]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/e1000e_core.c
spapr: Remove support for NVIDIA V100 GPU with NVLink2
[mirror_qemu.git] / hw / net / e1000e_core.c
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51
52 #include "trace.h"
53
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR (500)
56
57 #define E1000E_MAX_TX_FRAGS (64)
58
59 union e1000_rx_desc_union {
60 struct e1000_rx_desc legacy;
61 union e1000_rx_desc_extended extended;
62 union e1000_rx_desc_packet_split packet_split;
63 };
64
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67 bool has_vnet);
68
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71
72 static void e1000e_reset(E1000ECore *core, bool sw);
73
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78 trace_e1000e_wrn_no_ts_support();
79 }
80 }
81
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86 trace_e1000e_wrn_no_snap_support();
87 }
88 }
89
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93 trace_e1000e_irq_legacy_notify(true);
94 e1000x_inc_reg_if_not_full(core->mac, IAC);
95 pci_set_irq(core->owner, 1);
96 }
97
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101 trace_e1000e_irq_legacy_notify(false);
102 pci_set_irq(core->owner, 0);
103 }
104
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109 timer->delay_resolution_ns;
110
111 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112
113 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114
115 timer->running = true;
116 }
117
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121 if (timer->running) {
122 e1000e_intrmgr_rearm_timer(timer);
123 }
124 }
125
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129 if (timer->running) {
130 timer_del(timer->timer);
131 }
132 }
133
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137 if (timer->running) {
138 timer_del(timer->timer);
139 timer->running = false;
140 }
141 }
142
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146 trace_e1000e_irq_fire_delayed_interrupts();
147 e1000e_set_interrupt_cause(core, 0);
148 }
149
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153 E1000IntrDelayTimer *timer = opaque;
154
155 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156
157 timer->running = false;
158 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164 E1000IntrDelayTimer *timer = opaque;
165
166 timer->running = false;
167
168 if (timer->core->mac[IMS] & timer->core->mac[ICR]) {
169 if (msi_enabled(timer->core->owner)) {
170 trace_e1000e_irq_msi_notify_postponed();
171 msi_notify(timer->core->owner, 0);
172 } else {
173 trace_e1000e_irq_legacy_notify_postponed();
174 e1000e_raise_legacy_irq(timer->core);
175 }
176 }
177 }
178
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182 E1000IntrDelayTimer *timer = opaque;
183 int idx = timer - &timer->core->eitr[0];
184
185 timer->running = false;
186
187 trace_e1000e_irq_msix_notify_postponed_vec(idx);
188 msix_notify(timer->core->owner, idx);
189 }
190
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194 int i;
195
196 core->radv.delay_reg = RADV;
197 core->rdtr.delay_reg = RDTR;
198 core->raid.delay_reg = RAID;
199 core->tadv.delay_reg = TADV;
200 core->tidv.delay_reg = TIDV;
201
202 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207
208 core->radv.core = core;
209 core->rdtr.core = core;
210 core->raid.core = core;
211 core->tadv.core = core;
212 core->tidv.core = core;
213
214 core->itr.core = core;
215 core->itr.delay_reg = ITR;
216 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217
218 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219 core->eitr[i].core = core;
220 core->eitr[i].delay_reg = EITR + i;
221 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222 }
223
224 if (!create) {
225 return;
226 }
227
228 core->radv.timer =
229 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230 core->rdtr.timer =
231 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232 core->raid.timer =
233 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234
235 core->tadv.timer =
236 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237 core->tidv.timer =
238 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239
240 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241 e1000e_intrmgr_on_throttling_timer,
242 &core->itr);
243
244 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245 core->eitr[i].timer =
246 timer_new_ns(QEMU_CLOCK_VIRTUAL,
247 e1000e_intrmgr_on_msix_throttling_timer,
248 &core->eitr[i]);
249 }
250 }
251
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255 e1000e_intrmgr_stop_timer(&core->radv);
256 e1000e_intrmgr_stop_timer(&core->rdtr);
257 e1000e_intrmgr_stop_timer(&core->raid);
258 e1000e_intrmgr_stop_timer(&core->tidv);
259 e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265 uint32_t delayable_causes;
266 uint32_t rdtr = core->mac[RDTR];
267 uint32_t radv = core->mac[RADV];
268 uint32_t raid = core->mac[RAID];
269
270 if (msix_enabled(core->owner)) {
271 return false;
272 }
273
274 delayable_causes = E1000_ICR_RXQ0 |
275 E1000_ICR_RXQ1 |
276 E1000_ICR_RXT0;
277
278 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279 delayable_causes |= E1000_ICR_ACK;
280 }
281
282 /* Clean up all causes that may be delayed */
283 core->delayed_causes |= *causes & delayable_causes;
284 *causes &= ~delayable_causes;
285
286 /*
287 * Check if delayed RX interrupts disabled by client
288 * or if there are causes that cannot be delayed
289 */
290 if ((rdtr == 0) || (*causes != 0)) {
291 return false;
292 }
293
294 /*
295 * Check if delayed RX ACK interrupts disabled by client
296 * and there is an ACK packet received
297 */
298 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299 return false;
300 }
301
302 /* All causes delayed */
303 e1000e_intrmgr_rearm_timer(&core->rdtr);
304
305 if (!core->radv.running && (radv != 0)) {
306 e1000e_intrmgr_rearm_timer(&core->radv);
307 }
308
309 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310 e1000e_intrmgr_rearm_timer(&core->raid);
311 }
312
313 return true;
314 }
315
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320 E1000_ICR_TXQ1 |
321 E1000_ICR_TXQE |
322 E1000_ICR_TXDW;
323
324 if (msix_enabled(core->owner)) {
325 return false;
326 }
327
328 /* Clean up all causes that may be delayed */
329 core->delayed_causes |= *causes & delayable_causes;
330 *causes &= ~delayable_causes;
331
332 /* If there are causes that cannot be delayed */
333 if (*causes != 0) {
334 return false;
335 }
336
337 /* All causes delayed */
338 e1000e_intrmgr_rearm_timer(&core->tidv);
339
340 if (!core->tadv.running && (core->mac[TADV] != 0)) {
341 e1000e_intrmgr_rearm_timer(&core->tadv);
342 }
343
344 return true;
345 }
346
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350 uint32_t res;
351
352 if (msix_enabled(core->owner)) {
353 assert(core->delayed_causes == 0);
354 return 0;
355 }
356
357 res = core->delayed_causes;
358 core->delayed_causes = 0;
359
360 e1000e_intrmgr_stop_delay_timers(core);
361
362 return res;
363 }
364
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368 int i;
369
370 if (core->itr.running) {
371 timer_del(core->itr.timer);
372 e1000e_intrmgr_on_throttling_timer(&core->itr);
373 }
374
375 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
376 if (core->eitr[i].running) {
377 timer_del(core->eitr[i].timer);
378 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
379 }
380 }
381 }
382
383 static void
384 e1000e_intrmgr_resume(E1000ECore *core)
385 {
386 int i;
387
388 e1000e_intmgr_timer_resume(&core->radv);
389 e1000e_intmgr_timer_resume(&core->rdtr);
390 e1000e_intmgr_timer_resume(&core->raid);
391 e1000e_intmgr_timer_resume(&core->tidv);
392 e1000e_intmgr_timer_resume(&core->tadv);
393
394 e1000e_intmgr_timer_resume(&core->itr);
395
396 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
397 e1000e_intmgr_timer_resume(&core->eitr[i]);
398 }
399 }
400
401 static void
402 e1000e_intrmgr_pause(E1000ECore *core)
403 {
404 int i;
405
406 e1000e_intmgr_timer_pause(&core->radv);
407 e1000e_intmgr_timer_pause(&core->rdtr);
408 e1000e_intmgr_timer_pause(&core->raid);
409 e1000e_intmgr_timer_pause(&core->tidv);
410 e1000e_intmgr_timer_pause(&core->tadv);
411
412 e1000e_intmgr_timer_pause(&core->itr);
413
414 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
415 e1000e_intmgr_timer_pause(&core->eitr[i]);
416 }
417 }
418
419 static void
420 e1000e_intrmgr_reset(E1000ECore *core)
421 {
422 int i;
423
424 core->delayed_causes = 0;
425
426 e1000e_intrmgr_stop_delay_timers(core);
427
428 e1000e_intrmgr_stop_timer(&core->itr);
429
430 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
431 e1000e_intrmgr_stop_timer(&core->eitr[i]);
432 }
433 }
434
435 static void
436 e1000e_intrmgr_pci_unint(E1000ECore *core)
437 {
438 int i;
439
440 timer_free(core->radv.timer);
441 timer_free(core->rdtr.timer);
442 timer_free(core->raid.timer);
443
444 timer_free(core->tadv.timer);
445 timer_free(core->tidv.timer);
446
447 timer_free(core->itr.timer);
448
449 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
450 timer_free(core->eitr[i].timer);
451 }
452 }
453
454 static void
455 e1000e_intrmgr_pci_realize(E1000ECore *core)
456 {
457 e1000e_intrmgr_initialize_all_timers(core, true);
458 }
459
460 static inline bool
461 e1000e_rx_csum_enabled(E1000ECore *core)
462 {
463 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
464 }
465
466 static inline bool
467 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
468 {
469 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
470 }
471
472 static inline bool
473 e1000e_rx_use_ps_descriptor(E1000ECore *core)
474 {
475 return !e1000e_rx_use_legacy_descriptor(core) &&
476 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
477 }
478
479 static inline bool
480 e1000e_rss_enabled(E1000ECore *core)
481 {
482 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
483 !e1000e_rx_csum_enabled(core) &&
484 !e1000e_rx_use_legacy_descriptor(core);
485 }
486
487 typedef struct E1000E_RSSInfo_st {
488 bool enabled;
489 uint32_t hash;
490 uint32_t queue;
491 uint32_t type;
492 } E1000E_RSSInfo;
493
494 static uint32_t
495 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
496 {
497 bool hasip4, hasip6;
498 EthL4HdrProto l4hdr_proto;
499
500 assert(e1000e_rss_enabled(core));
501
502 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
503
504 if (hasip4) {
505 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
506 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
507 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
508
509 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
510 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
511 return E1000_MRQ_RSS_TYPE_IPV4TCP;
512 }
513
514 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
515 return E1000_MRQ_RSS_TYPE_IPV4;
516 }
517 } else if (hasip6) {
518 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
519
520 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
521 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
522
523 /*
524 * Following two traces must not be combined because resulting
525 * event will have 11 arguments totally and some trace backends
526 * (at least "ust") have limitation of maximum 10 arguments per
527 * event. Events with more arguments fail to compile for
528 * backends like these.
