]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/mcf_fec.c
Include hw/irq.h a lot less
[mirror_qemu.git] / hw / net / mcf_fec.c
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
3 *
4 * Copyright (c) 2007 CodeSourcery.
5 *
6 * This code is licensed under the GPL
7 */
8
9 #include "qemu/osdep.h"
10 #include "hw/hw.h"
11 #include "hw/irq.h"
12 #include "net/net.h"
13 #include "qemu/module.h"
14 #include "hw/m68k/mcf.h"
15 #include "hw/m68k/mcf_fec.h"
16 #include "hw/net/mii.h"
17 #include "hw/sysbus.h"
18 /* For crc32 */
19 #include <zlib.h>
20
21 //#define DEBUG_FEC 1
22
23 #ifdef DEBUG_FEC
24 #define DPRINTF(fmt, ...) \
25 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
26 #else
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #endif
29
30 #define FEC_MAX_DESC 1024
31 #define FEC_MAX_FRAME_SIZE 2032
32 #define FEC_MIB_SIZE 64
33
34 typedef struct {
35 SysBusDevice parent_obj;
36
37 MemoryRegion iomem;
38 qemu_irq irq[FEC_NUM_IRQ];
39 NICState *nic;
40 NICConf conf;
41 uint32_t irq_state;
42 uint32_t eir;
43 uint32_t eimr;
44 int rx_enabled;
45 uint32_t rx_descriptor;
46 uint32_t tx_descriptor;
47 uint32_t ecr;
48 uint32_t mmfr;
49 uint32_t mscr;
50 uint32_t rcr;
51 uint32_t tcr;
52 uint32_t tfwr;
53 uint32_t rfsr;
54 uint32_t erdsr;
55 uint32_t etdsr;
56 uint32_t emrbr;
57 uint32_t mib[FEC_MIB_SIZE];
58 } mcf_fec_state;
59
60 #define FEC_INT_HB 0x80000000
61 #define FEC_INT_BABR 0x40000000
62 #define FEC_INT_BABT 0x20000000
63 #define FEC_INT_GRA 0x10000000
64 #define FEC_INT_TXF 0x08000000
65 #define FEC_INT_TXB 0x04000000
66 #define FEC_INT_RXF 0x02000000
67 #define FEC_INT_RXB 0x01000000
68 #define FEC_INT_MII 0x00800000
69 #define FEC_INT_EB 0x00400000
70 #define FEC_INT_LC 0x00200000
71 #define FEC_INT_RL 0x00100000
72 #define FEC_INT_UN 0x00080000
73
74 #define FEC_EN 2
75 #define FEC_RESET 1
76
77 /* Map interrupt flags onto IRQ lines. */
78 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
79 FEC_INT_TXF,
80 FEC_INT_TXB,
81 FEC_INT_UN,
82 FEC_INT_RL,
83 FEC_INT_RXF,
84 FEC_INT_RXB,
85 FEC_INT_MII,
86 FEC_INT_LC,
87 FEC_INT_HB,
88 FEC_INT_GRA,
89 FEC_INT_EB,
90 FEC_INT_BABT,
91 FEC_INT_BABR
92 };
93
94 /* Buffer Descriptor. */
95 typedef struct {
96 uint16_t flags;
97 uint16_t length;
98 uint32_t data;
99 } mcf_fec_bd;
100
101 #define FEC_BD_R 0x8000
102 #define FEC_BD_E 0x8000
103 #define FEC_BD_O1 0x4000
104 #define FEC_BD_W 0x2000
105 #define FEC_BD_O2 0x1000
106 #define FEC_BD_L 0x0800
107 #define FEC_BD_TC 0x0400
108 #define FEC_BD_ABC 0x0200
109 #define FEC_BD_M 0x0100
110 #define FEC_BD_BC 0x0080
111 #define FEC_BD_MC 0x0040
112 #define FEC_BD_LG 0x0020
113 #define FEC_BD_NO 0x0010
114 #define FEC_BD_CR 0x0004
115 #define FEC_BD_OV 0x0002
116 #define FEC_BD_TR 0x0001
117
118 #define MIB_RMON_T_DROP 0
119 #define MIB_RMON_T_PACKETS 1
120 #define MIB_RMON_T_BC_PKT 2
121 #define MIB_RMON_T_MC_PKT 3
122 #define MIB_RMON_T_CRC_ALIGN 4
123 #define MIB_RMON_T_UNDERSIZE 5
124 #define MIB_RMON_T_OVERSIZE 6
125 #define MIB_RMON_T_FRAG 7
