]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/e1000e_core.c
e1000x: Share more Rx filtering logic
[mirror_qemu.git] / hw / net / e1000e_core.c
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51
52 #include "trace.h"
53
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR (500)
56
57 #define E1000E_MAX_TX_FRAGS (64)
58
59 union e1000_rx_desc_union {
60 struct e1000_rx_desc legacy;
61 union e1000_rx_desc_extended extended;
62 union e1000_rx_desc_packet_split packet_split;
63 };
64
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67 bool has_vnet);
68
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71
72 static void e1000e_reset(E1000ECore *core, bool sw);
73
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78 trace_e1000e_wrn_no_ts_support();
79 }
80 }
81
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86 trace_e1000e_wrn_no_snap_support();
87 }
88 }
89
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93 trace_e1000e_irq_legacy_notify(true);
94 e1000x_inc_reg_if_not_full(core->mac, IAC);
95 pci_set_irq(core->owner, 1);
96 }
97
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101 trace_e1000e_irq_legacy_notify(false);
102 pci_set_irq(core->owner, 0);
103 }
104
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109 timer->delay_resolution_ns;
110
111 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112
113 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114
115 timer->running = true;
116 }
117
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121 if (timer->running) {
122 e1000e_intrmgr_rearm_timer(timer);
123 }
124 }
125
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129 if (timer->running) {
130 timer_del(timer->timer);
131 }
132 }
133
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137 if (timer->running) {
138 timer_del(timer->timer);
139 timer->running = false;
140 }
141 }
142
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146 trace_e1000e_irq_fire_delayed_interrupts();
147 e1000e_set_interrupt_cause(core, 0);
148 }
149
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153 E1000IntrDelayTimer *timer = opaque;
154
155 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156
157 timer->running = false;
158 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164 E1000IntrDelayTimer *timer = opaque;
165
166 timer->running = false;
167
168 if (msi_enabled(timer->core->owner)) {
169 trace_e1000e_irq_msi_notify_postponed();
170 /* Clear msi_causes_pending to fire MSI eventually */
171 timer->core->msi_causes_pending = 0;
172 e1000e_set_interrupt_cause(timer->core, 0);
173 } else {
174 trace_e1000e_irq_legacy_notify_postponed();
175 e1000e_set_interrupt_cause(timer->core, 0);
176 }
177 }
178
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182 E1000IntrDelayTimer *timer = opaque;
183 int idx = timer - &timer->core->eitr[0];
184
185 timer->running = false;
186
187 trace_e1000e_irq_msix_notify_postponed_vec(idx);
188 msix_notify(timer->core->owner, idx);
189 }
190
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194 int i;
195
196 core->radv.delay_reg = RADV;
197 core->rdtr.delay_reg = RDTR;
198 core->raid.delay_reg = RAID;
199 core->tadv.delay_reg = TADV;
200 core->tidv.delay_reg = TIDV;
201
202 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207
208 core->radv.core = core;
209 core->rdtr.core = core;
210 core->raid.core = core;
211 core->tadv.core = core;
212 core->tidv.core = core;
213
214 core->itr.core = core;
215 core->itr.delay_reg = ITR;
216 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217
218 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219 core->eitr[i].core = core;
220 core->eitr[i].delay_reg = EITR + i;
221 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222 }
223
224 if (!create) {
225 return;
226 }
227
228 core->radv.timer =
229 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230 core->rdtr.timer =
231 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232 core->raid.timer =
233 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234
235 core->tadv.timer =
236 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237 core->tidv.timer =
238 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239
240 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241 e1000e_intrmgr_on_throttling_timer,
242 &core->itr);
243
244 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245 core->eitr[i].timer =
246 timer_new_ns(QEMU_CLOCK_VIRTUAL,
247 e1000e_intrmgr_on_msix_throttling_timer,
248 &core->eitr[i]);
249 }
250 }
251
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255 e1000e_intrmgr_stop_timer(&core->radv);
256 e1000e_intrmgr_stop_timer(&core->rdtr);
257 e1000e_intrmgr_stop_timer(&core->raid);
258 e1000e_intrmgr_stop_timer(&core->tidv);
259 e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265 uint32_t delayable_causes;
266 uint32_t rdtr = core->mac[RDTR];
267 uint32_t radv = core->mac[RADV];
268 uint32_t raid = core->mac[RAID];
269
270 if (msix_enabled(core->owner)) {
271 return false;
272 }
273
274 delayable_causes = E1000_ICR_RXQ0 |
275 E1000_ICR_RXQ1 |
276 E1000_ICR_RXT0;
277
278 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279 delayable_causes |= E1000_ICR_ACK;
280 }
281
282 /* Clean up all causes that may be delayed */
283 core->delayed_causes |= *causes & delayable_causes;
284 *causes &= ~delayable_causes;
285
286 /*
287 * Check if delayed RX interrupts disabled by client
288 * or if there are causes that cannot be delayed
289 */
290 if ((rdtr == 0) || (*causes != 0)) {
291 return false;
292 }
293
294 /*
295 * Check if delayed RX ACK interrupts disabled by client
296 * and there is an ACK packet received
297 */
298 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299 return false;
300 }
301
302 /* All causes delayed */
303 e1000e_intrmgr_rearm_timer(&core->rdtr);
304
305 if (!core->radv.running && (radv != 0)) {
306 e1000e_intrmgr_rearm_timer(&core->radv);
307 }
308
309 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310 e1000e_intrmgr_rearm_timer(&core->raid);
311 }
312
313 return true;
314 }
315
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320 E1000_ICR_TXQ1 |
321 E1000_ICR_TXQE |
322 E1000_ICR_TXDW;
323
324 if (msix_enabled(core->owner)) {
325 return false;
326 }
327
328 /* Clean up all causes that may be delayed */
329 core->delayed_causes |= *causes & delayable_causes;
330 *causes &= ~delayable_causes;
331
332 /* If there are causes that cannot be delayed */
333 if (*causes != 0) {
334 return false;
335 }
336
337 /* All causes delayed */
338 e1000e_intrmgr_rearm_timer(&core->tidv);
339
340 if (!core->tadv.running && (core->mac[TADV] != 0)) {
341 e1000e_intrmgr_rearm_timer(&core->tadv);
342 }
343
344 return true;
345 }
346
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350 uint32_t res;
351
352 if (msix_enabled(core->owner)) {
353 assert(core->delayed_causes == 0);
354 return 0;
355 }
356
357 res = core->delayed_causes;
358 core->delayed_causes = 0;
359
360 e1000e_intrmgr_stop_delay_timers(core);
361
362 return res;
363 }
364
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368 int i;
369 uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370
371 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372 core->mac[ICR] |= val;
373
374 if (core->itr.running) {
375 timer_del(core->itr.timer);
376 e1000e_intrmgr_on_throttling_timer(&core->itr);
377 }
378
379 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380 if (core->eitr[i].running) {
381 timer_del(core->eitr[i].timer);
382 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383 }
384 }
385 }
386
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390 int i;
391
392 e1000e_intmgr_timer_resume(&core->radv);
393 e1000e_intmgr_timer_resume(&core->rdtr);
394 e1000e_intmgr_timer_resume(&core->raid);
395 e1000e_intmgr_timer_resume(&core->tidv);
396 e1000e_intmgr_timer_resume(&core->tadv);
397
398 e1000e_intmgr_timer_resume(&core->itr);
399
400 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401 e1000e_intmgr_timer_resume(&core->eitr[i]);
402 }
403 }
404
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408 int i;
409
410 e1000e_intmgr_timer_pause(&core->radv);
411 e1000e_intmgr_timer_pause(&core->rdtr);
412 e1000e_intmgr_timer_pause(&core->raid);
413 e1000e_intmgr_timer_pause(&core->tidv);
414 e1000e_intmgr_timer_pause(&core->tadv);
415
416 e1000e_intmgr_timer_pause(&core->itr);
417
418 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419 e1000e_intmgr_timer_pause(&core->eitr[i]);
420 }
421 }
422
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426 int i;
427
428 core->delayed_causes = 0;
429
430 e1000e_intrmgr_stop_delay_timers(core);
431
432 e1000e_intrmgr_stop_timer(&core->itr);
433
434 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435 e1000e_intrmgr_stop_timer(&core->eitr[i]);
436 }
437 }
438
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442 int i;
443
444 timer_free(core->radv.timer);
445 timer_free(core->rdtr.timer);
446 timer_free(core->raid.timer);
447
448 timer_free(core->tadv.timer);
449 timer_free(core->tidv.timer);
450
451 timer_free(core->itr.timer);
452
453 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454 timer_free(core->eitr[i].timer);
455 }
456 }
457
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461 e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479 return !e1000e_rx_use_legacy_descriptor(core) &&
480 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487 !e1000e_rx_csum_enabled(core) &&
488 !e1000e_rx_use_legacy_descriptor(core);
489 }
490
491 typedef struct E1000E_RSSInfo_st {
492 bool enabled;
493 uint32_t hash;
494 uint32_t queue;
495 uint32_t type;
496 } E1000E_RSSInfo;
497
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501 bool hasip4, hasip6;
502 EthL4HdrProto l4hdr_proto;
503
504 assert(e1000e_rss_enabled(core));
505
506 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
507
508 if (hasip4) {
509 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
510 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512
513 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515 return E1000_MRQ_RSS_TYPE_IPV4TCP;
516 }
517
518 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519 return E1000_MRQ_RSS_TYPE_IPV4;
520 }
521 } else if (hasip6) {
522 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523
524 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526
527 /*
528 * Following two traces must not be combined because resulting
529 * event will have 11 arguments totally and some trace backends
530 * (at least "ust") have limitation of maximum 10 arguments per
531 * event. Events with more arguments fail to compile for
532 * backends like these.