529 */
530 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
531 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
532 ip6info->has_ext_hdrs,
533 ip6info->rss_ex_dst_valid,
534 ip6info->rss_ex_src_valid,
535 core->mac[MRQC],
536 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
537 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
538 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
539
540 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
541 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
542 ip6info->rss_ex_src_valid))) {
543
544 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
545 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
546 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
547 }
548
549 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
550 return E1000_MRQ_RSS_TYPE_IPV6EX;
551 }
552
553 }
554
555 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
556 return E1000_MRQ_RSS_TYPE_IPV6;
557 }
558
559 }
560
561 return E1000_MRQ_RSS_TYPE_NONE;
562 }
563
564 static uint32_t
565 e1000e_rss_calc_hash(E1000ECore *core,
566 struct NetRxPkt *pkt,
567 E1000E_RSSInfo *info)
568 {
569 NetRxPktRssType type;
570
571 assert(e1000e_rss_enabled(core));
572
573 switch (info->type) {
574 case E1000_MRQ_RSS_TYPE_IPV4:
575 type = NetPktRssIpV4;
576 break;
577 case E1000_MRQ_RSS_TYPE_IPV4TCP:
578 type = NetPktRssIpV4Tcp;
579 break;
580 case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
581 type = NetPktRssIpV6TcpEx;
582 break;
583 case E1000_MRQ_RSS_TYPE_IPV6:
584 type = NetPktRssIpV6;
585 break;
586 case E1000_MRQ_RSS_TYPE_IPV6EX:
587 type = NetPktRssIpV6Ex;
588 break;
589 default:
590 assert(false);
591 return 0;
592 }
593
594 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
595 }
596
597 static void
598 e1000e_rss_parse_packet(E1000ECore *core,
599 struct NetRxPkt *pkt,
600 E1000E_RSSInfo *info)
601 {
602 trace_e1000e_rx_rss_started();
603
604 if (!e1000e_rss_enabled(core)) {
605 info->enabled = false;
606 info->hash = 0;
607 info->queue = 0;
608 info->type = 0;
609 trace_e1000e_rx_rss_disabled();
610 return;
611 }
612
613 info->enabled = true;
614
615 info->type = e1000e_rss_get_hash_type(core, pkt);
616
617 trace_e1000e_rx_rss_type(info->type);
618
619 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
620 info->hash = 0;
621 info->queue = 0;
622 return;
623 }
624
625 info->hash = e1000e_rss_calc_hash(core, pkt, info);
626 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
627 }
628
629 static bool
630 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
631 {
632 if (tx->props.tse && tx->cptse) {
633 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
634 return false;
635 }
636
637 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639 return true;
640 }
641
642 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
643 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
644 return false;
645 }
646 }
647
648 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
649 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
650 }
651
652 return true;
653 }
654
655 static void e1000e_tx_pkt_callback(void *core,
656 const struct iovec *iov,
657 int iovcnt,
658 const struct iovec *virt_iov,
659 int virt_iovcnt)
660 {
661 e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
662 }
663
664 static bool
665 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
666 {
667 int target_queue = MIN(core->max_queue_num, queue_index);
668 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
669
670 if (!e1000e_setup_tx_offloads(core, tx)) {
671 return false;
672 }
673
674 net_tx_pkt_dump(tx->tx_pkt);
675
676 if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
677 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
678 return net_tx_pkt_send_custom(tx->tx_pkt, false,
679 e1000e_tx_pkt_callback, core);
680 } else {
681 return net_tx_pkt_send(tx->tx_pkt, queue);
682 }
683 }
684
685 static void
686 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
687 {
688 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
689 PTC1023, PTC1522 };
690
691 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
692
693 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
694 e1000x_inc_reg_if_not_full(core->mac, TPT);
695 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
696
697 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
698 case ETH_PKT_BCAST:
699 e1000x_inc_reg_if_not_full(core->mac, BPTC);
700 break;
701 case ETH_PKT_MCAST:
702 e1000x_inc_reg_if_not_full(core->mac, MPTC);
703 break;
704 case ETH_PKT_UCAST:
705 break;
706 default:
707 g_assert_not_reached();
708 }
709
710 e1000x_inc_reg_if_not_full(core->mac, GPTC);
711 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
712 }
713
714 static void
715 e1000e_process_tx_desc(E1000ECore *core,
716 struct e1000e_tx *tx,
717 struct e1000_tx_desc *dp,
718 int queue_index)
719 {
720 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
721 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
722 unsigned int split_size = txd_lower & 0xffff;
723 uint64_t addr;
724 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
725 bool eop = txd_lower & E1000_TXD_CMD_EOP;
726
727 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
728 e1000x_read_tx_ctx_descr(xp, &tx->props);
729 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
730 return;
731 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
732 /* data descriptor */
733 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
734 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
735 e1000e_process_ts_option(core, dp);
736 } else {
737 /* legacy descriptor */
738 e1000e_process_ts_option(core, dp);
739 tx->cptse = 0;
740 }
741
742 addr = le64_to_cpu(dp->buffer_addr);
743
744 if (!tx->skip_cp) {
745 if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
746 addr, split_size)) {
747 tx->skip_cp = true;
748 }
749 }
750
751 if (eop) {
752 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
753 if (e1000x_vlan_enabled(core->mac) &&
754 e1000x_is_vlan_txd(txd_lower)) {
755 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
756 le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
757 }
758 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
759 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
760 }
761 }
762
763 tx->skip_cp = false;
764 net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
765
766 tx->sum_needed = 0;
767 tx->cptse = 0;
768 }
769 }
770
771 static inline uint32_t
772 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
773 {
774 if (!msix_enabled(core->owner)) {
775 return E1000_ICR_TXDW;
776 }
777
778 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
779 }
780
781 static inline uint32_t
782 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
783 bool min_threshold_hit)
784 {
785 if (!msix_enabled(core->owner)) {
786 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
787 }
788
789 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
790 }
791
792 static uint32_t
793 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
794 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
795 {
796 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
797
798 if (!(txd_lower & E1000_TXD_CMD_RS) &&
799 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
800 return 0;
801 }
802
803 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
804
805 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
806
807 dp->upper.data = cpu_to_le32(txd_upper);
808 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
809 &dp->upper, sizeof(dp->upper));
810 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
811 }
812
813 typedef struct E1000E_RingInfo_st {
814 int dbah;
815 int dbal;
816 int dlen;
817 int dh;
818 int dt;
819 int idx;
820 } E1000E_RingInfo;
821
822 static inline bool
823 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
824 {
825 return core->mac[r->dh] == core->mac[r->dt] ||
826 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
827 }
828
829 static inline uint64_t
830 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
831 {
832 uint64_t bah = core->mac[r->dbah];
833 uint64_t bal = core->mac[r->dbal];
834
835 return (bah << 32) + bal;
836 }
837
838 static inline uint64_t
839 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
840 {
841 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
842 }
843
844 static inline void
845 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
846 {
847 core->mac[r->dh] += count;
848
849 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
850 core->mac[r->dh] = 0;
851 }
852 }
853
854 static inline uint32_t
855 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
856 {
857 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
858 core->mac[r->dh], core->mac[r->dt]);
859
860 if (core->mac[r->dh] <= core->mac[r->dt]) {
861 return core->mac[r->dt] - core->mac[r->dh];
862 }
863
864 if (core->mac[r->dh] > core->mac[r->dt]) {
865 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
866 core->mac[r->dt] - core->mac[r->dh];
867 }
868
869 g_assert_not_reached();
870 return 0;
871 }
872
873 static inline bool
874 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
875 {
876 return core->mac[r->dlen] > 0;
877 }
878
879 static inline uint32_t
880 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
881 {
882 return core->mac[r->dlen];
883 }
884
885 typedef struct E1000E_TxRing_st {
886 const E1000E_RingInfo *i;
887 struct e1000e_tx *tx;
888 } E1000E_TxRing;
889
890 static inline int
891 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
892 {
893 return (reg_idx - base_reg_idx) / (0x100 >> 2);
894 }
895
896 static inline void
897 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
898 {
899 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
900 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
901 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
902 };
903
904 assert(idx < ARRAY_SIZE(i));
905
906 txr->i = &i[idx];
907 txr->tx = &core->tx[idx];
908 }
909
910 typedef struct E1000E_RxRing_st {
911 const E1000E_RingInfo *i;
912 } E1000E_RxRing;
913
914 static inline void
915 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
916 {
917 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
918 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
919 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
920 };
921
922 assert(idx < ARRAY_SIZE(i));
923
924 rxr->i = &i[idx];
925 }
926
927 static void
928 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
929 {
930 dma_addr_t base;
931 struct e1000_tx_desc desc;
932 bool ide = false;
933 const E1000E_RingInfo *txi = txr->i;
934 uint32_t cause = E1000_ICS_TXQE;
935
936 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
937 trace_e1000e_tx_disabled();
938 return;
939 }
940
941 while (!e1000e_ring_empty(core, txi)) {
942 base = e1000e_ring_head_descr(core, txi);
943
944 pci_dma_read(core->owner, base, &desc, sizeof(desc));
945
946 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
947 desc.lower.data, desc.upper.data);
948
949 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
950 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
951
952 e1000e_ring_advance(core, txi, 1);
953 }
954
955 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
956 e1000e_set_interrupt_cause(core, cause);
957 }
958
959 net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
960 }
961
962 static bool
963 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
964 size_t total_size)
965 {
966 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
967
968 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
969 core->rx_desc_buf_size);
970
971 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
972 core->rx_desc_buf_size;
973 }
974
975 void
976 e1000e_start_recv(E1000ECore *core)
977 {
978 int i;
979
980 trace_e1000e_rx_start_recv();
981
982 for (i = 0; i <= core->max_queue_num; i++) {
983 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
984 }
985 }
986
987 bool
988 e1000e_can_receive(E1000ECore *core)
989 {
990 int i;
991
992 if (!e1000x_rx_ready(core->owner, core->mac)) {
993 return false;
994 }
995
996 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
997 E1000E_RxRing rxr;
998
999 e1000e_rx_ring_init(core, &rxr, i);
1000 if (e1000e_ring_enabled(core, rxr.i) &&
1001 e1000e_has_rxbufs(core, rxr.i, 1)) {
1002 trace_e1000e_rx_can_recv();
1003 return true;
1004 }
1005 }
1006
1007 trace_e1000e_rx_can_recv_rings_full();
1008 return false;
1009 }
1010
1011 ssize_t
1012 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1013 {
1014 const struct iovec iov = {
1015 .iov_base = (uint8_t *)buf,
1016 .iov_len = size
1017 };
1018
1019 return e1000e_receive_iov(core, &iov, 1);
1020 }
1021
1022 static inline bool
1023 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1024 {
1025 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1026 }
1027
1028 static inline bool
1029 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1030 {
1031 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1032 }
1033
1034 static bool
1035 e1000e_receive_filter(E1000ECore *core, const void *buf)
1036 {
1037 return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1038 e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1039 e1000x_rx_group_filter(core->mac, buf);
1040 }
1041
1042 static inline void
1043 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1044 hwaddr *buff_addr)
1045 {
1046 *buff_addr = le64_to_cpu(desc->buffer_addr);
1047 }
1048
1049 static inline void
1050 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1051 hwaddr *buff_addr)
1052 {
1053 *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1054 }
1055
1056 static inline void
1057 e1000e_read_ps_rx_descr(E1000ECore *core,
1058 union e1000_rx_desc_packet_split *desc,
1059 hwaddr buff_addr[MAX_PS_BUFFERS])
1060 {
1061 int i;
1062
1063 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1064 buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1065 }
1066
1067 trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1068 buff_addr[2], buff_addr[3]);
1069 }
1070
1071 static inline void
1072 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1073 hwaddr buff_addr[MAX_PS_BUFFERS])
1074 {
1075 if (e1000e_rx_use_legacy_descriptor(core)) {
1076 e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1077 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1078 } else {
1079 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1080 e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1081 } else {
1082 e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1083 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1084 }
1085 }
1086 }
1087
1088 static void
1089 e1000e_verify_csum_in_sw(E1000ECore *core,
1090 struct NetRxPkt *pkt,
1091 uint32_t *status_flags,
1092 EthL4HdrProto l4hdr_proto)
1093 {
1094 bool csum_valid;
1095 uint32_t csum_error;
1096
1097 if (e1000e_rx_l3_cso_enabled(core)) {
1098 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1099 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1100 } else {