126 #define MIB_RMON_T_JAB 8
127 #define MIB_RMON_T_COL 9
128 #define MIB_RMON_T_P64 10
129 #define MIB_RMON_T_P65TO127 11
130 #define MIB_RMON_T_P128TO255 12
131 #define MIB_RMON_T_P256TO511 13
132 #define MIB_RMON_T_P512TO1023 14
133 #define MIB_RMON_T_P1024TO2047 15
134 #define MIB_RMON_T_P_GTE2048 16
135 #define MIB_RMON_T_OCTETS 17
136 #define MIB_IEEE_T_DROP 18
137 #define MIB_IEEE_T_FRAME_OK 19
138 #define MIB_IEEE_T_1COL 20
139 #define MIB_IEEE_T_MCOL 21
140 #define MIB_IEEE_T_DEF 22
141 #define MIB_IEEE_T_LCOL 23
142 #define MIB_IEEE_T_EXCOL 24
143 #define MIB_IEEE_T_MACERR 25
144 #define MIB_IEEE_T_CSERR 26
145 #define MIB_IEEE_T_SQE 27
146 #define MIB_IEEE_T_FDXFC 28
147 #define MIB_IEEE_T_OCTETS_OK 29
148
149 #define MIB_RMON_R_DROP 32
150 #define MIB_RMON_R_PACKETS 33
151 #define MIB_RMON_R_BC_PKT 34
152 #define MIB_RMON_R_MC_PKT 35
153 #define MIB_RMON_R_CRC_ALIGN 36
154 #define MIB_RMON_R_UNDERSIZE 37
155 #define MIB_RMON_R_OVERSIZE 38
156 #define MIB_RMON_R_FRAG 39
157 #define MIB_RMON_R_JAB 40
158 #define MIB_RMON_R_RESVD_0 41
159 #define MIB_RMON_R_P64 42
160 #define MIB_RMON_R_P65TO127 43
161 #define MIB_RMON_R_P128TO255 44
162 #define MIB_RMON_R_P256TO511 45
163 #define MIB_RMON_R_P512TO1023 46
164 #define MIB_RMON_R_P1024TO2047 47
165 #define MIB_RMON_R_P_GTE2048 48
166 #define MIB_RMON_R_OCTETS 49
167 #define MIB_IEEE_R_DROP 50
168 #define MIB_IEEE_R_FRAME_OK 51
169 #define MIB_IEEE_R_CRC 52
170 #define MIB_IEEE_R_ALIGN 53
171 #define MIB_IEEE_R_MACERR 54
172 #define MIB_IEEE_R_FDXFC 55
173 #define MIB_IEEE_R_OCTETS_OK 56
174
175 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
176 {
177 cpu_physical_memory_read(addr, bd, sizeof(*bd));
178 be16_to_cpus(&bd->flags);
179 be16_to_cpus(&bd->length);
180 be32_to_cpus(&bd->data);
181 }
182
183 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
184 {
185 mcf_fec_bd tmp;
186 tmp.flags = cpu_to_be16(bd->flags);
187 tmp.length = cpu_to_be16(bd->length);
188 tmp.data = cpu_to_be32(bd->data);
189 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
190 }
191
192 static void mcf_fec_update(mcf_fec_state *s)
193 {
194 uint32_t active;
195 uint32_t changed;
196 uint32_t mask;
197 int i;
198
199 active = s->eir & s->eimr;
200 changed = active ^s->irq_state;
201 for (i = 0; i < FEC_NUM_IRQ; i++) {
202 mask = mcf_fec_irq_map[i];
203 if (changed & mask) {
204 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
205 qemu_set_irq(s->irq[i], (active & mask) != 0);
206 }
207 }
208 s->irq_state = active;
209 }
210
211 static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
212 {
213 s->mib[MIB_RMON_T_PACKETS]++;
214 s->mib[MIB_RMON_T_OCTETS] += size;
215 if (size < 64) {
216 s->mib[MIB_RMON_T_FRAG]++;
217 } else if (size == 64) {
218 s->mib[MIB_RMON_T_P64]++;
219 } else if (size < 128) {
220 s->mib[MIB_RMON_T_P65TO127]++;
221 } else if (size < 256) {
222 s->mib[MIB_RMON_T_P128TO255]++;
223 } else if (size < 512) {
224 s->mib[MIB_RMON_T_P256TO511]++;
225 } else if (size < 1024) {