533 */
534 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
536 ip6info->has_ext_hdrs,
537 ip6info->rss_ex_dst_valid,
538 ip6info->rss_ex_src_valid,
539 core->mac[MRQC],
540 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
541 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543
544 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546 ip6info->rss_ex_src_valid))) {
547
548 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
549 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
550 return E1000_MRQ_RSS_TYPE_IPV6TCP;
551 }
552
553 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554 return E1000_MRQ_RSS_TYPE_IPV6EX;
555 }
556
557 }
558
559 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560 return E1000_MRQ_RSS_TYPE_IPV6;
561 }
562
563 }
564
565 return E1000_MRQ_RSS_TYPE_NONE;
566 }
567
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570 struct NetRxPkt *pkt,
571 E1000E_RSSInfo *info)
572 {
573 NetRxPktRssType type;
574
575 assert(e1000e_rss_enabled(core));
576
577 switch (info->type) {
578 case E1000_MRQ_RSS_TYPE_IPV4:
579 type = NetPktRssIpV4;
580 break;
581 case E1000_MRQ_RSS_TYPE_IPV4TCP:
582 type = NetPktRssIpV4Tcp;
583 break;
584 case E1000_MRQ_RSS_TYPE_IPV6TCP:
585 type = NetPktRssIpV6TcpEx;
586 break;
587 case E1000_MRQ_RSS_TYPE_IPV6:
588 type = NetPktRssIpV6;
589 break;
590 case E1000_MRQ_RSS_TYPE_IPV6EX:
591 type = NetPktRssIpV6Ex;
592 break;
593 default:
594 assert(false);
595 return 0;
596 }
597
598 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603 struct NetRxPkt *pkt,
604 E1000E_RSSInfo *info)
605 {
606 trace_e1000e_rx_rss_started();
607
608 if (!e1000e_rss_enabled(core)) {
609 info->enabled = false;
610 info->hash = 0;
611 info->queue = 0;
612 info->type = 0;
613 trace_e1000e_rx_rss_disabled();
614 return;
615 }
616
617 info->enabled = true;
618
619 info->type = e1000e_rss_get_hash_type(core, pkt);
620
621 trace_e1000e_rx_rss_type(info->type);
622
623 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624 info->hash = 0;
625 info->queue = 0;
626 return;
627 }
628
629 info->hash = e1000e_rss_calc_hash(core, pkt, info);
630 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632
633 static bool
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636 if (tx->props.tse && tx->cptse) {
637 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
638 return false;
639 }
640
641 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
642 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
643 return true;
644 }
645
646 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
647 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
648 return false;
649 }
650 }
651
652 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
653 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
654 }
655
656 return true;
657 }
658
659 static void e1000e_tx_pkt_callback(void *core,
660 const struct iovec *iov,
661 int iovcnt,
662 const struct iovec *virt_iov,
663 int virt_iovcnt)
664 {
665 e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
666 }
667
668 static bool
669 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
670 {
671 int target_queue = MIN(core->max_queue_num, queue_index);
672 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
673
674 if (!e1000e_setup_tx_offloads(core, tx)) {
675 return false;
676 }
677
678 net_tx_pkt_dump(tx->tx_pkt);
679
680 if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
681 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
682 return net_tx_pkt_send_custom(tx->tx_pkt, false,
683 e1000e_tx_pkt_callback, core);
684 } else {
685 return net_tx_pkt_send(tx->tx_pkt, queue);
686 }
687 }
688
689 static void
690 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
691 {
692 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
693 PTC1023, PTC1522 };
694
695 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
696
697 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
698 e1000x_inc_reg_if_not_full(core->mac, TPT);
699 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
700
701 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
702 case ETH_PKT_BCAST:
703 e1000x_inc_reg_if_not_full(core->mac, BPTC);
704 break;
705 case ETH_PKT_MCAST:
706 e1000x_inc_reg_if_not_full(core->mac, MPTC);
707 break;
708 case ETH_PKT_UCAST:
709 break;
710 default:
711 g_assert_not_reached();
712 }
713
714 e1000x_inc_reg_if_not_full(core->mac, GPTC);
715 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
716 }
717
718 static void
719 e1000e_process_tx_desc(E1000ECore *core,
720 struct e1000e_tx *tx,
721 struct e1000_tx_desc *dp,
722 int queue_index)
723 {
724 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
725 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
726 unsigned int split_size = txd_lower & 0xffff;
727 uint64_t addr;
728 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
729 bool eop = txd_lower & E1000_TXD_CMD_EOP;
730
731 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
732 e1000x_read_tx_ctx_descr(xp, &tx->props);
733 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
734 return;
735 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
736 /* data descriptor */
737 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
738 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
739 e1000e_process_ts_option(core, dp);
740 } else {
741 /* legacy descriptor */
742 e1000e_process_ts_option(core, dp);
743 tx->cptse = 0;
744 }
745
746 addr = le64_to_cpu(dp->buffer_addr);
747
748 if (!tx->skip_cp) {
749 if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
750 addr, split_size)) {
751 tx->skip_cp = true;
752 }
753 }
754
755 if (eop) {
756 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
757 if (e1000x_vlan_enabled(core->mac) &&
758 e1000x_is_vlan_txd(txd_lower)) {
759 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
760 le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
761 }
762 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
763 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
764 }
765 }
766
767 tx->skip_cp = false;
768 net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
769
770 tx->sum_needed = 0;
771 tx->cptse = 0;
772 }
773 }
774
775 static inline uint32_t
776 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
777 {
778 if (!msix_enabled(core->owner)) {
779 return E1000_ICR_TXDW;
780 }
781
782 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
783 }
784
785 static inline uint32_t
786 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
787 bool min_threshold_hit)
788 {
789 if (!msix_enabled(core->owner)) {
790 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
791 }
792
793 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
794 }
795
796 static uint32_t
797 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
798 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
799 {
800 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
801
802 if (!(txd_lower & E1000_TXD_CMD_RS) &&
803 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
804 return 0;
805 }
806
807 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
808
809 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
810
811 dp->upper.data = cpu_to_le32(txd_upper);
812 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
813 &dp->upper, sizeof(dp->upper));
814 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
815 }
816
817 typedef struct E1000E_RingInfo_st {
818 int dbah;
819 int dbal;
820 int dlen;
821 int dh;
822 int dt;
823 int idx;
824 } E1000E_RingInfo;
825
826 static inline bool
827 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
828 {
829 return core->mac[r->dh] == core->mac[r->dt] ||
830 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
831 }
832
833 static inline uint64_t
834 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
835 {
836 uint64_t bah = core->mac[r->dbah];
837 uint64_t bal = core->mac[r->dbal];
838
839 return (bah << 32) + bal;
840 }
841
842 static inline uint64_t
843 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
844 {
845 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
846 }
847
848 static inline void
849 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
850 {
851 core->mac[r->dh] += count;
852
853 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
854 core->mac[r->dh] = 0;
855 }
856 }
857
858 static inline uint32_t
859 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
862 core->mac[r->dh], core->mac[r->dt]);
863
864 if (core->mac[r->dh] <= core->mac[r->dt]) {
865 return core->mac[r->dt] - core->mac[r->dh];
866 }
867
868 if (core->mac[r->dh] > core->mac[r->dt]) {
869 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
870 core->mac[r->dt] - core->mac[r->dh];
871 }
872
873 g_assert_not_reached();
874 return 0;
875 }
876
877 static inline bool
878 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
879 {
880 return core->mac[r->dlen] > 0;
881 }
882
883 static inline uint32_t
884 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
885 {
886 return core->mac[r->dlen];
887 }
888
889 typedef struct E1000E_TxRing_st {
890 const E1000E_RingInfo *i;
891 struct e1000e_tx *tx;
892 } E1000E_TxRing;
893
894 static inline int
895 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
896 {
897 return (reg_idx - base_reg_idx) / (0x100 >> 2);
898 }
899
900 static inline void
901 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
902 {
903 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
904 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
905 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
906 };
907
908 assert(idx < ARRAY_SIZE(i));
909
910 txr->i = &i[idx];
911 txr->tx = &core->tx[idx];
912 }
913
914 typedef struct E1000E_RxRing_st {
915 const E1000E_RingInfo *i;
916 } E1000E_RxRing;
917
918 static inline void
919 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
920 {
921 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
922 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
923 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
924 };
925
926 assert(idx < ARRAY_SIZE(i));
927
928 rxr->i = &i[idx];
929 }
930
931 static void
932 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
933 {
934 dma_addr_t base;
935 struct e1000_tx_desc desc;
936 bool ide = false;
937 const E1000E_RingInfo *txi = txr->i;
938 uint32_t cause = E1000_ICS_TXQE;
939
940 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
941 trace_e1000e_tx_disabled();
942 return;
943 }
944
945 while (!e1000e_ring_empty(core, txi)) {
946 base = e1000e_ring_head_descr(core, txi);
947
948 pci_dma_read(core->owner, base, &desc, sizeof(desc));
949
950 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
951 desc.lower.data, desc.upper.data);
952
953 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
954 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
955
956 e1000e_ring_advance(core, txi, 1);
957 }
958
959 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
960 e1000e_set_interrupt_cause(core, cause);
961 }
962 }
963
964 static bool
965 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
966 size_t total_size)
967 {
968 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
969
970 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
971 core->rx_desc_buf_size);
972
973 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
974 core->rx_desc_buf_size;
975 }
976
977 void
978 e1000e_start_recv(E1000ECore *core)
979 {
980 int i;
981
982 trace_e1000e_rx_start_recv();
983
984 for (i = 0; i <= core->max_queue_num; i++) {
985 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
986 }
987 }
988
989 bool
990 e1000e_can_receive(E1000ECore *core)
991 {
992 int i;
993
994 if (!e1000x_rx_ready(core->owner, core->mac)) {
995 return false;
996 }
997
998 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
999 E1000E_RxRing rxr;
1000
1001 e1000e_rx_ring_init(core, &rxr, i);
1002 if (e1000e_ring_enabled(core, rxr.i) &&
1003 e1000e_has_rxbufs(core, rxr.i, 1)) {
1004 trace_e1000e_rx_can_recv();
1005 return true;
1006 }
1007 }
1008
1009 trace_e1000e_rx_can_recv_rings_full();
1010 return false;
1011 }
1012
1013 ssize_t
1014 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1015 {
1016 const struct iovec iov = {
1017 .iov_base = (uint8_t *)buf,
1018 .iov_len = size
1019 };
1020
1021 return e1000e_receive_iov(core, &iov, 1);
1022 }
1023
1024 static inline bool
1025 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1026 {
1027 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1028 }
1029
1030 static inline bool
1031 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1032 {
1033 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1034 }
1035
1036 static bool
1037 e1000e_receive_filter(E1000ECore *core, const void *buf)
1038 {
1039 return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1040 e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1041 e1000x_rx_group_filter(core->mac, buf);
1042 }
1043
1044 static inline void
1045 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1046 hwaddr *buff_addr)
1047 {
1048 *buff_addr = le64_to_cpu(desc->buffer_addr);
1049 }
1050
1051 static inline void
1052 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1053 hwaddr *buff_addr)
1054 {
1055 *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1056 }
1057
1058 static inline void
1059 e1000e_read_ps_rx_descr(E1000ECore *core,
1060 union e1000_rx_desc_packet_split *desc,
1061 hwaddr buff_addr[MAX_PS_BUFFERS])
1062 {
1063 int i;
1064
1065 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1066 buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1067 }
1068
1069 trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1070 buff_addr[2], buff_addr[3]);
1071 }
1072
1073 static inline void
1074 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1075 hwaddr buff_addr[MAX_PS_BUFFERS])
1076 {
1077 if (e1000e_rx_use_legacy_descriptor(core)) {
1078 e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1079 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1080 } else {
1081 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1082 e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1083 } else {
1084 e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1085 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1086 }
1087 }
1088 }
1089
1090 static void
1091 e1000e_verify_csum_in_sw(E1000ECore *core,
1092 struct NetRxPkt *pkt,
1093 uint32_t *status_flags,
1094 EthL4HdrProto l4hdr_proto)
1095 {
1096 bool csum_valid;
1097 uint32_t csum_error;
1098
1099 if (e1000e_rx_l3_cso_enabled(core)) {
1100 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1101 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1102 } else {
1103 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1104 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1105 }
1106 } else {
1107 trace_e1000e_rx_metadata_l3_cso_disabled();
1108 }
1109
1110 if (!e1000e_rx_l4_cso_enabled(core)) {
1111 trace_e1000e_rx_metadata_l4_cso_disabled();
1112 return;
1113 }
1114
