]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/ne2000.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / net / ne2000.c
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "net/eth.h"
27 #include "qemu/module.h"
28 #include "ne2000.h"
29 #include "sysemu/sysemu.h"
30 #include "trace.h"
31
32 /* debug NE2000 card */
33 //#define DEBUG_NE2000
34
35 #define MAX_ETH_FRAME_SIZE 1514
36
37 #define E8390_CMD 0x00 /* The command register (for all pages) */
38 /* Page 0 register offsets. */
39 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
40 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
41 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
42 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
43 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
44 #define EN0_TSR 0x04 /* Transmit status reg RD */
45 #define EN0_TPSR 0x04 /* Transmit starting page WR */
46 #define EN0_NCR 0x05 /* Number of collision reg RD */
47 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
48 #define EN0_FIFO 0x06 /* FIFO RD */
49 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
50 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
51 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
52 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
53 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
54 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
55 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
56 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
57 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
58 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
59 #define EN0_RSR 0x0c /* rx status reg RD */
60 #define EN0_RXCR 0x0c /* RX configuration reg WR */
61 #define EN0_TXCR 0x0d /* TX configuration reg WR */
62 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
63 #define EN0_DCFG 0x0e /* Data configuration reg WR */
64 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
65 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
66 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
67
68 #define EN1_PHYS 0x11
69 #define EN1_CURPAG 0x17
70 #define EN1_MULT 0x18
71
72 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
73 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74
75 #define EN3_CONFIG0 0x33
76 #define EN3_CONFIG1 0x34
77 #define EN3_CONFIG2 0x35
78 #define EN3_CONFIG3 0x36
79
80 /* Register accessed at EN_CMD, the 8390 base addr. */
81 #define E8390_STOP 0x01 /* Stop and reset the chip */
82 #define E8390_START 0x02 /* Start the chip, clear reset */
83 #define E8390_TRANS 0x04 /* Transmit a frame */
84 #define E8390_RREAD 0x08 /* Remote read */
85 #define E8390_RWRITE 0x10 /* Remote write */
86 #define E8390_NODMA 0x20 /* Remote DMA */
87 #define E8390_PAGE0 0x00 /* Select page chip registers */
88 #define E8390_PAGE1 0x40 /* using the two high-order bits */
89 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90
91 /* Bits in EN0_ISR - Interrupt status register */
92 #define ENISR_RX 0x01 /* Receiver, no error */
93 #define ENISR_TX 0x02 /* Transmitter, no error */
94 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
95 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
96 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
97 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
98 #define ENISR_RDC 0x40 /* remote dma complete */
99 #define ENISR_RESET 0x80 /* Reset completed */
100 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101
102 /* Bits in received packet status byte and EN0_RSR*/
103 #define ENRSR_RXOK 0x01 /* Received a good packet */
104 #define ENRSR_CRC 0x02 /* CRC error */
