]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nseries.c
Merge remote-tracking branch 'qemu-kvm/uq/master' into staging
[mirror_qemu.git] / hw / nseries.c
1 /*
2 * Nokia N-series internet tablets.
3 *
4 * Copyright (C) 2007 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "omap.h"
24 #include "arm-misc.h"
25 #include "irq.h"
26 #include "console.h"
27 #include "boards.h"
28 #include "i2c.h"
29 #include "devices.h"
30 #include "flash.h"
31 #include "hw.h"
32 #include "bt.h"
33 #include "loader.h"
34 #include "blockdev.h"
35 #include "sysbus.h"
36 #include "exec-memory.h"
37
38 /* Nokia N8x0 support */
39 struct n800_s {
40 struct omap_mpu_state_s *cpu;
41
42 struct rfbi_chip_s blizzard;
43 struct {
44 void *opaque;
45 uint32_t (*txrx)(void *opaque, uint32_t value, int len);
46 uWireSlave *chip;
47 } ts;
48 i2c_bus *i2c;
49
50 int keymap[0x80];
51 DeviceState *kbd;
52
53 DeviceState *usb;
54 void *retu;
55 void *tahvo;
56 DeviceState *nand;
57 };
58
59 /* GPIO pins */
60 #define N8X0_TUSB_ENABLE_GPIO 0
61 #define N800_MMC2_WP_GPIO 8
62 #define N800_UNKNOWN_GPIO0 9 /* out */
63 #define N810_MMC2_VIOSD_GPIO 9
64 #define N810_HEADSET_AMP_GPIO 10
65 #define N800_CAM_TURN_GPIO 12
66 #define N810_GPS_RESET_GPIO 12
67 #define N800_BLIZZARD_POWERDOWN_GPIO 15
68 #define N800_MMC1_WP_GPIO 23
69 #define N810_MMC2_VSD_GPIO 23
70 #define N8X0_ONENAND_GPIO 26
71 #define N810_BLIZZARD_RESET_GPIO 30
72 #define N800_UNKNOWN_GPIO2 53 /* out */
73 #define N8X0_TUSB_INT_GPIO 58
74 #define N8X0_BT_WKUP_GPIO 61
75 #define N8X0_STI_GPIO 62
76 #define N8X0_CBUS_SEL_GPIO 64
77 #define N8X0_CBUS_DAT_GPIO 65
78 #define N8X0_CBUS_CLK_GPIO 66
79 #define N8X0_WLAN_IRQ_GPIO 87
80 #define N8X0_BT_RESET_GPIO 92
81 #define N8X0_TEA5761_CS_GPIO 93
82 #define N800_UNKNOWN_GPIO 94
83 #define N810_TSC_RESET_GPIO 94
84 #define N800_CAM_ACT_GPIO 95
85 #define N810_GPS_WAKEUP_GPIO 95
86 #define N8X0_MMC_CS_GPIO 96
87 #define N8X0_WLAN_PWR_GPIO 97
88 #define N8X0_BT_HOST_WKUP_GPIO 98
89 #define N810_SPEAKER_AMP_GPIO 101
90 #define N810_KB_LOCK_GPIO 102
91 #define N800_TSC_TS_GPIO 103
92 #define N810_TSC_TS_GPIO 106
93 #define N8X0_HEADPHONE_GPIO 107
94 #define N8X0_RETU_GPIO 108
95 #define N800_TSC_KP_IRQ_GPIO 109
96 #define N810_KEYBOARD_GPIO 109
97 #define N800_BAT_COVER_GPIO 110
98 #define N810_SLIDE_GPIO 110
99 #define N8X0_TAHVO_GPIO 111
100 #define N800_UNKNOWN_GPIO4 112 /* out */
101 #define N810_SLEEPX_LED_GPIO 112
102 #define N800_TSC_RESET_GPIO 118 /* ? */
103 #define N810_AIC33_RESET_GPIO 118
104 #define N800_TSC_UNKNOWN_GPIO 119 /* out */
105 #define N8X0_TMP105_GPIO 125
106
107 /* Config */
108 #define BT_UART 0
109 #define XLDR_LL_UART 1
110
111 /* Addresses on the I2C bus 0 */
112 #define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */
113 #define N8X0_TCM825x_ADDR 0x29 /* Camera */
114 #define N810_LP5521_ADDR 0x32 /* LEDs */
115 #define N810_TSL2563_ADDR 0x3d /* Light sensor */
116 #define N810_LM8323_ADDR 0x45 /* Keyboard */
117 /* Addresses on the I2C bus 1 */
118 #define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */
119 #define N8X0_MENELAUS_ADDR 0x72 /* Power management */
120
121 /* Chipselects on GPMC NOR interface */
122 #define N8X0_ONENAND_CS 0
123 #define N8X0_USB_ASYNC_CS 1
124 #define N8X0_USB_SYNC_CS 4
125