1115 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1116 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1117 return;
1118 }
1119
1120 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1121 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1122
1123 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1124 *status_flags |= E1000_RXD_STAT_UDPCS;
1125 }
1126 }
1127
1128 static inline bool
1129 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1130 {
1131 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1132 return false;
1133 }
1134
1135 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1136 return !net_rx_pkt_has_tcp_data(rx_pkt);
1137 }
1138
1139 return true;
1140 }
1141
1142 static void
1143 e1000e_build_rx_metadata(E1000ECore *core,
1144 struct NetRxPkt *pkt,
1145 bool is_eop,
1146 const E1000E_RSSInfo *rss_info,
1147 uint32_t *rss, uint32_t *mrq,
1148 uint32_t *status_flags,
1149 uint16_t *ip_id,
1150 uint16_t *vlan_tag)
1151 {
1152 struct virtio_net_hdr *vhdr;
1153 bool hasip4, hasip6;
1154 EthL4HdrProto l4hdr_proto;
1155 uint32_t pkt_type;
1156
1157 *status_flags = E1000_RXD_STAT_DD;
1158
1159 /* No additional metadata needed for non-EOP descriptors */
1160 if (!is_eop) {
1161 goto func_exit;
1162 }
1163
1164 *status_flags |= E1000_RXD_STAT_EOP;
1165
1166 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1167 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1168
1169 /* VLAN state */
1170 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1171 *status_flags |= E1000_RXD_STAT_VP;
1172 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1173 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1174 }
1175
1176 /* Packet parsing results */
1177 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1178 if (rss_info->enabled) {
1179 *rss = cpu_to_le32(rss_info->hash);
1180 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1181 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1182 }
1183 } else if (hasip4) {
1184 *status_flags |= E1000_RXD_STAT_IPIDV;
1185 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1186 trace_e1000e_rx_metadata_ip_id(*ip_id);
1187 }
1188
1189 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1190 *status_flags |= E1000_RXD_STAT_ACK;
1191 trace_e1000e_rx_metadata_ack();
1192 }
1193
1194 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1195 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1196 pkt_type = E1000_RXD_PKT_MAC;
1197 } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1198 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1199 pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1200 } else if (hasip4 || hasip6) {
1201 pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1202 } else {
1203 pkt_type = E1000_RXD_PKT_MAC;
1204 }
1205
1206 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1207 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1208
1209 /* RX CSO information */
1210 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1211 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1212 goto func_exit;
1213 }
1214
1215 vhdr = net_rx_pkt_get_vhdr(pkt);
1216
1217 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1218 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1219 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1220 e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1221 goto func_exit;
1222 }
1223
1224 if (e1000e_rx_l3_cso_enabled(core)) {
1225 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1226 } else {
1227 trace_e1000e_rx_metadata_l3_cso_disabled();
1228 }
1229
1230 if (e1000e_rx_l4_cso_enabled(core)) {
1231 switch (l4hdr_proto) {
1232 case ETH_L4_HDR_PROTO_TCP:
1233 *status_flags |= E1000_RXD_STAT_TCPCS;
1234 break;
1235
1236 case ETH_L4_HDR_PROTO_UDP:
1237 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1238 break;
1239
1240 default:
1241 break;
1242 }
1243 } else {
1244 trace_e1000e_rx_metadata_l4_cso_disabled();
1245 }
1246
1247 trace_e1000e_rx_metadata_status_flags(*status_flags);
1248
1249 func_exit:
1250 *status_flags = cpu_to_le32(*status_flags);
1251 }
1252
1253 static inline void
1254 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1255 struct NetRxPkt *pkt,
1256 const E1000E_RSSInfo *rss_info,
1257 uint16_t length)
1258 {
1259 uint32_t status_flags, rss, mrq;
1260 uint16_t ip_id;
1261
1262 assert(!rss_info->enabled);
1263
1264 desc->length = cpu_to_le16(length);
1265 desc->csum = 0;
1266
1267 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1268 rss_info,
1269 &rss, &mrq,
1270 &status_flags, &ip_id,
1271 &desc->special);
1272 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1273 desc->status = (uint8_t) le32_to_cpu(status_flags);
1274 }
1275
1276 static inline void
1277 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1278 struct NetRxPkt *pkt,
1279 const E1000E_RSSInfo *rss_info,
1280 uint16_t length)
1281 {
1282 memset(&desc->wb, 0, sizeof(desc->wb));
1283
1284 desc->wb.upper.length = cpu_to_le16(length);
1285
1286 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1287 rss_info,
1288 &desc->wb.lower.hi_dword.rss,
1289 &desc->wb.lower.mrq,
1290 &desc->wb.upper.status_error,
1291 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1292 &desc->wb.upper.vlan);
1293 }
1294
1295 static inline void
1296 e1000e_write_ps_rx_descr(E1000ECore *core,
1297 union e1000_rx_desc_packet_split *desc,
1298 struct NetRxPkt *pkt,
1299 const E1000E_RSSInfo *rss_info,
1300 size_t ps_hdr_len,
1301 uint16_t(*written)[MAX_PS_BUFFERS])
1302 {
1303 int i;
1304
1305 memset(&desc->wb, 0, sizeof(desc->wb));
1306
1307 desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1308
1309 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1310 desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1311 }
1312
1313 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1314 rss_info,
1315 &desc->wb.lower.hi_dword.rss,
1316 &desc->wb.lower.mrq,
1317 &desc->wb.middle.status_error,
1318 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1319 &desc->wb.middle.vlan);
1320
1321 desc->wb.upper.header_status =
1322 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1323
1324 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1325 (*written)[2], (*written)[3]);
1326 }
1327
1328 static inline void
1329 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1330 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1331 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1332 {
1333 if (e1000e_rx_use_legacy_descriptor(core)) {
1334 assert(ps_hdr_len == 0);
1335 e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1336 (*written)[0]);
1337 } else {
1338 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1339 e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1340 ps_hdr_len, written);
1341 } else {
1342 assert(ps_hdr_len == 0);
1343 e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1344 (*written)[0]);
1345 }
1346 }
1347 }
1348
1349 static inline void
1350 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1351 union e1000_rx_desc_union *desc, dma_addr_t len)
1352 {
1353 PCIDevice *dev = core->owner;
1354
1355 if (e1000e_rx_use_legacy_descriptor(core)) {
1356 struct e1000_rx_desc *d = &desc->legacy;
1357 size_t offset = offsetof(struct e1000_rx_desc, status);
1358 uint8_t status = d->status;
1359
1360 d->status &= ~E1000_RXD_STAT_DD;
1361 pci_dma_write(dev, addr, desc, len);
1362
1363 if (status & E1000_RXD_STAT_DD) {
1364 d->status = status;
1365 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1366 }
1367 } else {
1368 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1369 union e1000_rx_desc_packet_split *d = &desc->packet_split;
1370 size_t offset = offsetof(union e1000_rx_desc_packet_split,
1371 wb.middle.status_error);
1372 uint32_t status = d->wb.middle.status_error;
1373
1374 d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1375 pci_dma_write(dev, addr, desc, len);
1376
1377 if (status & E1000_RXD_STAT_DD) {
1378 d->wb.middle.status_error = status;
1379 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1380 }
1381 } else {
1382 union e1000_rx_desc_extended *d = &desc->extended;
1383 size_t offset = offsetof(union e1000_rx_desc_extended,
1384 wb.upper.status_error);
1385 uint32_t status = d->wb.upper.status_error;
1386
1387 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1388 pci_dma_write(dev, addr, desc, len);
1389
1390 if (status & E1000_RXD_STAT_DD) {
1391 d->wb.upper.status_error = status;
1392 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1393 }
1394 }
1395 }
1396 }
1397
1398 typedef struct e1000e_ba_state_st {
1399 uint16_t written[MAX_PS_BUFFERS];
1400 uint8_t cur_idx;
1401 } e1000e_ba_state;
1402
1403 static inline void
1404 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1405 hwaddr ba[MAX_PS_BUFFERS],
1406 e1000e_ba_state *bastate,
1407 const char *data,
1408 dma_addr_t data_len)
1409 {
1410 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1411
1412 pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1413 bastate->written[0] += data_len;
1414
1415 bastate->cur_idx = 1;
1416 }
1417
1418 static void
1419 e1000e_write_to_rx_buffers(E1000ECore *core,
1420 hwaddr ba[MAX_PS_BUFFERS],
1421 e1000e_ba_state *bastate,
1422 const char *data,
1423 dma_addr_t data_len)
1424 {
1425 while (data_len > 0) {
1426 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1427 uint32_t cur_buf_bytes_left = cur_buf_len -
1428 bastate->written[bastate->cur_idx];
1429 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1430
1431 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1432 ba[bastate->cur_idx],
1433 bastate->written[bastate->cur_idx],
1434 data,
1435 bytes_to_write);
1436
1437 pci_dma_write(core->owner,
1438 ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1439 data, bytes_to_write);
1440
1441 bastate->written[bastate->cur_idx] += bytes_to_write;
1442 data += bytes_to_write;
1443 data_len -= bytes_to_write;
1444
1445 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1446 bastate->cur_idx++;
1447 }
1448
1449 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1450 }
1451 }
1452
1453 static void
1454 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1455 {
1456 eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1457 e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1458 }
1459
1460 static inline bool
1461 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1462 {
1463 return e1000e_ring_free_descr_num(core, rxi) ==
1464 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1465 }
1466
1467 static bool
1468 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1469 {
1470 bool hasip4, hasip6;
1471 EthL4HdrProto l4hdr_proto;
1472 bool fragment;
1473
1474 if (!e1000e_rx_use_ps_descriptor(core)) {
1475 return false;
1476 }
1477
1478 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1479
1480 if (hasip4) {
1481 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1482 } else if (hasip6) {
1483 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1484 } else {
1485 return false;
1486 }
1487
1488 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1489 return false;
1490 }
1491
1492 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1493 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1494 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1495 } else {
1496 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1497 }
1498
1499 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1500 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1501 return false;
1502 }
1503
1504 return true;
1505 }
1506
1507 static void
1508 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1509 const E1000E_RxRing *rxr,
1510 const E1000E_RSSInfo *rss_info)
1511 {
1512 PCIDevice *d = core->owner;
1513 dma_addr_t base;
1514 union e1000_rx_desc_union desc;
1515 size_t desc_size;
1516 size_t desc_offset = 0;
1517 size_t iov_ofs = 0;
1518
1519 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1520 size_t size = net_rx_pkt_get_total_len(pkt);
1521 size_t total_size = size + e1000x_fcs_len(core->mac);
1522 const E1000E_RingInfo *rxi;
1523 size_t ps_hdr_len = 0;
1524 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1525 bool is_first = true;
1526
1527 rxi = rxr->i;
1528
1529 do {
1530 hwaddr ba[MAX_PS_BUFFERS];
1531 e1000e_ba_state bastate = { { 0 } };
1532 bool is_last = false;
1533
1534 desc_size = total_size - desc_offset;
1535
1536 if (desc_size > core->rx_desc_buf_size) {
1537 desc_size = core->rx_desc_buf_size;
1538 }
1539
1540 if (e1000e_ring_empty(core, rxi)) {
1541 return;
1542 }
1543
1544 base = e1000e_ring_head_descr(core, rxi);
1545
1546 pci_dma_read(d, base, &desc, core->rx_desc_len);
1547
1548 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1549
1550 e1000e_read_rx_descr(core, &desc, ba);
1551
1552 if (ba[0]) {
1553 if (desc_offset < size) {
1554 static const uint32_t fcs_pad;
1555 size_t iov_copy;
1556 size_t copy_size = size - desc_offset;
1557 if (copy_size > core->rx_desc_buf_size) {
1558 copy_size = core->rx_desc_buf_size;
1559 }
1560
1561 /* For PS mode copy the packet header first */
1562 if (do_ps) {
1563 if (is_first) {
1564 size_t ps_hdr_copied = 0;
1565 do {
1566 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1567 iov->iov_len - iov_ofs);
1568
1569 e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1570 iov->iov_base, iov_copy);
1571
1572 copy_size -= iov_copy;
1573 ps_hdr_copied += iov_copy;
1574
1575 iov_ofs += iov_copy;
1576 if (iov_ofs == iov->iov_len) {
1577 iov++;
1578 iov_ofs = 0;
1579 }
1580 } while (ps_hdr_copied < ps_hdr_len);
1581
1582 is_first = false;
1583 } else {
1584 /* Leave buffer 0 of each descriptor except first */
1585 /* empty as per spec 7.1.5.1 */
1586 e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1587 NULL, 0);
1588 }
1589 }
1590
1591 /* Copy packet payload */
1592 while (copy_size) {
1593 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1594
1595 e1000e_write_to_rx_buffers(core, ba, &bastate,
1596 iov->iov_base + iov_ofs, iov_copy);
1597
1598 copy_size -= iov_copy;
1599 iov_ofs += iov_copy;
1600 if (iov_ofs == iov->iov_len) {
1601 iov++;
1602 iov_ofs = 0;
1603 }
1604 }
1605
1606 if (desc_offset + desc_size >= total_size) {
1607 /* Simulate FCS checksum presence in the last descriptor */
1608 e1000e_write_to_rx_buffers(core, ba, &bastate,
1609 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1610 }
1611 }
1612 } else { /* as per intel docs; skip descriptors with null buf addr */
1613 trace_e1000e_rx_null_descriptor();
1614 }
1615 desc_offset += desc_size;
1616 if (desc_offset >= total_size) {
1617 is_last = true;
1618 }
1619
1620 e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1621 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1622 e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1623
1624 e1000e_ring_advance(core, rxi,
1625 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1626
1627 } while (desc_offset < total_size);
1628
1629 e1000e_update_rx_stats(core, size, total_size);
1630 }
1631
1632 static inline void
