]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/eepro100.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.10-20170717' into staging
[mirror_qemu.git] / hw / net / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2011 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * Windows networking
28 *
29 * References:
30 *
31 * Intel 8255x 10/100 Mbps Ethernet Controller Family
32 * Open Source Software Developer Manual
33 *
34 * TODO:
35 * * PHY emulation should be separated from nic emulation.
36 * Most nic emulations could share the same phy code.
37 * * i82550 is untested. It is programmed like the i82559.
38 * * i82562 is untested. It is programmed like the i82559.
39 * * Power management (i82558 and later) is not implemented.
40 * * Wake-on-LAN is not implemented.
41 */
42
43 #include "qemu/osdep.h"
44 #include "hw/hw.h"
45 #include "hw/pci/pci.h"
46 #include "net/net.h"
47 #include "hw/nvram/eeprom93xx.h"
48 #include "sysemu/sysemu.h"
49 #include "sysemu/dma.h"
50 #include "qemu/bitops.h"
51 #include "qapi/error.h"
52
53 /* QEMU sends frames smaller than 60 bytes to ethernet nics.
54 * Such frames are rejected by real nics and their emulations.
55 * To avoid this behaviour, other nic emulations pad received
56 * frames. The following definition enables this padding for
57 * eepro100, too. We keep the define around in case it might
58 * become useful the future if the core networking is ever
59 * changed to pad short packets itself. */
60 #define CONFIG_PAD_RECEIVED_FRAMES
61
62 #define KiB 1024
63
64 /* Debug EEPRO100 card. */
65 #if 0
66 # define DEBUG_EEPRO100
67 #endif
68
69 #ifdef DEBUG_EEPRO100
70 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
71 #else
72 #define logout(fmt, ...) ((void)0)
73 #endif
74
75 /* Set flags to 0 to disable debug output. */
76 #define INT 1 /* interrupt related actions */
77 #define MDI 1 /* mdi related actions */
78 #define OTHER 1
79 #define RXTX 1
80 #define EEPROM 1 /* eeprom related actions */
81
82 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
83
84 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
85
86 #define MAX_ETH_FRAME_SIZE 1514
87
88 /* This driver supports several different devices which are declared here. */
89 #define i82550 0x82550
90 #define i82551 0x82551
91 #define i82557A 0x82557a
92 #define i82557B 0x82557b
93 #define i82557C 0x82557c
94 #define i82558A 0x82558a
95 #define i82558B 0x82558b
96 #define i82559A 0x82559a
97 #define i82559B 0x82559b
98 #define i82559C 0x82559c
99 #define i82559ER 0x82559e
100 #define i82562 0x82562
101 #define i82801 0x82801
102
103 /* Use 64 word EEPROM. TODO: could be a runtime option. */
104 #define EEPROM_SIZE 64
105
106 #define PCI_MEM_SIZE (4 * KiB)
107 #define PCI_IO_SIZE 64
108 #define PCI_FLASH_SIZE (128 * KiB)
109
110 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
111
112 /* The SCB accepts the following controls for the Tx and Rx units: */
113 #define CU_NOP 0x0000 /* No operation. */
114 #define CU_START 0x0010 /* CU start. */
115 #define CU_RESUME 0x0020 /* CU resume. */
116 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
117 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
118 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
119 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
120 #define CU_SRESUME 0x00a0 /* CU static resume. */
121
122 #define RU_NOP 0x0000
123 #define RX_START 0x0001
124 #define RX_RESUME 0x0002
125 #define RU_ABORT 0x0004
126 #define RX_ADDR_LOAD 0x0006
127 #define RX_RESUMENR 0x0007
128 #define INT_MASK 0x0100
129 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
130
131 typedef struct {
132 const char *name;
133 const char *desc;
134 uint16_t device_id;
135 uint8_t revision;
136 uint16_t subsystem_vendor_id;
137 uint16_t subsystem_id;
138
139 uint32_t device;
140 uint8_t stats_size;
141 bool has_extended_tcb_support;
142 bool power_management;
143 } E100PCIDeviceInfo;
144
145 /* Offsets to the various registers.
146 All accesses need not be longword aligned. */
147 typedef enum {
148 SCBStatus = 0, /* Status Word. */
149 SCBAck = 1,
150 SCBCmd = 2, /* Rx/Command Unit command and status. */
151 SCBIntmask = 3,
152 SCBPointer = 4, /* General purpose pointer. */
153 SCBPort = 8, /* Misc. commands and operands. */
154 SCBflash = 12, /* Flash memory control. */
155 SCBeeprom = 14, /* EEPROM control. */
156 SCBCtrlMDI = 16, /* MDI interface control. */
157 SCBEarlyRx = 20, /* Early receive byte count. */
158 SCBFlow = 24, /* Flow Control. */
159 SCBpmdr = 27, /* Power Management Driver. */
160 SCBgctrl = 28, /* General Control. */
161 SCBgstat = 29, /* General Status. */
162 } E100RegisterOffset;
163
164 /* A speedo3 transmit buffer descriptor with two buffers... */
165 typedef struct {
166 uint16_t status;
167 uint16_t command;
168 uint32_t link; /* void * */
169 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
170 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
171 uint8_t tx_threshold; /* transmit threshold */
172 uint8_t tbd_count; /* TBD number */
173 #if 0
174 /* This constitutes two "TBD" entries: hdr and data */
175 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
176 int32_t tx_buf_size0; /* Length of Tx hdr. */
177 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
178 int32_t tx_buf_size1; /* Length of Tx data. */
179 #endif
180 } eepro100_tx_t;
181
182 /* Receive frame descriptor. */
183 typedef struct {
184 int16_t status;
185 uint16_t command;
186 uint32_t link; /* struct RxFD * */
187 uint32_t rx_buf_addr; /* void * */
188 uint16_t count;
189 uint16_t size;
190 /* Ethernet frame data follows. */
191 } eepro100_rx_t;
192
193 typedef enum {
194 COMMAND_EL = BIT(15),
195 COMMAND_S = BIT(14),
196 COMMAND_I = BIT(13),
197 COMMAND_NC = BIT(4),
198 COMMAND_SF = BIT(3),
199 COMMAND_CMD = BITS(2, 0),
200 } scb_command_bit;
201
202 typedef enum {
203 STATUS_C = BIT(15),
204 STATUS_OK = BIT(13),
205 } scb_status_bit;
206
207 typedef struct {
208 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
209 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
210 tx_multiple_collisions, tx_total_collisions;
211 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
212 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
213 rx_short_frame_errors;
214 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
215 uint16_t xmt_tco_frames, rcv_tco_frames;
216 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
217 uint32_t reserved[4];
218 } eepro100_stats_t;
219
220 typedef enum {
221 cu_idle = 0,
222 cu_suspended = 1,
223 cu_active = 2,
224 cu_lpq_active = 2,
225 cu_hqp_active = 3
226 } cu_state_t;
227
228 typedef enum {
229 ru_idle = 0,
230 ru_suspended = 1,
231 ru_no_resources = 2,
232 ru_ready = 4
233 } ru_state_t;
234
235 typedef struct {
236 PCIDevice dev;
237 /* Hash register (multicast mask array, multiple individual addresses). */
238 uint8_t mult[8];
239 MemoryRegion mmio_bar;
240 MemoryRegion io_bar;
241 MemoryRegion flash_bar;
242 NICState *nic;
243 NICConf conf;
244 uint8_t scb_stat; /* SCB stat/ack byte */
245 uint8_t int_stat; /* PCI interrupt status */
246 /* region must not be saved by nic_save. */
247 uint16_t mdimem[32];
248 eeprom_t *eeprom;
249 uint32_t device; /* device variant */
250 /* (cu_base + cu_offset) address the next command block in the command block list. */
251 uint32_t cu_base; /* CU base address */
252 uint32_t cu_offset; /* CU address offset */
253 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
254 uint32_t ru_base; /* RU base address */
255 uint32_t ru_offset; /* RU address offset */
256 uint32_t statsaddr; /* pointer to eepro100_stats_t */
257
258 /* Temporary status information (no need to save these values),
259 * used while processing CU commands. */
260 eepro100_tx_t tx; /* transmit buffer descriptor */
261 uint32_t cb_address; /* = cu_base + cu_offset */
262
263 /* Statistical counters. Also used for wake-up packet (i82559). */
264 eepro100_stats_t statistics;
265
266 /* Data in mem is always in the byte order of the controller (le).