126 #define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81
127
128 static void n800_mmc_cs_cb(void *opaque, int line, int level)
129 {
130 /* TODO: this seems to actually be connected to the menelaus, to
131 * which also both MMC slots connect. */
132 omap_mmc_enable((struct omap_mmc_s *) opaque, !level);
133
134 printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1);
135 }
136
137 static void n8x0_gpio_setup(struct n800_s *s)
138 {
139 qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->cpu->mmc, 1);
140 qdev_connect_gpio_out(s->cpu->gpio, N8X0_MMC_CS_GPIO, mmc_cs[0]);
141
142 qemu_irq_lower(qdev_get_gpio_in(s->cpu->gpio, N800_BAT_COVER_GPIO));
143 }
144
145 #define MAEMO_CAL_HEADER(...) \
146 'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \
147 __VA_ARGS__, \
148 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
149
150 static const uint8_t n8x0_cal_wlan_mac[] = {
151 MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c')
152 0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3,
153 0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00,
154 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00,
155 0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00,
156 0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00,
157 };
158
159 static const uint8_t n8x0_cal_bt_id[] = {
160 MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0)
161 0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96,
162 0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00,
163 N8X0_BD_ADDR,
164 };
165
166 static void n8x0_nand_setup(struct n800_s *s)
167 {
168 char *otp_region;
169 DriveInfo *dinfo;
170
171 s->nand = qdev_create(NULL, "onenand");
172 qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG);
173 /* Either 0x40 or 0x48 are OK for the device ID */
174 qdev_prop_set_uint16(s->nand, "device_id", 0x48);
175 qdev_prop_set_uint16(s->nand, "version_id", 0);
176 qdev_prop_set_int32(s->nand, "shift", 1);
177 dinfo = drive_get(IF_MTD, 0, 0);
178 if (dinfo && dinfo->bdrv) {
179 qdev_prop_set_drive_nofail(s->nand, "drive", dinfo->bdrv);
180 }
181 qdev_init_nofail(s->nand);
182 sysbus_connect_irq(sysbus_from_qdev(s->nand), 0,
183 qdev_get_gpio_in(s->cpu->gpio, N8X0_ONENAND_GPIO));
184 omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS,
185 sysbus_mmio_get_region(sysbus_from_qdev(s->nand), 0));
186 otp_region = onenand_raw_otp(s->nand);
187
188 memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac));
189 memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id));
190 /* XXX: in theory should also update the OOB for both pages */
191 }
192
193 static void n8x0_i2c_setup(struct n800_s *s)
194 {
195 DeviceState *dev;
196 qemu_irq tmp_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_TMP105_GPIO);
197
198 /* Attach the CPU on one end of our I2C bus. */
199 s->i2c = omap_i2c_bus(s->cpu->i2c[0]);
200
201 /* Attach a menelaus PM chip */
202 dev = i2c_create_slave(s->i2c, "twl92230", N8X0_MENELAUS_ADDR);
203 qdev_connect_gpio_out(dev, 3,
204 qdev_get_gpio_in(s->cpu->ih[0],
205 OMAP_INT_24XX_SYS_NIRQ));
206
207 qemu_system_powerdown = qdev_get_gpio_in(dev, 3);
208
209 /* Attach a TMP105 PM chip (A0 wired to ground) */
210 dev = i2c_create_slave(s->i2c, "tmp105", N8X0_TMP105_ADDR);
211 qdev_connect_gpio_out(dev, 0, tmp_irq);