1633 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1634 {
1635 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1636
1637 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1638 net_rx_pkt_fix_l4_csum(pkt);
1639 }
1640 }
1641
1642 ssize_t
1643 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1644 {
1645 return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1646 }
1647
1648 static ssize_t
1649 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1650 bool has_vnet)
1651 {
1652 uint32_t n = 0;
1653 uint8_t buf[ETH_ZLEN];
1654 struct iovec min_iov;
1655 size_t size, orig_size;
1656 size_t iov_ofs = 0;
1657 E1000E_RxRing rxr;
1658 E1000E_RSSInfo rss_info;
1659 size_t total_size;
1660 ssize_t retval;
1661 bool rdmts_hit;
1662
1663 trace_e1000e_rx_receive_iov(iovcnt);
1664
1665 if (!e1000x_hw_rx_enabled(core->mac)) {
1666 return -1;
1667 }
1668
1669 /* Pull virtio header in */
1670 if (has_vnet) {
1671 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1672 iov_ofs = sizeof(struct virtio_net_hdr);
1673 } else {
1674 net_rx_pkt_unset_vhdr(core->rx_pkt);
1675 }
1676
1677 orig_size = iov_size(iov, iovcnt);
1678 size = orig_size - iov_ofs;
1679
1680 /* Pad to minimum Ethernet frame length */
1681 if (size < sizeof(buf)) {
1682 iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1683 memset(&buf[size], 0, sizeof(buf) - size);
1684 e1000x_inc_reg_if_not_full(core->mac, RUC);
1685 min_iov.iov_base = buf;
1686 min_iov.iov_len = size = sizeof(buf);
1687 iovcnt = 1;
1688 iov = &min_iov;
1689 iov_ofs = 0;
1690 } else {
1691 iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1692 }
1693
1694 /* Discard oversized packets if !LPE and !SBP. */
1695 if (e1000x_is_oversized(core->mac, size)) {
1696 return orig_size;
1697 }
1698
1699 net_rx_pkt_set_packet_type(core->rx_pkt,
1700 get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1701
1702 if (!e1000e_receive_filter(core, buf)) {
1703 trace_e1000e_rx_flt_dropped();
1704 return orig_size;
1705 }
1706
1707 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1708 e1000x_vlan_enabled(core->mac), core->mac[VET]);
1709
1710 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1711 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1712
1713 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1714 e1000x_fcs_len(core->mac);
1715
1716 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1717 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1718
1719 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1720
1721 retval = orig_size;
1722
1723 /* Perform small receive detection (RSRPD) */
1724 if (total_size < core->mac[RSRPD]) {
1725 n |= E1000_ICS_SRPD;
1726 }
1727
1728 /* Perform ACK receive detection */
1729 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1730 (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1731 n |= E1000_ICS_ACK;
1732 }
1733
1734 /* Check if receive descriptor minimum threshold hit */
1735 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1736 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1737
1738 trace_e1000e_rx_written_to_guest(rxr.i->idx);
1739 } else {
1740 n |= E1000_ICS_RXO;
1741 retval = 0;
1742
1743 trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1744 }
1745
1746 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1747 trace_e1000e_rx_interrupt_set(n);
1748 e1000e_set_interrupt_cause(core, n);
1749 } else {
1750 trace_e1000e_rx_interrupt_delayed(n);
1751 }
1752
1753 return retval;
1754 }
1755
1756 static inline bool
1757 e1000e_have_autoneg(E1000ECore *core)
1758 {
1759 return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1760 }
1761
1762 static void e1000e_update_flowctl_status(E1000ECore *core)
1763 {
1764 if (e1000e_have_autoneg(core) &&
1765 core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1766 trace_e1000e_link_autoneg_flowctl(true);
1767 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1768 } else {
1769 trace_e1000e_link_autoneg_flowctl(false);
1770 }
1771 }
1772
1773 static inline void
1774 e1000e_link_down(E1000ECore *core)
1775 {
1776 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1777 e1000e_update_flowctl_status(core);
1778 }
1779
1780 static inline void
1781 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1782 {
1783 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1784 core->phy[0][MII_BMCR] = val & ~(0x3f |
1785 MII_BMCR_RESET |
1786 MII_BMCR_ANRESTART);
1787
1788 if ((val & MII_BMCR_ANRESTART) &&
1789 e1000e_have_autoneg(core)) {
1790 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1791 }
1792 }
1793
1794 static void
1795 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1796 {
1797 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1798
1799 if (val & BIT(10)) {
1800 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1801 }
1802 }
1803
1804 static void
1805 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1806 {
1807 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1808 }
1809
1810 void
1811 e1000e_core_set_link_status(E1000ECore *core)
1812 {
1813 NetClientState *nc = qemu_get_queue(core->owner_nic);
1814 uint32_t old_status = core->mac[STATUS];
1815
1816 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1817
1818 if (nc->link_down) {
1819 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1820 } else {
1821 if (e1000e_have_autoneg(core) &&
1822 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1823 e1000x_restart_autoneg(core->mac, core->phy[0],
1824 core->autoneg_timer);
1825 } else {
1826 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1827 e1000e_start_recv(core);
1828 }
1829 }
1830
1831 if (core->mac[STATUS] != old_status) {
1832 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1833 }
1834 }
1835
1836 static void
1837 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1838 {
1839 trace_e1000e_core_ctrl_write(index, val);
1840
1841 /* RST is self clearing */
1842 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1843 core->mac[CTRL_DUP] = core->mac[CTRL];
1844
1845 trace_e1000e_link_set_params(
1846 !!(val & E1000_CTRL_ASDE),
1847 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1848 !!(val & E1000_CTRL_FRCSPD),
1849 !!(val & E1000_CTRL_FRCDPX),
1850 !!(val & E1000_CTRL_RFCE),
1851 !!(val & E1000_CTRL_TFCE));
1852
1853 if (val & E1000_CTRL_RST) {
1854 trace_e1000e_core_ctrl_sw_reset();
1855 e1000e_reset(core, true);
1856 }
1857
1858 if (val & E1000_CTRL_PHY_RST) {
1859 trace_e1000e_core_ctrl_phy_reset();
1860 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1861 }
1862 }
1863
1864 static void
1865 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1866 {
1867 trace_e1000e_rx_set_rfctl(val);
1868
1869 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1870 trace_e1000e_wrn_iscsi_filtering_not_supported();
1871 }
1872
1873 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1874 trace_e1000e_wrn_nfsw_filtering_not_supported();
1875 }
1876
1877 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1878 trace_e1000e_wrn_nfsr_filtering_not_supported();
1879 }
1880
1881 core->mac[RFCTL] = val;
1882 }
1883
1884 static void
1885 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1886 {
1887 int i;
1888 core->rx_desc_buf_size = 0;
1889
1890 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1891 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1892 }
1893 }
1894
1895 static void
1896 e1000e_parse_rxbufsize(E1000ECore *core)
1897 {
1898 uint32_t rctl = core->mac[RCTL];
1899
1900 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1901
1902 if (rctl & E1000_RCTL_DTYP_MASK) {
1903 uint32_t bsize;
1904
1905 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1906 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1907
1908 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1909 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1910
1911 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1912 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1913
1914 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1915 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1916 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1917 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1918 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1919 } else {
1920 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1921 }
1922
1923 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1924 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1925
1926 e1000e_calc_per_desc_buf_size(core);
1927 }
1928
1929 static void
1930 e1000e_calc_rxdesclen(E1000ECore *core)
1931 {
1932 if (e1000e_rx_use_legacy_descriptor(core)) {
1933 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1934 } else {
1935 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1936 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1937 } else {
1938 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1939 }
1940 }
1941 trace_e1000e_rx_desc_len(core->rx_desc_len);
1942 }
1943
1944 static void
1945 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1946 {
1947 core->mac[RCTL] = val;
1948 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1949
1950 if (val & E1000_RCTL_EN) {
1951 e1000e_parse_rxbufsize(core);
1952 e1000e_calc_rxdesclen(core);
1953 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1954 E1000_RING_DESC_LEN_SHIFT;
1955
1956 e1000e_start_recv(core);
1957 }
1958 }
1959
1960 static
1961 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1962 (E1000ECore *, int, uint16_t) = {
1963 [0] = {
1964 [MII_BMCR] = e1000e_set_phy_ctrl,
1965 [PHY_PAGE] = e1000e_set_phy_page,
1966 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1967 }
1968 };
1969
1970 static inline void
1971 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1972 {
1973 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1974 core->mac[IMS] &= ~bits;
1975 }
1976
1977 static inline bool
1978 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1979 {
1980 if (timer->running) {
1981 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1982
1983 return true;
1984 }
1985
1986 if (timer->core->mac[timer->delay_reg] != 0) {
1987 e1000e_intrmgr_rearm_timer(timer);
1988 }
1989
1990 return false;
1991 }
1992
1993 static inline bool
1994 e1000e_itr_should_postpone(E1000ECore *core)
1995 {
1996 return e1000e_postpone_interrupt(&core->itr);
1997 }
1998
1999 static inline bool
2000 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2001 {
2002 return e1000e_postpone_interrupt(&core->eitr[idx]);
2003 }
2004
2005 static void
2006 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2007 {
2008 uint32_t effective_eiac;
2009
2010 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2011 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2012 if (vec < E1000E_MSIX_VEC_NUM) {
2013 if (!e1000e_eitr_should_postpone(core, vec)) {
2014 trace_e1000e_irq_msix_notify_vec(vec);
2015 msix_notify(core->owner, vec);
2016 }
2017 } else {
2018 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2019 }
2020 } else {
2021 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2022 }
2023
2024 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2025 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2026 core->mac[IAM] &= ~cause;
2027 }
2028
2029 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2030
2031 effective_eiac = core->mac[EIAC] & cause;
2032
2033 core->mac[ICR] &= ~effective_eiac;
2034 core->msi_causes_pending &= ~effective_eiac;
2035
2036 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2037 core->mac[IMS] &= ~effective_eiac;
2038 }
2039 }
2040
2041 static void
2042 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2043 {
2044 if (causes & E1000_ICR_RXQ0) {
2045 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2046 E1000_IVAR_RXQ0(core->mac[IVAR]));
2047 }
2048
2049 if (causes & E1000_ICR_RXQ1) {
2050 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2051 E1000_IVAR_RXQ1(core->mac[IVAR]));
2052 }
2053
2054 if (causes & E1000_ICR_TXQ0) {
2055 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2056 E1000_IVAR_TXQ0(core->mac[IVAR]));
2057 }
2058
2059 if (causes & E1000_ICR_TXQ1) {
2060 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2061 E1000_IVAR_TXQ1(core->mac[IVAR]));
2062 }
2063
2064 if (causes & E1000_ICR_OTHER) {
2065 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2066 E1000_IVAR_OTHER(core->mac[IVAR]));
2067 }
2068 }
2069
2070 static void
2071 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2072 {
2073 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2074 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2075 if (vec < E1000E_MSIX_VEC_NUM) {
2076 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2077 msix_clr_pending(core->owner, vec);
2078 } else {
2079 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2080 }
2081 } else {
2082 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2083 }
2084 }
2085
2086 static void
2087 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2088 {
2089 if (causes & E1000_ICR_RXQ0) {
2090 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2091 E1000_IVAR_RXQ0(core->mac[IVAR]));
2092 }
2093
2094 if (causes & E1000_ICR_RXQ1) {
2095 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2096 E1000_IVAR_RXQ1(core->mac[IVAR]));
2097 }
2098
2099 if (causes & E1000_ICR_TXQ0) {
2100 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2101 E1000_IVAR_TXQ0(core->mac[IVAR]));
2102 }
2103
2104 if (causes & E1000_ICR_TXQ1) {
2105 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2106 E1000_IVAR_TXQ1(core->mac[IVAR]));
2107 }
2108
2109 if (causes & E1000_ICR_OTHER) {
2110 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2111 E1000_IVAR_OTHER(core->mac[IVAR]));
2112 }
2113 }
2114
2115 static inline void
2116 e1000e_fix_icr_asserted(E1000ECore *core)
2117 {
2118 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2119 if (core->mac[ICR]) {
2120 core->mac[ICR] |= E1000_ICR_ASSERTED;
2121 }
2122
2123 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2124 }
2125
2126 static void
2127 e1000e_send_msi(E1000ECore *core, bool msix)
2128 {
2129 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2130
2131 core->msi_causes_pending &= causes;
2132 causes ^= core->msi_causes_pending;
2133 if (causes == 0) {
2134 return;
2135 }
2136 core->msi_causes_pending |= causes;
2137
2138 if (msix) {
2139 e1000e_msix_notify(core, causes);
2140 } else {
2141 if (!e1000e_itr_should_postpone(core)) {
2142 trace_e1000e_irq_msi_notify(causes);
2143 msi_notify(core->owner, 0);
2144 }
2145 }
2146 }
2147
2148 static void
2149 e1000e_update_interrupt_state(E1000ECore *core)
2150 {
2151 bool interrupts_pending;
2152 bool is_msix = msix_enabled(core->owner);
2153
2154 /* Set ICR[OTHER] for MSI-X */
2155 if (is_msix) {
2156 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2157 core->mac[ICR] |= E1000_ICR_OTHER;
2158 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2159 }
2160 }
2161
2162 e1000e_fix_icr_asserted(core);
2163
2164 /*
2165 * Make sure ICR and ICS registers have the same value.