105 #define ENRSR_FAE 0x04 /* frame alignment error */
106 #define ENRSR_FO 0x08 /* FIFO overrun */
107 #define ENRSR_MPA 0x10 /* missed pkt */
108 #define ENRSR_PHY 0x20 /* physical/multicast address */
109 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
110 #define ENRSR_DEF 0x80 /* deferring */
111
112 /* Transmitted packet status, EN0_TSR. */
113 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
114 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
115 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
116 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
117 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
118 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
119 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
120 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121
122 void ne2000_reset(NE2000State *s)
123 {
124 int i;
125
126 s->isr = ENISR_RESET;
127 memcpy(s->mem, &s->c.macaddr, 6);
128 s->mem[14] = 0x57;
129 s->mem[15] = 0x57;
130
131 /* duplicate prom data */
132 for(i = 15;i >= 0; i--) {
133 s->mem[2 * i] = s->mem[i];
134 s->mem[2 * i + 1] = s->mem[i];
135 }
136 }
137
138 static void ne2000_update_irq(NE2000State *s)
139 {
140 int isr;
141 isr = (s->isr & s->imr) & 0x7f;
142 #if defined(DEBUG_NE2000)
143 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
144 isr ? 1 : 0, s->isr, s->imr);
145 #endif
146 qemu_set_irq(s->irq, (isr != 0));
147 }
148
149 static int ne2000_buffer_full(NE2000State *s)
150 {
151 int avail, index, boundary;
152
153 if (s->stop <= s->start) {
154 return 1;
155 }
156
157 index = s->curpag << 8;
158 boundary = s->boundary << 8;
159 if (index < boundary)
160 avail = boundary - index;
161 else
162 avail = (s->stop - s->start) - (index - boundary);
163 if (avail < (MAX_ETH_FRAME_SIZE + 4))
164 return 1;
165 return 0;
166 }
167
168 #define MIN_BUF_SIZE 60
169
170 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
171 {
172 NE2000State *s = qemu_get_nic_opaque(nc);
173 size_t size = size_;
174 uint8_t *p;
175 unsigned int total_len, next, avail, len, index, mcast_idx;
176 uint8_t buf1[60];
177 static const uint8_t broadcast_macaddr[6] =
178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179
180 #if defined(DEBUG_NE2000)
181 printf("NE2000: received len=%zu\n", size);
182 #endif
183
184 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
185 return -1;
186
187 /* XXX: check this */
188 if (s->rxcr & 0x10) {
189 /* promiscuous: receive all */
190 } else {
191 if (!memcmp(buf, broadcast_macaddr, 6)) {
192 /* broadcast address */
193 if (!(s->rxcr & 0x04))
194 return size;
195 } else if (buf[0] & 0x01) {
196 /* multicast */
197 if (!(s->rxcr & 0x08))
198 return size;
199 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
200 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
201 return size;
202 } else if (s->mem[0] == buf[0] &&
203 s->mem[2] == buf[1] &&
204 s->mem[4] == buf[2] &&
205 s->mem[6] == buf[3] &&
206 s->mem[8] == buf[4] &&
207 s->mem[10] == buf[5]) {
208 /* match */
209 } else {
210 return size;
211 }
212 }
213
214
215 /* if too small buffer, then expand it */
216 if (size < MIN_BUF_SIZE) {
217 memcpy(buf1, buf, size);
218 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
219 buf = buf1;
220 size = MIN_BUF_SIZE;
221 }
222
223 index = s->curpag << 8;
224 if (index >= NE2000_PMEM_END) {
225 index = s->start;
226 }
227 /* 4 bytes for header */
228 total_len = size + 4;
229 /* address for next packet (4 bytes for CRC) */
230 next = index + ((total_len + 4 + 255) & ~0xff);
231 if (next >= s->stop)
232 next -= (s->stop - s->start);
233 /* prepare packet header */
234 p = s->mem + index;
235 s->rsr = ENRSR_RXOK; /* receive status */