226 s->mib[MIB_RMON_T_P512TO1023]++;
227 } else if (size < 2048) {
228 s->mib[MIB_RMON_T_P1024TO2047]++;
229 } else {
230 s->mib[MIB_RMON_T_P_GTE2048]++;
231 }
232 s->mib[MIB_IEEE_T_FRAME_OK]++;
233 s->mib[MIB_IEEE_T_OCTETS_OK] += size;
234 }
235
236 static void mcf_fec_do_tx(mcf_fec_state *s)
237 {
238 uint32_t addr;
239 mcf_fec_bd bd;
240 int frame_size;
241 int len, descnt = 0;
242 uint8_t frame[FEC_MAX_FRAME_SIZE];
243 uint8_t *ptr;
244
245 DPRINTF("do_tx\n");
246 ptr = frame;
247 frame_size = 0;
248 addr = s->tx_descriptor;
249 while (descnt++ < FEC_MAX_DESC) {
250 mcf_fec_read_bd(&bd, addr);
251 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
252 addr, bd.flags, bd.length, bd.data);
253 if ((bd.flags & FEC_BD_R) == 0) {
254 /* Run out of descriptors to transmit. */
255 break;
256 }
257 len = bd.length;
258 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
259 len = FEC_MAX_FRAME_SIZE - frame_size;
260 s->eir |= FEC_INT_BABT;
261 }
262 cpu_physical_memory_read(bd.data, ptr, len);
263 ptr += len;
264 frame_size += len;
265 if (bd.flags & FEC_BD_L) {
266 /* Last buffer in frame. */
267 DPRINTF("Sending packet\n");
268 qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
269 mcf_fec_tx_stats(s, frame_size);
270 ptr = frame;
271 frame_size = 0;
272 s->eir |= FEC_INT_TXF;
273 }
274 s->eir |= FEC_INT_TXB;
275 bd.flags &= ~FEC_BD_R;
276 /* Write back the modified descriptor. */
277 mcf_fec_write_bd(&bd, addr);
278 /* Advance to the next descriptor. */
279 if ((bd.flags & FEC_BD_W) != 0) {
280 addr = s->etdsr;
281 } else {
282 addr += 8;
283 }
284 }
285 s->tx_descriptor = addr;
286 }
287
288 static void mcf_fec_enable_rx(mcf_fec_state *s)
289 {
290 NetClientState *nc = qemu_get_queue(s->nic);
291 mcf_fec_bd bd;
292
293 mcf_fec_read_bd(&bd, s->rx_descriptor);
294 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
295 if (s->rx_enabled) {
296 qemu_flush_queued_packets(nc);
297 }
298 }
299
300 static void mcf_fec_reset(DeviceState *dev)
301 {
302 mcf_fec_state *s = MCF_FEC_NET(dev);
303
304 s->eir = 0;
305 s->eimr = 0;
306 s->rx_enabled = 0;
307 s->ecr = 0;
308 s->mscr = 0;
309 s->rcr = 0x05ee0001;
310 s->tcr = 0;
311 s->tfwr = 0;
312 s->rfsr = 0x500;
313 }
314
315 #define MMFR_WRITE_OP (1 << 28)
316 #define MMFR_READ_OP (2 << 28)
317 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
318 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
319
320 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
321 {
322 uint64_t v;
323
324 if (s->mmfr & MMFR_WRITE_OP)
325 return s->mmfr;
326 if (MMFR_PHYADDR(s->mmfr) != 1)
327 return s->mmfr |= 0xffff;
328
329 switch (MMFR_REGNUM(s->mmfr)) {
330 case MII_BMCR:
331 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
332 break;
333 case MII_BMSR:
334 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
335 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
336 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
337 break;
338 case MII_PHYID1:
339 v = DP83848_PHYID1;
340 break;
341 case MII_PHYID2:
342 v = DP83848_PHYID2;