2166 * The spec says that the ICS register is write-only. However in practice,
2167 * on real hardware ICS is readable, and for reads it has the same value as
2168 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2169 *
2170 * The VxWorks PRO/1000 driver uses this behaviour.
2171 */
2172 core->mac[ICS] = core->mac[ICR];
2173
2174 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2175 if (!interrupts_pending) {
2176 core->msi_causes_pending = 0;
2177 }
2178
2179 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2180 core->mac[ICR], core->mac[IMS]);
2181
2182 if (is_msix || msi_enabled(core->owner)) {
2183 if (interrupts_pending) {
2184 e1000e_send_msi(core, is_msix);
2185 }
2186 } else {
2187 if (interrupts_pending) {
2188 if (!e1000e_itr_should_postpone(core)) {
2189 e1000e_raise_legacy_irq(core);
2190 }
2191 } else {
2192 e1000e_lower_legacy_irq(core);
2193 }
2194 }
2195 }
2196
2197 static void
2198 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2199 {
2200 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2201
2202 val |= e1000e_intmgr_collect_delayed_causes(core);
2203 core->mac[ICR] |= val;
2204
2205 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2206
2207 e1000e_update_interrupt_state(core);
2208 }
2209
2210 static inline void
2211 e1000e_autoneg_timer(void *opaque)
2212 {
2213 E1000ECore *core = opaque;
2214 if (!qemu_get_queue(core->owner_nic)->link_down) {
2215 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2216 e1000e_start_recv(core);
2217
2218 e1000e_update_flowctl_status(core);
2219 /* signal link status change to the guest */
2220 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2221 }
2222 }
2223
2224 static inline uint16_t
2225 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2226 {
2227 uint16_t index = (addr & 0x1ffff) >> 2;
2228 return index + (mac_reg_access[index] & 0xfffe);
2229 }
2230
2231 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2232 [0] = {
2233 [MII_BMCR] = PHY_ANYPAGE | PHY_RW,
2234 [MII_BMSR] = PHY_ANYPAGE | PHY_R,
2235 [MII_PHYID1] = PHY_ANYPAGE | PHY_R,
2236 [MII_PHYID2] = PHY_ANYPAGE | PHY_R,
2237 [MII_ANAR] = PHY_ANYPAGE | PHY_RW,
2238 [MII_ANLPAR] = PHY_ANYPAGE | PHY_R,
2239 [MII_ANER] = PHY_ANYPAGE | PHY_R,
2240 [MII_ANNP] = PHY_ANYPAGE | PHY_RW,
2241 [MII_ANLPRNP] = PHY_ANYPAGE | PHY_R,
2242 [MII_CTRL1000] = PHY_ANYPAGE | PHY_RW,
2243 [MII_STAT1000] = PHY_ANYPAGE | PHY_R,
2244 [MII_EXTSTAT] = PHY_ANYPAGE | PHY_R,
2245 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2246
2247 [PHY_COPPER_CTRL1] = PHY_RW,
2248 [PHY_COPPER_STAT1] = PHY_R,
2249 [PHY_COPPER_CTRL3] = PHY_RW,
2250 [PHY_RX_ERR_CNTR] = PHY_R,
2251 [PHY_OEM_BITS] = PHY_RW,
2252 [PHY_BIAS_1] = PHY_RW,
2253 [PHY_BIAS_2] = PHY_RW,
2254 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2255 [PHY_COPPER_STAT2] = PHY_R,
2256 [PHY_COPPER_CTRL2] = PHY_RW
2257 },
2258 [2] = {
2259 [PHY_MAC_CTRL1] = PHY_RW,
2260 [PHY_MAC_INT_ENABLE] = PHY_RW,
2261 [PHY_MAC_STAT] = PHY_R,
2262 [PHY_MAC_CTRL2] = PHY_RW
2263 },
2264 [3] = {
2265 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2266 [PHY_LED_03_POL_CTRL] = PHY_RW,
2267 [PHY_LED_TIMER_CTRL] = PHY_RW,
2268 [PHY_LED_45_CTRL] = PHY_RW
2269 },
2270 [5] = {
2271 [PHY_1000T_SKEW] = PHY_R,
2272 [PHY_1000T_SWAP] = PHY_R
2273 },
2274 [6] = {
2275 [PHY_CRC_COUNTERS] = PHY_R
2276 }
2277 };
2278
2279 static bool
2280 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2281 char cap, uint8_t *page)
2282 {
2283 *page =
2284 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2285 : core->phy[0][PHY_PAGE];
2286
2287 if (*page >= E1000E_PHY_PAGES) {
2288 return false;
2289 }
2290
2291 return e1000e_phy_regcap[*page][addr] & cap;
2292 }
2293
2294 static void
2295 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2296 uint32_t addr, uint16_t data)
2297 {
2298 assert(page < E1000E_PHY_PAGES);
2299 assert(addr < E1000E_PHY_PAGE_SIZE);
2300
2301 if (e1000e_phyreg_writeops[page][addr]) {
2302 e1000e_phyreg_writeops[page][addr](core, addr, data);
2303 } else {
2304 core->phy[page][addr] = data;
2305 }
2306 }
2307
2308 static void
2309 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2310 {
2311 uint32_t data = val & E1000_MDIC_DATA_MASK;
2312 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2313 uint8_t page;
2314
2315 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2316 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2317 } else if (val & E1000_MDIC_OP_READ) {
2318 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2319 trace_e1000e_core_mdic_read_unhandled(page, addr);
2320 val |= E1000_MDIC_ERROR;
2321 } else {
2322 val = (val ^ data) | core->phy[page][addr];
2323 trace_e1000e_core_mdic_read(page, addr, val);
2324 }
2325 } else if (val & E1000_MDIC_OP_WRITE) {
2326 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2327 trace_e1000e_core_mdic_write_unhandled(page, addr);
2328 val |= E1000_MDIC_ERROR;
2329 } else {
2330 trace_e1000e_core_mdic_write(page, addr, data);
2331 e1000e_phy_reg_write(core, page, addr, data);
2332 }
2333 }
2334 core->mac[MDIC] = val | E1000_MDIC_READY;
2335
2336 if (val & E1000_MDIC_INT_EN) {
2337 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2338 }
2339 }
2340
2341 static void
2342 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2343 {
2344 core->mac[index] = val & 0xffff;
2345 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2346 e1000e_start_recv(core);
2347 }
2348
2349 static void
2350 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2351 {
2352 if ((val & E1000_STATUS_PHYRA) == 0) {
2353 core->mac[index] &= ~E1000_STATUS_PHYRA;
2354 }
2355 }
2356
2357 static void
2358 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2359 {
2360 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2361 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2362
2363 /* Zero self-clearing bits */
2364 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2365 core->mac[CTRL_EXT] = val;
2366 }
2367
2368 static void
2369 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2370 {
2371 int i;
2372
2373 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2374
2375 if (!msix_enabled(core->owner)) {
2376 return;
2377 }
2378
2379 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2380 if (core->mac[PBACLR] & BIT(i)) {
2381 msix_clr_pending(core->owner, i);
2382 }
2383 }
2384 }
2385
2386 static void
2387 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2388 {
2389 core->mac[FCRTH] = val & 0xFFF8;
2390 }
2391
2392 static void
2393 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2394 {
2395 core->mac[FCRTL] = val & 0x8000FFF8;
2396 }
2397
2398 #define E1000E_LOW_BITS_SET_FUNC(num) \
2399 static void \
2400 e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2401 { \
2402 core->mac[index] = val & (BIT(num) - 1); \
2403 }
2404
2405 E1000E_LOW_BITS_SET_FUNC(4)
2406 E1000E_LOW_BITS_SET_FUNC(6)
2407 E1000E_LOW_BITS_SET_FUNC(11)
2408 E1000E_LOW_BITS_SET_FUNC(12)
2409 E1000E_LOW_BITS_SET_FUNC(13)
2410 E1000E_LOW_BITS_SET_FUNC(16)
2411
2412 static void
2413 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2414 {
2415 core->mac[VET] = val & 0xffff;
2416 trace_e1000e_vlan_vet(core->mac[VET]);
2417 }
2418
2419 static void
2420 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2421 {
2422 core->mac[index] = val & E1000_XDLEN_MASK;
2423 }
2424
2425 static void
2426 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2427 {
2428 core->mac[index] = val & E1000_XDBAL_MASK;
2429 }
2430
2431 static void
2432 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2433 {
2434 E1000E_TxRing txr;
2435 core->mac[index] = val;
2436
2437 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2438 e1000e_tx_ring_init(core, &txr, 0);
2439 e1000e_start_xmit(core, &txr);
2440 }
2441
2442 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2443 e1000e_tx_ring_init(core, &txr, 1);
2444 e1000e_start_xmit(core, &txr);
2445 }
2446 }
2447
2448 static void
2449 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2450 {
2451 E1000E_TxRing txr;
2452 int qidx = e1000e_mq_queue_idx(TDT, index);
2453 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2454
2455 core->mac[index] = val & 0xffff;
2456
2457 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2458 e1000e_tx_ring_init(core, &txr, qidx);
2459 e1000e_start_xmit(core, &txr);
2460 }
2461 }
2462
2463 static void
2464 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2465 {
2466 trace_e1000e_irq_write_ics(val);
2467 e1000e_set_interrupt_cause(core, val);
2468 }
2469
2470 static void
2471 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2472 {
2473 uint32_t icr = 0;
2474 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2475 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2476 trace_e1000e_irq_icr_process_iame();
2477 e1000e_clear_ims_bits(core, core->mac[IAM]);
2478 }
2479
2480 icr = core->mac[ICR] & ~val;
2481 /*
2482 * Windows driver expects that the "receive overrun" bit and other
2483 * ones to be cleared when the "Other" bit (#24) is cleared.