267 * It must be dword aligned to allow direct access to 32 bit values. */
268 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
269
270 /* Configuration bytes. */
271 uint8_t configuration[22];
272
273 /* vmstate for each particular nic */
274 VMStateDescription *vmstate;
275
276 /* Quasi static device properties (no need to save them). */
277 uint16_t stats_size;
278 bool has_extended_tcb_support;
279 } EEPRO100State;
280
281 /* Word indices in EEPROM. */
282 typedef enum {
283 EEPROM_CNFG_MDIX = 0x03,
284 EEPROM_ID = 0x05,
285 EEPROM_PHY_ID = 0x06,
286 EEPROM_VENDOR_ID = 0x0c,
287 EEPROM_CONFIG_ASF = 0x0d,
288 EEPROM_DEVICE_ID = 0x23,
289 EEPROM_SMBUS_ADDR = 0x90,
290 } EEPROMOffset;
291
292 /* Bit values for EEPROM ID word. */
293 typedef enum {
294 EEPROM_ID_MDM = BIT(0), /* Modem */
295 EEPROM_ID_STB = BIT(1), /* Standby Enable */
296 EEPROM_ID_WMR = BIT(2), /* ??? */
297 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
298 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
299 EEPROM_ID_ALT = BIT(7), /* */
300 /* BITS(10, 8) device revision */
301 EEPROM_ID_BD = BIT(11), /* boot disable */
302 EEPROM_ID_ID = BIT(13), /* id bit */
303 /* BITS(15, 14) signature */
304 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
305 } eeprom_id_bit;
306
307 /* Default values for MDI (PHY) registers */
308 static const uint16_t eepro100_mdi_default[] = {
309 /* MDI Registers 0 - 6, 7 */
310 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
311 /* MDI Registers 8 - 15 */
312 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
313 /* MDI Registers 16 - 31 */
314 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
315 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
316 };
317
318 /* Readonly mask for MDI (PHY) registers */
319 static const uint16_t eepro100_mdi_mask[] = {
320 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
321 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
322 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
323 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
324 };
325
326 #define POLYNOMIAL 0x04c11db6
327
328 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
329
330 /* From FreeBSD (locally modified). */
331 static unsigned e100_compute_mcast_idx(const uint8_t *ep)
332 {
333 uint32_t crc;
334 int carry, i, j;
335 uint8_t b;
336
337 crc = 0xffffffff;
338 for (i = 0; i < 6; i++) {
339 b = *ep++;
340 for (j = 0; j < 8; j++) {
341 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
342 crc <<= 1;
343 b >>= 1;
344 if (carry) {
345 crc = ((crc ^ POLYNOMIAL) | carry);
346 }
347 }
348 }
349 return (crc & BITS(7, 2)) >> 2;
350 }
351
352 /* Read a 16 bit control/status (CSR) register. */
353 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
354 {
355 assert(!((uintptr_t)&s->mem[addr] & 1));
356 return lduw_le_p(&s->mem[addr]);
357 }
358
359 /* Read a 32 bit control/status (CSR) register. */
360 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
361 {
362 assert(!((uintptr_t)&s->mem[addr] & 3));
363 return ldl_le_p(&s->mem[addr]);
364 }
365
366 /* Write a 16 bit control/status (CSR) register. */
367 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
368 uint16_t val)
369 {
370 assert(!((uintptr_t)&s->mem[addr] & 1));
371 stw_le_p(&s->mem[addr], val);
372 }
373
374 /* Read a 32 bit control/status (CSR) register. */
375 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
376 uint32_t val)
377 {
378 assert(!((uintptr_t)&s->mem[addr] & 3));
379 stl_le_p(&s->mem[addr], val);
380 }
381
382 #if defined(DEBUG_EEPRO100)
383 static const char *nic_dump(const uint8_t * buf, unsigned size)
384 {
385 static char dump[3 * 16 + 1];
386 char *p = &dump[0];
387 if (size > 16) {
388 size = 16;
389 }
390 while (size-- > 0) {
391 p += sprintf(p, " %02x", *buf++);
392 }
393 return dump;
394 }
395 #endif /* DEBUG_EEPRO100 */
396
397 enum scb_stat_ack {
398 stat_ack_not_ours = 0x00,
399 stat_ack_sw_gen = 0x04,
400 stat_ack_rnr = 0x10,
401 stat_ack_cu_idle = 0x20,
402 stat_ack_frame_rx = 0x40,
403 stat_ack_cu_cmd_done = 0x80,
404 stat_ack_not_present = 0xFF,
405 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
406 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
407 };
408
409 static void disable_interrupt(EEPRO100State * s)
410 {
411 if (s->int_stat) {
412 TRACE(INT, logout("interrupt disabled\n"));
413 pci_irq_deassert(&s->dev);
414 s->int_stat = 0;
415 }
416 }
417
418 static void enable_interrupt(EEPRO100State * s)
419 {
420 if (!s->int_stat) {
421 TRACE(INT, logout("interrupt enabled\n"));
422 pci_irq_assert(&s->dev);
423 s->int_stat = 1;
424 }
425 }
426
427 static void eepro100_acknowledge(EEPRO100State * s)
428 {
429 s->scb_stat &= ~s->mem[SCBAck];
430 s->mem[SCBAck] = s->scb_stat;
431 if (s->scb_stat == 0) {
432 disable_interrupt(s);
433 }
434 }
435
436 static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
437 {
438 uint8_t mask = ~s->mem[SCBIntmask];
439 s->mem[SCBAck] |= status;
440 status = s->scb_stat = s->mem[SCBAck];
441 status &= (mask | 0x0f);
442 #if 0
443 status &= (~s->mem[SCBIntmask] | 0x0xf);
444 #endif
445 if (status && (mask & 0x01)) {
446 /* SCB mask and SCB Bit M do not disable interrupt. */
447 enable_interrupt(s);
448 } else if (s->int_stat) {
449 disable_interrupt(s);
450 }
451 }
452
453 static void eepro100_cx_interrupt(EEPRO100State * s)
454 {
455 /* CU completed action command. */
456 /* Transmit not ok (82557 only, not in emulation). */
457 eepro100_interrupt(s, 0x80);
458 }
459
460 static void eepro100_cna_interrupt(EEPRO100State * s)
461 {
462 /* CU left the active state. */
463 eepro100_interrupt(s, 0x20);
464 }
465
466 static void eepro100_fr_interrupt(EEPRO100State * s)
467 {
468 /* RU received a complete frame. */
469 eepro100_interrupt(s, 0x40);
470 }
471
472 static void eepro100_rnr_interrupt(EEPRO100State * s)
473 {
474 /* RU is not ready. */
475 eepro100_interrupt(s, 0x10);
476 }
477
478 static void eepro100_mdi_interrupt(EEPRO100State * s)
479 {
480 /* MDI completed read or write cycle. */
481 eepro100_interrupt(s, 0x08);
482 }
483
484 static void eepro100_swi_interrupt(EEPRO100State * s)
485 {
486 /* Software has requested an interrupt. */
487 eepro100_interrupt(s, 0x04);
488 }
489
490 #if 0
491 static void eepro100_fcp_interrupt(EEPRO100State * s)
492 {
493 /* Flow control pause interrupt (82558 and later). */
494 eepro100_interrupt(s, 0x01);
495 }
496 #endif
497
498 static void e100_pci_reset(EEPRO100State *s, Error **errp)
499 {
500 E100PCIDeviceInfo *info = eepro100_get_class(s);
501 uint32_t device = s->device;
502 uint8_t *pci_conf = s->dev.config;
503
504 TRACE(OTHER, logout("%p\n", s));
505
506 /* PCI Status */
507 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
508 PCI_STATUS_FAST_BACK);
509 /* PCI Latency Timer */
510 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
511 /* Capability Pointer is set by PCI framework. */
512 /* Interrupt Line */
513 /* Interrupt Pin */
514 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
515 /* Minimum Grant */
516 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
517 /* Maximum Latency */
518 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
519
520 s->stats_size = info->stats_size;
521 s->has_extended_tcb_support = info->has_extended_tcb_support;
522
523 switch (device) {
524 case i82550:
525 case i82551:
526 case i82557A:
527 case i82557B:
528 case i82557C:
529 case i82558A:
530 case i82558B:
531 case i82559A:
532 case i82559B:
533 case i82559ER:
534 case i82562:
535 case i82801:
536 case i82559C:
537 break;
538 default:
539 logout("Device %X is undefined!\n", device);
540 }
541
542 /* Standard TxCB. */
543 s->configuration[6] |= BIT(4);
544
545 /* Standard statistical counters. */
546 s->configuration[6] |= BIT(5);
547
548 if (s->stats_size == 80) {
549 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
550 if (s->configuration[6] & BIT(2)) {
551 /* TCO statistical counters. */
552 assert(s->configuration[6] & BIT(5));
553 } else {
554 if (s->configuration[6] & BIT(5)) {
555 /* No extended statistical counters, i82557 compatible. */
556 s->stats_size = 64;
557 } else {
558 /* i82558 compatible. */
559 s->stats_size = 76;
560 }
561 }
562 } else {
563 if (s->configuration[6] & BIT(5)) {
564 /* No extended statistical counters. */
565 s->stats_size = 64;
566 }
567 }
568 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
569
570 if (info->power_management) {
571 /* Power Management Capabilities */
572 int cfg_offset = 0xdc;
573 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
574 cfg_offset, PCI_PM_SIZEOF,
575 errp);
576 if (r < 0) {
577 return;