1101 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1102 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1103 }
1104 } else {
1105 trace_e1000e_rx_metadata_l3_cso_disabled();
1106 }
1107
1108 if (!e1000e_rx_l4_cso_enabled(core)) {
1109 trace_e1000e_rx_metadata_l4_cso_disabled();
1110 return;
1111 }
1112
1113 if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
1114 l4hdr_proto != ETH_L4_HDR_PROTO_UDP) {
1115 return;
1116 }
1117
1118 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1119 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1120 return;
1121 }
1122
1123 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1124 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1125
1126 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1127 *status_flags |= E1000_RXD_STAT_UDPCS;
1128 }
1129 }
1130
1131 static inline bool
1132 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1133 {
1134 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1135 return false;
1136 }
1137
1138 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1139 return !net_rx_pkt_has_tcp_data(rx_pkt);
1140 }
1141
1142 return true;
1143 }
1144
1145 static void
1146 e1000e_build_rx_metadata(E1000ECore *core,
1147 struct NetRxPkt *pkt,
1148 bool is_eop,
1149 const E1000E_RSSInfo *rss_info,
1150 uint32_t *rss, uint32_t *mrq,
1151 uint32_t *status_flags,
1152 uint16_t *ip_id,
1153 uint16_t *vlan_tag)
1154 {
1155 struct virtio_net_hdr *vhdr;
1156 bool hasip4, hasip6;
1157 EthL4HdrProto l4hdr_proto;
1158 uint32_t pkt_type;
1159
1160 *status_flags = E1000_RXD_STAT_DD;
1161
1162 /* No additional metadata needed for non-EOP descriptors */
1163 if (!is_eop) {
1164 goto func_exit;
1165 }
1166
1167 *status_flags |= E1000_RXD_STAT_EOP;
1168
1169 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1170 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1171
1172 /* VLAN state */
1173 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1174 *status_flags |= E1000_RXD_STAT_VP;
1175 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1176 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1177 }
1178
1179 /* Packet parsing results */
1180 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1181 if (rss_info->enabled) {
1182 *rss = cpu_to_le32(rss_info->hash);
1183 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1184 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1185 }
1186 } else if (hasip4) {
1187 *status_flags |= E1000_RXD_STAT_IPIDV;
1188 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1189 trace_e1000e_rx_metadata_ip_id(*ip_id);
1190 }
1191
1192 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1193 *status_flags |= E1000_RXD_STAT_ACK;
1194 trace_e1000e_rx_metadata_ack();
1195 }
1196
1197 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1198 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1199 pkt_type = E1000_RXD_PKT_MAC;
1200 } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1201 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1202 pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1203 } else if (hasip4 || hasip6) {
1204 pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1205 } else {
1206 pkt_type = E1000_RXD_PKT_MAC;
1207 }
1208
1209 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1210 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1211
1212 /* RX CSO information */
1213 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1214 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1215 goto func_exit;
1216 }
1217
1218 vhdr = net_rx_pkt_get_vhdr(pkt);
1219
1220 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1221 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1222 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1223 e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1224 goto func_exit;
1225 }
1226
1227 if (e1000e_rx_l3_cso_enabled(core)) {
1228 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1229 } else {
1230 trace_e1000e_rx_metadata_l3_cso_disabled();
1231 }
1232
1233 if (e1000e_rx_l4_cso_enabled(core)) {
1234 switch (l4hdr_proto) {
1235 case ETH_L4_HDR_PROTO_TCP:
1236 *status_flags |= E1000_RXD_STAT_TCPCS;
1237 break;
1238
1239 case ETH_L4_HDR_PROTO_UDP:
1240 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1241 break;
1242
1243 default:
1244 break;
1245 }
1246 } else {
1247 trace_e1000e_rx_metadata_l4_cso_disabled();
1248 }
1249
1250 func_exit:
1251 trace_e1000e_rx_metadata_status_flags(*status_flags);
1252 *status_flags = cpu_to_le32(*status_flags);
1253 }
1254
1255 static inline void
1256 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1257 struct NetRxPkt *pkt,
1258 const E1000E_RSSInfo *rss_info,
1259 uint16_t length)
1260 {
1261 uint32_t status_flags, rss, mrq;
1262 uint16_t ip_id;
1263
1264 assert(!rss_info->enabled);
1265
1266 desc->length = cpu_to_le16(length);
1267 desc->csum = 0;
1268
1269 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1270 rss_info,
1271 &rss, &mrq,
1272 &status_flags, &ip_id,
1273 &desc->special);
1274 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1275 desc->status = (uint8_t) le32_to_cpu(status_flags);
1276 }
1277
1278 static inline void
1279 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1280 struct NetRxPkt *pkt,
1281 const E1000E_RSSInfo *rss_info,
1282 uint16_t length)
1283 {
1284 memset(&desc->wb, 0, sizeof(desc->wb));
1285
1286 desc->wb.upper.length = cpu_to_le16(length);
1287
1288 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1289 rss_info,
1290 &desc->wb.lower.hi_dword.rss,
1291 &desc->wb.lower.mrq,
1292 &desc->wb.upper.status_error,
1293 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1294 &desc->wb.upper.vlan);
1295 }
1296
1297 static inline void
1298 e1000e_write_ps_rx_descr(E1000ECore *core,
1299 union e1000_rx_desc_packet_split *desc,
1300 struct NetRxPkt *pkt,
1301 const E1000E_RSSInfo *rss_info,
1302 size_t ps_hdr_len,
1303 uint16_t(*written)[MAX_PS_BUFFERS])
1304 {
1305 int i;
1306
1307 memset(&desc->wb, 0, sizeof(desc->wb));
1308
1309 desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1310
1311 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1312 desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1313 }
1314
1315 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1316 rss_info,
1317 &desc->wb.lower.hi_dword.rss,
1318 &desc->wb.lower.mrq,
1319 &desc->wb.middle.status_error,
1320 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1321 &desc->wb.middle.vlan);
1322
1323 desc->wb.upper.header_status =
1324 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1325
1326 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1327 (*written)[2], (*written)[3]);
1328 }
1329
1330 static inline void
1331 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1332 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1333 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1334 {
1335 if (e1000e_rx_use_legacy_descriptor(core)) {
1336 assert(ps_hdr_len == 0);
1337 e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1338 (*written)[0]);
1339 } else {
1340 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1341 e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1342 ps_hdr_len, written);
1343 } else {
1344 assert(ps_hdr_len == 0);
1345 e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1346 (*written)[0]);
1347 }
1348 }
1349 }
1350
1351 static inline void
1352 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1353 union e1000_rx_desc_union *desc, dma_addr_t len)
1354 {
1355 PCIDevice *dev = core->owner;
1356
1357 if (e1000e_rx_use_legacy_descriptor(core)) {
1358 struct e1000_rx_desc *d = &desc->legacy;
1359 size_t offset = offsetof(struct e1000_rx_desc, status);
1360 uint8_t status = d->status;
1361
1362 d->status &= ~E1000_RXD_STAT_DD;
1363 pci_dma_write(dev, addr, desc, len);
1364
1365 if (status & E1000_RXD_STAT_DD) {
1366 d->status = status;
1367 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1368 }
1369 } else {
1370 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1371 union e1000_rx_desc_packet_split *d = &desc->packet_split;
1372 size_t offset = offsetof(union e1000_rx_desc_packet_split,
1373 wb.middle.status_error);
1374 uint32_t status = d->wb.middle.status_error;
1375
1376 d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1377 pci_dma_write(dev, addr, desc, len);
1378
1379 if (status & E1000_RXD_STAT_DD) {
1380 d->wb.middle.status_error = status;
1381 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1382 }
1383 } else {
1384 union e1000_rx_desc_extended *d = &desc->extended;
1385 size_t offset = offsetof(union e1000_rx_desc_extended,
1386 wb.upper.status_error);
1387 uint32_t status = d->wb.upper.status_error;
1388
1389 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1390 pci_dma_write(dev, addr, desc, len);
1391
1392 if (status & E1000_RXD_STAT_DD) {
1393 d->wb.upper.status_error = status;
1394 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1395 }
1396 }
1397 }
1398 }
1399
1400 typedef struct e1000e_ba_state_st {
1401 uint16_t written[MAX_PS_BUFFERS];
1402 uint8_t cur_idx;
1403 } e1000e_ba_state;
1404
1405 static inline void
1406 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1407 hwaddr ba[MAX_PS_BUFFERS],
1408 e1000e_ba_state *bastate,
1409 const char *data,
1410 dma_addr_t data_len)
1411 {
1412 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1413
1414 pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1415 bastate->written[0] += data_len;
1416
1417 bastate->cur_idx = 1;
1418 }
1419
1420 static void
1421 e1000e_write_to_rx_buffers(E1000ECore *core,
1422 hwaddr ba[MAX_PS_BUFFERS],
1423 e1000e_ba_state *bastate,
1424 const char *data,
1425 dma_addr_t data_len)
1426 {
1427 while (data_len > 0) {
1428 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1429 uint32_t cur_buf_bytes_left = cur_buf_len -
1430 bastate->written[bastate->cur_idx];
1431 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1432
1433 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1434 ba[bastate->cur_idx],
1435 bastate->written[bastate->cur_idx],
1436 data,
1437 bytes_to_write);
1438
1439 pci_dma_write(core->owner,
1440 ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1441 data, bytes_to_write);
1442
1443 bastate->written[bastate->cur_idx] += bytes_to_write;
1444 data += bytes_to_write;
1445 data_len -= bytes_to_write;
1446
1447 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1448 bastate->cur_idx++;
1449 }
1450
1451 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1452 }
1453 }
1454
1455 static void
1456 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1457 {
1458 eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1459 e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1460 }
1461
1462 static inline bool
1463 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1464 {
1465 return e1000e_ring_free_descr_num(core, rxi) ==
1466 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1467 }
1468
1469 static bool
1470 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1471 {
1472 bool hasip4, hasip6;
1473 EthL4HdrProto l4hdr_proto;
1474 bool fragment;
1475
1476 if (!e1000e_rx_use_ps_descriptor(core)) {
1477 return false;
1478 }
1479
1480 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1481
1482 if (hasip4) {
1483 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1484 } else if (hasip6) {
1485 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1486 } else {
1487 return false;
1488 }
1489
1490 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1491 return false;
1492 }
1493
1494 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1495 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1496 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1497 } else {
1498 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1499 }
1500
1501 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1502 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1503 return false;
1504 }
1505
1506 return true;
1507 }
1508
1509 static void
1510 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1511 const E1000E_RxRing *rxr,
1512 const E1000E_RSSInfo *rss_info)
1513 {
1514 PCIDevice *d = core->owner;
1515 dma_addr_t base;
1516 union e1000_rx_desc_union desc;
1517 size_t desc_size;
1518 size_t desc_offset = 0;
1519 size_t iov_ofs = 0;
1520
1521 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1522 size_t size = net_rx_pkt_get_total_len(pkt);
1523 size_t total_size = size + e1000x_fcs_len(core->mac);
1524 const E1000E_RingInfo *rxi;
1525 size_t ps_hdr_len = 0;
1526 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1527 bool is_first = true;
1528
1529 rxi = rxr->i;
1530
1531 do {
1532 hwaddr ba[MAX_PS_BUFFERS];
1533 e1000e_ba_state bastate = { { 0 } };
1534 bool is_last = false;
1535
1536 desc_size = total_size - desc_offset;
1537
1538 if (desc_size > core->rx_desc_buf_size) {
1539 desc_size = core->rx_desc_buf_size;
1540 }
1541
1542 if (e1000e_ring_empty(core, rxi)) {
1543 return;
1544 }
1545
1546 base = e1000e_ring_head_descr(core, rxi);
1547
1548 pci_dma_read(d, base, &desc, core->rx_desc_len);
1549
1550 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1551
1552 e1000e_read_rx_descr(core, &desc, ba);
1553
1554 if (ba[0]) {
1555 if (desc_offset < size) {
1556 static const uint32_t fcs_pad;
1557 size_t iov_copy;
1558 size_t copy_size = size - desc_offset;
1559 if (copy_size > core->rx_desc_buf_size) {
1560 copy_size = core->rx_desc_buf_size;
1561 }
1562
1563 /* For PS mode copy the packet header first */
1564 if (do_ps) {
1565 if (is_first) {
1566 size_t ps_hdr_copied = 0;
1567 do {
1568 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1569 iov->iov_len - iov_ofs);
1570
1571 e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1572 iov->iov_base, iov_copy);
1573
1574 copy_size -= iov_copy;
1575 ps_hdr_copied += iov_copy;
1576
1577 iov_ofs += iov_copy;
1578 if (iov_ofs == iov->iov_len) {
1579 iov++;
1580 iov_ofs = 0;
1581 }
1582 } while (ps_hdr_copied < ps_hdr_len);
1583
1584 is_first = false;
1585 } else {
1586 /* Leave buffer 0 of each descriptor except first */
1587 /* empty as per spec 7.1.5.1 */
1588 e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1589 NULL, 0);
1590 }
1591 }
1592
1593 /* Copy packet payload */
1594 while (copy_size) {
1595 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1596
1597 e1000e_write_to_rx_buffers(core, ba, &bastate,
1598 iov->iov_base + iov_ofs, iov_copy);
1599
1600 copy_size -= iov_copy;
1601 iov_ofs += iov_copy;
1602 if (iov_ofs == iov->iov_len) {
1603 iov++;
1604 iov_ofs = 0;
1605 }
1606 }
1607
1608 if (desc_offset + desc_size >= total_size) {
1609 /* Simulate FCS checksum presence in the last descriptor */
1610 e1000e_write_to_rx_buffers(core, ba, &bastate,
1611 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1612 }
1613 }
1614 } else { /* as per intel docs; skip descriptors with null buf addr */
1615 trace_e1000e_rx_null_descriptor();
1616 }
1617 desc_offset += desc_size;