212 }
213
214 /* Touchscreen and keypad controller */
215 static MouseTransformInfo n800_pointercal = {
216 .x = 800,
217 .y = 480,
218 .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 },
219 };
220
221 static MouseTransformInfo n810_pointercal = {
222 .x = 800,
223 .y = 480,
224 .a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 },
225 };
226
227 #define RETU_KEYCODE 61 /* F3 */
228
229 static void n800_key_event(void *opaque, int keycode)
230 {
231 struct n800_s *s = (struct n800_s *) opaque;
232 int code = s->keymap[keycode & 0x7f];
233
234 if (code == -1) {
235 if ((keycode & 0x7f) == RETU_KEYCODE)
236 retu_key_event(s->retu, !(keycode & 0x80));
237 return;
238 }
239
240 tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80));
241 }
242
243 static const int n800_keys[16] = {
244 -1,
245 72, /* Up */
246 63, /* Home (F5) */
247 -1,
248 75, /* Left */
249 28, /* Enter */
250 77, /* Right */
251 -1,
252 1, /* Cycle (ESC) */
253 80, /* Down */
254 62, /* Menu (F4) */
255 -1,
256 66, /* Zoom- (F8) */
257 64, /* FullScreen (F6) */
258 65, /* Zoom+ (F7) */
259 -1,
260 };
261
262 static void n800_tsc_kbd_setup(struct n800_s *s)
263 {
264 int i;
265
266 /* XXX: are the three pins inverted inside the chip between the
267 * tsc and the cpu (N4111)? */
268 qemu_irq penirq = NULL; /* NC */
269 qemu_irq kbirq = qdev_get_gpio_in(s->cpu->gpio, N800_TSC_KP_IRQ_GPIO);
270 qemu_irq dav = qdev_get_gpio_in(s->cpu->gpio, N800_TSC_TS_GPIO);
271
272 s->ts.chip = tsc2301_init(penirq, kbirq, dav);
273 s->ts.opaque = s->ts.chip->opaque;
274 s->ts.txrx = tsc210x_txrx;
275
276 for (i = 0; i < 0x80; i ++)
277 s->keymap[i] = -1;
278 for (i = 0; i < 0x10; i ++)
279 if (n800_keys[i] >= 0)
280 s->keymap[n800_keys[i]] = i;
281
282 qemu_add_kbd_event_handler(n800_key_event, s);
283
284 tsc210x_set_transform(s->ts.chip, &n800_pointercal);
285 }
286
287 static void n810_tsc_setup(struct n800_s *s)
288 {
289 qemu_irq pintdav = qdev_get_gpio_in(s->cpu->gpio, N810_TSC_TS_GPIO);
290
291 s->ts.opaque = tsc2005_init(pintdav);
292 s->ts.txrx = tsc2005_txrx;
293
294 tsc2005_set_transform(s->ts.opaque, &n810_pointercal);
295 }
296
297 /* N810 Keyboard controller */
298 static void n810_key_event(void *opaque, int keycode)
299 {
300 struct n800_s *s = (struct n800_s *) opaque;
301 int code = s->keymap[keycode & 0x7f];
302
303 if (code == -1) {
304 if ((keycode & 0x7f) == RETU_KEYCODE)
305 retu_key_event(s->retu, !(keycode & 0x80));
306 return;
307 }
308
309 lm832x_key_event(s->kbd, code, !(keycode & 0x80));
310 }
311
312 #define M 0
313
314 static int n810_keys[0x80] = {
315 [0x01] = 16, /* Q */
316 [0x02] = 37, /* K */
317 [0x03] = 24, /* O */
318 [0x04] = 25, /* P */
319 [0x05] = 14, /* Backspace */
320 [0x06] = 30, /* A */
321 [0x07] = 31, /* S */
322 [0x08] = 32, /* D */
323 [0x09] = 33, /* F */
324 [0x0a] = 34, /* G */
325 [0x0b] = 35, /* H */
326 [0x0c] = 36, /* J */
327
328 [0x11] = 17, /* W */
329 [0x12] = 62, /* Menu (F4) */
330 [0x13] = 38, /* L */
331 [0x14] = 40, /* ' (Apostrophe) */
332 [0x16] = 44, /* Z */
333 [0x17] = 45, /* X */
334 [0x18] = 46, /* C */
335 [0x19] = 47, /* V */
336 [0x1a] = 48, /* B */
337 [0x1b] = 49, /* N */
338 [0x1c] = 42, /* Shift (Left shift) */
339 [0x1f] = 65, /* Zoom+ (F7) */
340
341 [0x21] = 18, /* E */
