* Mask of register bits which are write only */
478 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
479 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
480 s->regs_wo[GEM_IER] = 0x07FFFFFF;
481 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
482 }
483
484 /*
485 * phy_update_link:
486 * Make the emulated PHY link state match the QEMU "interface" state.
487 */
488 static void phy_update_link(CadenceGEMState *s)
489 {
490 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
491
492 /* Autonegotiation status mirrors link status. */
493 if (qemu_get_queue(s->nic)->link_down) {
494 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
495 PHY_REG_STATUS_LINK);
496 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
497 } else {
498 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
499 PHY_REG_STATUS_LINK);
500 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
501 PHY_REG_INT_ST_ANEGCMPL |
502 PHY_REG_INT_ST_ENERGY);
503 }
504 }
505
506 static int gem_can_receive(NetClientState *nc)
507 {
508 CadenceGEMState *s;
509 int i;
510
511 s = qemu_get_nic_opaque(nc);
512
513 /* Do nothing if receive is not enabled. */
514 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
515 if (s->can_rx_state != 1) {
516 s->can_rx_state = 1;
517 DB_PRINT("can't receive - no enable\n");
518 }
519 return 0;
520 }
521
522 for (i = 0; i < s->num_priority_queues; i++) {
523 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
524 break;
525 }
526 };
527
528 if (i == s->num_priority_queues) {
529 if (s->can_rx_state != 2) {
530 s->can_rx_state = 2;
531 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
532 }
533 return 0;
534 }
535
536 if (s->can_rx_state != 0) {
537 s->can_rx_state = 0;
538 DB_PRINT("can receive\n");
539 }
540 return 1;
541 }
542
543 /*
544 * gem_update_int_status:
545 * Raise or lower interrupt based on current status.
546 */
547 static void gem_update_int_status(CadenceGEMState *s)
548 {
549 int i;
550
551 if (!s->regs[GEM_ISR]) {
552 /* ISR isn't set, clear all the interrupts */
553 for (i = 0; i < s->num_priority_queues; ++i) {
554 qemu_set_irq(s->irq[i], 0);
555 }
556 return;
557 }
558
559 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
560 * check it again.
561 */
562 if (s->num_priority_queues == 1) {
563 /* No priority queues, just trigger the interrupt */
564 DB_PRINT("asserting int.\n");
565 qemu_set_irq(s->irq[0], 1);
566 return;
567 }
568
569 for (i = 0; i < s->num_priority_queues; ++i) {
570 if (s->regs[GEM_INT_Q1_STATUS + i]) {
571 DB_PRINT("asserting int. (q=%d)\n", i);
572 qemu_set_irq(s->irq[i], 1);
573 }
574 }
575 }
576
577 /*
578 * gem_receive_updatestats:
579 * Increment receive statistics.
580 */
581 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
582 unsigned bytes)
583 {
584 uint64_t octets;
585
586 /* Total octets (bytes) received */
587 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
588 s->regs[GEM_OCTRXHI];
589 octets += bytes;
590 s->regs[GEM_OCTRXLO] = octets >> 32;
591 s->regs[GEM_OCTRXHI] = octets;
592
593 /* Error-free Frames received */
594 s->regs[GEM_RXCNT]++;
595
596 /* Error-free Broadcast Frames counter */
597 if (!memcmp(packet, broadcast_addr, 6)) {
598 s->regs[GEM_RXBROADCNT]++;
599 }
600
601 /* Error-free Multicast Frames counter */
602 if (packet[0] == 0x01) {
603 s->regs[GEM_RXMULTICNT]++;
604 }
605
606 if (bytes <= 64) {
607 s->regs[GEM_RX64CNT]++;
608 } else if (bytes <= 127) {
609 s->regs[GEM_RX65CNT]++;
610 } else if (bytes <= 255) {
611 s->regs[GEM_RX128CNT]++;
612 } else if (bytes <= 511) {
613 s->regs[GEM_RX256CNT]++;
614 } else if (bytes <= 1023) {
615 s->regs[GEM_RX512CNT]++;
616 } else if (bytes <= 1518) {
617 s->regs[GEM_RX1024CNT]++;
618 } else {
619 s->regs[GEM_RX1519CNT]++;
620 }
621 }
622
623 /*
624 * Get the MAC Address bit from the specified position
625 */
626 static unsigned get_bit(const uint8_t *mac, unsigned bit)
627 {
628 unsigned byte;
629
630 byte = mac[bit / 8];
631 byte >>= (bit & 0x7);
632 byte &= 1;
633
634 return byte;
635 }
636
637 /*
638 * Calculate a GEM MAC Address hash index
639 */
640 static unsigned calc_mac_hash(const uint8_t *mac)
641 {
642 int index_bit, mac_bit;
643 unsigned hash_index;
644
645 hash_index = 0;
646 mac_bit = 5;
647 for (index_bit = 5; index_bit >= 0; index_bit--) {
648 hash_index |= (get_bit(mac, mac_bit) ^
649 get_bit(mac, mac_bit + 6) ^
650 get_bit(mac, mac_bit + 12) ^
651 get_bit(mac, mac_bit + 18) ^