1618 if (desc_offset >= total_size) {
1619 is_last = true;
1620 }
1621
1622 e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1623 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1624 e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1625
1626 e1000e_ring_advance(core, rxi,
1627 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1628
1629 } while (desc_offset < total_size);
1630
1631 e1000e_update_rx_stats(core, size, total_size);
1632 }
1633
1634 static inline void
1635 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1636 {
1637 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1638
1639 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1640 net_rx_pkt_fix_l4_csum(pkt);
1641 }
1642 }
1643
1644 ssize_t
1645 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1646 {
1647 return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1648 }
1649
1650 static ssize_t
1651 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1652 bool has_vnet)
1653 {
1654 uint32_t causes = 0;
1655 uint8_t buf[ETH_ZLEN];
1656 struct iovec min_iov;
1657 size_t size, orig_size;
1658 size_t iov_ofs = 0;
1659 E1000E_RxRing rxr;
1660 E1000E_RSSInfo rss_info;
1661 size_t total_size;
1662 ssize_t retval;
1663 bool rdmts_hit;
1664
1665 trace_e1000e_rx_receive_iov(iovcnt);
1666
1667 if (!e1000x_hw_rx_enabled(core->mac)) {
1668 return -1;
1669 }
1670
1671 /* Pull virtio header in */
1672 if (has_vnet) {
1673 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1674 iov_ofs = sizeof(struct virtio_net_hdr);
1675 } else {
1676 net_rx_pkt_unset_vhdr(core->rx_pkt);
1677 }
1678
1679 orig_size = iov_size(iov, iovcnt);
1680 size = orig_size - iov_ofs;
1681
1682 /* Pad to minimum Ethernet frame length */
1683 if (size < sizeof(buf)) {
1684 iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1685 memset(&buf[size], 0, sizeof(buf) - size);
1686 e1000x_inc_reg_if_not_full(core->mac, RUC);
1687 min_iov.iov_base = buf;
1688 min_iov.iov_len = size = sizeof(buf);
1689 iovcnt = 1;
1690 iov = &min_iov;
1691 iov_ofs = 0;
1692 } else {
1693 iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1694 }
1695
1696 /* Discard oversized packets if !LPE and !SBP. */
1697 if (e1000x_is_oversized(core->mac, size)) {
1698 return orig_size;
1699 }
1700
1701 net_rx_pkt_set_packet_type(core->rx_pkt,
1702 get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1703
1704 if (!e1000e_receive_filter(core, buf)) {
1705 trace_e1000e_rx_flt_dropped();
1706 return orig_size;
1707 }
1708
1709 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1710 e1000x_vlan_enabled(core->mac) ? 0 : -1,
1711 core->mac[VET], 0);
1712
1713 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1714 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1715
1716 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1717 e1000x_fcs_len(core->mac);
1718
1719 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1720 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1721
1722 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1723
1724 retval = orig_size;
1725
1726 /* Perform small receive detection (RSRPD) */
1727 if (total_size < core->mac[RSRPD]) {
1728 causes |= E1000_ICS_SRPD;
1729 }
1730
1731 /* Perform ACK receive detection */
1732 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1733 (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1734 causes |= E1000_ICS_ACK;
1735 }
1736
1737 /* Check if receive descriptor minimum threshold hit */
1738 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1739 causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1740
1741 trace_e1000e_rx_written_to_guest(rxr.i->idx);
1742 } else {
1743 causes |= E1000_ICS_RXO;
1744 retval = 0;
1745
1746 trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1747 }
1748
1749 if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) {
1750 trace_e1000e_rx_interrupt_set(causes);
1751 e1000e_set_interrupt_cause(core, causes);
1752 } else {
1753 trace_e1000e_rx_interrupt_delayed(causes);
1754 }
1755
1756 return retval;
1757 }
1758
1759 static inline bool
1760 e1000e_have_autoneg(E1000ECore *core)
1761 {
1762 return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1763 }
1764
1765 static void e1000e_update_flowctl_status(E1000ECore *core)
1766 {
1767 if (e1000e_have_autoneg(core) &&
1768 core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1769 trace_e1000e_link_autoneg_flowctl(true);
1770 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1771 } else {
1772 trace_e1000e_link_autoneg_flowctl(false);
1773 }
1774 }
1775
1776 static inline void
1777 e1000e_link_down(E1000ECore *core)
1778 {
1779 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1780 e1000e_update_flowctl_status(core);
1781 }
1782
1783 static inline void
1784 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1785 {
1786 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1787 core->phy[0][MII_BMCR] = val & ~(0x3f |
1788 MII_BMCR_RESET |
1789 MII_BMCR_ANRESTART);
1790
1791 if ((val & MII_BMCR_ANRESTART) &&
1792 e1000e_have_autoneg(core)) {
1793 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1794 }
1795 }
1796
1797 static void
1798 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1799 {
1800 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1801
1802 if (val & BIT(10)) {
1803 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1804 }
1805 }
1806
1807 static void
1808 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1809 {
1810 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1811 }
1812
1813 void
1814 e1000e_core_set_link_status(E1000ECore *core)
1815 {
1816 NetClientState *nc = qemu_get_queue(core->owner_nic);
1817 uint32_t old_status = core->mac[STATUS];
1818
1819 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1820
1821 if (nc->link_down) {
1822 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1823 } else {
1824 if (e1000e_have_autoneg(core) &&
1825 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1826 e1000x_restart_autoneg(core->mac, core->phy[0],
1827 core->autoneg_timer);
1828 } else {
1829 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1830 e1000e_start_recv(core);
1831 }
1832 }
1833
1834 if (core->mac[STATUS] != old_status) {
1835 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1836 }
1837 }
1838
1839 static void
1840 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1841 {
1842 trace_e1000e_core_ctrl_write(index, val);
1843
1844 /* RST is self clearing */
1845 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1846 core->mac[CTRL_DUP] = core->mac[CTRL];
1847
1848 trace_e1000e_link_set_params(
1849 !!(val & E1000_CTRL_ASDE),
1850 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1851 !!(val & E1000_CTRL_FRCSPD),
1852 !!(val & E1000_CTRL_FRCDPX),
1853 !!(val & E1000_CTRL_RFCE),
1854 !!(val & E1000_CTRL_TFCE));
1855
1856 if (val & E1000_CTRL_RST) {
1857 trace_e1000e_core_ctrl_sw_reset();
1858 e1000e_reset(core, true);
1859 }
1860
1861 if (val & E1000_CTRL_PHY_RST) {
1862 trace_e1000e_core_ctrl_phy_reset();
1863 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1864 }
1865 }
1866
1867 static void
1868 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1869 {
1870 trace_e1000e_rx_set_rfctl(val);
1871
1872 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1873 trace_e1000e_wrn_iscsi_filtering_not_supported();
1874 }
1875
1876 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1877 trace_e1000e_wrn_nfsw_filtering_not_supported();
1878 }
1879
1880 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1881 trace_e1000e_wrn_nfsr_filtering_not_supported();
1882 }
1883
1884 core->mac[RFCTL] = val;
1885 }
1886
1887 static void
1888 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1889 {
1890 int i;
1891 core->rx_desc_buf_size = 0;
1892
1893 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1894 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1895 }
1896 }
1897
1898 static void
1899 e1000e_parse_rxbufsize(E1000ECore *core)
1900 {
1901 uint32_t rctl = core->mac[RCTL];
1902
1903 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1904
1905 if (rctl & E1000_RCTL_DTYP_MASK) {
1906 uint32_t bsize;
1907
1908 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1909 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1910
1911 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1912 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1913
1914 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1915 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1916
1917 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1918 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1919 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1920 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1921 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1922 } else {
1923 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1924 }
1925
1926 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1927 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1928
1929 e1000e_calc_per_desc_buf_size(core);
1930 }
1931
1932 static void
1933 e1000e_calc_rxdesclen(E1000ECore *core)
1934 {
1935 if (e1000e_rx_use_legacy_descriptor(core)) {
1936 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1937 } else {
1938 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1939 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1940 } else {
1941 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1942 }
1943 }
1944 trace_e1000e_rx_desc_len(core->rx_desc_len);
1945 }
1946
1947 static void
1948 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1949 {
1950 core->mac[RCTL] = val;
1951 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1952
1953 if (val & E1000_RCTL_EN) {
1954 e1000e_parse_rxbufsize(core);
1955 e1000e_calc_rxdesclen(core);
1956 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1957 E1000_RING_DESC_LEN_SHIFT;
1958
1959 e1000e_start_recv(core);
1960 }
1961 }
1962
1963 static
1964 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1965 (E1000ECore *, int, uint16_t) = {
1966 [0] = {
1967 [MII_BMCR] = e1000e_set_phy_ctrl,
1968 [PHY_PAGE] = e1000e_set_phy_page,
1969 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1970 }
1971 };
1972
1973 static inline bool
1974 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1975 {
1976 if (timer->running) {
1977 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1978
1979 return true;
1980 }
1981
1982 if (timer->core->mac[timer->delay_reg] != 0) {
1983 e1000e_intrmgr_rearm_timer(timer);
1984 }
1985
1986 return false;
1987 }
1988
1989 static inline bool
1990 e1000e_itr_should_postpone(E1000ECore *core)
1991 {
1992 return e1000e_postpone_interrupt(&core->itr);
1993 }
1994
1995 static inline bool
1996 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1997 {
1998 return e1000e_postpone_interrupt(&core->eitr[idx]);
1999 }
2000
2001 static void
2002 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2003 {
2004 uint32_t effective_eiac;
2005
2006 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2007 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2008 if (vec < E1000E_MSIX_VEC_NUM) {
2009 if (!e1000e_eitr_should_postpone(core, vec)) {
2010 trace_e1000e_irq_msix_notify_vec(vec);
2011 msix_notify(core->owner, vec);
2012 }
2013 } else {
2014 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2015 }
2016 } else {
2017 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2018 }
2019
2020 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2021 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2022 core->mac[IAM] &= ~cause;
2023 }
2024
2025 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2026
2027 effective_eiac = core->mac[EIAC] & cause;
2028
2029 core->mac[ICR] &= ~effective_eiac;
2030
2031 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2032 core->mac[IMS] &= ~effective_eiac;
2033 }
2034 }
2035
2036 static void
2037 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2038 {
2039 if (causes & E1000_ICR_RXQ0) {
2040 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2041 E1000_IVAR_RXQ0(core->mac[IVAR]));
2042 }
2043
2044 if (causes & E1000_ICR_RXQ1) {
2045 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2046 E1000_IVAR_RXQ1(core->mac[IVAR]));
2047 }
2048
2049 if (causes & E1000_ICR_TXQ0) {
2050 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2051 E1000_IVAR_TXQ0(core->mac[IVAR]));
2052 }
2053
2054 if (causes & E1000_ICR_TXQ1) {
2055 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2056 E1000_IVAR_TXQ1(core->mac[IVAR]));
2057 }
2058
2059 if (causes & E1000_ICR_OTHER) {
2060 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2061 E1000_IVAR_OTHER(core->mac[IVAR]));
2062 }
2063 }
2064
2065 static void
2066 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2067 {
2068 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2069 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2070 if (vec < E1000E_MSIX_VEC_NUM) {
2071 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2072 msix_clr_pending(core->owner, vec);
2073 } else {
2074 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2075 }
2076 } else {
2077 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2078 }
2079 }
2080
2081 static void
2082 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2083 {
2084 if (causes & E1000_ICR_RXQ0) {
2085 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2086 E1000_IVAR_RXQ0(core->mac[IVAR]));
2087 }
2088
2089 if (causes & E1000_ICR_RXQ1) {
2090 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2091 E1000_IVAR_RXQ1(core->mac[IVAR]));
2092 }
2093
2094 if (causes & E1000_ICR_TXQ0) {
2095 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2096 E1000_IVAR_TXQ0(core->mac[IVAR]));
2097 }
2098
2099 if (causes & E1000_ICR_TXQ1) {
2100 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2101 E1000_IVAR_TXQ1(core->mac[IVAR]));
2102 }
2103
2104 if (causes & E1000_ICR_OTHER) {
2105 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2106 E1000_IVAR_OTHER(core->mac[IVAR]));
2107 }
2108 }
2109
2110 static inline void
2111 e1000e_fix_icr_asserted(E1000ECore *core)
2112 {
2113 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2114 if (core->mac[ICR]) {
2115 core->mac[ICR] |= E1000_ICR_ASSERTED;
2116 }
2117
2118 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2119 }
2120
2121 static void e1000e_raise_interrupts(E1000ECore *core,
2122 size_t index, uint32_t causes)
2123 {
2124 bool is_msix = msix_enabled(core->owner);
2125 uint32_t old_causes = core->mac[IMS] & core->mac[ICR];
2126 uint32_t raised_causes;
2127
2128 trace_e1000e_irq_set(index << 2,
2129 core->mac[index], core->mac[index] | causes);
2130
2131 core->mac[index] |= causes;
2132
2133 /* Set ICR[OTHER] for MSI-X */
2134 if (is_msix) {
2135 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2136 core->mac[ICR] |= E1000_ICR_OTHER;
2137 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2138 }
2139 }
2140
2141 e1000e_fix_icr_asserted(core);
2142
2143 /*
2144 * Make sure ICR and ICS registers have the same value.