578 }
579
580 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
581 #if 0 /* TODO: replace dummy code for power management emulation. */
582 /* TODO: Power Management Control / Status. */
583 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
584 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
585 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
586 #endif
587 }
588
589 #if EEPROM_SIZE > 0
590 if (device == i82557C || device == i82558B || device == i82559C) {
591 /*
592 TODO: get vendor id from EEPROM for i82557C or later.
593 TODO: get device id from EEPROM for i82557C or later.
594 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
595 TODO: header type is determined by EEPROM for i82559.
596 TODO: get subsystem id from EEPROM for i82557C or later.
597 TODO: get subsystem vendor id from EEPROM for i82557C or later.
598 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
599 TODO: capability pointer depends on EEPROM for i82558.
600 */
601 logout("Get device id and revision from EEPROM!!!\n");
602 }
603 #endif /* EEPROM_SIZE > 0 */
604 }
605
606 static void nic_selective_reset(EEPRO100State * s)
607 {
608 size_t i;
609 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
610 #if 0
611 eeprom93xx_reset(s->eeprom);
612 #endif
613 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
614 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
615 if (s->device == i82557B || s->device == i82557C)
616 eeprom_contents[5] = 0x0100;
617 eeprom_contents[EEPROM_PHY_ID] = 1;
618 uint16_t sum = 0;
619 for (i = 0; i < EEPROM_SIZE - 1; i++) {
620 sum += eeprom_contents[i];
621 }
622 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
623 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
624
625 memset(s->mem, 0, sizeof(s->mem));
626 e100_write_reg4(s, SCBCtrlMDI, BIT(21));
627
628 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
629 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
630 }
631
632 static void nic_reset(void *opaque)
633 {
634 EEPRO100State *s = opaque;
635 TRACE(OTHER, logout("%p\n", s));
636 /* TODO: Clearing of hash register for selective reset, too? */
637 memset(&s->mult[0], 0, sizeof(s->mult));
638 nic_selective_reset(s);
639 }
640
641 #if defined(DEBUG_EEPRO100)
642 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
643 "Command/Status",
644 "General Pointer",
645 "Port",
646 "EEPROM/Flash Control",
647 "MDI Control",
648 "Receive DMA Byte Count",
649 "Flow Control",
650 "General Status/Control"
651 };
652
653 static char *regname(uint32_t addr)
654 {
655 static char buf[32];
656 if (addr < PCI_IO_SIZE) {
657 const char *r = e100_reg[addr / 4];
658 if (r != 0) {
659 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
660 } else {
661 snprintf(buf, sizeof(buf), "0x%02x", addr);
662 }
663 } else {
664 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
665 }
666 return buf;
667 }
668 #endif /* DEBUG_EEPRO100 */
669
670 /*****************************************************************************
671 *
672 * Command emulation.
673 *
674 ****************************************************************************/
675
676 #if 0
677 static uint16_t eepro100_read_command(EEPRO100State * s)
678 {
679 uint16_t val = 0xffff;
680 TRACE(OTHER, logout("val=0x%04x\n", val));
681 return val;
682 }
683 #endif
684
685 /* Commands that can be put in a command list entry. */
686 enum commands {
687 CmdNOp = 0,
688 CmdIASetup = 1,
689 CmdConfigure = 2,
690 CmdMulticastList = 3,
691 CmdTx = 4,
692 CmdTDR = 5, /* load microcode */
693 CmdDump = 6,
694 CmdDiagnose = 7,
695
696 /* And some extra flags: */
697 CmdSuspend = 0x4000, /* Suspend after completion. */
698 CmdIntr = 0x2000, /* Interrupt after completion. */
699 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
700 };
701
702 static cu_state_t get_cu_state(EEPRO100State * s)
703 {
704 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
705 }
706
707 static void set_cu_state(EEPRO100State * s, cu_state_t state)
708 {
709 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
710 }
711
712 static ru_state_t get_ru_state(EEPRO100State * s)
713 {
714 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
715 }
716
717 static void set_ru_state(EEPRO100State * s, ru_state_t state)
718 {
719 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
720 }
721
722 static void dump_statistics(EEPRO100State * s)
723 {
724 /* Dump statistical data. Most data is never changed by the emulation
725 * and always 0, so we first just copy the whole block and then those
726 * values which really matter.
727 * Number of data should check configuration!!!
728 */
729 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
730 stl_le_pci_dma(&s->dev, s->statsaddr + 0,
731 s->statistics.tx_good_frames);
732 stl_le_pci_dma(&s->dev, s->statsaddr + 36,
733 s->statistics.rx_good_frames);
734 stl_le_pci_dma(&s->dev, s->statsaddr + 48,
735 s->statistics.rx_resource_errors);
736 stl_le_pci_dma(&s->dev, s->statsaddr + 60,
737 s->statistics.rx_short_frame_errors);
738 #if 0
739 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames);
740 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames);
741 missing("CU dump statistical counters");
742 #endif
743 }
744
745 static void read_cb(EEPRO100State *s)
746 {
747 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
748 s->tx.status = le16_to_cpu(s->tx.status);
749 s->tx.command = le16_to_cpu(s->tx.command);
750 s->tx.link = le32_to_cpu(s->tx.link);
751 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
752 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
753 }
754
755 static void tx_command(EEPRO100State *s)
756 {
757 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
758 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
759 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
760 uint8_t buf[2600];
761 uint16_t size = 0;
762 uint32_t tbd_address = s->cb_address + 0x10;
763 TRACE(RXTX, logout
764 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
765 tbd_array, tcb_bytes, s->tx.tbd_count));
766
767 if (tcb_bytes > 2600) {
768 logout("TCB byte count too large, using 2600\n");
769 tcb_bytes = 2600;
770 }
771 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
772 logout
773 ("illegal values of TBD array address and TCB byte count!\n");
774 }
775 assert(tcb_bytes <= sizeof(buf));
776 while (size < tcb_bytes) {
777 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
778 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
779 #if 0
780 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
781 #endif
782 if (tx_buffer_size == 0) {
783 /* Prevent an endless loop. */
784 logout("loop in %s:%u\n", __FILE__, __LINE__);
785 break;
786 }
787 tbd_address += 8;
788 TRACE(RXTX, logout
789 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
790 tx_buffer_address, tx_buffer_size));
791 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
792 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size);
793 size += tx_buffer_size;
794 }
795 if (tbd_array == 0xffffffff) {
796 /* Simplified mode. Was already handled by code above. */
797 } else {
798 /* Flexible mode. */
799 uint8_t tbd_count = 0;
800 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
801 /* Extended Flexible TCB. */
802 for (; tbd_count < 2; tbd_count++) {
803 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev,
804 tbd_address);
805 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev,
806 tbd_address + 4);
807 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev,
808 tbd_address + 6);
809 tbd_address += 8;
810 TRACE(RXTX, logout
811 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
812 tx_buffer_address, tx_buffer_size));
813 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
814 pci_dma_read(&s->dev, tx_buffer_address,
815 &buf[size], tx_buffer_size);
816 size += tx_buffer_size;
817 if (tx_buffer_el & 1) {
818 break;
819 }
820 }
821 }
822 tbd_address = tbd_array;
823 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
824 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
825 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
826 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
827 tbd_address += 8;
828 TRACE(RXTX, logout
829 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
830 tx_buffer_address, tx_buffer_size));
831 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
832 pci_dma_read(&s->dev, tx_buffer_address,
833 &buf[size], tx_buffer_size);
834 size += tx_buffer_size;
835 if (tx_buffer_el & 1) {
836 break;
837 }
838 }
839 }
840 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
841 qemu_send_packet(qemu_get_queue(s->nic), buf, size);
842 s->statistics.tx_good_frames++;
843 /* Transmit with bad status would raise an CX/TNO interrupt.