652 get_bit(mac, mac_bit + 24) ^
653 get_bit(mac, mac_bit + 30) ^
654 get_bit(mac, mac_bit + 36) ^
655 get_bit(mac, mac_bit + 42)) << index_bit;
656 mac_bit--;
657 }
658
659 return hash_index;
660 }
661
662 /*
663 * gem_mac_address_filter:
664 * Accept or reject this destination address?
665 * Returns:
666 * GEM_RX_REJECT: reject
667 * >= 0: Specific address accept (which matched SAR is returned)
668 * others for various other modes of accept:
669 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
670 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
671 */
672 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
673 {
674 uint8_t *gem_spaddr;
675 int i;
676
677 /* Promiscuous mode? */
678 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
679 return GEM_RX_PROMISCUOUS_ACCEPT;
680 }
681
682 if (!memcmp(packet, broadcast_addr, 6)) {
683 /* Reject broadcast packets? */
684 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
685 return GEM_RX_REJECT;
686 }
687 return GEM_RX_BROADCAST_ACCEPT;
688 }
689
690 /* Accept packets -w- hash match? */
691 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
692 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
693 unsigned hash_index;
694
695 hash_index = calc_mac_hash(packet);
696 if (hash_index < 32) {
697 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
698 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
699 GEM_RX_UNICAST_HASH_ACCEPT;
700 }
701 } else {
702 hash_index -= 32;
703 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
704 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
705 GEM_RX_UNICAST_HASH_ACCEPT;
706 }
707 }
708 }
709
710 /* Check all 4 specific addresses */
711 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
712 for (i = 3; i >= 0; i--) {
713 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
714 return GEM_RX_SAR_ACCEPT + i;
715 }
716 }
717
718 /* No address match; reject the packet */
719 return GEM_RX_REJECT;
720 }
721
722 /* Figure out which queue the received data should be sent to */
723 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
724 unsigned rxbufsize)
725 {
726 uint32_t reg;
727 bool matched, mismatched;
728 int i, j;
729
730 for (i = 0; i < s->num_type1_screeners; i++) {
731 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
732 matched = false;
733 mismatched = false;
734
735 /* Screening is based on UDP Port */
736 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
737 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
738 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
739 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
740 matched = true;
741 } else {
742 mismatched = true;
743 }
744 }
745
746 /* Screening is based on DS/TC */
747 if (reg & GEM_ST1R_DSTC_ENABLE) {
748 uint8_t dscp = rxbuf_ptr[14 + 1];
749 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
750 GEM_ST1R_DSTC_MATCH_WIDTH)) {
751 matched = true;
752 } else {
753 mismatched = true;
754 }
755 }
756
757 if (matched && !mismatched) {
758 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
759 }
760 }
761
762 for (i = 0; i < s->num_type2_screeners; i++) {
763 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
764 matched = false;
765 mismatched = false;
766
767 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
768 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
769 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
770 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
771
772 if (et_idx > s->num_type2_screeners) {
773 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
774 "register index: %d\n", et_idx);
775 }
776 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
777 et_idx]) {
778 matched = true;
779 } else {
780 mismatched = true;
781 }
782 }
783
784 /* Compare A, B, C */
785 for (j = 0; j < 3; j++) {
786 uint32_t cr0, cr1, mask;
787 uint16_t rx_cmp;
788 int offset;
789 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
790 GEM_ST2R_COMPARE_WIDTH);
791
792 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
793 continue;
794 }
795 if (cr_idx > s->num_type2_screeners) {
796 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
797 "register index: %d\n", cr_idx);
798 }
799
800 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
801 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
802 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
803 GEM_T2CW1_OFFSET_VALUE_WIDTH);
804