236 /* XXX: check this */
237 if (buf[0] & 0x01)
238 s->rsr |= ENRSR_PHY;
239 p[0] = s->rsr;
240 p[1] = next >> 8;
241 p[2] = total_len;
242 p[3] = total_len >> 8;
243 index += 4;
244
245 /* write packet data */
246 while (size > 0) {
247 if (index <= s->stop)
248 avail = s->stop - index;
249 else
250 break;
251 len = size;
252 if (len > avail)
253 len = avail;
254 memcpy(s->mem + index, buf, len);
255 buf += len;
256 index += len;
257 if (index == s->stop)
258 index = s->start;
259 size -= len;
260 }
261 s->curpag = next >> 8;
262
263 /* now we can signal we have received something */
264 s->isr |= ENISR_RX;
265 ne2000_update_irq(s);
266
267 return size_;
268 }
269
270 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
271 {
272 NE2000State *s = opaque;
273 int offset, page, index;
274
275 addr &= 0xf;
276 trace_ne2000_ioport_write(addr, val);
277 if (addr == E8390_CMD) {
278 /* control register */
279 s->cmd = val;
280 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
281 s->isr &= ~ENISR_RESET;
282 /* test specific case: zero length transfer */
283 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
284 s->rcnt == 0) {
285 s->isr |= ENISR_RDC;
286 ne2000_update_irq(s);
287 }
288 if (val & E8390_TRANS) {
289 index = (s->tpsr << 8);
290 /* XXX: next 2 lines are a hack to make netware 3.11 work */
291 if (index >= NE2000_PMEM_END)
292 index -= NE2000_PMEM_SIZE;
293 /* fail safe: check range on the transmitted length */
294 if (index + s->tcnt <= NE2000_PMEM_END) {
295 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
296 s->tcnt);
297 }
298 /* signal end of transfer */
299 s->tsr = ENTSR_PTX;
300 s->isr |= ENISR_TX;
301 s->cmd &= ~E8390_TRANS;
302 ne2000_update_irq(s);
303 }
304 }
305 } else {
306 page = s->cmd >> 6;
307 offset = addr | (page << 4);
308 switch(offset) {
309 case EN0_STARTPG:
310 if (val << 8 <= NE2000_PMEM_END) {
311 s->start = val << 8;
312 }
313 break;
314 case EN0_STOPPG:
315 if (val << 8 <= NE2000_PMEM_END) {
316 s->stop = val << 8;
317 }
318 break;
319 case EN0_BOUNDARY:
320 if (val << 8 < NE2000_PMEM_END) {
321 s->boundary = val;
322 }
323 break;
324 case EN0_IMR:
325 s->imr = val;
326 ne2000_update_irq(s);
327 break;
328 case EN0_TPSR:
329 s->tpsr = val;
330 break;
331 case EN0_TCNTLO:
332 s->tcnt = (s->tcnt & 0xff00) | val;
333 break;
334 case EN0_TCNTHI:
335 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
336 break;
337 case EN0_RSARLO:
338 s->rsar = (s->rsar & 0xff00) | val;
339 break;
340 case EN0_RSARHI:
341 s->rsar = (s->rsar & 0x00ff) | (val << 8);
342 break;
343 case EN0_RCNTLO:
344 s->rcnt = (s->rcnt & 0xff00) | val;
345 break;
346 case EN0_RCNTHI:
347 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
348 break;
349 case EN0_RXCR:
350 s->rxcr = val;
351 break;
352 case EN0_DCFG:
353 s->dcfg = val;
354 break;
355 case EN0_ISR:
356 s->isr &= ~(val & 0x7f);
357 ne2000_update_irq(s);
358 break;
359 case EN1_PHYS ... EN1_PHYS + 5:
360 s->phys[offset - EN1_PHYS] = val;
361 break;
362 case EN1_CURPAG:
363 if (val << 8 < NE2000_PMEM_END) {
364 s->curpag = val;
365 }
366 break;
367 case EN1_MULT ... EN1_MULT + 7:
368 s->mult[offset - EN1_MULT] = val;
369 break;
370 }
371 }
372 }
373
374 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
375 {
376 NE2000State *s = opaque;
377 int offset, page, ret;
378
379 addr &= 0xf;
380 if (addr == E8390_CMD) {
381 ret = s->cmd;
382 } else {
383 page = s->cmd >> 6;
384 offset = addr | (page << 4);
385 switch(offset) {
386 case EN0_TSR:
387 ret = s->tsr;
388 break;
389 case EN0_BOUNDARY:
390 ret = s->boundary;
391 break;
392 case EN0_ISR:
393 ret = s->isr;
394 break;
395 case EN0_RSARLO:
396 ret = s->rsar & 0x00ff;
397 break;
398 case EN0_RSARHI:
399 ret = s->rsar >> 8;
400 break;
401 case EN1_PHYS ... EN1_PHYS + 5:
402 ret = s->phys[offset - EN1_PHYS];
403 break;
404 case EN1_CURPAG:
405 ret = s->curpag;
406 break;
407 case EN1_MULT ... EN1_MULT + 7:
408 ret = s->mult[offset - EN1_MULT];
409 break;
410 case EN0_RSR:
411 ret = s->rsr;
412 break;
413 case EN2_STARTPG:
414 ret = s->start >> 8;
415 break;
416 case EN2_STOPPG:
417 ret = s->stop >> 8;
418 break;
419 case EN0_RTL8029ID0:
420 ret = 0x50;
421 break;
422 case EN0_RTL8029ID1:
423 ret = 0x43;
424 break;
425 case EN3_CONFIG0:
426 ret = 0; /* 10baseT media */
427 break;
428 case EN3_CONFIG2:
429 ret = 0x40; /* 10baseT active */
430 break;
431 case EN3_CONFIG3:
432 ret = 0x40; /* Full duplex */
433 break;
434 default:
435 ret = 0x00;
436 break;
437 }
438 }
439 trace_ne2000_ioport_read(addr, ret);
440 return ret;
441 }
442
443 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
444 uint32_t val)
445 {
446 if (addr < 32 ||
447 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
448 s->mem[addr] = val;
449 }
450 }
451
452 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
453 uint32_t val)
454 {
455 addr &= ~1; /* XXX: check exact behaviour if not even */
456 if (addr < 32 ||
457 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
458 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
459 }
460 }
461
462 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
463 uint32_t val)
464 {
465 addr &= ~1; /* XXX: check exact behaviour if not even */
466 if (addr < 32
467 || (addr >= NE2000_PMEM_START
468 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
469 stl_le_p(s->mem + addr, val);
470 }
471 }
472
473 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
474 {
475 if (addr < 32 ||
476 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
477 return s->mem[addr];
478 } else {
479 return 0xff;
480 }
481 }
482
483 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
484 {
485 addr &= ~1; /* XXX: check exact behaviour if not even */
486 if (addr < 32 ||
487 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
489 } else {
490 return 0xffff;
491 }
492 }
493
494 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
495 {
496 addr &= ~1; /* XXX: check exact behaviour if not even */
497 if (addr < 32
498 || (addr >= NE2000_PMEM_START
499 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
500 return ldl_le_p(s->mem + addr);
501 } else {
502 return 0xffffffff;
503 }
504 }
505
506 static inline void ne2000_dma_update(NE2000State *s, int len)
507 {
508 s->rsar += len;
509 /* wrap */
510 /* XXX: check what to do if rsar > stop */
511 if (s->rsar == s->stop)
512 s->rsar = s->start;
513
514 if (s->rcnt <= len) {
515 s->rcnt = 0;
516 /* signal end of transfer */
517 s->isr |= ENISR_RDC;
518 ne2000_update_irq(s);
519 } else {
520 s->rcnt -= len;
521 }
522 }
523
524 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
525 {
526 NE2000State *s = opaque;
527
528 #ifdef DEBUG_NE2000
529 printf("NE2000: asic write val=0x%04x\n", val);
530 #endif
531 if (s->rcnt == 0)
532 return;
533 if (s->dcfg & 0x01) {
534 /* 16 bit access */
535 ne2000_mem_writew(s, s->rsar, val);
536 ne2000_dma_update(s, 2);
537 } else {
538 /* 8 bit access */
539 ne2000_mem_writeb(s, s->rsar, val);
540 ne2000_dma_update(s, 1);
541 }
542 }
543
544 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
545 {
546 NE2000State *s = opaque;
547 int ret;
548
549 if (s->dcfg & 0x01) {
550 /* 16 bit access */
551 ret = ne2000_mem_readw(s, s->rsar);
552 ne2000_dma_update(s, 2);
553 } else {
554 /* 8 bit access */
555 ret = ne2000_mem_readb(s, s->rsar);
556 ne2000_dma_update(s, 1);