342 [0x22] = 39, /* ; (Semicolon) */
343 [0x23] = 12, /* - (Minus) */
344 [0x24] = 13, /* = (Equal) */
345 [0x2b] = 56, /* Fn (Left Alt) */
346 [0x2c] = 50, /* M */
347 [0x2f] = 66, /* Zoom- (F8) */
348
349 [0x31] = 19, /* R */
350 [0x32] = 29 | M, /* Right Ctrl */
351 [0x34] = 57, /* Space */
352 [0x35] = 51, /* , (Comma) */
353 [0x37] = 72 | M, /* Up */
354 [0x3c] = 82 | M, /* Compose (Insert) */
355 [0x3f] = 64, /* FullScreen (F6) */
356
357 [0x41] = 20, /* T */
358 [0x44] = 52, /* . (Dot) */
359 [0x46] = 77 | M, /* Right */
360 [0x4f] = 63, /* Home (F5) */
361 [0x51] = 21, /* Y */
362 [0x53] = 80 | M, /* Down */
363 [0x55] = 28, /* Enter */
364 [0x5f] = 1, /* Cycle (ESC) */
365
366 [0x61] = 22, /* U */
367 [0x64] = 75 | M, /* Left */
368
369 [0x71] = 23, /* I */
370 #if 0
371 [0x75] = 28 | M, /* KP Enter (KP Enter) */
372 #else
373 [0x75] = 15, /* KP Enter (Tab) */
374 #endif
375 };
376
377 #undef M
378
379 static void n810_kbd_setup(struct n800_s *s)
380 {
381 qemu_irq kbd_irq = qdev_get_gpio_in(s->cpu->gpio, N810_KEYBOARD_GPIO);
382 int i;
383
384 for (i = 0; i < 0x80; i ++)
385 s->keymap[i] = -1;
386 for (i = 0; i < 0x80; i ++)
387 if (n810_keys[i] > 0)
388 s->keymap[n810_keys[i]] = i;
389
390 qemu_add_kbd_event_handler(n810_key_event, s);
391
392 /* Attach the LM8322 keyboard to the I2C bus,
393 * should happen in n8x0_i2c_setup and s->kbd be initialised here. */
394 s->kbd = i2c_create_slave(s->i2c, "lm8323", N810_LM8323_ADDR);
395 qdev_connect_gpio_out(s->kbd, 0, kbd_irq);
396 }
397
398 /* LCD MIPI DBI-C controller (URAL) */
399 struct mipid_s {
400 int resp[4];
401 int param[4];
402 int p;
403 int pm;
404 int cmd;
405
406 int sleep;
407 int booster;
408 int te;
409 int selfcheck;
410 int partial;
411 int normal;
412 int vscr;
413 int invert;
414 int onoff;
415 int gamma;
416 uint32_t id;
417 };
418
419 static void mipid_reset(struct mipid_s *s)
420 {
421 if (!s->sleep)
422 fprintf(stderr, "%s: Display off\n", __FUNCTION__);
423
424 s->pm = 0;
425 s->cmd = 0;
426
427 s->sleep = 1;
428 s->booster = 0;
429 s->selfcheck =
430 (1 << 7) | /* Register loading OK. */
431 (1 << 5) | /* The chip is attached. */
432 (1 << 4); /* Display glass still in one piece. */
433 s->te = 0;
434 s->partial = 0;
435 s->normal = 1;
436 s->vscr = 0;
437 s->invert = 0;
438 s->onoff = 1;
439 s->gamma = 0;
440 }
441
442 static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len)
443 {
444 struct mipid_s *s = (struct mipid_s *) opaque;
445 uint8_t ret;
446
447 if (len > 9)
448 hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len);
449
450 if (s->p >= ARRAY_SIZE(s->resp))
451 ret = 0;
452 else
453 ret = s->resp[s->p ++];
454 if (s->pm --> 0)
455 s->param[s->pm] = cmd;
456 else
457 s->cmd = cmd;
458
459 switch (s->cmd) {
460 case 0x00: /* NOP */
461 break;
462
463 case 0x01: /* SWRESET */
464 mipid_reset(s);
465 break;
466
467 case 0x02: /* BSTROFF */
468 s->booster = 0;
469 break;
470 case 0x03: /* BSTRON */
471 s->booster = 1;
472 break;
473
474 case 0x04: /* RDDID */
475 s->p = 0;
476 s->resp[0] = (s->id >> 16) & 0xff;
477 s->resp[1] = (s->id >> 8) & 0xff;
478 s->resp[2] = (s->id >> 0) & 0xff;
479 break;
480
481 case 0x06: /* RD_RED */
482 case 0x07: /* RD_GREEN */
483 /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so