844 * (82557 only). Emulation never has bad status. */
845 #if 0
846 eepro100_cx_interrupt(s);
847 #endif
848 }
849
850 static void set_multicast_list(EEPRO100State *s)
851 {
852 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
853 uint16_t i;
854 memset(&s->mult[0], 0, sizeof(s->mult));
855 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
856 for (i = 0; i < multicast_count; i += 6) {
857 uint8_t multicast_addr[6];
858 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
859 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
860 unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr);
861 assert(mcast_idx < 64);
862 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
863 }
864 }
865
866 static void action_command(EEPRO100State *s)
867 {
868 /* The loop below won't stop if it gets special handcrafted data.
869 Therefore we limit the number of iterations. */
870 unsigned max_loop_count = 16;
871
872 for (;;) {
873 bool bit_el;
874 bool bit_s;
875 bool bit_i;
876 bool bit_nc;
877 uint16_t ok_status = STATUS_OK;
878 s->cb_address = s->cu_base + s->cu_offset;
879 read_cb(s);
880 bit_el = ((s->tx.command & COMMAND_EL) != 0);
881 bit_s = ((s->tx.command & COMMAND_S) != 0);
882 bit_i = ((s->tx.command & COMMAND_I) != 0);
883 bit_nc = ((s->tx.command & COMMAND_NC) != 0);
884 #if 0
885 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
886 #endif
887
888 if (max_loop_count-- == 0) {
889 /* Prevent an endless loop. */
890 logout("loop in %s:%u\n", __FILE__, __LINE__);
891 break;
892 }
893
894 s->cu_offset = s->tx.link;
895 TRACE(OTHER,
896 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
897 s->tx.status, s->tx.command, s->tx.link));
898 switch (s->tx.command & COMMAND_CMD) {
899 case CmdNOp:
900 /* Do nothing. */
901 break;
902 case CmdIASetup:
903 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
904 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
905 break;
906 case CmdConfigure:
907 pci_dma_read(&s->dev, s->cb_address + 8,
908 &s->configuration[0], sizeof(s->configuration));
909 TRACE(OTHER, logout("configuration: %s\n",
910 nic_dump(&s->configuration[0], 16)));
911 TRACE(OTHER, logout("configuration: %s\n",
912 nic_dump(&s->configuration[16],
913 ARRAY_SIZE(s->configuration) - 16)));
914 if (s->configuration[20] & BIT(6)) {
915 TRACE(OTHER, logout("Multiple IA bit\n"));
916 }
917 break;
918 case CmdMulticastList:
919 set_multicast_list(s);
920 break;
921 case CmdTx:
922 if (bit_nc) {
923 missing("CmdTx: NC = 0");
924 ok_status = 0;
925 break;
926 }
927 tx_command(s);
928 break;
929 case CmdTDR:
930 TRACE(OTHER, logout("load microcode\n"));
931 /* Starting with offset 8, the command contains
932 * 64 dwords microcode which we just ignore here. */
933 break;
934 case CmdDiagnose:
935 TRACE(OTHER, logout("diagnose\n"));
936 /* Make sure error flag is not set. */
937 s->tx.status = 0;
938 break;
939 default:
940 missing("undefined command");
941 ok_status = 0;
942 break;
943 }
944 /* Write new status. */
945 stw_le_pci_dma(&s->dev, s->cb_address,
946 s->tx.status | ok_status | STATUS_C);
947 if (bit_i) {
948 /* CU completed action. */
949 eepro100_cx_interrupt(s);
950 }
951 if (bit_el) {
952 /* CU becomes idle. Terminate command loop. */
953 set_cu_state(s, cu_idle);
954 eepro100_cna_interrupt(s);
955 break;
956 } else if (bit_s) {
957 /* CU becomes suspended. Terminate command loop. */
958 set_cu_state(s, cu_suspended);
959 eepro100_cna_interrupt(s);
960 break;
961 } else {
962 /* More entries in list. */
963 TRACE(OTHER, logout("CU list with at least one more entry\n"));
964 }
965 }
966 TRACE(OTHER, logout("CU list empty\n"));
967 /* List is empty. Now CU is idle or suspended. */
968 }
969
970 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
971 {
972 cu_state_t cu_state;
973 switch (val) {
974 case CU_NOP:
975 /* No operation. */
976 break;
977 case CU_START:
978 cu_state = get_cu_state(s);
979 if (cu_state != cu_idle && cu_state != cu_suspended) {
980 /* Intel documentation says that CU must be idle or suspended
981 * for the CU start command. */
982 logout("unexpected CU state is %u\n", cu_state);
983 }
984 set_cu_state(s, cu_active);
985 s->cu_offset = e100_read_reg4(s, SCBPointer);
986 action_command(s);
987 break;
988 case CU_RESUME:
989 if (get_cu_state(s) != cu_suspended) {
990 logout("bad CU resume from CU state %u\n", get_cu_state(s));
991 /* Workaround for bad Linux eepro100 driver which resumes
992 * from idle state. */
993 #if 0
994 missing("cu resume");
995 #endif
996 set_cu_state(s, cu_suspended);
997 }
998 if (get_cu_state(s) == cu_suspended) {
999 TRACE(OTHER, logout("CU resuming\n"));
1000 set_cu_state(s, cu_active);
1001 action_command(s);
1002 }
1003 break;
1004 case CU_STATSADDR:
1005 /* Load dump counters address. */
1006 s->statsaddr = e100_read_reg4(s, SCBPointer);
1007 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
1008 if (s->statsaddr & 3) {
1009 /* Memory must be Dword aligned. */
1010 logout("unaligned dump counters address\n");
1011 /* Handling of misaligned addresses is undefined.
1012 * Here we align the address by ignoring the lower bits. */
1013 /* TODO: Test unaligned dump counter address on real hardware. */
1014 s->statsaddr &= ~3;
1015 }
1016 break;
1017 case CU_SHOWSTATS:
1018 /* Dump statistical counters. */
1019 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
1020 dump_statistics(s);
1021 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005);
1022 break;
1023 case CU_CMD_BASE:
1024 /* Load CU base. */
1025 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
1026 s->cu_base = e100_read_reg4(s, SCBPointer);
1027 break;
1028 case CU_DUMPSTATS:
1029 /* Dump and reset statistical counters. */
1030 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
1031 dump_statistics(s);
1032 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007);
1033 memset(&s->statistics, 0, sizeof(s->statistics));
1034 break;
1035 case CU_SRESUME:
1036 /* CU static resume. */
1037 missing("CU static resume");
1038 break;
1039 default:
1040 missing("Undefined CU command");
1041 }
1042 }
1043
1044 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1045 {
1046 switch (val) {
1047 case RU_NOP:
1048 /* No operation. */
1049 break;
1050 case RX_START:
1051 /* RU start. */
1052 if (get_ru_state(s) != ru_idle) {
1053 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1054 #if 0
1055 assert(!"wrong RU state");
1056 #endif
1057 }
1058 set_ru_state(s, ru_ready);
1059 s->ru_offset = e100_read_reg4(s, SCBPointer);
1060 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1061 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1062 break;
1063 case RX_RESUME:
1064 /* Restart RU. */
1065 if (get_ru_state(s) != ru_suspended) {
1066 logout("RU state is %u, should be %u\n", get_ru_state(s),
1067 ru_suspended);
1068 #if 0
1069 assert(!"wrong RU state");
1070 #endif
1071 }
1072 set_ru_state(s, ru_ready);
1073 break;
1074 case RU_ABORT:
1075 /* RU abort. */
1076 if (get_ru_state(s) == ru_ready) {
1077 eepro100_rnr_interrupt(s);
1078 }
1079 set_ru_state(s, ru_idle);
1080 break;
1081 case RX_ADDR_LOAD:
1082 /* Load RU base. */
1083 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1084 s->ru_base = e100_read_reg4(s, SCBPointer);
1085 break;
1086 default:
1087 logout("val=0x%02x (undefined RU command)\n", val);
1088 missing("Undefined SU command");
1089 }
1090 }
1091
1092 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1093 {
1094 eepro100_ru_command(s, val & 0x0f);
1095 eepro100_cu_command(s, val & 0xf0);
1096 if ((val) == 0) {
1097 TRACE(OTHER, logout("val=0x%02x\n", val));
1098 }
1099 /* Clear command byte after command was accepted. */
1100 s->mem[SCBCmd] = 0;
1101 }
1102
1103 /*****************************************************************************
1104 *
1105 * EEPROM emulation.