557 }
558 #ifdef DEBUG_NE2000
559 printf("NE2000: asic read val=0x%04x\n", ret);
560 #endif
561 return ret;
562 }
563
564 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
565 {
566 NE2000State *s = opaque;
567
568 #ifdef DEBUG_NE2000
569 printf("NE2000: asic writel val=0x%04x\n", val);
570 #endif
571 if (s->rcnt == 0)
572 return;
573 /* 32 bit access */
574 ne2000_mem_writel(s, s->rsar, val);
575 ne2000_dma_update(s, 4);
576 }
577
578 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
579 {
580 NE2000State *s = opaque;
581 int ret;
582
583 /* 32 bit access */
584 ret = ne2000_mem_readl(s, s->rsar);
585 ne2000_dma_update(s, 4);
586 #ifdef DEBUG_NE2000
587 printf("NE2000: asic readl val=0x%04x\n", ret);
588 #endif
589 return ret;
590 }
591
592 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
593 {
594 /* nothing to do (end of reset pulse) */
595 }
596
597 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
598 {
599 NE2000State *s = opaque;
600 ne2000_reset(s);
601 return 0;
602 }
603
604 static int ne2000_post_load(void* opaque, int version_id)
605 {
606 NE2000State* s = opaque;
607
608 if (version_id < 2) {
609 s->rxcr = 0x0c;
610 }
611 return 0;
612 }
613
614 const VMStateDescription vmstate_ne2000 = {
615 .name = "ne2000",
616 .version_id = 2,
617 .minimum_version_id = 0,
618 .post_load = ne2000_post_load,
619 .fields = (VMStateField[]) {
620 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
621 VMSTATE_UINT8(cmd, NE2000State),
622 VMSTATE_UINT32(start, NE2000State),
623 VMSTATE_UINT32(stop, NE2000State),
624 VMSTATE_UINT8(boundary, NE2000State),
625 VMSTATE_UINT8(tsr, NE2000State),
626 VMSTATE_UINT8(tpsr, NE2000State),
627 VMSTATE_UINT16(tcnt, NE2000State),
628 VMSTATE_UINT16(rcnt, NE2000State),
629 VMSTATE_UINT32(rsar, NE2000State),
630 VMSTATE_UINT8(rsr, NE2000State),
631 VMSTATE_UINT8(isr, NE2000State),
632 VMSTATE_UINT8(dcfg, NE2000State),
633 VMSTATE_UINT8(imr, NE2000State),
634 VMSTATE_BUFFER(phys, NE2000State),
635 VMSTATE_UINT8(curpag, NE2000State),
636 VMSTATE_BUFFER(mult, NE2000State),
637 VMSTATE_UNUSED(4), /* was irq */
638 VMSTATE_BUFFER(mem, NE2000State),
639 VMSTATE_END_OF_LIST()
640 }
641 };
642
643 static uint64_t ne2000_read(void *opaque, hwaddr addr,
644 unsigned size)
645 {
646 NE2000State *s = opaque;
647 uint64_t val;
648
649 if (addr < 0x10 && size == 1) {
650 val = ne2000_ioport_read(s, addr);
651 } else if (addr == 0x10) {
652 if (size <= 2) {
653 val = ne2000_asic_ioport_read(s, addr);
654 } else {
655 val = ne2000_asic_ioport_readl(s, addr);
656 }
657 } else if (addr == 0x1f && size == 1) {
658 val = ne2000_reset_ioport_read(s, addr);
659 } else {
660 val = ((uint64_t)1 << (size * 8)) - 1;
661 }
662 trace_ne2000_read(addr, val);
663
664 return val;
665 }
666
667 static void ne2000_write(void *opaque, hwaddr addr,
668 uint64_t data, unsigned size)
669 {
670 NE2000State *s = opaque;
671
672 trace_ne2000_write(addr, data);
673 if (addr < 0x10 && size == 1) {
674 ne2000_ioport_write(s, addr, data);
675 } else if (addr == 0x10) {
676 if (size <= 2) {
677 ne2000_asic_ioport_write(s, addr, data);
678 } else {
679 ne2000_asic_ioport_writel(s, addr, data);
680 }
681 } else if (addr == 0x1f && size == 1) {
682 ne2000_reset_ioport_write(s, addr, data);
683 }
684 }
685
686 static const MemoryRegionOps ne2000_ops = {
687 .read = ne2000_read,
688 .write = ne2000_write,
689 .endianness = DEVICE_LITTLE_ENDIAN,
690 };
691
692 /***********************************************************/
693 /* PCI NE2000 definitions */
694
695 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
696 {
697 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
698 }