2145 * The spec says that the ICS register is write-only. However in practice,
2146 * on real hardware ICS is readable, and for reads it has the same value as
2147 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2148 *
2149 * The VxWorks PRO/1000 driver uses this behaviour.
2150 */
2151 core->mac[ICS] = core->mac[ICR];
2152
2153 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2154 core->mac[ICR], core->mac[IMS]);
2155
2156 raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes;
2157 if (!raised_causes) {
2158 return;
2159 }
2160
2161 if (is_msix) {
2162 e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED);
2163 } else if (!e1000e_itr_should_postpone(core)) {
2164 if (msi_enabled(core->owner)) {
2165 trace_e1000e_irq_msi_notify(raised_causes);
2166 msi_notify(core->owner, 0);
2167 } else {
2168 e1000e_raise_legacy_irq(core);
2169 }
2170 }
2171 }
2172
2173 static void e1000e_lower_interrupts(E1000ECore *core,
2174 size_t index, uint32_t causes)
2175 {
2176 trace_e1000e_irq_clear(index << 2,
2177 core->mac[index], core->mac[index] & ~causes);
2178
2179 core->mac[index] &= ~causes;
2180
2181 /*
2182 * Make sure ICR and ICS registers have the same value.
2183 * The spec says that the ICS register is write-only. However in practice,
2184 * on real hardware ICS is readable, and for reads it has the same value as
2185 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2186 *
2187 * The VxWorks PRO/1000 driver uses this behaviour.
2188 */
2189 core->mac[ICS] = core->mac[ICR];
2190
2191 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2192 core->mac[ICR], core->mac[IMS]);
2193
2194 if (!(core->mac[IMS] & core->mac[ICR]) &&
2195 !msix_enabled(core->owner) && !msi_enabled(core->owner)) {
2196 e1000e_lower_legacy_irq(core);
2197 }
2198 }
2199
2200 static void
2201 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2202 {
2203 val |= e1000e_intmgr_collect_delayed_causes(core);
2204 e1000e_raise_interrupts(core, ICR, val);
2205 }
2206
2207 static inline void
2208 e1000e_autoneg_timer(void *opaque)
2209 {
2210 E1000ECore *core = opaque;
2211 if (!qemu_get_queue(core->owner_nic)->link_down) {
2212 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2213 e1000e_start_recv(core);
2214
2215 e1000e_update_flowctl_status(core);
2216 /* signal link status change to the guest */
2217 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2218 }
2219 }
2220
2221 static inline uint16_t
2222 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2223 {
2224 uint16_t index = (addr & 0x1ffff) >> 2;
2225 return index + (mac_reg_access[index] & 0xfffe);
2226 }
2227
2228 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2229 [0] = {
2230 [MII_BMCR] = PHY_ANYPAGE | PHY_RW,
2231 [MII_BMSR] = PHY_ANYPAGE | PHY_R,
2232 [MII_PHYID1] = PHY_ANYPAGE | PHY_R,
2233 [MII_PHYID2] = PHY_ANYPAGE | PHY_R,
2234 [MII_ANAR] = PHY_ANYPAGE | PHY_RW,
2235 [MII_ANLPAR] = PHY_ANYPAGE | PHY_R,
2236 [MII_ANER] = PHY_ANYPAGE | PHY_R,
2237 [MII_ANNP] = PHY_ANYPAGE | PHY_RW,
2238 [MII_ANLPRNP] = PHY_ANYPAGE | PHY_R,
2239 [MII_CTRL1000] = PHY_ANYPAGE | PHY_RW,
2240 [MII_STAT1000] = PHY_ANYPAGE | PHY_R,
2241 [MII_EXTSTAT] = PHY_ANYPAGE | PHY_R,
2242 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2243
2244 [PHY_COPPER_CTRL1] = PHY_RW,
2245 [PHY_COPPER_STAT1] = PHY_R,
2246 [PHY_COPPER_CTRL3] = PHY_RW,
2247 [PHY_RX_ERR_CNTR] = PHY_R,
2248 [PHY_OEM_BITS] = PHY_RW,
2249 [PHY_BIAS_1] = PHY_RW,
2250 [PHY_BIAS_2] = PHY_RW,
2251 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2252 [PHY_COPPER_STAT2] = PHY_R,
2253 [PHY_COPPER_CTRL2] = PHY_RW
2254 },
2255 [2] = {
2256 [PHY_MAC_CTRL1] = PHY_RW,
2257 [PHY_MAC_INT_ENABLE] = PHY_RW,
2258 [PHY_MAC_STAT] = PHY_R,
2259 [PHY_MAC_CTRL2] = PHY_RW
2260 },
2261 [3] = {
2262 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2263 [PHY_LED_03_POL_CTRL] = PHY_RW,
2264 [PHY_LED_TIMER_CTRL] = PHY_RW,
2265 [PHY_LED_45_CTRL] = PHY_RW
2266 },
2267 [5] = {
2268 [PHY_1000T_SKEW] = PHY_R,
2269 [PHY_1000T_SWAP] = PHY_R
2270 },
2271 [6] = {
2272 [PHY_CRC_COUNTERS] = PHY_R
2273 }
2274 };
2275
2276 static bool
2277 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2278 char cap, uint8_t *page)
2279 {
2280 *page =
2281 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2282 : core->phy[0][PHY_PAGE];
2283
2284 if (*page >= E1000E_PHY_PAGES) {
2285 return false;
2286 }
2287
2288 return e1000e_phy_regcap[*page][addr] & cap;
2289 }
2290
2291 static void
2292 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2293 uint32_t addr, uint16_t data)
2294 {
2295 assert(page < E1000E_PHY_PAGES);
2296 assert(addr < E1000E_PHY_PAGE_SIZE);
2297
2298 if (e1000e_phyreg_writeops[page][addr]) {
2299 e1000e_phyreg_writeops[page][addr](core, addr, data);
2300 } else {
2301 core->phy[page][addr] = data;
2302 }
2303 }
2304
2305 static void
2306 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2307 {
2308 uint32_t data = val & E1000_MDIC_DATA_MASK;
2309 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2310 uint8_t page;
2311
2312 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2313 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2314 } else if (val & E1000_MDIC_OP_READ) {
2315 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2316 trace_e1000e_core_mdic_read_unhandled(page, addr);
2317 val |= E1000_MDIC_ERROR;
2318 } else {
2319 val = (val ^ data) | core->phy[page][addr];
2320 trace_e1000e_core_mdic_read(page, addr, val);
2321 }
2322 } else if (val & E1000_MDIC_OP_WRITE) {
2323 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2324 trace_e1000e_core_mdic_write_unhandled(page, addr);
2325 val |= E1000_MDIC_ERROR;
2326 } else {
2327 trace_e1000e_core_mdic_write(page, addr, data);
2328 e1000e_phy_reg_write(core, page, addr, data);
2329 }
2330 }
2331 core->mac[MDIC] = val | E1000_MDIC_READY;
2332
2333 if (val & E1000_MDIC_INT_EN) {
2334 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2335 }
2336 }
2337
2338 static void
2339 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2340 {
2341 core->mac[index] = val & 0xffff;
2342 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2343 e1000e_start_recv(core);
2344 }
2345
2346 static void
2347 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2348 {
2349 if ((val & E1000_STATUS_PHYRA) == 0) {
2350 core->mac[index] &= ~E1000_STATUS_PHYRA;
2351 }
2352 }
2353
2354 static void
2355 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2356 {
2357 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2358 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2359
2360 /* Zero self-clearing bits */
2361 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2362 core->mac[CTRL_EXT] = val;
2363 }
2364
2365 static void
2366 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2367 {
2368 int i;
2369
2370 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2371
2372 if (!msix_enabled(core->owner)) {
2373 return;
2374 }
2375
2376 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2377 if (core->mac[PBACLR] & BIT(i)) {
2378 msix_clr_pending(core->owner, i);
2379 }
2380 }
2381 }
2382
2383 static void
2384 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2385 {
2386 core->mac[FCRTH] = val & 0xFFF8;
2387 }
2388
2389 static void
2390 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2391 {
2392 core->mac[FCRTL] = val & 0x8000FFF8;
2393 }
2394
2395 #define E1000E_LOW_BITS_SET_FUNC(num) \
2396 static void \
2397 e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2398 { \
2399 core->mac[index] = val & (BIT(num) - 1); \
2400 }
2401
2402 E1000E_LOW_BITS_SET_FUNC(4)
2403 E1000E_LOW_BITS_SET_FUNC(6)
2404 E1000E_LOW_BITS_SET_FUNC(11)
2405 E1000E_LOW_BITS_SET_FUNC(12)
2406 E1000E_LOW_BITS_SET_FUNC(13)
2407 E1000E_LOW_BITS_SET_FUNC(16)
2408
2409 static void
2410 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2411 {
2412 core->mac[VET] = val & 0xffff;
2413 trace_e1000e_vlan_vet(core->mac[VET]);
2414 }
2415
2416 static void
2417 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2418 {
2419 core->mac[index] = val & E1000_XDLEN_MASK;
2420 }
2421
2422 static void
2423 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2424 {
2425 core->mac[index] = val & E1000_XDBAL_MASK;
2426 }
2427
2428 static void
2429 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2430 {
2431 E1000E_TxRing txr;
2432 core->mac[index] = val;
2433
2434 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2435 e1000e_tx_ring_init(core, &txr, 0);
2436 e1000e_start_xmit(core, &txr);
2437 }
2438
2439 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2440 e1000e_tx_ring_init(core, &txr, 1);
2441 e1000e_start_xmit(core, &txr);
2442 }
2443 }
2444
2445 static void
2446 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2447 {
2448 E1000E_TxRing txr;
2449 int qidx = e1000e_mq_queue_idx(TDT, index);
2450 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2451
2452 core->mac[index] = val & 0xffff;
2453
2454 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2455 e1000e_tx_ring_init(core, &txr, qidx);
2456 e1000e_start_xmit(core, &txr);
2457 }
2458 }
2459
2460 static void
2461 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2462 {
2463 trace_e1000e_irq_write_ics(val);
2464 e1000e_set_interrupt_cause(core, val);
2465 }
2466
2467 static void
2468 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2469 {
2470 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2471 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2472 trace_e1000e_irq_icr_process_iame();
2473 e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2474 }
2475
2476 /*
2477 * Windows driver expects that the "receive overrun" bit and other
2478 * ones to be cleared when the "Other" bit (#24) is cleared.