1106 *
1107 ****************************************************************************/
1108
1109 #define EEPROM_CS 0x02
1110 #define EEPROM_SK 0x01
1111 #define EEPROM_DI 0x04
1112 #define EEPROM_DO 0x08
1113
1114 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1115 {
1116 uint16_t val = e100_read_reg2(s, SCBeeprom);
1117 if (eeprom93xx_read(s->eeprom)) {
1118 val |= EEPROM_DO;
1119 } else {
1120 val &= ~EEPROM_DO;
1121 }
1122 TRACE(EEPROM, logout("val=0x%04x\n", val));
1123 return val;
1124 }
1125
1126 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1127 {
1128 TRACE(EEPROM, logout("val=0x%02x\n", val));
1129
1130 /* mask unwritable bits */
1131 #if 0
1132 val = SET_MASKED(val, 0x31, eeprom->value);
1133 #endif
1134
1135 int eecs = ((val & EEPROM_CS) != 0);
1136 int eesk = ((val & EEPROM_SK) != 0);
1137 int eedi = ((val & EEPROM_DI) != 0);
1138 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1139 }
1140
1141 /*****************************************************************************
1142 *
1143 * MDI emulation.
1144 *
1145 ****************************************************************************/
1146
1147 #if defined(DEBUG_EEPRO100)
1148 static const char * const mdi_op_name[] = {
1149 "opcode 0",
1150 "write",
1151 "read",
1152 "opcode 3"
1153 };
1154
1155 static const char * const mdi_reg_name[] = {
1156 "Control",
1157 "Status",
1158 "PHY Identification (Word 1)",
1159 "PHY Identification (Word 2)",
1160 "Auto-Negotiation Advertisement",
1161 "Auto-Negotiation Link Partner Ability",
1162 "Auto-Negotiation Expansion"
1163 };
1164
1165 static const char *reg2name(uint8_t reg)
1166 {
1167 static char buffer[10];
1168 const char *p = buffer;
1169 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1170 p = mdi_reg_name[reg];
1171 } else {
1172 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1173 }
1174 return p;
1175 }
1176 #endif /* DEBUG_EEPRO100 */
1177
1178 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1179 {
1180 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1181
1182 #ifdef DEBUG_EEPRO100
1183 uint8_t raiseint = (val & BIT(29)) >> 29;
1184 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1185 uint8_t phy = (val & BITS(25, 21)) >> 21;
1186 uint8_t reg = (val & BITS(20, 16)) >> 16;
1187 uint16_t data = (val & BITS(15, 0));
1188 #endif
1189 /* Emulation takes no time to finish MDI transaction. */
1190 val |= BIT(28);
1191 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1192 val, raiseint, mdi_op_name[opcode], phy,
1193 reg2name(reg), data));
1194 return val;
1195 }
1196
1197 static void eepro100_write_mdi(EEPRO100State *s)
1198 {
1199 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1200 uint8_t raiseint = (val & BIT(29)) >> 29;
1201 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1202 uint8_t phy = (val & BITS(25, 21)) >> 21;
1203 uint8_t reg = (val & BITS(20, 16)) >> 16;
1204 uint16_t data = (val & BITS(15, 0));
1205 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1206 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1207 if (phy != 1) {
1208 /* Unsupported PHY address. */
1209 #if 0
1210 logout("phy must be 1 but is %u\n", phy);
1211 #endif
1212 data = 0;
1213 } else if (opcode != 1 && opcode != 2) {
1214 /* Unsupported opcode. */
1215 logout("opcode must be 1 or 2 but is %u\n", opcode);
1216 data = 0;
1217 } else if (reg > 6) {
1218 /* Unsupported register. */
1219 logout("register must be 0...6 but is %u\n", reg);
1220 data = 0;
1221 } else {
1222 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1223 val, raiseint, mdi_op_name[opcode], phy,
1224 reg2name(reg), data));
1225 if (opcode == 1) {
1226 /* MDI write */
1227 switch (reg) {
1228 case 0: /* Control Register */
1229 if (data & 0x8000) {
1230 /* Reset status and control registers to default. */
1231 s->mdimem[0] = eepro100_mdi_default[0];
1232 s->mdimem[1] = eepro100_mdi_default[1];
1233 data = s->mdimem[reg];
1234 } else {
1235 /* Restart Auto Configuration = Normal Operation */
1236 data &= ~0x0200;
1237 }
1238 break;
1239 case 1: /* Status Register */
1240 missing("not writable");
1241 break;
1242 case 2: /* PHY Identification Register (Word 1) */
1243 case 3: /* PHY Identification Register (Word 2) */
1244 missing("not implemented");
1245 break;
1246 case 4: /* Auto-Negotiation Advertisement Register */
1247 case 5: /* Auto-Negotiation Link Partner Ability Register */
1248 break;
1249 case 6: /* Auto-Negotiation Expansion Register */
1250 default:
1251 missing("not implemented");
1252 }
1253 s->mdimem[reg] &= eepro100_mdi_mask[reg];
1254 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg];
1255 } else if (opcode == 2) {
1256 /* MDI read */
1257 switch (reg) {
1258 case 0: /* Control Register */
1259 if (data & 0x8000) {
1260 /* Reset status and control registers to default. */
1261 s->mdimem[0] = eepro100_mdi_default[0];
1262 s->mdimem[1] = eepro100_mdi_default[1];
1263 }
1264 break;
1265 case 1: /* Status Register */
1266 s->mdimem[reg] |= 0x0020;
1267 break;
1268 case 2: /* PHY Identification Register (Word 1) */
1269 case 3: /* PHY Identification Register (Word 2) */
1270 case 4: /* Auto-Negotiation Advertisement Register */
1271 break;
1272 case 5: /* Auto-Negotiation Link Partner Ability Register */
1273 s->mdimem[reg] = 0x41fe;
1274 break;
1275 case 6: /* Auto-Negotiation Expansion Register */
1276 s->mdimem[reg] = 0x0001;
1277 break;
1278 }
1279 data = s->mdimem[reg];
1280 }
1281 /* Emulation takes no time to finish MDI transaction.
1282 * Set MDI bit in SCB status register. */
1283 s->mem[SCBAck] |= 0x08;
1284 val |= BIT(28);
1285 if (raiseint) {
1286 eepro100_mdi_interrupt(s);
1287 }
1288 }
1289 val = (val & 0xffff0000) + data;
1290 e100_write_reg4(s, SCBCtrlMDI, val);
1291 }
1292
1293 /*****************************************************************************
1294 *
1295 * Port emulation.