343 break;
344 case MII_ANAR:
345 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
346 MII_ANAR_10 | MII_ANAR_CSMACD;
347 break;
348 case MII_ANLPAR:
349 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
350 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
351 break;
352 default:
353 v = 0xffff;
354 break;
355 }
356 s->mmfr = (s->mmfr & ~0xffff) | v;
357 return s->mmfr;
358 }
359
360 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
361 unsigned size)
362 {
363 mcf_fec_state *s = (mcf_fec_state *)opaque;
364 switch (addr & 0x3ff) {
365 case 0x004: return s->eir;
366 case 0x008: return s->eimr;
367 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
368 case 0x014: return 0; /* TDAR */
369 case 0x024: return s->ecr;
370 case 0x040: return mcf_fec_read_mdio(s);
371 case 0x044: return s->mscr;
372 case 0x064: return 0; /* MIBC */
373 case 0x084: return s->rcr;
374 case 0x0c4: return s->tcr;
375 case 0x0e4: /* PALR */
376 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
377 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
378 break;
379 case 0x0e8: /* PAUR */
380 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
381 case 0x0ec: return 0x10000; /* OPD */
382 case 0x118: return 0;
383 case 0x11c: return 0;
384 case 0x120: return 0;
385 case 0x124: return 0;
386 case 0x144: return s->tfwr;
387 case 0x14c: return 0x600;
388 case 0x150: return s->rfsr;
389 case 0x180: return s->erdsr;
390 case 0x184: return s->etdsr;
391 case 0x188: return s->emrbr;
392 case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
393 default:
394 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
395 return 0;
396 }
397 }
398
399 static void mcf_fec_write(void *opaque, hwaddr addr,
400 uint64_t value, unsigned size)
401 {
402 mcf_fec_state *s = (mcf_fec_state *)opaque;
403 switch (addr & 0x3ff) {
404 case 0x004:
405 s->eir &= ~value;
406 break;
407 case 0x008:
408 s->eimr = value;
409 break;
410 case 0x010: /* RDAR */
411 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
412 DPRINTF("RX enable\n");
413 mcf_fec_enable_rx(s);
414 }
415 break;
416 case 0x014: /* TDAR */
417 if (s->ecr & FEC_EN) {
418 mcf_fec_do_tx(s);
419 }
420 break;
421 case 0x024:
422 s->ecr = value;
423 if (value & FEC_RESET) {
424 DPRINTF("Reset\n");
425 mcf_fec_reset(opaque);
426 }
427 if ((s->ecr & FEC_EN) == 0) {
428 s->rx_enabled = 0;
429 }
430 break;
431 case 0x040:
432 s->mmfr = value;
433 s->eir |= FEC_INT_MII;
434 break;
435 case 0x044:
436 s->mscr = value & 0xfe;
437 break;
438 case 0x064:
439 /* TODO: Implement MIB. */
440 break;
441 case 0x084:
442 s->rcr = value & 0x07ff003f;
443 /* TODO: Implement LOOP mode. */
444 break;
445 case 0x0c4: /* TCR */
446 /* We transmit immediately, so raise GRA immediately. */
447 s->tcr = value;
448 if (value & 1)
449 s->eir |= FEC_INT_GRA;
450 break;
451 case 0x0e4: /* PALR */
452 s->conf.macaddr.a[0] = value >> 24;
453 s->conf.macaddr.a[1] = value >> 16;
454 s->conf.macaddr.a[2] = value >> 8;
455 s->conf.macaddr.a[3] = value;