2479 */
2480 if (val & E1000_ICR_OTHER) {
2481 val |= E1000_ICR_OTHER_CAUSES;
2482 }
2483 e1000e_lower_interrupts(core, ICR, val);
2484 }
2485
2486 static void
2487 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2488 {
2489 trace_e1000e_irq_ims_clear_set_imc(val);
2490 e1000e_lower_interrupts(core, IMS, val);
2491 }
2492
2493 static void
2494 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2495 {
2496 static const uint32_t ims_ext_mask =
2497 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2498 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2499 E1000_IMS_OTHER;
2500
2501 static const uint32_t ims_valid_mask =
2502 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2503 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2504 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2505 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2506 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2507 E1000_IMS_OTHER;
2508
2509 uint32_t valid_val = val & ims_valid_mask;
2510
2511 if ((valid_val & ims_ext_mask) &&
2512 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2513 msix_enabled(core->owner)) {
2514 e1000e_msix_clear(core, valid_val);
2515 }
2516
2517 if ((valid_val == ims_valid_mask) &&
2518 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2519 trace_e1000e_irq_fire_all_timers(val);
2520 e1000e_intrmgr_fire_all_timers(core);
2521 }
2522
2523 e1000e_raise_interrupts(core, IMS, valid_val);
2524 }
2525
2526 static void
2527 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2528 {
2529 e1000e_set_16bit(core, index, val);
2530
2531 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2532 trace_e1000e_irq_rdtr_fpd_running();
2533 e1000e_intrmgr_fire_delayed_interrupts(core);
2534 } else {
2535 trace_e1000e_irq_rdtr_fpd_not_running();
2536 }
2537 }
2538
2539 static void
2540 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2541 {
2542 e1000e_set_16bit(core, index, val);
2543
2544 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2545 trace_e1000e_irq_tidv_fpd_running();
2546 e1000e_intrmgr_fire_delayed_interrupts(core);
2547 } else {
2548 trace_e1000e_irq_tidv_fpd_not_running();
2549 }
2550 }
2551
2552 static uint32_t
2553 e1000e_mac_readreg(E1000ECore *core, int index)
2554 {
2555 return core->mac[index];
2556 }
2557
2558 static uint32_t
2559 e1000e_mac_ics_read(E1000ECore *core, int index)
2560 {
2561 trace_e1000e_irq_read_ics(core->mac[ICS]);
2562 return core->mac[ICS];
2563 }
2564
2565 static uint32_t
2566 e1000e_mac_ims_read(E1000ECore *core, int index)
2567 {
2568 trace_e1000e_irq_read_ims(core->mac[IMS]);
2569 return core->mac[IMS];
2570 }
2571
2572 static uint32_t
2573 e1000e_mac_swsm_read(E1000ECore *core, int index)
2574 {
2575 uint32_t val = core->mac[SWSM];
2576 core->mac[SWSM] = val | E1000_SWSM_SMBI;
2577 return val;
2578 }
2579
2580 static uint32_t
2581 e1000e_mac_itr_read(E1000ECore *core, int index)
2582 {
2583 return core->itr_guest_value;
2584 }
2585
2586 static uint32_t
2587 e1000e_mac_eitr_read(E1000ECore *core, int index)
2588 {
2589 return core->eitr_guest_value[index - EITR];
2590 }
2591
2592 static uint32_t
2593 e1000e_mac_icr_read(E1000ECore *core, int index)
2594 {
2595 uint32_t ret = core->mac[ICR];
2596
2597 if (core->mac[IMS] == 0) {
2598 trace_e1000e_irq_icr_clear_zero_ims();
2599 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2600 }
2601
2602 if (!msix_enabled(core->owner)) {
2603 trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2604 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2605 }
2606
2607 if (core->mac[ICR] & E1000_ICR_ASSERTED) {
2608 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) {
2609 trace_e1000e_irq_icr_clear_iame();
2610 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2611 trace_e1000e_irq_icr_process_iame();
2612 e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2613 }
2614
2615 /*
2616 * The datasheet does not say what happens when interrupt was asserted
2617 * (ICR.INT_ASSERT=1) and auto mask is *not* active.
2618 * However, section of 13.3.27 the PCIe* GbE Controllers Open Source
2619 * Software Developer’s Manual, which were written for older devices,
2620 * namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI &
2621 * 82573E/82573V/82573L, does say:
2622 * > If IMS = 0b, then the ICR register is always clear-on-read. If IMS
2623 * > is not 0b, but some ICR bit is set where the corresponding IMS bit
2624 * > is not set, then a read does not clear the ICR register. For
2625 * > example, if IMS = 10101010b and ICR = 01010101b, then a read to the
2626 * > ICR register does not clear it. If IMS = 10101010b and
2627 * > ICR = 0101011b, then a read to the ICR register clears it entirely
2628 * > (ICR.INT_ASSERTED = 1b).
2629 *
2630 * Linux does no longer activate auto mask since commit
2631 * 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware
2632 * clears ICR even in such a case so we also should do so.
2633 */
2634 if (core->mac[ICR] & core->mac[IMS]) {
2635 trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR],
2636 core->mac[IMS]);
2637 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2638 }
2639 }
2640
2641 return ret;
2642 }
2643
2644 static uint32_t
2645 e1000e_mac_read_clr4(E1000ECore *core, int index)
2646 {
2647 uint32_t ret = core->mac[index];
2648
2649 core->mac[index] = 0;
2650 return ret;
2651 }
2652
2653 static uint32_t
2654 e1000e_mac_read_clr8(E1000ECore *core, int index)
2655 {
2656 uint32_t ret = core->mac[index];
2657
2658 core->mac[index] = 0;
2659 core->mac[index - 1] = 0;
2660 return ret;
2661 }
2662
2663 static uint32_t
2664 e1000e_get_ctrl(E1000ECore *core, int index)
2665 {
2666 uint32_t val = core->mac[CTRL];
2667
2668 trace_e1000e_link_read_params(
2669 !!(val & E1000_CTRL_ASDE),
2670 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2671 !!(val & E1000_CTRL_FRCSPD),
2672 !!(val & E1000_CTRL_FRCDPX),
2673 !!(val & E1000_CTRL_RFCE),
2674 !!(val & E1000_CTRL_TFCE));
2675
2676 return val;
2677 }
2678
2679 static uint32_t
2680 e1000e_get_status(E1000ECore *core, int index)
2681 {
2682 uint32_t res = core->mac[STATUS];
2683
2684 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2685 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2686 }
2687
2688 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2689 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2690 } else {
2691 res |= E1000_STATUS_FD;
2692 }
2693
2694 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2695 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2696 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2697 case E1000_CTRL_SPD_10:
2698 res |= E1000_STATUS_SPEED_10;
2699 break;
2700 case E1000_CTRL_SPD_100:
2701 res |= E1000_STATUS_SPEED_100;
2702 break;
2703 case E1000_CTRL_SPD_1000:
2704 default:
2705 res |= E1000_STATUS_SPEED_1000;
2706 break;
2707 }
2708 } else {
2709 res |= E1000_STATUS_SPEED_1000;
2710 }
2711
2712 trace_e1000e_link_status(
2713 !!(res & E1000_STATUS_LU),
2714 !!(res & E1000_STATUS_FD),
2715 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2716 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2717
2718 return res;
2719 }
2720
2721 static uint32_t
2722 e1000e_get_tarc(E1000ECore *core, int index)
2723 {
2724 return core->mac[index] & ((BIT(11) - 1) |
2725 BIT(27) |
2726 BIT(28) |
2727 BIT(29) |
2728 BIT(30));
2729 }
2730
2731 static void
2732 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2733 {
2734 core->mac[index] = val;
2735 }
2736
2737 static void
2738 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2739 {
2740 uint32_t macaddr[2];
2741
2742 core->mac[index] = val;
2743
2744 macaddr[0] = cpu_to_le32(core->mac[RA]);
2745 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2746 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2747 (uint8_t *) macaddr);
2748
2749 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2750 }
2751
2752 static void
2753 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2754 {
2755 static const uint32_t ro_bits = E1000_EECD_PRES |
2756 E1000_EECD_AUTO_RD |
2757 E1000_EECD_SIZE_EX_MASK;
2758
2759 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2760 }
2761
2762 static void
2763 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2764 {
2765 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2766 uint32_t flags = 0;
2767 uint32_t data = 0;
2768
2769 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2770 data = core->eeprom[addr];
2771 flags = E1000_EERW_DONE;
2772 }
2773
2774 core->mac[EERD] = flags |
2775 (addr << E1000_EERW_ADDR_SHIFT) |
2776 (data << E1000_EERW_DATA_SHIFT);
2777 }
2778
2779 static void
2780 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2781 {
2782 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2783 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2784 uint32_t flags = 0;
2785
2786 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2787 core->eeprom[addr] = data;
2788 flags = E1000_EERW_DONE;
2789 }
2790
2791 core->mac[EERD] = flags |
2792 (addr << E1000_EERW_ADDR_SHIFT) |
2793 (data << E1000_EERW_DATA_SHIFT);
2794 }
2795
2796 static void
2797 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2798 {
2799 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2800 }
2801
2802 static void
2803 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2804 {
2805 uint32_t interval = val & 0xffff;
2806
2807 trace_e1000e_irq_itr_set(val);
2808
2809 core->itr_guest_value = interval;
2810 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2811 }
2812
2813 static void
2814 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2815 {
2816 uint32_t interval = val & 0xffff;
2817 uint32_t eitr_num = index - EITR;
2818
2819 trace_e1000e_irq_eitr_set(eitr_num, val);
2820
2821 core->eitr_guest_value[eitr_num] = interval;
2822 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2823 }
2824
2825 static void
2826 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2827 {
2828 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2829
2830 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2831 qemu_log_mask(LOG_GUEST_ERROR,
2832 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2833 return;
2834 }
2835
2836 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2837 qemu_log_mask(LOG_GUEST_ERROR,
2838 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2839 return;
2840 }
2841 }
2842
2843 core->mac[PSRCTL] = val;
2844 }
2845
2846 static void
2847 e1000e_update_rx_offloads(E1000ECore *core)
2848 {
2849 int cso_state = e1000e_rx_l4_cso_enabled(core);
2850
2851 trace_e1000e_rx_set_cso(cso_state);
2852
2853 if (core->has_vnet) {
2854 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2855 cso_state, 0, 0, 0, 0);
2856 }
2857 }
2858
2859 static void
2860 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2861 {
2862 core->mac[RXCSUM] = val;
2863 e1000e_update_rx_offloads(core);
2864 }
2865
2866 static void
2867 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2868 {
2869 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2870 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2871 }
2872
2873 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2874 {