805 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
806 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
807 case 3: /* Skip UDP header */
808 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
809 "unimplemented - assuming UDP\n");
810 offset += 8;
811 /* Fallthrough */
812 case 2: /* skip the IP header */
813 offset += 20;
814 /* Fallthrough */
815 case 1: /* Count from after the ethertype */
816 offset += 14;
817 break;
818 case 0:
819 /* Offset from start of frame */
820 break;
821 }
822
823 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
824 mask = extract32(cr0, 0, 16);
825
826 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
827 matched = true;
828 } else {
829 mismatched = true;
830 }
831 }
832
833 if (matched && !mismatched) {
834 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
835 }
836 }
837
838 /* We made it here, assume it's queue 0 */
839 return 0;
840 }
841
842 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
843 {
844 hwaddr desc_addr = 0;
845
846 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
847 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
848 }
849 desc_addr <<= 32;
850 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
851 return desc_addr;
852 }
853
854 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
855 {
856 return gem_get_desc_addr(s, true, q);
857 }
858
859 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
860 {
861 return gem_get_desc_addr(s, false, q);
862 }
863
864 static void gem_get_rx_desc(CadenceGEMState *s, int q)
865 {
866 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
867
868 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
869
870 /* read current descriptor */
871 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
872 (uint8_t *)s->rx_desc[q],
873 sizeof(uint32_t) * gem_get_desc_len(s, true));
874
875 /* Descriptor owned by software ? */
876 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
877 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
878 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
879 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
880 /* Handle interrupt consequences */
881 gem_update_int_status(s);
882 }
883 }
884
885 /*
886 * gem_receive:
887 * Fit a packet handed to us by QEMU into the receive descriptor ring.
888 */
889 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
890 {
891 CadenceGEMState *s;
892 unsigned rxbufsize, bytes_to_copy;
893 unsigned rxbuf_offset;
894 uint8_t rxbuf[2048];
895 uint8_t *rxbuf_ptr;
896 bool first_desc = true;
897 int maf;
898 int q = 0;
899
900 s = qemu_get_nic_opaque(nc);
901
902 /* Is this destination MAC address "for us" ? */
903 maf = gem_mac_address_filter(s, buf);
904 if (maf == GEM_RX_REJECT) {
905 return -1;
906 }
907
908 /* Discard packets with receive length error enabled ? */
909 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
910 unsigned type_len;
911
912 /* Fish the ethertype / length field out of the RX packet */
913 type_len = buf[12] << 8 | buf[13];
914 /* It is a length field, not an ethertype */
915 if (type_len < 0x600) {
916 if (size < type_len) {
917 /* discard */
918 return -1;
919 }
920 }
921 }
922
923 /*
924 * Determine configured receive buffer offset (probably 0)
925 */
926 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
927 GEM_NWCFG_BUFF_OFST_S;
928
929 /* The configure size of each receive buffer. Determines how many
930 * buffers needed to hold this packet.
931 */
932 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
933 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
934 bytes_to_copy = size;
935
936 /* Hardware allows a zero value here but warns against it. To avoid QEMU
937 * indefinite loops we enforce a minimum value here
938 */
939 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
940 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
941 }
942
943 /* Pad to minimum length. Assume FCS field is stripped, logic
944 * below will increment it to the real minimum of 64 when
945 * not FCS stripping
946 */
947 if (size < 60) {
948 size = 60;
949 }
950
951 /* Strip of FCS field ? (usually yes) */
952 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
953 rxbuf_ptr = (void *)buf;
954 } else {
955 unsigned crc_val;
956
957 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
958 size = sizeof(rxbuf) - sizeof(crc_val);
959 }
960 bytes_to_copy = size;
961 /* The application wants the FCS field, which QEMU does not provide.