2484 */
2485 icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2486 trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2487 core->mac[ICR] = icr;
2488 e1000e_update_interrupt_state(core);
2489 }
2490
2491 static void
2492 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2493 {
2494 trace_e1000e_irq_ims_clear_set_imc(val);
2495 e1000e_clear_ims_bits(core, val);
2496 e1000e_update_interrupt_state(core);
2497 }
2498
2499 static void
2500 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2501 {
2502 static const uint32_t ims_ext_mask =
2503 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2504 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2505 E1000_IMS_OTHER;
2506
2507 static const uint32_t ims_valid_mask =
2508 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2509 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2510 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2511 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2512 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2513 E1000_IMS_OTHER;
2514
2515 uint32_t valid_val = val & ims_valid_mask;
2516
2517 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2518 core->mac[IMS] |= valid_val;
2519
2520 if ((valid_val & ims_ext_mask) &&
2521 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2522 msix_enabled(core->owner)) {
2523 e1000e_msix_clear(core, valid_val);
2524 }
2525
2526 if ((valid_val == ims_valid_mask) &&
2527 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2528 trace_e1000e_irq_fire_all_timers(val);
2529 e1000e_intrmgr_fire_all_timers(core);
2530 }
2531
2532 e1000e_update_interrupt_state(core);
2533 }
2534
2535 static void
2536 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2537 {
2538 e1000e_set_16bit(core, index, val);
2539
2540 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2541 trace_e1000e_irq_rdtr_fpd_running();
2542 e1000e_intrmgr_fire_delayed_interrupts(core);
2543 } else {
2544 trace_e1000e_irq_rdtr_fpd_not_running();
2545 }
2546 }
2547
2548 static void
2549 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2550 {
2551 e1000e_set_16bit(core, index, val);
2552
2553 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2554 trace_e1000e_irq_tidv_fpd_running();
2555 e1000e_intrmgr_fire_delayed_interrupts(core);
2556 } else {
2557 trace_e1000e_irq_tidv_fpd_not_running();
2558 }
2559 }
2560
2561 static uint32_t
2562 e1000e_mac_readreg(E1000ECore *core, int index)
2563 {
2564 return core->mac[index];
2565 }
2566
2567 static uint32_t
2568 e1000e_mac_ics_read(E1000ECore *core, int index)
2569 {
2570 trace_e1000e_irq_read_ics(core->mac[ICS]);
2571 return core->mac[ICS];
2572 }
2573
2574 static uint32_t
2575 e1000e_mac_ims_read(E1000ECore *core, int index)
2576 {
2577 trace_e1000e_irq_read_ims(core->mac[IMS]);
2578 return core->mac[IMS];
2579 }
2580
2581 static uint32_t
2582 e1000e_mac_swsm_read(E1000ECore *core, int index)
2583 {
2584 uint32_t val = core->mac[SWSM];
2585 core->mac[SWSM] = val | E1000_SWSM_SMBI;
2586 return val;
2587 }
2588
2589 static uint32_t
2590 e1000e_mac_itr_read(E1000ECore *core, int index)
2591 {
2592 return core->itr_guest_value;
2593 }
2594
2595 static uint32_t
2596 e1000e_mac_eitr_read(E1000ECore *core, int index)
2597 {
2598 return core->eitr_guest_value[index - EITR];
2599 }
2600
2601 static uint32_t
2602 e1000e_mac_icr_read(E1000ECore *core, int index)
2603 {
2604 uint32_t ret = core->mac[ICR];
2605 trace_e1000e_irq_icr_read_entry(ret);
2606
2607 if (core->mac[IMS] == 0) {
2608 trace_e1000e_irq_icr_clear_zero_ims();
2609 core->mac[ICR] = 0;
2610 }
2611
2612 if (!msix_enabled(core->owner)) {
2613 trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2614 core->mac[ICR] = 0;
2615 }
2616
2617 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2618 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2619 trace_e1000e_irq_icr_clear_iame();
2620 core->mac[ICR] = 0;
2621 trace_e1000e_irq_icr_process_iame();
2622 e1000e_clear_ims_bits(core, core->mac[IAM]);
2623 }
2624
2625 trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2626 e1000e_update_interrupt_state(core);
2627 return ret;
2628 }
2629
2630 static uint32_t
2631 e1000e_mac_read_clr4(E1000ECore *core, int index)
2632 {
2633 uint32_t ret = core->mac[index];
2634
2635 core->mac[index] = 0;
2636 return ret;
2637 }
2638
2639 static uint32_t
2640 e1000e_mac_read_clr8(E1000ECore *core, int index)
2641 {
2642 uint32_t ret = core->mac[index];
2643
2644 core->mac[index] = 0;
2645 core->mac[index - 1] = 0;
2646 return ret;
2647 }
2648
2649 static uint32_t
2650 e1000e_get_ctrl(E1000ECore *core, int index)
2651 {
2652 uint32_t val = core->mac[CTRL];
2653
2654 trace_e1000e_link_read_params(
2655 !!(val & E1000_CTRL_ASDE),
2656 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2657 !!(val & E1000_CTRL_FRCSPD),
2658 !!(val & E1000_CTRL_FRCDPX),
2659 !!(val & E1000_CTRL_RFCE),
2660 !!(val & E1000_CTRL_TFCE));
2661
2662 return val;
2663 }
2664
2665 static uint32_t
2666 e1000e_get_status(E1000ECore *core, int index)
2667 {
2668 uint32_t res = core->mac[STATUS];
2669
2670 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2671 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2672 }
2673
2674 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2675 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2676 } else {
2677 res |= E1000_STATUS_FD;
2678 }
2679
2680 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2681 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2682 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2683 case E1000_CTRL_SPD_10:
2684 res |= E1000_STATUS_SPEED_10;
2685 break;
2686 case E1000_CTRL_SPD_100:
2687 res |= E1000_STATUS_SPEED_100;
2688 break;
2689 case E1000_CTRL_SPD_1000:
2690 default:
2691 res |= E1000_STATUS_SPEED_1000;
2692 break;
2693 }
2694 } else {
2695 res |= E1000_STATUS_SPEED_1000;
2696 }
2697
2698 trace_e1000e_link_status(
2699 !!(res & E1000_STATUS_LU),
2700 !!(res & E1000_STATUS_FD),
2701 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2702 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2703
2704 return res;
2705 }
2706
2707 static uint32_t
2708 e1000e_get_tarc(E1000ECore *core, int index)
2709 {
2710 return core->mac[index] & ((BIT(11) - 1) |
2711 BIT(27) |
2712 BIT(28) |
2713 BIT(29) |
2714 BIT(30));
2715 }
2716
2717 static void
2718 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2719 {
2720 core->mac[index] = val;
2721 }
2722
2723 static void
2724 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2725 {
2726 uint32_t macaddr[2];
2727
2728 core->mac[index] = val;
2729
2730 macaddr[0] = cpu_to_le32(core->mac[RA]);
2731 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2732 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2733 (uint8_t *) macaddr);
2734
2735 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2736 }
2737
2738 static void
2739 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2740 {
2741 static const uint32_t ro_bits = E1000_EECD_PRES |
2742 E1000_EECD_AUTO_RD |
2743 E1000_EECD_SIZE_EX_MASK;
2744
2745 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2746 }
2747
2748 static void
2749 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2750 {
2751 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2752 uint32_t flags = 0;
2753 uint32_t data = 0;
2754
2755 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2756 data = core->eeprom[addr];
2757 flags = E1000_EERW_DONE;
2758 }
2759
2760 core->mac[EERD] = flags |
2761 (addr << E1000_EERW_ADDR_SHIFT) |
2762 (data << E1000_EERW_DATA_SHIFT);
2763 }
2764
2765 static void
2766 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2767 {
2768 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2769 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2770 uint32_t flags = 0;
2771
2772 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2773 core->eeprom[addr] = data;
2774 flags = E1000_EERW_DONE;
2775 }
2776
2777 core->mac[EERD] = flags |
2778 (addr << E1000_EERW_ADDR_SHIFT) |
2779 (data << E1000_EERW_DATA_SHIFT);
2780 }
2781
2782 static void
2783 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2784 {
2785 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2786 }
2787
2788 static void
2789 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2790 {
2791 uint32_t interval = val & 0xffff;
2792
2793 trace_e1000e_irq_itr_set(val);
2794
2795 core->itr_guest_value = interval;
2796 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2797 }
2798
2799 static void
2800 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2801 {
2802 uint32_t interval = val & 0xffff;
2803 uint32_t eitr_num = index - EITR;
2804
2805 trace_e1000e_irq_eitr_set(eitr_num, val);
2806
2807 core->eitr_guest_value[eitr_num] = interval;
2808 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2809 }
2810
2811 static void
2812 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2813 {
2814 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2815
2816 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2817 qemu_log_mask(LOG_GUEST_ERROR,
2818 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2819 return;
2820 }
2821
2822 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2823 qemu_log_mask(LOG_GUEST_ERROR,
2824 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2825 return;
2826 }
2827 }
2828
2829 core->mac[PSRCTL] = val;
2830 }
2831
2832 static void
2833 e1000e_update_rx_offloads(E1000ECore *core)
2834 {
2835 int cso_state = e1000e_rx_l4_cso_enabled(core);
2836
2837 trace_e1000e_rx_set_cso(cso_state);
2838
2839 if (core->has_vnet) {
2840 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2841 cso_state, 0, 0, 0, 0);
2842 }
2843 }
2844
2845 static void
2846 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2847 {
2848 core->mac[RXCSUM] = val;
2849 e1000e_update_rx_offloads(core);
2850 }
2851
2852 static void
2853 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2854 {
2855 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2856 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2857 }
2858
2859 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2860 {
2861 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2862 return core->mac[SYSTIML];
2863 }
2864
2865 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2866 {
2867 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2868 return core->mac[RXSATRH];
2869 }
2870
2871 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2872 {
2873 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2874 return core->mac[TXSTMPH];
2875 }
2876
2877 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2878 {
2879 e1000x_set_timinca(core->mac, &core->timadj, val);
2880 }
2881
2882 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2883 {
2884 core->mac[TIMADJH] = val;
2885 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2886 }
2887
2888 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2889 typedef uint32_t (*readops)(E1000ECore *, int);
2890 static const readops e1000e_macreg_readops[] = {
2891 e1000e_getreg(PBA),
2892 e1000e_getreg(WUFC),
2893 e1000e_getreg(MANC),
2894 e1000e_getreg(TOTL),
2895 e1000e_getreg(RDT0),
2896 e1000e_getreg(RDBAH0),
2897 e1000e_getreg(TDBAL1),
2898 e1000e_getreg(RDLEN0),
2899 e1000e_getreg(RDH1),
2900 e1000e_getreg(LATECOL),
2901 e1000e_getreg(SEQEC),
2902 e1000e_getreg(XONTXC),
2903 e1000e_getreg(AIT),