2875 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2876 return core->mac[SYSTIML];
2877 }
2878
2879 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2880 {
2881 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2882 return core->mac[RXSATRH];
2883 }
2884
2885 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2886 {
2887 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2888 return core->mac[TXSTMPH];
2889 }
2890
2891 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2892 {
2893 e1000x_set_timinca(core->mac, &core->timadj, val);
2894 }
2895
2896 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2897 {
2898 core->mac[TIMADJH] = val;
2899 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2900 }
2901
2902 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2903 typedef uint32_t (*readops)(E1000ECore *, int);
2904 static const readops e1000e_macreg_readops[] = {
2905 e1000e_getreg(PBA),
2906 e1000e_getreg(WUFC),
2907 e1000e_getreg(MANC),
2908 e1000e_getreg(TOTL),
2909 e1000e_getreg(RDT0),
2910 e1000e_getreg(RDBAH0),
2911 e1000e_getreg(TDBAL1),
2912 e1000e_getreg(RDLEN0),
2913 e1000e_getreg(RDH1),
2914 e1000e_getreg(LATECOL),
2915 e1000e_getreg(SEQEC),
2916 e1000e_getreg(XONTXC),
2917 e1000e_getreg(AIT),
2918 e1000e_getreg(TDFH),
2919 e1000e_getreg(TDFT),
2920 e1000e_getreg(TDFHS),
2921 e1000e_getreg(TDFTS),
2922 e1000e_getreg(TDFPC),
2923 e1000e_getreg(WUS),
2924 e1000e_getreg(PBS),
2925 e1000e_getreg(RDFH),
2926 e1000e_getreg(RDFT),
2927 e1000e_getreg(RDFHS),
2928 e1000e_getreg(RDFTS),
2929 e1000e_getreg(RDFPC),
2930 e1000e_getreg(GORCL),
2931 e1000e_getreg(MGTPRC),
2932 e1000e_getreg(EERD),
2933 e1000e_getreg(EIAC),
2934 e1000e_getreg(PSRCTL),
2935 e1000e_getreg(MANC2H),
2936 e1000e_getreg(RXCSUM),
2937 e1000e_getreg(GSCL_3),
2938 e1000e_getreg(GSCN_2),
2939 e1000e_getreg(RSRPD),
2940 e1000e_getreg(RDBAL1),
2941 e1000e_getreg(FCAH),
2942 e1000e_getreg(FCRTH),
2943 e1000e_getreg(FLOP),
2944 e1000e_getreg(FLASHT),
2945 e1000e_getreg(RXSTMPH),
2946 e1000e_getreg(TXSTMPL),
2947 e1000e_getreg(TIMADJL),
2948 e1000e_getreg(TXDCTL),
2949 e1000e_getreg(RDH0),
2950 e1000e_getreg(TDT1),
2951 e1000e_getreg(TNCRS),
2952 e1000e_getreg(RJC),
2953 e1000e_getreg(IAM),
2954 e1000e_getreg(GSCL_2),
2955 e1000e_getreg(RDBAH1),
2956 e1000e_getreg(FLSWDATA),
2957 e1000e_getreg(TIPG),
2958 e1000e_getreg(FLMNGCTL),
2959 e1000e_getreg(FLMNGCNT),
2960 e1000e_getreg(TSYNCTXCTL),
2961 e1000e_getreg(EXTCNF_SIZE),
2962 e1000e_getreg(EXTCNF_CTRL),
2963 e1000e_getreg(EEMNGDATA),
2964 e1000e_getreg(CTRL_EXT),
2965 e1000e_getreg(SYSTIMH),
2966 e1000e_getreg(EEMNGCTL),
2967 e1000e_getreg(FLMNGDATA),
2968 e1000e_getreg(TSYNCRXCTL),
2969 e1000e_getreg(TDH),
2970 e1000e_getreg(LEDCTL),
2971 e1000e_getreg(TCTL),
2972 e1000e_getreg(TDBAL),
2973 e1000e_getreg(TDLEN),
2974 e1000e_getreg(TDH1),
2975 e1000e_getreg(RADV),
2976 e1000e_getreg(ECOL),
2977 e1000e_getreg(DC),
2978 e1000e_getreg(RLEC),
2979 e1000e_getreg(XOFFTXC),
2980 e1000e_getreg(RFC),
2981 e1000e_getreg(RNBC),
2982 e1000e_getreg(MGTPTC),
2983 e1000e_getreg(TIMINCA),
2984 e1000e_getreg(RXCFGL),
2985 e1000e_getreg(MFUTP01),
2986 e1000e_getreg(FACTPS),
2987 e1000e_getreg(GSCL_1),
2988 e1000e_getreg(GSCN_0),
2989 e1000e_getreg(GCR2),
2990 e1000e_getreg(RDT1),
2991 e1000e_getreg(PBACLR),
2992 e1000e_getreg(FCTTV),
2993 e1000e_getreg(EEWR),
2994 e1000e_getreg(FLSWCTL),
2995 e1000e_getreg(RXDCTL1),
2996 e1000e_getreg(RXSATRL),
2997 e1000e_getreg(RXUDP),
2998 e1000e_getreg(TORL),
2999 e1000e_getreg(TDLEN1),
3000 e1000e_getreg(MCC),
3001 e1000e_getreg(WUC),
3002 e1000e_getreg(EECD),
3003 e1000e_getreg(MFUTP23),
3004 e1000e_getreg(RAID),
3005 e1000e_getreg(FCRTV),
3006 e1000e_getreg(TXDCTL1),
3007 e1000e_getreg(RCTL),
3008 e1000e_getreg(TDT),
3009 e1000e_getreg(MDIC),
3010 e1000e_getreg(FCRUC),
3011 e1000e_getreg(VET),
3012 e1000e_getreg(RDBAL0),
3013 e1000e_getreg(TDBAH1),
3014 e1000e_getreg(RDTR),
3015 e1000e_getreg(SCC),
3016 e1000e_getreg(COLC),
3017 e1000e_getreg(CEXTERR),
3018 e1000e_getreg(XOFFRXC),
3019 e1000e_getreg(IPAV),
3020 e1000e_getreg(GOTCL),
3021 e1000e_getreg(MGTPDC),
3022 e1000e_getreg(GCR),
3023 e1000e_getreg(IVAR),
3024 e1000e_getreg(POEMB),
3025 e1000e_getreg(MFVAL),
3026 e1000e_getreg(FUNCTAG),
3027 e1000e_getreg(GSCL_4),
3028 e1000e_getreg(GSCN_3),
3029 e1000e_getreg(MRQC),
3030 e1000e_getreg(RDLEN1),
3031 e1000e_getreg(FCT),
3032 e1000e_getreg(FLA),
3033 e1000e_getreg(FLOL),
3034 e1000e_getreg(RXDCTL),
3035 e1000e_getreg(RXSTMPL),
3036 e1000e_getreg(TIMADJH),
3037 e1000e_getreg(FCRTL),
3038 e1000e_getreg(TDBAH),
3039 e1000e_getreg(TADV),
3040 e1000e_getreg(XONRXC),
3041 e1000e_getreg(TSCTFC),
3042 e1000e_getreg(RFCTL),
3043 e1000e_getreg(GSCN_1),
3044 e1000e_getreg(FCAL),
3045 e1000e_getreg(FLSWCNT),
3046
3047 [TOTH] = e1000e_mac_read_clr8,
3048 [GOTCH] = e1000e_mac_read_clr8,
3049 [PRC64] = e1000e_mac_read_clr4,
3050 [PRC255] = e1000e_mac_read_clr4,
3051 [PRC1023] = e1000e_mac_read_clr4,
3052 [PTC64] = e1000e_mac_read_clr4,
3053 [PTC255] = e1000e_mac_read_clr4,
3054 [PTC1023] = e1000e_mac_read_clr4,
3055 [GPRC] = e1000e_mac_read_clr4,
3056 [TPT] = e1000e_mac_read_clr4,
3057 [RUC] = e1000e_mac_read_clr4,
3058 [BPRC] = e1000e_mac_read_clr4,
3059 [MPTC] = e1000e_mac_read_clr4,
3060 [IAC] = e1000e_mac_read_clr4,
3061 [ICR] = e1000e_mac_icr_read,
3062 [STATUS] = e1000e_get_status,
3063 [TARC0] = e1000e_get_tarc,
3064 [ICS] = e1000e_mac_ics_read,
3065 [TORH] = e1000e_mac_read_clr8,
3066 [GORCH] = e1000e_mac_read_clr8,
3067 [PRC127] = e1000e_mac_read_clr4,
3068 [PRC511] = e1000e_mac_read_clr4,
3069 [PRC1522] = e1000e_mac_read_clr4,
3070 [PTC127] = e1000e_mac_read_clr4,
3071 [PTC511] = e1000e_mac_read_clr4,
3072 [PTC1522] = e1000e_mac_read_clr4,
3073 [GPTC] = e1000e_mac_read_clr4,
3074 [TPR] = e1000e_mac_read_clr4,
3075 [ROC] = e1000e_mac_read_clr4,
3076 [MPRC] = e1000e_mac_read_clr4,
3077 [BPTC] = e1000e_mac_read_clr4,
3078 [TSCTC] = e1000e_mac_read_clr4,
3079 [ITR] = e1000e_mac_itr_read,
3080 [CTRL] = e1000e_get_ctrl,
3081 [TARC1] = e1000e_get_tarc,
3082 [SWSM] = e1000e_mac_swsm_read,
3083 [IMS] = e1000e_mac_ims_read,
3084 [SYSTIML] = e1000e_get_systiml,
3085 [RXSATRH] = e1000e_get_rxsatrh,
3086 [TXSTMPH] = e1000e_get_txstmph,
3087
3088 [CRCERRS ... MPC] = e1000e_mac_readreg,
3089 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3090 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3091 [RA ... RA + 31] = e1000e_mac_readreg,
3092 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3093 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3094 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_readreg,
3095 [FFMT ... FFMT + 254] = e1000e_mac_readreg,
3096 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3097 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3098 [FFLT ... FFLT + 10] = e1000e_mac_readreg,
3099 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3100 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3101 [RETA ... RETA + 31] = e1000e_mac_readreg,
3102 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3103 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3104 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3105 };
3106 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3107
3108 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3109 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3110 static const writeops e1000e_macreg_writeops[] = {
3111 e1000e_putreg(PBA),
3112 e1000e_putreg(SWSM),
3113 e1000e_putreg(WUFC),
3114 e1000e_putreg(RDBAH1),
3115 e1000e_putreg(TDBAH),
3116 e1000e_putreg(TXDCTL),
3117 e1000e_putreg(RDBAH0),
3118 e1000e_putreg(LEDCTL),
3119 e1000e_putreg(FCAL),
3120 e1000e_putreg(FCRUC),
3121 e1000e_putreg(WUC),
3122 e1000e_putreg(WUS),
3123 e1000e_putreg(IPAV),
3124 e1000e_putreg(TDBAH1),
3125 e1000e_putreg(IAM),
3126 e1000e_putreg(EIAC),
3127 e1000e_putreg(IVAR),
3128 e1000e_putreg(TARC0),
3129 e1000e_putreg(TARC1),
3130 e1000e_putreg(FLSWDATA),
3131 e1000e_putreg(POEMB),
3132 e1000e_putreg(MFUTP01),
3133 e1000e_putreg(MFUTP23),
3134 e1000e_putreg(MANC),
3135 e1000e_putreg(MANC2H),
3136 e1000e_putreg(MFVAL),
3137 e1000e_putreg(EXTCNF_CTRL),
3138 e1000e_putreg(FACTPS),
3139 e1000e_putreg(FUNCTAG),
3140 e1000e_putreg(GSCL_1),
3141 e1000e_putreg(GSCL_2),
3142 e1000e_putreg(GSCL_3),
3143 e1000e_putreg(GSCL_4),
3144 e1000e_putreg(GSCN_0),
3145 e1000e_putreg(GSCN_1),
3146 e1000e_putreg(GSCN_2),
3147 e1000e_putreg(GSCN_3),
3148 e1000e_putreg(GCR2),
3149 e1000e_putreg(MRQC),
3150 e1000e_putreg(FLOP),
3151 e1000e_putreg(FLOL),
3152 e1000e_putreg(FLSWCTL),
3153 e1000e_putreg(FLSWCNT),
3154 e1000e_putreg(FLA),
3155 e1000e_putreg(RXDCTL1),
3156 e1000e_putreg(TXDCTL1),
3157 e1000e_putreg(TIPG),
3158 e1000e_putreg(RXSTMPH),
3159 e1000e_putreg(RXSTMPL),
3160 e1000e_putreg(RXSATRL),
3161 e1000e_putreg(RXSATRH),
3162 e1000e_putreg(TXSTMPL),
3163 e1000e_putreg(TXSTMPH),
3164 e1000e_putreg(SYSTIML),
3165 e1000e_putreg(SYSTIMH),
3166 e1000e_putreg(TIMADJL),
3167 e1000e_putreg(RXUDP),
3168 e1000e_putreg(RXCFGL),
3169 e1000e_putreg(TSYNCRXCTL),
3170 e1000e_putreg(TSYNCTXCTL),
3171 e1000e_putreg(EXTCNF_SIZE),
3172 e1000e_putreg(EEMNGCTL),
3173 e1000e_putreg(RA),
3174
3175 [TDH1] = e1000e_set_16bit,
3176 [TDT1] = e1000e_set_tdt,
3177 [TCTL] = e1000e_set_tctl,
3178 [TDT] = e1000e_set_tdt,
3179 [MDIC] = e1000e_set_mdic,
3180 [ICS] = e1000e_set_ics,
3181 [TDH] = e1000e_set_16bit,
3182 [RDH0] = e1000e_set_16bit,
3183 [RDT0] = e1000e_set_rdt,
3184 [IMC] = e1000e_set_imc,
3185 [IMS] = e1000e_set_ims,
3186 [ICR] = e1000e_set_icr,
3187 [EECD] = e1000e_set_eecd,
3188 [RCTL] = e1000e_set_rx_control,
3189 [CTRL] = e1000e_set_ctrl,
3190 [RDTR] = e1000e_set_rdtr,
3191 [RADV] = e1000e_set_16bit,
3192 [TADV] = e1000e_set_16bit,
3193 [ITR] = e1000e_set_itr,
3194 [EERD] = e1000e_set_eerd,
3195 [AIT] = e1000e_set_16bit,
3196 [TDFH] = e1000e_set_13bit,
3197 [TDFT] = e1000e_set_13bit,
3198 [TDFHS] = e1000e_set_13bit,
3199 [TDFTS] = e1000e_set_13bit,
3200 [TDFPC] = e1000e_set_13bit,
3201 [RDFH] = e1000e_set_13bit,
3202 [RDFHS] = e1000e_set_13bit,
3203 [RDFT] = e1000e_set_13bit,
3204 [RDFTS] = e1000e_set_13bit,
3205 [RDFPC] = e1000e_set_13bit,
3206 [PBS] = e1000e_set_6bit,
3207 [GCR] = e1000e_set_gcr,
3208 [PSRCTL] = e1000e_set_psrctl,
3209 [RXCSUM] = e1000e_set_rxcsum,
3210 [RAID] = e1000e_set_16bit,
3211 [RSRPD] = e1000e_set_12bit,
3212 [TIDV] = e1000e_set_tidv,
3213 [TDLEN1] = e1000e_set_dlen,
3214 [TDLEN] = e1000e_set_dlen,
3215 [RDLEN0] = e1000e_set_dlen,
3216 [RDLEN1] = e1000e_set_dlen,
3217 [TDBAL] = e1000e_set_dbal,
3218 [TDBAL1] = e1000e_set_dbal,
3219 [RDBAL0] = e1000e_set_dbal,
3220 [RDBAL1] = e1000e_set_dbal,
3221 [RDH1] = e1000e_set_16bit,
3222 [RDT1] = e1000e_set_rdt,
3223 [STATUS] = e1000e_set_status,
3224 [PBACLR] = e1000e_set_pbaclr,
3225 [CTRL_EXT] = e1000e_set_ctrlext,
3226 [FCAH] = e1000e_set_16bit,
3227 [FCT] = e1000e_set_16bit,
3228 [FCTTV] = e1000e_set_16bit,
3229 [FCRTV] = e1000e_set_16bit,
3230 [FCRTH] = e1000e_set_fcrth,
3231 [FCRTL] = e1000e_set_fcrtl,
3232 [VET] = e1000e_set_vet,
3233 [RXDCTL] = e1000e_set_rxdctl,
3234 [FLASHT] = e1000e_set_16bit,
3235 [EEWR] = e1000e_set_eewr,
3236 [CTRL_DUP] = e1000e_set_ctrl,
3237 [RFCTL] = e1000e_set_rfctl,