962 * We must try and calculate one.
963 */
964
965 memcpy(rxbuf, buf, size);
966 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
967 rxbuf_ptr = rxbuf;
968 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
969 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
970
971 bytes_to_copy += 4;
972 size += 4;
973 }
974
975 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
976
977 /* Find which queue we are targeting */
978 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
979
980 while (bytes_to_copy) {
981 hwaddr desc_addr;
982
983 /* Do nothing if receive is not enabled. */
984 if (!gem_can_receive(nc)) {
985 return -1;
986 }
987
988 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
989 rx_desc_get_buffer(s->rx_desc[q]));
990
991 /* Copy packet data to emulated DMA buffer */
992 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
993 rxbuf_offset,
994 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
995 MIN(bytes_to_copy, rxbufsize));
996 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
997 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
998
999 /* Update the descriptor. */
1000 if (first_desc) {
1001 rx_desc_set_sof(s->rx_desc[q]);
1002 first_desc = false;
1003 }
1004 if (bytes_to_copy == 0) {
1005 rx_desc_set_eof(s->rx_desc[q]);
1006 rx_desc_set_length(s->rx_desc[q], size);
1007 }
1008 rx_desc_set_ownership(s->rx_desc[q]);
1009
1010 switch (maf) {
1011 case GEM_RX_PROMISCUOUS_ACCEPT:
1012 break;
1013 case GEM_RX_BROADCAST_ACCEPT:
1014 rx_desc_set_broadcast(s->rx_desc[q]);
1015 break;
1016 case GEM_RX_UNICAST_HASH_ACCEPT:
1017 rx_desc_set_unicast_hash(s->rx_desc[q]);
1018 break;
1019 case GEM_RX_MULTICAST_HASH_ACCEPT:
1020 rx_desc_set_multicast_hash(s->rx_desc[q]);
1021 break;
1022 case GEM_RX_REJECT:
1023 abort();
1024 default: /* SAR */
1025 rx_desc_set_sar(s->rx_desc[q], maf);
1026 }
1027
1028 /* Descriptor write-back. */
1029 desc_addr = gem_get_rx_desc_addr(s, q);
1030 address_space_write(&s->dma_as, desc_addr,
1031 MEMTXATTRS_UNSPECIFIED,
1032 (uint8_t *)s->rx_desc[q],
1033 sizeof(uint32_t) * gem_get_desc_len(s, true));
1034
1035 /* Next descriptor */
1036 if (rx_desc_get_wrap(s->rx_desc[q])) {
1037 DB_PRINT("wrapping RX descriptor list\n");
1038 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1039 } else {
1040 DB_PRINT("incrementing RX descriptor list\n");
1041 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1042 }
1043
1044 gem_get_rx_desc(s, q);
1045 }
1046
1047 /* Count it */
1048 gem_receive_updatestats(s, buf, size);
1049
1050 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1051 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1052
1053 /* Handle interrupt consequences */
1054 gem_update_int_status(s);
1055
1056 return size;
1057 }
1058
1059 /*
1060 * gem_transmit_updatestats:
1061 * Increment transmit statistics.