2904 e1000e_getreg(TDFH),
2905 e1000e_getreg(TDFT),
2906 e1000e_getreg(TDFHS),
2907 e1000e_getreg(TDFTS),
2908 e1000e_getreg(TDFPC),
2909 e1000e_getreg(WUS),
2910 e1000e_getreg(PBS),
2911 e1000e_getreg(RDFH),
2912 e1000e_getreg(RDFT),
2913 e1000e_getreg(RDFHS),
2914 e1000e_getreg(RDFTS),
2915 e1000e_getreg(RDFPC),
2916 e1000e_getreg(GORCL),
2917 e1000e_getreg(MGTPRC),
2918 e1000e_getreg(EERD),
2919 e1000e_getreg(EIAC),
2920 e1000e_getreg(PSRCTL),
2921 e1000e_getreg(MANC2H),
2922 e1000e_getreg(RXCSUM),
2923 e1000e_getreg(GSCL_3),
2924 e1000e_getreg(GSCN_2),
2925 e1000e_getreg(RSRPD),
2926 e1000e_getreg(RDBAL1),
2927 e1000e_getreg(FCAH),
2928 e1000e_getreg(FCRTH),
2929 e1000e_getreg(FLOP),
2930 e1000e_getreg(FLASHT),
2931 e1000e_getreg(RXSTMPH),
2932 e1000e_getreg(TXSTMPL),
2933 e1000e_getreg(TIMADJL),
2934 e1000e_getreg(TXDCTL),
2935 e1000e_getreg(RDH0),
2936 e1000e_getreg(TDT1),
2937 e1000e_getreg(TNCRS),
2938 e1000e_getreg(RJC),
2939 e1000e_getreg(IAM),
2940 e1000e_getreg(GSCL_2),
2941 e1000e_getreg(RDBAH1),
2942 e1000e_getreg(FLSWDATA),
2943 e1000e_getreg(TIPG),
2944 e1000e_getreg(FLMNGCTL),
2945 e1000e_getreg(FLMNGCNT),
2946 e1000e_getreg(TSYNCTXCTL),
2947 e1000e_getreg(EXTCNF_SIZE),
2948 e1000e_getreg(EXTCNF_CTRL),
2949 e1000e_getreg(EEMNGDATA),
2950 e1000e_getreg(CTRL_EXT),
2951 e1000e_getreg(SYSTIMH),
2952 e1000e_getreg(EEMNGCTL),
2953 e1000e_getreg(FLMNGDATA),
2954 e1000e_getreg(TSYNCRXCTL),
2955 e1000e_getreg(TDH),
2956 e1000e_getreg(LEDCTL),
2957 e1000e_getreg(TCTL),
2958 e1000e_getreg(TDBAL),
2959 e1000e_getreg(TDLEN),
2960 e1000e_getreg(TDH1),
2961 e1000e_getreg(RADV),
2962 e1000e_getreg(ECOL),
2963 e1000e_getreg(DC),
2964 e1000e_getreg(RLEC),
2965 e1000e_getreg(XOFFTXC),
2966 e1000e_getreg(RFC),
2967 e1000e_getreg(RNBC),
2968 e1000e_getreg(MGTPTC),
2969 e1000e_getreg(TIMINCA),
2970 e1000e_getreg(RXCFGL),
2971 e1000e_getreg(MFUTP01),
2972 e1000e_getreg(FACTPS),
2973 e1000e_getreg(GSCL_1),
2974 e1000e_getreg(GSCN_0),
2975 e1000e_getreg(GCR2),
2976 e1000e_getreg(RDT1),
2977 e1000e_getreg(PBACLR),
2978 e1000e_getreg(FCTTV),
2979 e1000e_getreg(EEWR),
2980 e1000e_getreg(FLSWCTL),
2981 e1000e_getreg(RXDCTL1),
2982 e1000e_getreg(RXSATRL),
2983 e1000e_getreg(RXUDP),
2984 e1000e_getreg(TORL),
2985 e1000e_getreg(TDLEN1),
2986 e1000e_getreg(MCC),
2987 e1000e_getreg(WUC),
2988 e1000e_getreg(EECD),
2989 e1000e_getreg(MFUTP23),
2990 e1000e_getreg(RAID),
2991 e1000e_getreg(FCRTV),
2992 e1000e_getreg(TXDCTL1),
2993 e1000e_getreg(RCTL),
2994 e1000e_getreg(TDT),
2995 e1000e_getreg(MDIC),
2996 e1000e_getreg(FCRUC),
2997 e1000e_getreg(VET),
2998 e1000e_getreg(RDBAL0),
2999 e1000e_getreg(TDBAH1),
3000 e1000e_getreg(RDTR),
3001 e1000e_getreg(SCC),
3002 e1000e_getreg(COLC),
3003 e1000e_getreg(CEXTERR),
3004 e1000e_getreg(XOFFRXC),
3005 e1000e_getreg(IPAV),
3006 e1000e_getreg(GOTCL),
3007 e1000e_getreg(MGTPDC),
3008 e1000e_getreg(GCR),
3009 e1000e_getreg(IVAR),
3010 e1000e_getreg(POEMB),
3011 e1000e_getreg(MFVAL),
3012 e1000e_getreg(FUNCTAG),
3013 e1000e_getreg(GSCL_4),
3014 e1000e_getreg(GSCN_3),
3015 e1000e_getreg(MRQC),
3016 e1000e_getreg(RDLEN1),
3017 e1000e_getreg(FCT),
3018 e1000e_getreg(FLA),
3019 e1000e_getreg(FLOL),
3020 e1000e_getreg(RXDCTL),
3021 e1000e_getreg(RXSTMPL),
3022 e1000e_getreg(TIMADJH),
3023 e1000e_getreg(FCRTL),
3024 e1000e_getreg(TDBAH),
3025 e1000e_getreg(TADV),
3026 e1000e_getreg(XONRXC),
3027 e1000e_getreg(TSCTFC),
3028 e1000e_getreg(RFCTL),
3029 e1000e_getreg(GSCN_1),
3030 e1000e_getreg(FCAL),
3031 e1000e_getreg(FLSWCNT),
3032
3033 [TOTH] = e1000e_mac_read_clr8,
3034 [GOTCH] = e1000e_mac_read_clr8,
3035 [PRC64] = e1000e_mac_read_clr4,
3036 [PRC255] = e1000e_mac_read_clr4,
3037 [PRC1023] = e1000e_mac_read_clr4,
3038 [PTC64] = e1000e_mac_read_clr4,
3039 [PTC255] = e1000e_mac_read_clr4,
3040 [PTC1023] = e1000e_mac_read_clr4,
3041 [GPRC] = e1000e_mac_read_clr4,
3042 [TPT] = e1000e_mac_read_clr4,
3043 [RUC] = e1000e_mac_read_clr4,
3044 [BPRC] = e1000e_mac_read_clr4,
3045 [MPTC] = e1000e_mac_read_clr4,
3046 [IAC] = e1000e_mac_read_clr4,
3047 [ICR] = e1000e_mac_icr_read,
3048 [STATUS] = e1000e_get_status,
3049 [TARC0] = e1000e_get_tarc,
3050 [ICS] = e1000e_mac_ics_read,
3051 [TORH] = e1000e_mac_read_clr8,
3052 [GORCH] = e1000e_mac_read_clr8,
3053 [PRC127] = e1000e_mac_read_clr4,
3054 [PRC511] = e1000e_mac_read_clr4,
3055 [PRC1522] = e1000e_mac_read_clr4,
3056 [PTC127] = e1000e_mac_read_clr4,
3057 [PTC511] = e1000e_mac_read_clr4,
3058 [PTC1522] = e1000e_mac_read_clr4,
3059 [GPTC] = e1000e_mac_read_clr4,
3060 [TPR] = e1000e_mac_read_clr4,
3061 [ROC] = e1000e_mac_read_clr4,
3062 [MPRC] = e1000e_mac_read_clr4,
3063 [BPTC] = e1000e_mac_read_clr4,
3064 [TSCTC] = e1000e_mac_read_clr4,
3065 [ITR] = e1000e_mac_itr_read,
3066 [CTRL] = e1000e_get_ctrl,
3067 [TARC1] = e1000e_get_tarc,
3068 [SWSM] = e1000e_mac_swsm_read,
3069 [IMS] = e1000e_mac_ims_read,
3070 [SYSTIML] = e1000e_get_systiml,
3071 [RXSATRH] = e1000e_get_rxsatrh,
3072 [TXSTMPH] = e1000e_get_txstmph,
3073
3074 [CRCERRS ... MPC] = e1000e_mac_readreg,
3075 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3076 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3077 [RA ... RA + 31] = e1000e_mac_readreg,
3078 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3079 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3080 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_readreg,
3081 [FFMT ... FFMT + 254] = e1000e_mac_readreg,
3082 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3083 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3084 [FFLT ... FFLT + 10] = e1000e_mac_readreg,
3085 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3086 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3087 [RETA ... RETA + 31] = e1000e_mac_readreg,
3088 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3089 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3090 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3091 };
3092 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3093
3094 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3095 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3096 static const writeops e1000e_macreg_writeops[] = {
3097 e1000e_putreg(PBA),
3098 e1000e_putreg(SWSM),
3099 e1000e_putreg(WUFC),
3100 e1000e_putreg(RDBAH1),
3101 e1000e_putreg(TDBAH),
3102 e1000e_putreg(TXDCTL),
3103 e1000e_putreg(RDBAH0),
3104 e1000e_putreg(LEDCTL),
3105 e1000e_putreg(FCAL),
3106 e1000e_putreg(FCRUC),
3107 e1000e_putreg(WUC),
3108 e1000e_putreg(WUS),
3109 e1000e_putreg(IPAV),
3110 e1000e_putreg(TDBAH1),
3111 e1000e_putreg(IAM),
3112 e1000e_putreg(EIAC),
3113 e1000e_putreg(IVAR),
3114 e1000e_putreg(TARC0),
3115 e1000e_putreg(TARC1),
3116 e1000e_putreg(FLSWDATA),
3117 e1000e_putreg(POEMB),
3118 e1000e_putreg(MFUTP01),
3119 e1000e_putreg(MFUTP23),
3120 e1000e_putreg(MANC),
3121 e1000e_putreg(MANC2H),
3122 e1000e_putreg(MFVAL),
3123 e1000e_putreg(EXTCNF_CTRL),
3124 e1000e_putreg(FACTPS),
3125 e1000e_putreg(FUNCTAG),
3126 e1000e_putreg(GSCL_1),
3127 e1000e_putreg(GSCL_2),
3128 e1000e_putreg(GSCL_3),
3129 e1000e_putreg(GSCL_4),
3130 e1000e_putreg(GSCN_0),
3131 e1000e_putreg(GSCN_1),
3132 e1000e_putreg(GSCN_2),
3133 e1000e_putreg(GSCN_3),
3134 e1000e_putreg(GCR2),
3135 e1000e_putreg(MRQC),
3136 e1000e_putreg(FLOP),
3137 e1000e_putreg(FLOL),
3138 e1000e_putreg(FLSWCTL),
3139 e1000e_putreg(FLSWCNT),
3140 e1000e_putreg(FLA),
3141 e1000e_putreg(RXDCTL1),
3142 e1000e_putreg(TXDCTL1),
3143 e1000e_putreg(TIPG),
3144 e1000e_putreg(RXSTMPH),
3145 e1000e_putreg(RXSTMPL),
3146 e1000e_putreg(RXSATRL),
3147 e1000e_putreg(RXSATRH),
3148 e1000e_putreg(TXSTMPL),
3149 e1000e_putreg(TXSTMPH),
3150 e1000e_putreg(SYSTIML),
3151 e1000e_putreg(SYSTIMH),
3152 e1000e_putreg(TIMADJL),
3153 e1000e_putreg(RXUDP),
3154 e1000e_putreg(RXCFGL),
3155 e1000e_putreg(TSYNCRXCTL),
3156 e1000e_putreg(TSYNCTXCTL),
3157 e1000e_putreg(EXTCNF_SIZE),
3158 e1000e_putreg(EEMNGCTL),
3159 e1000e_putreg(RA),
3160
3161 [TDH1] = e1000e_set_16bit,
3162 [TDT1] = e1000e_set_tdt,
3163 [TCTL] = e1000e_set_tctl,
3164 [TDT] = e1000e_set_tdt,
3165 [MDIC] = e1000e_set_mdic,
3166 [ICS] = e1000e_set_ics,
3167 [TDH] = e1000e_set_16bit,
3168 [RDH0] = e1000e_set_16bit,
3169 [RDT0] = e1000e_set_rdt,
3170 [IMC] = e1000e_set_imc,
3171 [IMS] = e1000e_set_ims,
3172 [ICR] = e1000e_set_icr,
3173 [EECD] = e1000e_set_eecd,
3174 [RCTL] = e1000e_set_rx_control,
3175 [CTRL] = e1000e_set_ctrl,
3176 [RDTR] = e1000e_set_rdtr,
3177 [RADV] = e1000e_set_16bit,
3178 [TADV] = e1000e_set_16bit,
3179 [ITR] = e1000e_set_itr,
3180 [EERD] = e1000e_set_eerd,
3181 [AIT] = e1000e_set_16bit,
3182 [TDFH] = e1000e_set_13bit,
3183 [TDFT] = e1000e_set_13bit,
3184 [TDFHS] = e1000e_set_13bit,
3185 [TDFTS] = e1000e_set_13bit,
3186 [TDFPC] = e1000e_set_13bit,
3187 [RDFH] = e1000e_set_13bit,
3188 [RDFHS] = e1000e_set_13bit,
3189 [RDFT] = e1000e_set_13bit,
3190 [RDFTS] = e1000e_set_13bit,
3191 [RDFPC] = e1000e_set_13bit,
3192 [PBS] = e1000e_set_6bit,
3193 [GCR] = e1000e_set_gcr,
3194 [PSRCTL] = e1000e_set_psrctl,
3195 [RXCSUM] = e1000e_set_rxcsum,
3196 [RAID] = e1000e_set_16bit,
3197 [RSRPD] = e1000e_set_12bit,
3198 [TIDV] = e1000e_set_tidv,
3199 [TDLEN1] = e1000e_set_dlen,
3200 [TDLEN] = e1000e_set_dlen,
3201 [RDLEN0] = e1000e_set_dlen,
3202 [RDLEN1] = e1000e_set_dlen,
3203 [TDBAL] = e1000e_set_dbal,
3204 [TDBAL1] = e1000e_set_dbal,
3205 [RDBAL0] = e1000e_set_dbal,
3206 [RDBAL1] = e1000e_set_dbal,
3207 [RDH1] = e1000e_set_16bit,
3208 [RDT1] = e1000e_set_rdt,
3209 [STATUS] = e1000e_set_status,
3210 [PBACLR] = e1000e_set_pbaclr,
3211 [CTRL_EXT] = e1000e_set_ctrlext,
3212 [FCAH] = e1000e_set_16bit,
3213 [FCT] = e1000e_set_16bit,
3214 [FCTTV] = e1000e_set_16bit,
3215 [FCRTV] = e1000e_set_16bit,
3216 [FCRTH] = e1000e_set_fcrth,
3217 [FCRTL] = e1000e_set_fcrtl,
3218 [VET] = e1000e_set_vet,
3219 [RXDCTL] = e1000e_set_rxdctl,
3220 [FLASHT] = e1000e_set_16bit,
3221 [EEWR] = e1000e_set_eewr,
3222 [CTRL_DUP] = e1000e_set_ctrl,
3223 [RFCTL] = e1000e_set_rfctl,
3224 [RA + 1] = e1000e_mac_setmacaddr,
3225 [TIMINCA] = e1000e_set_timinca,
3226 [TIMADJH] = e1000e_set_timadjh,
3227
3228 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3229 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3230 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3231 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3232 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3233 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_writereg,
3234 [FFMT ... FFMT + 254] = e1000e_set_4bit,
3235 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3236 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3237 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3238 [FFLT ... FFLT + 10] = e1000e_set_11bit,
3239 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3240 [RETA ... RETA + 31] = e1000e_mac_writereg,
3241 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3242 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3243 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3244 };
3245 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3246
3247 enum { MAC_ACCESS_PARTIAL = 1 };
3248
3249 /*
3250 * The array below combines alias offsets of the index values for the
3251 * MAC registers that have aliases, with the indication of not fully
3252 * implemented registers (lowest bit). This combination is possible
3253 * because all of the offsets are even.