1296 *
1297 ****************************************************************************/
1298
1299 #define PORT_SOFTWARE_RESET 0
1300 #define PORT_SELFTEST 1
1301 #define PORT_SELECTIVE_RESET 2
1302 #define PORT_DUMP 3
1303 #define PORT_SELECTION_MASK 3
1304
1305 typedef struct {
1306 uint32_t st_sign; /* Self Test Signature */
1307 uint32_t st_result; /* Self Test Results */
1308 } eepro100_selftest_t;
1309
1310 static uint32_t eepro100_read_port(EEPRO100State * s)
1311 {
1312 return 0;
1313 }
1314
1315 static void eepro100_write_port(EEPRO100State *s)
1316 {
1317 uint32_t val = e100_read_reg4(s, SCBPort);
1318 uint32_t address = (val & ~PORT_SELECTION_MASK);
1319 uint8_t selection = (val & PORT_SELECTION_MASK);
1320 switch (selection) {
1321 case PORT_SOFTWARE_RESET:
1322 nic_reset(s);
1323 break;
1324 case PORT_SELFTEST:
1325 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1326 eepro100_selftest_t data;
1327 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
1328 data.st_sign = 0xffffffff;
1329 data.st_result = 0;
1330 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
1331 break;
1332 case PORT_SELECTIVE_RESET:
1333 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1334 nic_selective_reset(s);
1335 break;
1336 default:
1337 logout("val=0x%08x\n", val);
1338 missing("unknown port selection");
1339 }
1340 }
1341
1342 /*****************************************************************************
1343 *
1344 * General hardware emulation.
1345 *
1346 ****************************************************************************/
1347
1348 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1349 {
1350 uint8_t val = 0;
1351 if (addr <= sizeof(s->mem) - sizeof(val)) {
1352 val = s->mem[addr];
1353 }
1354
1355 switch (addr) {
1356 case SCBStatus:
1357 case SCBAck:
1358 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1359 break;
1360 case SCBCmd:
1361 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1362 #if 0
1363 val = eepro100_read_command(s);
1364 #endif
1365 break;
1366 case SCBIntmask:
1367 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1368 break;
1369 case SCBPort + 3:
1370 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1371 break;
1372 case SCBeeprom:
1373 val = eepro100_read_eeprom(s);
1374 break;
1375 case SCBCtrlMDI:
1376 case SCBCtrlMDI + 1:
1377 case SCBCtrlMDI + 2:
1378 case SCBCtrlMDI + 3:
1379 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1380 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1381 break;
1382 case SCBpmdr: /* Power Management Driver Register */
1383 val = 0;
1384 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1385 break;
1386 case SCBgctrl: /* General Control Register */
1387 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1388 break;
1389 case SCBgstat: /* General Status Register */
1390 /* 100 Mbps full duplex, valid link */
1391 val = 0x07;
1392 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1393 break;
1394 default:
1395 logout("addr=%s val=0x%02x\n", regname(addr), val);
1396 missing("unknown byte read");
1397 }
1398 return val;
1399 }
1400
1401 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1402 {
1403 uint16_t val = 0;
1404 if (addr <= sizeof(s->mem) - sizeof(val)) {
1405 val = e100_read_reg2(s, addr);
1406 }
1407
1408 switch (addr) {
1409 case SCBStatus:
1410 case SCBCmd:
1411 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1412 break;
1413 case SCBeeprom:
1414 val = eepro100_read_eeprom(s);
1415 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1416 break;
1417 case SCBCtrlMDI:
1418 case SCBCtrlMDI + 2:
1419 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1420 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1421 break;
1422 default:
1423 logout("addr=%s val=0x%04x\n", regname(addr), val);
1424 missing("unknown word read");
1425 }
1426 return val;
1427 }
1428
1429 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1430 {
1431 uint32_t val = 0;
1432 if (addr <= sizeof(s->mem) - sizeof(val)) {
1433 val = e100_read_reg4(s, addr);
1434 }
1435
1436 switch (addr) {
1437 case SCBStatus:
1438 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1439 break;
1440 case SCBPointer:
1441 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1442 break;
1443 case SCBPort:
1444 val = eepro100_read_port(s);
1445 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1446 break;
1447 case SCBflash:
1448 val = eepro100_read_eeprom(s);
1449 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1450 break;
1451 case SCBCtrlMDI:
1452 val = eepro100_read_mdi(s);
1453 break;
1454 default:
1455 logout("addr=%s val=0x%08x\n", regname(addr), val);
1456 missing("unknown longword read");
1457 }
1458 return val;
1459 }
1460
1461 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1462 {
1463 /* SCBStatus is readonly. */
1464 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1465 s->mem[addr] = val;
1466 }
1467
1468 switch (addr) {
1469 case SCBStatus:
1470 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1471 break;
1472 case SCBAck:
1473 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1474 eepro100_acknowledge(s);
1475 break;
1476 case SCBCmd:
1477 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1478 eepro100_write_command(s, val);
1479 break;
1480 case SCBIntmask:
1481 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1482 if (val & BIT(1)) {
1483 eepro100_swi_interrupt(s);
1484 }
1485 eepro100_interrupt(s, 0);
1486 break;
1487 case SCBPointer:
1488 case SCBPointer + 1:
1489 case SCBPointer + 2:
1490 case SCBPointer + 3:
1491 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1492 break;
1493 case SCBPort:
1494 case SCBPort + 1:
1495 case SCBPort + 2:
1496 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1497 break;
1498 case SCBPort + 3:
1499 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1500 eepro100_write_port(s);
1501 break;
1502 case SCBFlow: /* does not exist on 82557 */
1503 case SCBFlow + 1:
1504 case SCBFlow + 2:
1505 case SCBpmdr: /* does not exist on 82557 */
1506 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1507 break;
1508 case SCBeeprom:
1509 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1510 eepro100_write_eeprom(s->eeprom, val);
1511 break;
1512 case SCBCtrlMDI:
1513 case SCBCtrlMDI + 1:
1514 case SCBCtrlMDI + 2:
1515 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1516 break;
1517 case SCBCtrlMDI + 3:
1518 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1519 eepro100_write_mdi(s);
1520 break;
1521 default:
1522 logout("addr=%s val=0x%02x\n", regname(addr), val);
1523 missing("unknown byte write");
1524 }
1525 }
1526
1527 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1528 {
1529 /* SCBStatus is readonly. */
1530 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1531 e100_write_reg2(s, addr, val);
1532 }
1533
1534 switch (addr) {
1535 case SCBStatus:
1536 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1537 s->mem[SCBAck] = (val >> 8);
1538 eepro100_acknowledge(s);
1539 break;
1540 case SCBCmd:
1541 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1542 eepro100_write_command(s, val);
1543 eepro100_write1(s, SCBIntmask, val >> 8);
1544 break;
1545 case SCBPointer:
1546 case SCBPointer + 2:
1547 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1548 break;
1549 case SCBPort:
1550 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1551 break;
1552 case SCBPort + 2:
1553 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1554 eepro100_write_port(s);
1555 break;
1556 case SCBeeprom:
1557 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1558 eepro100_write_eeprom(s->eeprom, val);
1559 break;
1560 case SCBCtrlMDI:
1561 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1562 break;
1563 case SCBCtrlMDI + 2:
1564 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1565 eepro100_write_mdi(s);
1566 break;
1567 default:
1568 logout("addr=%s val=0x%04x\n", regname(addr), val);
1569 missing("unknown word write");
1570 }
1571 }
1572
1573 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1574 {
1575 if (addr <= sizeof(s->mem) - sizeof(val)) {
1576 e100_write_reg4(s, addr, val);
1577 }
1578
1579 switch (addr) {
1580 case SCBPointer:
1581 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1582 break;
1583 case SCBPort:
1584 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1585 eepro100_write_port(s);
1586 break;
1587 case SCBflash:
1588 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1589 val = val >> 16;
1590 eepro100_write_eeprom(s->eeprom, val);
1591 break;
1592 case SCBCtrlMDI:
1593 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1594 eepro100_write_mdi(s);
1595 break;
1596 default:
1597 logout("addr=%s val=0x%08x\n", regname(addr), val);
1598 missing("unknown longword write");
1599 }
1600 }
1601
1602 static uint64_t eepro100_read(void *opaque, hwaddr addr,
1603 unsigned size)
1604 {
1605 EEPRO100State *s = opaque;
1606
1607 switch (size) {
1608 case 1: return eepro100_read1(s, addr);
1609 case 2: return eepro100_read2(s, addr);
1610 case 4: return eepro100_read4(s, addr);
1611 default: abort();
1612 }
1613 }
1614
1615 static void eepro100_write(void *opaque, hwaddr addr,
1616 uint64_t data, unsigned size)
1617 {
1618 EEPRO100State *s = opaque;
1619
1620 switch (size) {
1621 case 1:
1622 eepro100_write1(s, addr, data);
1623 break;
1624 case 2:
1625 eepro100_write2(s, addr, data);
1626 break;
1627 case 4:
1628 eepro100_write4(s, addr, data);
1629 break;
1630 default:
1631 abort();
1632 }
1633 }
1634
1635 static const MemoryRegionOps eepro100_ops = {
1636 .read = eepro100_read,
1637 .write = eepro100_write,
1638 .endianness = DEVICE_LITTLE_ENDIAN,
1639 };
1640
1641 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size)
1642 {
1643 /* TODO:
1644 * - Magic packets should set bit 30 in power management driver register.