1062 */
1063 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1064 unsigned bytes)
1065 {
1066 uint64_t octets;
1067
1068 /* Total octets (bytes) transmitted */
1069 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1070 s->regs[GEM_OCTTXHI];
1071 octets += bytes;
1072 s->regs[GEM_OCTTXLO] = octets >> 32;
1073 s->regs[GEM_OCTTXHI] = octets;
1074
1075 /* Error-free Frames transmitted */
1076 s->regs[GEM_TXCNT]++;
1077
1078 /* Error-free Broadcast Frames counter */
1079 if (!memcmp(packet, broadcast_addr, 6)) {
1080 s->regs[GEM_TXBCNT]++;
1081 }
1082
1083 /* Error-free Multicast Frames counter */
1084 if (packet[0] == 0x01) {
1085 s->regs[GEM_TXMCNT]++;
1086 }
1087
1088 if (bytes <= 64) {
1089 s->regs[GEM_TX64CNT]++;
1090 } else if (bytes <= 127) {
1091 s->regs[GEM_TX65CNT]++;
1092 } else if (bytes <= 255) {
1093 s->regs[GEM_TX128CNT]++;
1094 } else if (bytes <= 511) {
1095 s->regs[GEM_TX256CNT]++;
1096 } else if (bytes <= 1023) {
1097 s->regs[GEM_TX512CNT]++;
1098 } else if (bytes <= 1518) {
1099 s->regs[GEM_TX1024CNT]++;
1100 } else {
1101 s->regs[GEM_TX1519CNT]++;
1102 }
1103 }
1104
1105 /*
1106 * gem_transmit:
1107 * Fish packets out of the descriptor ring and feed them to QEMU
1108 */
1109 static void gem_transmit(CadenceGEMState *s)
1110 {
1111 uint32_t desc[DESC_MAX_NUM_WORDS];
1112 hwaddr packet_desc_addr;
1113 uint8_t tx_packet[2048];
1114 uint8_t *p;
1115 unsigned total_bytes;
1116 int q = 0;
1117
1118 /* Do nothing if transmit is not enabled. */
1119 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1120 return;
1121 }
1122
1123 DB_PRINT("\n");
1124
1125 /* The packet we will hand off to QEMU.
1126 * Packets scattered across multiple descriptors are gathered to this
1127 * one contiguous buffer first.
1128 */
1129 p = tx_packet;
1130 total_bytes = 0;
1131
1132 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1133 /* read current descriptor */
1134 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1135
1136 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1137 address_space_read(&s->dma_as, packet_desc_addr,
1138 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1139 sizeof(uint32_t) * gem_get_desc_len(s, false));
1140 /* Handle all descriptors owned by hardware */
1141 while (tx_desc_get_used(desc) == 0) {
1142
1143 /* Do nothing if transmit is not enabled. */
1144 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1145 return;
1146 }
1147 print_gem_tx_desc(desc, q);
1148
1149 /* The real hardware would eat this (and possibly crash).
1150 * For QEMU let's lend a helping hand.
1151 */
1152 if ((tx_desc_get_buffer(s, desc) == 0) ||
1153 (tx_desc_get_length(desc) == 0)) {
1154 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1155 (unsigned)packet_desc_addr);
1156 break;
1157 }
1158
1159 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1160 (p - tx_packet)) {
1161 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1162 "0x%x\n", (unsigned)packet_desc_addr,
1163 (unsigned)tx_desc_get_length(desc),
1164 sizeof(tx_packet) - (p - tx_packet));
1165 break;
1166 }
1167
1168 /* Gather this fragment of the packet from "dma memory" to our
1169 * contig buffer.
1170 */
1171 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1172 MEMTXATTRS_UNSPECIFIED,
1173 p, tx_desc_get_length(desc));
1174 p += tx_desc_get_length(desc);
1175 total_bytes += tx_desc_get_length(desc);
1176
1177 /* Last descriptor for this packet; hand the whole thing off */
1178 if (tx_desc_get_last(desc)) {
1179 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1180 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1181
1182 /* Modify the 1st descriptor of this packet to be owned by
1183 * the processor.