456 break;
457 case 0x0e8: /* PAUR */
458 s->conf.macaddr.a[4] = value >> 24;
459 s->conf.macaddr.a[5] = value >> 16;
460 break;
461 case 0x0ec:
462 /* OPD */
463 break;
464 case 0x118:
465 case 0x11c:
466 case 0x120:
467 case 0x124:
468 /* TODO: implement MAC hash filtering. */
469 break;
470 case 0x144:
471 s->tfwr = value & 3;
472 break;
473 case 0x14c:
474 /* FRBR writes ignored. */
475 break;
476 case 0x150:
477 s->rfsr = (value & 0x3fc) | 0x400;
478 break;
479 case 0x180:
480 s->erdsr = value & ~3;
481 s->rx_descriptor = s->erdsr;
482 break;
483 case 0x184:
484 s->etdsr = value & ~3;
485 s->tx_descriptor = s->etdsr;
486 break;
487 case 0x188:
488 s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
489 break;
490 case 0x200 ... 0x2e0:
491 s->mib[(addr & 0x1ff) / 4] = value;
492 break;
493 default:
494 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
495 }
496 mcf_fec_update(s);
497 }
498
499 static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
500 {
501 s->mib[MIB_RMON_R_PACKETS]++;
502 s->mib[MIB_RMON_R_OCTETS] += size;
503 if (size < 64) {
504 s->mib[MIB_RMON_R_FRAG]++;
505 } else if (size == 64) {
506 s->mib[MIB_RMON_R_P64]++;
507 } else if (size < 128) {
508 s->mib[MIB_RMON_R_P65TO127]++;
509 } else if (size < 256) {
510 s->mib[MIB_RMON_R_P128TO255]++;
511 } else if (size < 512) {
512 s->mib[MIB_RMON_R_P256TO511]++;
513 } else if (size < 1024) {
514 s->mib[MIB_RMON_R_P512TO1023]++;
515 } else if (size < 2048) {
516 s->mib[MIB_RMON_R_P1024TO2047]++;
517 } else {
518 s->mib[MIB_RMON_R_P_GTE2048]++;
519 }
520 s->mib[MIB_IEEE_R_FRAME_OK]++;
521 s->mib[MIB_IEEE_R_OCTETS_OK] += size;
522 }
523
524 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
525 {
526 mcf_fec_bd bd;
527 uint32_t addr;
528
529 /* Walk descriptor list to determine if we have enough buffer */
530 addr = s->rx_descriptor;
531 while (want > 0) {
532 mcf_fec_read_bd(&bd, addr);
533 if ((bd.flags & FEC_BD_E) == 0) {
534 return 0;
535 }
536 if (want < s->emrbr) {
537 return 1;
538 }
539 want -= s->emrbr;
540 /* Advance to the next descriptor. */
541 if ((bd.flags & FEC_BD_W) != 0) {
542 addr = s->erdsr;
543 } else {
544 addr += 8;
545 }
546 }
547 return 0;
548 }
549
550 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
551 {
552 mcf_fec_state *s = qemu_get_nic_opaque(nc);
553 mcf_fec_bd bd;
554 uint32_t flags = 0;
555 uint32_t addr;
556 uint32_t crc;
557 uint32_t buf_addr;
558 uint8_t *crc_ptr;
559 unsigned int buf_len;
560 size_t retsize;
561
562 DPRINTF("do_rx len %d\n", size);
563 if (!s->rx_enabled) {
564 return -1;
565 }
566 /* 4 bytes for the CRC. */
567 size += 4;
568 crc = cpu_to_be32(crc32(~0, buf, size));
569 crc_ptr = (uint8_t *)&crc;
570 /* Huge frames are truncted. */
571 if (size > FEC_MAX_FRAME_SIZE) {
572 size = FEC_MAX_FRAME_SIZE;
573 flags |= FEC_BD_TR | FEC_BD_LG;
574 }
575 /* Frames larger than the user limit just set error flags. */
576 if (size > (s->rcr >> 16)) {
577 flags |= FEC_BD_LG;
578 }
579 /* Check if we have enough space in current descriptors */
