]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/e1000x_common.c
Merge tag 'net-pull-request' of https://github.com/jasowang/qemu into staging
[mirror_qemu.git] / hw / net / e1000x_common.c
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/net/mii.h"
28 #include "hw/pci/pci_device.h"
29 #include "net/eth.h"
30 #include "net/net.h"
31
32 #include "e1000_common.h"
33 #include "e1000x_common.h"
34
35 #include "trace.h"
36
37 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
38 {
39 bool link_up = mac[STATUS] & E1000_STATUS_LU;
40 bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
41 bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
42
43 if (!link_up || !rx_enabled || !pci_master) {
44 trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
45 return false;
46 }
47
48 return true;
49 }
50
51 bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
52 {
53 uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
54 bool res = (eth_proto == vet);
55
56 trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
57
58 return res;
59 }
60
61 bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
62 {
63 static const int mta_shift[] = { 4, 3, 2, 0 };
64 uint32_t f, ra[2], *rp, rctl = mac[RCTL];
65
66 for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
67 if (!(rp[1] & E1000_RAH_AV)) {
68 continue;
69 }
70 ra[0] = cpu_to_le32(rp[0]);
71 ra[1] = cpu_to_le32(rp[1]);
72 if (!memcmp(buf, (uint8_t *)ra, ETH_ALEN)) {
73 trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
74 MAC_ARG(buf));
75 return true;
76 }
77 }
78 trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
79
80 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
81 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
82 if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
83 e1000x_inc_reg_if_not_full(mac, MPRC);
84 return true;
85 }
86
87 trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
88 (rctl >> E1000_RCTL_MO_SHIFT) & 3,
89 f >> 5,
90 mac[MTA + (f >> 5)]);
91
92 return false;
93 }
94
95 bool e1000x_hw_rx_enabled(uint32_t *mac)
96 {
97 if (!(mac[STATUS] & E1000_STATUS_LU)) {
98 trace_e1000x_rx_link_down(mac[STATUS]);
99 return false;
100 }
101
102 if (!(mac[RCTL] & E1000_RCTL_EN)) {
103 trace_e1000x_rx_disabled(mac[RCTL]);
104 return false;
105 }
106
107 return true;
108 }
109
110 bool e1000x_is_oversized(uint32_t *mac, size_t size)
111 {
112 /* this is the size past which hardware will
113 drop packets when setting LPE=0 */
114 static const int maximum_ethernet_vlan_size = 1522;
115 /* this is the size past which hardware will
116 drop packets when setting LPE=1 */
117 static const int maximum_ethernet_lpe_size = 16 * KiB;
118
119 if ((size > maximum_ethernet_lpe_size ||
120 (size > maximum_ethernet_vlan_size
121 && !(mac[RCTL] & E1000_RCTL_LPE)))
122 && !(mac[RCTL] & E1000_RCTL_SBP)) {
123 e1000x_inc_reg_if_not_full(mac, ROC);
124 trace_e1000x_rx_oversized(size);
125 return true;
126 }
127
128 return false;
129 }
130
131 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
132 {
133 e1000x_update_regs_on_link_down(mac, phy);
134 trace_e1000x_link_negotiation_start();
135 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
136 }
137
138 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
139 uint8_t *mac_addr)
140 {
141 int i;
142
143 mac_regs[RA] = 0;
144 mac_regs[RA + 1] = E1000_RAH_AV;
145 for (i = 0; i < 4; i++) {
146 mac_regs[RA] |= mac_addr[i] << (8 * i);
147 mac_regs[RA + 1] |=
148 (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
149 }
150
151 qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
152 trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
153 }
154
155 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
156 {
157 e1000x_update_regs_on_link_up(mac, phy);
158 phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
159 phy[MII_BMSR] |= MII_BMSR_AN_COMP;
160 trace_e1000x_link_negotiation_done();
161 }
162
163 void
164 e1000x_core_prepare_eeprom(uint16_t *eeprom,
165 const uint16_t *templ,
166 uint32_t templ_size,
167 uint16_t dev_id,
168 const uint8_t *macaddr)
169 {
170 uint16_t checksum = 0;
171 int i;
172
173 memmove(eeprom, templ, templ_size);
174
175 for (i = 0; i < 3; i++) {
176 eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
177 }
178
179 eeprom[11] = eeprom[13] = dev_id;
180
181 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
182 checksum += eeprom[i];
183 }
184
185 checksum = (uint16_t) EEPROM_SUM - checksum;
186
187 eeprom[EEPROM_CHECKSUM_REG] = checksum;
188 }
189
190 uint32_t
191 e1000x_rxbufsize(uint32_t rctl)
192 {
193 rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
194 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
195 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
196 switch (rctl) {
197 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
198 return 16384;
199 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
200 return 8192;
201 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
202 return 4096;
203 case E1000_RCTL_SZ_1024:
204 return 1024;
205 case E1000_RCTL_SZ_512:
206 return 512;
207 case E1000_RCTL_SZ_256:
208 return 256;
209 }
210 return 2048;
211 }
212
213 void
214 e1000x_update_rx_total_stats(uint32_t *mac,
215 size_t data_size,
216 size_t data_fcs_size)
217 {
218 static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
219 PRC1023, PRC1522 };
220
221 e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
222 e1000x_inc_reg_if_not_full(mac, TPR);
223 mac[GPRC] = mac[TPR];
224 /* TOR - Total Octets Received:
225 * This register includes bytes received in a packet from the <Destination
226 * Address> field through the <CRC> field, inclusively.
227 * Always include FCS length (4) in size.
228 */
229 e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
230 mac[GORCL] = mac[TORL];
231 mac[GORCH] = mac[TORH];
232 }
233
234 void
235 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
236 {
237 if (size > 1023) {
238 e1000x_inc_reg_if_not_full(mac, size_regs[5]);
239 } else if (size > 511) {
240 e1000x_inc_reg_if_not_full(mac, size_regs[4]);
241 } else if (size > 255) {
242 e1000x_inc_reg_if_not_full(mac, size_regs[3]);
243 } else if (size > 127) {
244 e1000x_inc_reg_if_not_full(mac, size_regs[2]);
245 } else if (size > 64) {
246 e1000x_inc_reg_if_not_full(mac, size_regs[1]);
247 } else if (size == 64) {
248 e1000x_inc_reg_if_not_full(mac, size_regs[0]);
249 }
250 }
251
252 void
253 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
254 e1000x_txd_props *props)
255 {
256 uint32_t op = le32_to_cpu(d->cmd_and_length);
257
258 props->ipcss = d->lower_setup.ip_fields.ipcss;
259 props->ipcso = d->lower_setup.ip_fields.ipcso;
260 props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
261 props->tucss = d->upper_setup.tcp_fields.tucss;
262 props->tucso = d->upper_setup.tcp_fields.tucso;
263 props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
264 props->paylen = op & 0xfffff;
265 props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
266 props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
267 props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
268 props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
269 props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
270 }
271
272 void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
273 {
274 int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
275 uint32_t timinca = mac[TIMINCA];
276 uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
277 uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
278 int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
279
280 mac[lo] = timestamp & 0xffffffff;
281 mac[hi] = timestamp >> 32;
282 }
283
284 void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
285 {
286 int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
287 uint32_t old_val = mac[TIMINCA];
288 uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
289 uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
290 uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
291 uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
292
293 mac[TIMINCA] = val;
294 *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
295 }