1184 */
1185 address_space_read(&s->dma_as, desc_addr,
1186 MEMTXATTRS_UNSPECIFIED,
1187 (uint8_t *)desc_first,
1188 sizeof(desc_first));
1189 tx_desc_set_used(desc_first);
1190 address_space_write(&s->dma_as, desc_addr,
1191 MEMTXATTRS_UNSPECIFIED,
1192 (uint8_t *)desc_first,
1193 sizeof(desc_first));
1194 /* Advance the hardware current descriptor past this packet */
1195 if (tx_desc_get_wrap(desc)) {
1196 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1197 } else {
1198 s->tx_desc_addr[q] = packet_desc_addr +
1199 4 * gem_get_desc_len(s, false);
1200 }
1201 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1202
1203 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1204 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1205
1206 /* Update queue interrupt status */
1207 if (s->num_priority_queues > 1) {
1208 s->regs[GEM_INT_Q1_STATUS + q] |=
1209 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1210 }
1211
1212 /* Handle interrupt consequences */
1213 gem_update_int_status(s);
1214
1215 /* Is checksum offload enabled? */
1216 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1217 net_checksum_calculate(tx_packet, total_bytes);
1218 }
1219
1220 /* Update MAC statistics */
1221 gem_transmit_updatestats(s, tx_packet, total_bytes);
1222
1223 /* Send the packet somewhere */
1224 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1225 GEM_NWCTRL_LOCALLOOP)) {
1226 gem_receive(qemu_get_queue(s->nic), tx_packet,
1227 total_bytes);
1228 } else {
1229 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1230 total_bytes);
1231 }
1232
1233 /* Prepare for next packet */
1234 p = tx_packet;
1235 total_bytes = 0;
1236 }
1237
1238 /* read next descriptor */
1239 if (tx_desc_get_wrap(desc)) {
1240 tx_desc_set_last(desc);
1241 packet_desc_addr = s->regs[GEM_TXQBASE];
1242 } else {
1243 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1244 }
1245 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1246 address_space_read(&s->dma_as, packet_desc_addr,
1247 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1248 sizeof(uint32_t) * gem_get_desc_len(s, false));
1249 }
1250
1251 if (tx_desc_get_used(desc)) {
1252 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1253 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1254 gem_update_int_status(s);
1255 }
1256 }
1257 }
1258
1259 static void gem_phy_reset(CadenceGEMState *s)
1260 {
1261 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1262 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1263 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1264 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1265 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1266 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1267 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1268 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1269 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1270 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1271 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1272 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1273 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1274 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1275 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1276 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1277 s->phy_regs[PHY_REG_LED] = 0x4100;
1278 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1279 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1280
1281 phy_update_link(s);
1282 }
1283
1284 static void gem_reset(DeviceState *d)
1285 {
1286 int i;
1287 CadenceGEMState *s = CADENCE_GEM(d);
1288 const uint8_t *a;
1289 uint32_t queues_mask = 0;
1290
1291 DB_PRINT("\n");
1292
1293 /* Set post reset register values */
1294 memset(&s->regs[0], 0, sizeof(s->regs));
1295 s->regs[GEM_NWCFG] = 0x00080000;
1296 s->regs[GEM_NWSTATUS] = 0x00000006;
1297 s->regs[GEM_DMACFG] = 0x00020784;
1298 s->regs[GEM_IMR] = 0x07ffffff;
1299 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1300 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1301 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1302 s->regs[GEM_MODID] = s->revision;
1303 s->regs[GEM_DESCONF] = 0x02500111;
1304 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1305 s->regs[GEM_DESCONF5] = 0x002f2045;
1306 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1307
1308 if (s->num_priority_queues > 1) {
1309 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1310 s->regs[GEM_DESCONF6] |= queues_mask;
1311 }
1312
1313 /* Set MAC address */
1314 a = &s->conf.macaddr.a[0];
1315 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1316 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1317
1318 for (i = 0; i < 4; i++) {
1319 s->sar_active[i] = false;
1320 }
1321
1322 gem_phy_reset(s);
1323
1324 gem_update_int_status(s);
1325 }
1326
1327 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1328 {
1329 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1330 return s->phy_regs[reg_num];
1331 }
1332
1333 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1334 {
1335 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1336
1337 switch (reg_num) {
1338 case PHY_REG_CONTROL:
1339 if (val & PHY_REG_CONTROL_RST) {
1340 /* Phy reset */
1341 gem_phy_reset(s);
1342 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1343 s->phy_loop = 0;
1344 }
1345 if (val & PHY_REG_CONTROL_ANEG) {
1346 /* Complete autonegotiation immediately */
1347 val &= ~PHY_REG_CONTROL_ANEG;
1348 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1349 }
1350 if (val & PHY_REG_CONTROL_LOOP) {
1351 DB_PRINT("PHY placed in loopback\n");
1352 s->phy_loop = 1;
1353 } else {
1354 s->phy_loop = 0;
1355 }
1356 break;
1357 }
1358 s->phy_regs[reg_num] = val;
1359 }
1360
1361 /*
1362 * gem_read32:
1363 * Read a GEM register.