3254 */
3255 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3256 /* Alias index offsets */
3257 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3258 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3259 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3260 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3261 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3262 [RA_A ... RA_A + 31] = 0x14f0,
3263 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3264 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3265 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3266 /* Access options */
3267 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3268 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3269 [RDFPC] = MAC_ACCESS_PARTIAL,
3270 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3271 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3272 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3273 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3274 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3275 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3276 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3277 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3278 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3279 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3280 };
3281
3282 void
3283 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3284 {
3285 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3286
3287 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3288 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3289 trace_e1000e_wrn_regs_write_trivial(index << 2);
3290 }
3291 trace_e1000e_core_write(index << 2, size, val);
3292 e1000e_macreg_writeops[index](core, index, val);
3293 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3294 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3295 } else {
3296 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3297 }
3298 }
3299
3300 uint64_t
3301 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3302 {
3303 uint64_t val;
3304 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3305
3306 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3307 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3308 trace_e1000e_wrn_regs_read_trivial(index << 2);
3309 }
3310 val = e1000e_macreg_readops[index](core, index);
3311 trace_e1000e_core_read(index << 2, size, val);
3312 return val;
3313 } else {
3314 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3315 }
3316 return 0;
3317 }
3318
3319 static inline void
3320 e1000e_autoneg_pause(E1000ECore *core)
3321 {
3322 timer_del(core->autoneg_timer);
3323 }
3324
3325 static void
3326 e1000e_autoneg_resume(E1000ECore *core)
3327 {
3328 if (e1000e_have_autoneg(core) &&
3329 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3330 qemu_get_queue(core->owner_nic)->link_down = false;
3331 timer_mod(core->autoneg_timer,
3332 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3333 }
3334 }
3335
3336 static void
3337 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3338 {
3339 E1000ECore *core = opaque;
3340
3341 if (running) {
3342 trace_e1000e_vm_state_running();
3343 e1000e_intrmgr_resume(core);
3344 e1000e_autoneg_resume(core);
3345 } else {
3346 trace_e1000e_vm_state_stopped();
3347 e1000e_autoneg_pause(core);
3348 e1000e_intrmgr_pause(core);
3349 }
3350 }
3351
3352 void
3353 e1000e_core_pci_realize(E1000ECore *core,
3354 const uint16_t *eeprom_templ,
3355 uint32_t eeprom_size,
3356 const uint8_t *macaddr)
3357 {
3358 int i;
3359
3360 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3361 e1000e_autoneg_timer, core);
3362 e1000e_intrmgr_pci_realize(core);
3363
3364 core->vmstate =
3365 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3366
3367 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3368 net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3369 }
3370
3371 net_rx_pkt_init(&core->rx_pkt);
3372
3373 e1000x_core_prepare_eeprom(core->eeprom,
3374 eeprom_templ,
3375 eeprom_size,
3376 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3377 macaddr);
3378 e1000e_update_rx_offloads(core);
3379 }
3380
3381 void
3382 e1000e_core_pci_uninit(E1000ECore *core)
3383 {
3384 int i;
3385
3386 timer_free(core->autoneg_timer);
3387
3388 e1000e_intrmgr_pci_unint(core);
3389
3390 qemu_del_vm_change_state_handler(core->vmstate);
3391
3392 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3393 net_tx_pkt_reset(core->tx[i].tx_pkt,
3394 net_tx_pkt_unmap_frag_pci, core->owner);
3395 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3396 }
3397
3398 net_rx_pkt_uninit(core->rx_pkt);
3399 }
3400
3401 static const uint16_t
3402 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3403 [0] = {
3404 [MII_BMCR] = MII_BMCR_SPEED1000 |
3405 MII_BMCR_FD |
3406 MII_BMCR_AUTOEN,
3407
3408 [MII_BMSR] = MII_BMSR_EXTCAP |
3409 MII_BMSR_LINK_ST |
3410 MII_BMSR_AUTONEG |
3411 MII_BMSR_MFPS |
3412 MII_BMSR_EXTSTAT |
3413 MII_BMSR_10T_HD |
3414 MII_BMSR_10T_FD |
3415 MII_BMSR_100TX_HD |
3416 MII_BMSR_100TX_FD,
3417
3418 [MII_PHYID1] = 0x141,
3419 [MII_PHYID2] = E1000_PHY_ID2_82574x,
3420 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
3421 MII_ANAR_10FD | MII_ANAR_TX |
3422 MII_ANAR_TXFD | MII_ANAR_PAUSE |
3423 MII_ANAR_PAUSE_ASYM,
3424 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3425 MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3426 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3427 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY,
3428 [MII_ANNP] = 1 | MII_ANNP_MP,
3429 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3430 MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3431 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
3432 MII_STAT1000_ROK | MII_STAT1000_LOK,
3433 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3434
3435 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3436 BIT(12) | BIT(13),
3437 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3438 },
3439 [2] = {
3440 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3441 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3442 },
3443 [3] = {
3444 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3445 }
3446 };
3447
3448 static const uint32_t e1000e_mac_reg_init[] = {
3449 [PBA] = 0x00140014,
3450 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3451 [EXTCNF_CTRL] = BIT(3),
3452 [EEMNGCTL] = BIT(31),
3453 [FLASHT] = 0x2,
3454 [FLSWCTL] = BIT(30) | BIT(31),
3455 [FLOL] = BIT(0),
3456 [RXDCTL] = BIT(16),
3457 [RXDCTL1] = BIT(16),
3458 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3459 [RXCFGL] = 0x88F7,
3460 [RXUDP] = 0x319,
3461 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3462 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3463 E1000_CTRL_ADVD3WUC,
3464 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3465 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3466 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3467 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3468 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3469 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3470 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3471 [EERD] = E1000_EERW_DONE,
3472 [EEWR] = E1000_EERW_DONE,
3473 [GCR] = E1000_L0S_ADJUST |
3474 E1000_L1_ENTRY_LATENCY_MSB |
3475 E1000_L1_ENTRY_LATENCY_LSB,
3476 [TDFH] = 0x600,
3477 [TDFT] = 0x600,
3478 [TDFHS] = 0x600,
3479 [TDFTS] = 0x600,
3480 [POEMB] = 0x30D,
3481 [PBS] = 0x028,
3482 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3483 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3484 [SWSM] = 1,
3485 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3486 [ITR] = E1000E_MIN_XITR,
3487 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3488 };
3489
3490 static void e1000e_reset(E1000ECore *core, bool sw)
3491 {
3492 int i;
3493
3494 timer_del(core->autoneg_timer);
3495
3496 e1000e_intrmgr_reset(core);
3497
3498 memset(core->phy, 0, sizeof core->phy);
3499 memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3500
3501 for (i = 0; i < E1000E_MAC_SIZE; i++) {
3502 if (sw && (i == PBA || i == PBS || i == FLA)) {
3503 continue;
3504 }
3505
3506 core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3507 e1000e_mac_reg_init[i] : 0;
3508 }
3509
3510 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3511
3512 if (qemu_get_queue(core->owner_nic)->link_down) {
3513 e1000e_link_down(core);
3514 }
3515
3516 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3517
3518 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3519 net_tx_pkt_reset(core->tx[i].tx_pkt,
3520 net_tx_pkt_unmap_frag_pci, core->owner);
3521 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3522 core->tx[i].skip_cp = false;
3523 }
3524 }
3525
3526 void
3527 e1000e_core_reset(E1000ECore *core)
3528 {
3529 e1000e_reset(core, false);
3530 }
3531
3532 void e1000e_core_pre_save(E1000ECore *core)
3533 {
3534 int i;
3535 NetClientState *nc = qemu_get_queue(core->owner_nic);
3536
3537 /*
3538 * If link is down and auto-negotiation is supported and ongoing,
3539 * complete auto-negotiation immediately. This allows us to look
3540 * at MII_BMSR_AN_COMP to infer link status on load.
3541 */
3542 if (nc->link_down && e1000e_have_autoneg(core)) {
3543 core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3544 e1000e_update_flowctl_status(core);
3545 }
3546
3547 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3548 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3549 core->tx[i].skip_cp = true;
3550 }
3551 }
3552 }
3553
3554 int
3555 e1000e_core_post_load(E1000ECore *core)
3556 {
3557 NetClientState *nc = qemu_get_queue(core->owner_nic);
3558
3559 /*
3560 * nc.link_down can't be migrated, so infer link_down according
3561 * to link status bit in core.mac[STATUS].
3562 */
3563 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3564
3565 return 0;
3566 }