1645 * - Interesting packets should set bit 29 in power management driver register.
1646 */
1647 EEPRO100State *s = qemu_get_nic_opaque(nc);
1648 uint16_t rfd_status = 0xa000;
1649 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1650 uint8_t min_buf[60];
1651 #endif
1652 static const uint8_t broadcast_macaddr[6] =
1653 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1654
1655 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1656 /* Pad to minimum Ethernet frame length */
1657 if (size < sizeof(min_buf)) {
1658 memcpy(min_buf, buf, size);
1659 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1660 buf = min_buf;
1661 size = sizeof(min_buf);
1662 }
1663 #endif
1664
1665 if (s->configuration[8] & 0x80) {
1666 /* CSMA is disabled. */
1667 logout("%p received while CSMA is disabled\n", s);
1668 return -1;
1669 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1670 } else if (size < 64 && (s->configuration[7] & BIT(0))) {
1671 /* Short frame and configuration byte 7/0 (discard short receive) set:
1672 * Short frame is discarded */
1673 logout("%p received short frame (%zu byte)\n", s, size);
1674 s->statistics.rx_short_frame_errors++;
1675 return -1;
1676 #endif
1677 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
1678 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1679 * Long frames are discarded. */
1680 logout("%p received long frame (%zu byte), ignored\n", s, size);
1681 return -1;
1682 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
1683 /* Frame matches individual address. */
1684 /* TODO: check configuration byte 15/4 (ignore U/L). */
1685 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1686 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1687 /* Broadcast frame. */
1688 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1689 rfd_status |= 0x0002;
1690 } else if (buf[0] & 0x01) {
1691 /* Multicast frame. */
1692 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1693 if (s->configuration[21] & BIT(3)) {
1694 /* Multicast all bit is set, receive all multicast frames. */
1695 } else {
1696 unsigned mcast_idx = e100_compute_mcast_idx(buf);
1697 assert(mcast_idx < 64);
1698 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1699 /* Multicast frame is allowed in hash table. */
1700 } else if (s->configuration[15] & BIT(0)) {
1701 /* Promiscuous: receive all. */
1702 rfd_status |= 0x0004;
1703 } else {
1704 TRACE(RXTX, logout("%p multicast ignored\n", s));
1705 return -1;
1706 }
1707 }
1708 /* TODO: Next not for promiscuous mode? */
1709 rfd_status |= 0x0002;
1710 } else if (s->configuration[15] & BIT(0)) {
1711 /* Promiscuous: receive all. */
1712 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1713 rfd_status |= 0x0004;
1714 } else if (s->configuration[20] & BIT(6)) {
1715 /* Multiple IA bit set. */
1716 unsigned mcast_idx = compute_mcast_idx(buf);
1717 assert(mcast_idx < 64);
1718 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1719 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
1720 } else {
1721 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
1722 return -1;
1723 }
1724 } else {
1725 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1726 nic_dump(buf, size)));
1727 return size;
1728 }
1729
1730 if (get_ru_state(s) != ru_ready) {
1731 /* No resources available. */
1732 logout("no resources, state=%u\n", get_ru_state(s));
1733 /* TODO: RNR interrupt only at first failed frame? */
1734 eepro100_rnr_interrupt(s);
1735 s->statistics.rx_resource_errors++;
1736 #if 0
1737 assert(!"no resources");
1738 #endif
1739 return -1;
1740 }
1741 /* !!! */
1742 eepro100_rx_t rx;
1743 pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
1744 &rx, sizeof(eepro100_rx_t));
1745 uint16_t rfd_command = le16_to_cpu(rx.command);
1746 uint16_t rfd_size = le16_to_cpu(rx.size);
1747
1748 if (size > rfd_size) {
1749 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1750 "(%zu bytes); data truncated\n", rfd_size, size);
1751 size = rfd_size;
1752 }
1753 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1754 if (size < 64) {
1755 rfd_status |= 0x0080;
1756 }
1757 #endif
1758 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1759 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1760 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1761 offsetof(eepro100_rx_t, status), rfd_status);
1762 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1763 offsetof(eepro100_rx_t, count), size);
1764 /* Early receive interrupt not supported. */
1765 #if 0
1766 eepro100_er_interrupt(s);
1767 #endif
1768 /* Receive CRC Transfer not supported. */
1769 if (s->configuration[18] & BIT(2)) {
1770 missing("Receive CRC Transfer");
1771 return -1;
1772 }
1773 /* TODO: check stripping enable bit. */
1774 #if 0
1775 assert(!(s->configuration[17] & BIT(0)));
1776 #endif
1777 pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
1778 sizeof(eepro100_rx_t), buf, size);
1779 s->statistics.rx_good_frames++;
1780 eepro100_fr_interrupt(s);
1781 s->ru_offset = le32_to_cpu(rx.link);
1782 if (rfd_command & COMMAND_EL) {
1783 /* EL bit is set, so this was the last frame. */
1784 logout("receive: Running out of frames\n");
1785 set_ru_state(s, ru_no_resources);
1786 eepro100_rnr_interrupt(s);
1787 }
1788 if (rfd_command & COMMAND_S) {
1789 /* S bit is set. */
1790 set_ru_state(s, ru_suspended);
1791 }
1792 return size;
1793 }
1794
1795 static const VMStateDescription vmstate_eepro100 = {
1796 .version_id = 3,
1797 .minimum_version_id = 2,
1798 .fields = (VMStateField[]) {
1799 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1800 VMSTATE_UNUSED(32),
1801 VMSTATE_BUFFER(mult, EEPRO100State),
1802 VMSTATE_BUFFER(mem, EEPRO100State),
1803 /* Save all members of struct between scb_stat and mem. */
1804 VMSTATE_UINT8(scb_stat, EEPRO100State),
1805 VMSTATE_UINT8(int_stat, EEPRO100State),
1806 VMSTATE_UNUSED(3*4),
1807 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1808 VMSTATE_UNUSED(19*4),
1809 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1810 /* The eeprom should be saved and restored by its own routines. */
1811 VMSTATE_UINT32(device, EEPRO100State),
1812 /* TODO check device. */
1813 VMSTATE_UINT32(cu_base, EEPRO100State),
1814 VMSTATE_UINT32(cu_offset, EEPRO100State),
1815 VMSTATE_UINT32(ru_base, EEPRO100State),
1816 VMSTATE_UINT32(ru_offset, EEPRO100State),
1817 VMSTATE_UINT32(statsaddr, EEPRO100State),
1818 /* Save eepro100_stats_t statistics. */
1819 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1820 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1821 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1822 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1823 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1824 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1825 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1826 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1827 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1828 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1829 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1830 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1831 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1832 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1833 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1834 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1835 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1836 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1837 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1838 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1839 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1840 /* Configuration bytes. */
1841 VMSTATE_BUFFER(configuration, EEPRO100State),
1842 VMSTATE_END_OF_LIST()
1843 }
1844 };
1845
1846 static void pci_nic_uninit(PCIDevice *pci_dev)
1847 {
1848 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1849
1850 vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
1851 g_free(s->vmstate);
1852 eeprom93xx_free(&pci_dev->qdev, s->eeprom);
1853 qemu_del_nic(s->nic);
1854 }
1855
1856 static NetClientInfo net_eepro100_info = {
1857 .type = NET_CLIENT_DRIVER_NIC,
1858 .size = sizeof(NICState),
1859 .receive = nic_receive,
1860 };
1861
1862 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp)