1364 */
1365 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1366 {
1367 CadenceGEMState *s;
1368 uint32_t retval;
1369 s = (CadenceGEMState *)opaque;
1370
1371 offset >>= 2;
1372 retval = s->regs[offset];
1373
1374 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1375
1376 switch (offset) {
1377 case GEM_ISR:
1378 DB_PRINT("lowering irqs on ISR read\n");
1379 /* The interrupts get updated at the end of the function. */
1380 break;
1381 case GEM_PHYMNTNC:
1382 if (retval & GEM_PHYMNTNC_OP_R) {
1383 uint32_t phy_addr, reg_num;
1384
1385 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1386 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1387 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1388 retval &= 0xFFFF0000;
1389 retval |= gem_phy_read(s, reg_num);
1390 } else {
1391 retval |= 0xFFFF; /* No device at this address */
1392 }
1393 }
1394 break;
1395 }
1396
1397 /* Squash read to clear bits */
1398 s->regs[offset] &= ~(s->regs_rtc[offset]);
1399
1400 /* Do not provide write only bits */
1401 retval &= ~(s->regs_wo[offset]);
1402
1403 DB_PRINT("0x%08x\n", retval);
1404 gem_update_int_status(s);
1405 return retval;
1406 }
1407
1408 /*
1409 * gem_write32:
1410 * Write a GEM register.
1411 */
1412 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1413 unsigned size)
1414 {
1415 CadenceGEMState *s = (CadenceGEMState *)opaque;
1416 uint32_t readonly;
1417 int i;
1418
1419 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1420 offset >>= 2;
1421
1422 /* Squash bits which are read only in write value */
1423 val &= ~(s->regs_ro[offset]);
1424 /* Preserve (only) bits which are read only and wtc in register */
1425 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1426
1427 /* Copy register write to backing store */
1428 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1429
1430 /* do w1c */
1431 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1432
1433 /* Handle register write side effects */
1434 switch (offset) {
1435 case GEM_NWCTRL:
1436 if (val & GEM_NWCTRL_RXENA) {
1437 for (i = 0; i < s->num_priority_queues; ++i) {
1438 gem_get_rx_desc(s, i);
1439 }
1440 }
1441 if (val & GEM_NWCTRL_TXSTART) {
1442 gem_transmit(s);
1443 }
1444 if (!(val & GEM_NWCTRL_TXENA)) {
1445 /* Reset to start of Q when transmit disabled. */
1446 for (i = 0; i < s->num_priority_queues; i++) {
1447 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1448 }
1449 }
1450 if (gem_can_receive(qemu_get_queue(s->nic))) {
1451 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1452 }
1453 break;
1454
1455 case GEM_TXSTATUS:
1456 gem_update_int_status(s);
1457 break;
1458 case GEM_RXQBASE:
1459 s->rx_desc_addr[0] = val;
1460 break;
1461 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1462 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1463 break;
1464 case GEM_TXQBASE:
1465 s->tx_desc_addr[0] = val;
1466 break;
1467 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1468 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1469 break;
1470 case GEM_RXSTATUS:
1471 gem_update_int_status(s);
1472 break;
1473 case GEM_IER:
1474 s->regs[GEM_IMR] &= ~val;
1475 gem_update_int_status(s);
1476 break;
1477 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1478 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1479 gem_update_int_status(s);
1480 break;
1481 case GEM_IDR:
1482 s->regs[GEM_IMR] |= val;
1483 gem_update_int_status(s);
1484 break;
1485 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1486 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1487 gem_update_int_status(s);
1488 break;
1489 case GEM_SPADDR1LO:
1490 case GEM_SPADDR2LO:
1491 case GEM_SPADDR3LO:
1492 case GEM_SPADDR4LO:
1493 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1494 break;
1495 case GEM_SPADDR1HI:
1496 case GEM_SPADDR2HI:
1497 case GEM_SPADDR3HI:
1498 case GEM_SPADDR4HI:
1499 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1500 break;
1501 case GEM_PHYMNTNC:
1502 if (val & GEM_PHYMNTNC_OP_W) {
1503 uint32_t phy_addr, reg_num;
1504
1505 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1506 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1507 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1508 gem_phy_write(s, reg_num, val);