3238 [RA + 1] = e1000e_mac_setmacaddr,
3239 [TIMINCA] = e1000e_set_timinca,
3240 [TIMADJH] = e1000e_set_timadjh,
3241
3242 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3243 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3244 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3245 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3246 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3247 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_writereg,
3248 [FFMT ... FFMT + 254] = e1000e_set_4bit,
3249 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3250 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3251 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3252 [FFLT ... FFLT + 10] = e1000e_set_11bit,
3253 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3254 [RETA ... RETA + 31] = e1000e_mac_writereg,
3255 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3256 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3257 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3258 };
3259 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3260
3261 enum { MAC_ACCESS_PARTIAL = 1 };
3262
3263 /*
3264 * The array below combines alias offsets of the index values for the
3265 * MAC registers that have aliases, with the indication of not fully
3266 * implemented registers (lowest bit). This combination is possible
3267 * because all of the offsets are even.
3268 */
3269 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3270 /* Alias index offsets */
3271 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3272 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3273 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3274 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3275 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3276 [RA_A ... RA_A + 31] = 0x14f0,
3277 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3278 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3279 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3280 /* Access options */
3281 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3282 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3283 [RDFPC] = MAC_ACCESS_PARTIAL,
3284 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3285 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3286 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3287 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3288 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3289 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3290 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3291 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3292 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3293 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3294 };
3295
3296 void
3297 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3298 {
3299 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3300
3301 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3302 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3303 trace_e1000e_wrn_regs_write_trivial(index << 2);
3304 }
3305 trace_e1000e_core_write(index << 2, size, val);
3306 e1000e_macreg_writeops[index](core, index, val);
3307 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3308 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3309 } else {
3310 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3311 }
3312 }
3313
3314 uint64_t
3315 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3316 {
3317 uint64_t val;
3318 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3319
3320 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3321 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3322 trace_e1000e_wrn_regs_read_trivial(index << 2);
3323 }
3324 val = e1000e_macreg_readops[index](core, index);
3325 trace_e1000e_core_read(index << 2, size, val);
3326 return val;
3327 } else {
3328 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3329 }
3330 return 0;
3331 }
3332
3333 static inline void
3334 e1000e_autoneg_pause(E1000ECore *core)
3335 {
3336 timer_del(core->autoneg_timer);
3337 }
3338
3339 static void
3340 e1000e_autoneg_resume(E1000ECore *core)
3341 {
3342 if (e1000e_have_autoneg(core) &&
3343 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3344 qemu_get_queue(core->owner_nic)->link_down = false;
3345 timer_mod(core->autoneg_timer,
3346 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3347 }
3348 }
3349
3350 static void
3351 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3352 {
3353 E1000ECore *core = opaque;
3354
3355 if (running) {
3356 trace_e1000e_vm_state_running();
3357 e1000e_intrmgr_resume(core);
3358 e1000e_autoneg_resume(core);
3359 } else {
3360 trace_e1000e_vm_state_stopped();
3361 e1000e_autoneg_pause(core);
3362 e1000e_intrmgr_pause(core);
3363 }
3364 }
3365
3366 void
3367 e1000e_core_pci_realize(E1000ECore *core,
3368 const uint16_t *eeprom_templ,
3369 uint32_t eeprom_size,
3370 const uint8_t *macaddr)
3371 {
3372 int i;
3373
3374 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3375 e1000e_autoneg_timer, core);
3376 e1000e_intrmgr_pci_realize(core);
3377
3378 core->vmstate =
3379 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3380
3381 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3382 net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3383 }
3384
3385 net_rx_pkt_init(&core->rx_pkt);
3386
3387 e1000x_core_prepare_eeprom(core->eeprom,
3388 eeprom_templ,
3389 eeprom_size,
3390 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3391 macaddr);
3392 e1000e_update_rx_offloads(core);
3393 }
3394
3395 void
3396 e1000e_core_pci_uninit(E1000ECore *core)
3397 {
3398 int i;
3399
3400 timer_free(core->autoneg_timer);
3401
3402 e1000e_intrmgr_pci_unint(core);
3403
3404 qemu_del_vm_change_state_handler(core->vmstate);
3405
3406 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3407 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3408 }
3409
3410 net_rx_pkt_uninit(core->rx_pkt);
3411 }
3412
3413 static const uint16_t
3414 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3415 [0] = {
3416 [MII_BMCR] = MII_BMCR_SPEED1000 |
3417 MII_BMCR_FD |
3418 MII_BMCR_AUTOEN,
3419
3420 [MII_BMSR] = MII_BMSR_EXTCAP |
3421 MII_BMSR_LINK_ST |
3422 MII_BMSR_AUTONEG |
3423 MII_BMSR_MFPS |
3424 MII_BMSR_EXTSTAT |
3425 MII_BMSR_10T_HD |
3426 MII_BMSR_10T_FD |
3427 MII_BMSR_100TX_HD |
3428 MII_BMSR_100TX_FD,
3429
3430 [MII_PHYID1] = 0x141,
3431 [MII_PHYID2] = E1000_PHY_ID2_82574x,
3432 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
3433 MII_ANAR_10FD | MII_ANAR_TX |
3434 MII_ANAR_TXFD | MII_ANAR_PAUSE |
3435 MII_ANAR_PAUSE_ASYM,
3436 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3437 MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3438 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3439 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY,
3440 [MII_ANNP] = 1 | MII_ANNP_MP,
3441 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3442 MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3443 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
3444 MII_STAT1000_ROK | MII_STAT1000_LOK,
3445 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3446
3447 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3448 BIT(12) | BIT(13),
3449 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3450 },
3451 [2] = {
3452 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3453 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3454 },
3455 [3] = {
3456 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3457 }
3458 };
3459
3460 static const uint32_t e1000e_mac_reg_init[] = {
3461 [PBA] = 0x00140014,
3462 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3463 [EXTCNF_CTRL] = BIT(3),
3464 [EEMNGCTL] = BIT(31),
3465 [FLASHT] = 0x2,
3466 [FLSWCTL] = BIT(30) | BIT(31),
3467 [FLOL] = BIT(0),
3468 [RXDCTL] = BIT(16),
3469 [RXDCTL1] = BIT(16),
3470 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3471 [RXCFGL] = 0x88F7,
3472 [RXUDP] = 0x319,
3473 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3474 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3475 E1000_CTRL_ADVD3WUC,
3476 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3477 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3478 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3479 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3480 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3481 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3482 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3483 [EERD] = E1000_EERW_DONE,
3484 [EEWR] = E1000_EERW_DONE,
3485 [GCR] = E1000_L0S_ADJUST |
3486 E1000_L1_ENTRY_LATENCY_MSB |
3487 E1000_L1_ENTRY_LATENCY_LSB,
3488 [TDFH] = 0x600,
3489 [TDFT] = 0x600,
3490 [TDFHS] = 0x600,
3491 [TDFTS] = 0x600,
3492 [POEMB] = 0x30D,
3493 [PBS] = 0x028,
3494 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3495 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3496 [SWSM] = 1,
3497 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3498 [ITR] = E1000E_MIN_XITR,
3499 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3500 };
3501
3502 static void e1000e_reset(E1000ECore *core, bool sw)
3503 {
3504 int i;
3505
3506 timer_del(core->autoneg_timer);
3507
3508 e1000e_intrmgr_reset(core);
3509
3510 memset(core->phy, 0, sizeof core->phy);
3511 memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3512
3513 for (i = 0; i < E1000E_MAC_SIZE; i++) {
3514 if (sw && (i == PBA || i == PBS || i == FLA)) {
3515 continue;
3516 }
3517
3518 core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3519 e1000e_mac_reg_init[i] : 0;
3520 }
3521
3522 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3523
3524 if (qemu_get_queue(core->owner_nic)->link_down) {
3525 e1000e_link_down(core);
3526 }
3527
3528 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3529
3530 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3531 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3532 core->tx[i].skip_cp = false;
3533 }
3534 }
3535
3536 void
3537 e1000e_core_reset(E1000ECore *core)
3538 {
3539 e1000e_reset(core, false);
3540 }
3541
3542 void e1000e_core_pre_save(E1000ECore *core)
3543 {
3544 int i;
3545 NetClientState *nc = qemu_get_queue(core->owner_nic);
3546
3547 /*
3548 * If link is down and auto-negotiation is supported and ongoing,
3549 * complete auto-negotiation immediately. This allows us to look
3550 * at MII_BMSR_AN_COMP to infer link status on load.
3551 */
3552 if (nc->link_down && e1000e_have_autoneg(core)) {
3553 core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3554 e1000e_update_flowctl_status(core);
3555 }
3556
3557 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3558 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3559 core->tx[i].skip_cp = true;
3560 }
3561 }
3562 }
3563
3564 int
3565 e1000e_core_post_load(E1000ECore *core)
3566 {
3567 NetClientState *nc = qemu_get_queue(core->owner_nic);
3568
3569 /*
3570 * nc.link_down can't be migrated, so infer link_down according
3571 * to link status bit in core.mac[STATUS].
3572 */
3573 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3574
3575 return 0;
3576 }