1863 {
1864 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1865 E100PCIDeviceInfo *info = eepro100_get_class(s);
1866 Error *local_err = NULL;
1867
1868 TRACE(OTHER, logout("\n"));
1869
1870 s->device = info->device;
1871
1872 e100_pci_reset(s, &local_err);
1873 if (local_err) {
1874 error_propagate(errp, local_err);
1875 return;
1876 }
1877
1878 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1879 * i82559 and later support 64 or 256 word EEPROM. */
1880 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
1881
1882 /* Handler for memory-mapped I/O */
1883 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s,
1884 "eepro100-mmio", PCI_MEM_SIZE);
1885 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
1886 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s,
1887 "eepro100-io", PCI_IO_SIZE);
1888 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
1889 /* FIXME: flash aliases to mmio?! */
1890 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s,
1891 "eepro100-flash", PCI_FLASH_SIZE);
1892 pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
1893
1894 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1895 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1896
1897 nic_reset(s);
1898
1899 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1900 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
1901
1902 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1903 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str));
1904
1905 qemu_register_reset(nic_reset, s);
1906
1907 s->vmstate = g_malloc(sizeof(vmstate_eepro100));
1908 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1909 s->vmstate->name = qemu_get_queue(s->nic)->model;
1910 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
1911 }
1912
1913 static void eepro100_instance_init(Object *obj)
1914 {
1915 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj));
1916 device_add_bootindex_property(obj, &s->conf.bootindex,
1917 "bootindex", "/ethernet-phy@0",
1918 DEVICE(s), NULL);
1919 }
1920
1921 static E100PCIDeviceInfo e100_devices[] = {
1922 {
1923 .name = "i82550",
1924 .desc = "Intel i82550 Ethernet",
1925 .device = i82550,
1926 /* TODO: check device id. */
1927 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1928 /* Revision ID: 0x0c, 0x0d, 0x0e. */
1929 .revision = 0x0e,
1930 /* TODO: check size of statistical counters. */
1931 .stats_size = 80,
1932 /* TODO: check extended tcb support. */
1933 .has_extended_tcb_support = true,
1934 .power_management = true,
1935 },{
1936 .name = "i82551",
1937 .desc = "Intel i82551 Ethernet",
1938 .device = i82551,
1939 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1940 /* Revision ID: 0x0f, 0x10. */
1941 .revision = 0x0f,
1942 /* TODO: check size of statistical counters. */
1943 .stats_size = 80,
1944 .has_extended_tcb_support = true,
1945 .power_management = true,
1946 },{
1947 .name = "i82557a",
1948 .desc = "Intel i82557A Ethernet",
1949 .device = i82557A,
1950 .device_id = PCI_DEVICE_ID_INTEL_82557,
1951 .revision = 0x01,
1952 .power_management = false,
1953 },{
1954 .name = "i82557b",
1955 .desc = "Intel i82557B Ethernet",
1956 .device = i82557B,
1957 .device_id = PCI_DEVICE_ID_INTEL_82557,
1958 .revision = 0x02,
1959 .power_management = false,
1960 },{
1961 .name = "i82557c",
1962 .desc = "Intel i82557C Ethernet",
1963 .device = i82557C,
1964 .device_id = PCI_DEVICE_ID_INTEL_82557,
1965 .revision = 0x03,
1966 .power_management = false,
1967 },{
1968 .name = "i82558a",
1969 .desc = "Intel i82558A Ethernet",
1970 .device = i82558A,
1971 .device_id = PCI_DEVICE_ID_INTEL_82557,
1972 .revision = 0x04,
1973 .stats_size = 76,
1974 .has_extended_tcb_support = true,
1975 .power_management = true,
1976 },{
1977 .name = "i82558b",
1978 .desc = "Intel i82558B Ethernet",
1979 .device = i82558B,
1980 .device_id = PCI_DEVICE_ID_INTEL_82557,
1981 .revision = 0x05,
1982 .stats_size = 76,
1983 .has_extended_tcb_support = true,
1984 .power_management = true,
1985 },{
1986 .name = "i82559a",
1987 .desc = "Intel i82559A Ethernet",
1988 .device = i82559A,
1989 .device_id = PCI_DEVICE_ID_INTEL_82557,
1990 .revision = 0x06,
1991 .stats_size = 80,
1992 .has_extended_tcb_support = true,
1993 .power_management = true,
1994 },{
1995 .name = "i82559b",
1996 .desc = "Intel i82559B Ethernet",
1997 .device = i82559B,
1998 .device_id = PCI_DEVICE_ID_INTEL_82557,
1999 .revision = 0x07,
2000 .stats_size = 80,
2001 .has_extended_tcb_support = true,
2002 .power_management = true,
2003 },{
2004 .name = "i82559c",
2005 .desc = "Intel i82559C Ethernet",
2006 .device = i82559C,
2007 .device_id = PCI_DEVICE_ID_INTEL_82557,
2008 #if 0
2009 .revision = 0x08,
2010 #endif
2011 /* TODO: Windows wants revision id 0x0c. */
2012 .revision = 0x0c,
2013 #if EEPROM_SIZE > 0
2014 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
2015 .subsystem_id = 0x0040,
2016 #endif
2017 .stats_size = 80,
2018 .has_extended_tcb_support = true,
2019 .power_management = true,
2020 },{
2021 .name = "i82559er",
2022 .desc = "Intel i82559ER Ethernet",
2023 .device = i82559ER,
2024 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2025 .revision = 0x09,
2026 .stats_size = 80,
2027 .has_extended_tcb_support = true,
2028 .power_management = true,
2029 },{
2030 .name = "i82562",
2031 .desc = "Intel i82562 Ethernet",
2032 .device = i82562,
2033 /* TODO: check device id. */
2034 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2035 /* TODO: wrong revision id. */
2036 .revision = 0x0e,
2037 .stats_size = 80,
2038 .has_extended_tcb_support = true,
2039 .power_management = true,
2040 },{
2041 /* Toshiba Tecra 8200. */
2042 .name = "i82801",
2043 .desc = "Intel i82801 Ethernet",
2044 .device = i82801,
2045 .device_id = 0x2449,
2046 .revision = 0x03,
2047 .stats_size = 80,
2048 .has_extended_tcb_support = true,
2049 .power_management = true,
2050 }
2051 };
2052
2053 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
2054 {
2055 E100PCIDeviceInfo *info = NULL;
2056 int i;
2057
2058 /* This is admittedly awkward but also temporary. QOM allows for
2059 * parameterized typing and for subclassing both of which would suitable
2060 * handle what's going on here. But class_data is already being used as
2061 * a stop-gap hack to allow incremental qdev conversion so we cannot use it
2062 * right now. Once we merge the final QOM series, we can come back here and
2063 * do this in a much more elegant fashion.
2064 */
2065 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2066 if (strcmp(e100_devices[i].name, typename) == 0) {
2067 info = &e100_devices[i];
2068 break;
2069 }
2070 }
2071 assert(info != NULL);
2072
2073 return info;
2074 }
2075
2076 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
2077 {
2078 return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
2079 }
2080
2081 static Property e100_properties[] = {
2082 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2083 DEFINE_PROP_END_OF_LIST(),
2084 };
2085
2086 static void eepro100_class_init(ObjectClass *klass, void *data)
2087 {
2088 DeviceClass *dc = DEVICE_CLASS(klass);
2089 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2090 E100PCIDeviceInfo *info;
2091
2092 info = eepro100_get_class_by_name(object_class_get_name(klass));
2093
2094 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
2095 dc->props = e100_properties;
2096 dc->desc = info->desc;
2097 k->vendor_id = PCI_VENDOR_ID_INTEL;
2098 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
2099 k->romfile = "pxe-eepro100.rom";
2100 k->realize = e100_nic_realize;
2101 k->exit = pci_nic_uninit;
2102 k->device_id = info->device_id;
2103 k->revision = info->revision;
2104 k->subsystem_vendor_id = info->subsystem_vendor_id;
2105 k->subsystem_id = info->subsystem_id;
2106 }
2107
2108 static void eepro100_register_types(void)
2109 {
2110 size_t i;
2111 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2112 TypeInfo type_info = {};
2113 E100PCIDeviceInfo *info = &e100_devices[i];
2114
2115 type_info.name = info->name;
2116 type_info.parent = TYPE_PCI_DEVICE;
2117 type_info.class_init = eepro100_class_init;
2118 type_info.instance_size = sizeof(EEPRO100State);
2119 type_info.instance_init = eepro100_instance_init;
2120
2121 type_register(&type_info);
2122 }
2123 }
2124
2125 type_init(eepro100_register_types)