1509 }
1510 }
1511 break;
1512 }
1513
1514 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1515 }
1516
1517 static const MemoryRegionOps gem_ops = {
1518 .read = gem_read,
1519 .write = gem_write,
1520 .endianness = DEVICE_LITTLE_ENDIAN,
1521 };
1522
1523 static void gem_set_link(NetClientState *nc)
1524 {
1525 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1526
1527 DB_PRINT("\n");
1528 phy_update_link(s);
1529 gem_update_int_status(s);
1530 }
1531
1532 static NetClientInfo net_gem_info = {
1533 .type = NET_CLIENT_DRIVER_NIC,
1534 .size = sizeof(NICState),
1535 .can_receive = gem_can_receive,
1536 .receive = gem_receive,
1537 .link_status_changed = gem_set_link,
1538 };
1539
1540 static void gem_realize(DeviceState *dev, Error **errp)
1541 {
1542 CadenceGEMState *s = CADENCE_GEM(dev);
1543 int i;
1544
1545 address_space_init(&s->dma_as,
1546 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1547
1548 if (s->num_priority_queues == 0 ||
1549 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1550 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1551 s->num_priority_queues);
1552 return;
1553 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1554 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1555 s->num_type1_screeners);
1556 return;
1557 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1558 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1559 s->num_type2_screeners);
1560 return;
1561 }
1562
1563 for (i = 0; i < s->num_priority_queues; ++i) {
1564 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1565 }
1566
1567 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1568
1569 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1570 object_get_typename(OBJECT(dev)), dev->id, s);
1571 }
1572
1573 static void gem_init(Object *obj)
1574 {
1575 CadenceGEMState *s = CADENCE_GEM(obj);
1576 DeviceState *dev = DEVICE(obj);
1577
1578 DB_PRINT("\n");
1579
1580 gem_init_register_masks(s);
1581 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1582 "enet", sizeof(s->regs));
1583
1584 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1585
1586 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1587 (Object **)&s->dma_mr,
1588 qdev_prop_allow_set_link_before_realize,
1589 OBJ_PROP_LINK_STRONG,
1590 &error_abort);
1591 }
1592
1593 static const VMStateDescription vmstate_cadence_gem = {
1594 .name = "cadence_gem",
1595 .version_id = 4,
1596 .minimum_version_id = 4,
1597 .fields = (VMStateField[]) {
1598 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1599 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1600 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1601 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1602 MAX_PRIORITY_QUEUES),
1603 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1604 MAX_PRIORITY_QUEUES),
1605 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1606 VMSTATE_END_OF_LIST(),
1607 }
1608 };
1609
1610 static Property gem_properties[] = {
1611 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1612 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1613 GEM_MODID_VALUE),
1614 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1615 num_priority_queues, 1),
1616 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1617 num_type1_screeners, 4),
1618 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1619 num_type2_screeners, 4),
1620 DEFINE_PROP_END_OF_LIST(),
1621 };
1622
1623 static void gem_class_init(ObjectClass *klass, void *data)
1624 {
1625 DeviceClass *dc = DEVICE_CLASS(klass);
1626
1627 dc->realize = gem_realize;
1628 dc->props = gem_properties;
1629 dc->vmsd = &vmstate_cadence_gem;
1630 dc->reset = gem_reset;
1631 }
1632
1633 static const TypeInfo gem_info = {
1634 .name = TYPE_CADENCE_GEM,
1635 .parent = TYPE_SYS_BUS_DEVICE,
1636 .instance_size = sizeof(CadenceGEMState),
1637 .instance_init = gem_init,
1638 .class_init = gem_class_init,
1639 };
1640
1641 static void gem_register_types(void)
1642 {
1643 type_register_static(&gem_info);
1644 }
1645
1646 type_init(gem_register_types)