580 if (!mcf_fec_have_receive_space(s, size)) {
581 return 0;
582 }
583 addr = s->rx_descriptor;
584 retsize = size;
585 while (size > 0) {
586 mcf_fec_read_bd(&bd, addr);
587 buf_len = (size <= s->emrbr) ? size: s->emrbr;
588 bd.length = buf_len;
589 size -= buf_len;
590 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
591 /* The last 4 bytes are the CRC. */
592 if (size < 4)
593 buf_len += size - 4;
594 buf_addr = bd.data;
595 cpu_physical_memory_write(buf_addr, buf, buf_len);
596 buf += buf_len;
597 if (size < 4) {
598 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
599 crc_ptr += 4 - size;
600 }
601 bd.flags &= ~FEC_BD_E;
602 if (size == 0) {
603 /* Last buffer in frame. */
604 bd.flags |= flags | FEC_BD_L;
605 DPRINTF("rx frame flags %04x\n", bd.flags);
606 s->eir |= FEC_INT_RXF;
607 } else {
608 s->eir |= FEC_INT_RXB;
609 }
610 mcf_fec_write_bd(&bd, addr);
611 /* Advance to the next descriptor. */
612 if ((bd.flags & FEC_BD_W) != 0) {
613 addr = s->erdsr;
614 } else {
615 addr += 8;
616 }
617 }
618 s->rx_descriptor = addr;
619 mcf_fec_rx_stats(s, retsize);
620 mcf_fec_enable_rx(s);
621 mcf_fec_update(s);
622 return retsize;
623 }
624
625 static const MemoryRegionOps mcf_fec_ops = {
626 .read = mcf_fec_read,
627 .write = mcf_fec_write,
628 .endianness = DEVICE_NATIVE_ENDIAN,
629 };
630
631 static NetClientInfo net_mcf_fec_info = {
632 .type = NET_CLIENT_DRIVER_NIC,
633 .size = sizeof(NICState),
634 .receive = mcf_fec_receive,
635 };
636
637 static void mcf_fec_realize(DeviceState *dev, Error **errp)
638 {
639 mcf_fec_state *s = MCF_FEC_NET(dev);
640
641 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
642 object_get_typename(OBJECT(dev)), dev->id, s);
643 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
644 }
645
646 static void mcf_fec_instance_init(Object *obj)
647 {
648 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
649 mcf_fec_state *s = MCF_FEC_NET(obj);
650 int i;
651
652 memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
653 sysbus_init_mmio(sbd, &s->iomem);
654 for (i = 0; i < FEC_NUM_IRQ; i++) {
655 sysbus_init_irq(sbd, &s->irq[i]);
656 }
657 }
658
659 static Property mcf_fec_properties[] = {
660 DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
661 DEFINE_PROP_END_OF_LIST(),
662 };
663
664 static void mcf_fec_class_init(ObjectClass *oc, void *data)
665 {
666 DeviceClass *dc = DEVICE_CLASS(oc);
667
668 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
669 dc->realize = mcf_fec_realize;
670 dc->desc = "MCF Fast Ethernet Controller network device";
671 dc->reset = mcf_fec_reset;
672 dc->props = mcf_fec_properties;
673 }
674
675 static const TypeInfo mcf_fec_info = {
676 .name = TYPE_MCF_FEC_NET,
677 .parent = TYPE_SYS_BUS_DEVICE,
678 .instance_size = sizeof(mcf_fec_state),
679 .instance_init = mcf_fec_instance_init,
680 .class_init = mcf_fec_class_init,
681 };
682
683 static void mcf_fec_register_types(void)
684 {
685 type_register_static(&mcf_fec_info);
686 }
687
688 type_init(mcf_fec_register_types)