484 * for the bootloader one needs to change this. */
485 case 0x08: /* RD_BLUE */
486 s->p = 0;
487 /* TODO: return first pixel components */
488 s->resp[0] = 0x01;
489 break;
490
491 case 0x09: /* RDDST */
492 s->p = 0;
493 s->resp[0] = s->booster << 7;
494 s->resp[1] = (5 << 4) | (s->partial << 2) |
495 (s->sleep << 1) | s->normal;
496 s->resp[2] = (s->vscr << 7) | (s->invert << 5) |
497 (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2);
498 s->resp[3] = s->gamma << 6;
499 break;
500
501 case 0x0a: /* RDDPM */
502 s->p = 0;
503 s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) |
504 (s->partial << 5) | (s->sleep << 6) | (s->booster << 7);
505 break;
506 case 0x0b: /* RDDMADCTR */
507 s->p = 0;
508 s->resp[0] = 0;
509 break;
510 case 0x0c: /* RDDCOLMOD */
511 s->p = 0;
512 s->resp[0] = 5; /* 65K colours */
513 break;
514 case 0x0d: /* RDDIM */
515 s->p = 0;
516 s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma;
517 break;
518 case 0x0e: /* RDDSM */
519 s->p = 0;
520 s->resp[0] = s->te << 7;
521 break;
522 case 0x0f: /* RDDSDR */
523 s->p = 0;
524 s->resp[0] = s->selfcheck;
525 break;
526
527 case 0x10: /* SLPIN */
528 s->sleep = 1;
529 break;
530 case 0x11: /* SLPOUT */
531 s->sleep = 0;
532 s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */
533 break;
534
535 case 0x12: /* PTLON */
536 s->partial = 1;
537 s->normal = 0;
538 s->vscr = 0;
539 break;
540 case 0x13: /* NORON */
541 s->partial = 0;
542 s->normal = 1;
543 s->vscr = 0;
544 break;
545
546 case 0x20: /* INVOFF */
547 s->invert = 0;
548 break;
549 case 0x21: /* INVON */
550 s->invert = 1;
551 break;
552
553 case 0x22: /* APOFF */
554 case 0x23: /* APON */
555 goto bad_cmd;
556
557 case 0x25: /* WRCNTR */
558 if (s->pm < 0)
559 s->pm = 1;
560 goto bad_cmd;
561
562 case 0x26: /* GAMSET */
563 if (!s->pm)
564 s->gamma = ffs(s->param[0] & 0xf) - 1;
565 else if (s->pm < 0)
566 s->pm = 1;
567 break;
568
569 case 0x28: /* DISPOFF */
570 s->onoff = 0;
571 fprintf(stderr, "%s: Display off\n", __FUNCTION__);
572 break;
573 case 0x29: /* DISPON */
574 s->onoff = 1;
575 fprintf(stderr, "%s: Display on\n", __FUNCTION__);
576 break;
577
578 case 0x2a: /* CASET */
579 case 0x2b: /* RASET */
580 case 0x2c: /* RAMWR */
581 case 0x2d: /* RGBSET */
582 case 0x2e: /* RAMRD */
583 case 0x30: /* PTLAR */
584 case 0x33: /* SCRLAR */
585 goto bad_cmd;
586
587 case 0x34: /* TEOFF */
588 s->te = 0;
589 break;
590 case 0x35: /* TEON */
591 if (!s->pm)
592 s->te = 1;
593 else if (s->pm < 0)
594 s->pm = 1;
595 break;
596
597 case 0x36: /* MADCTR */
598 goto bad_cmd;
599
600 case 0x37: /* VSCSAD */
601 s->partial = 0;
602 s->normal = 0;
603 s->vscr = 1;
604 break;
605
606 case 0x38: /* IDMOFF */
607 case 0x39: /* IDMON */
608 case 0x3a: /* COLMOD */
609 goto bad_cmd;
610
611 case 0xb0: /* CLKINT / DISCTL */
612 case 0xb1: /* CLKEXT */
613 if (s->pm < 0)
614 s->pm = 2;
615 break;
616
617 case 0xb4: /* FRMSEL */
618 break;
619
620 case 0xb5: /* FRM8SEL */
621 case 0xb6: /* TMPRNG / INIESC */
622 case 0xb7: /* TMPHIS / NOP2 */
623 case 0xb8: /* TMPREAD / MADCTL */
624 case 0xba: /* DISTCTR */
625 case 0xbb: /* EPVOL */
626 goto bad_cmd;
627
628 case 0xbd: /* Unknown */
629 s->p = 0;
630 s->resp[0] = 0;
631 s->resp[1] = 1;
632 break;
633
634 case 0xc2: /* IFMOD */
635 if (s->pm < 0)
636 s->pm = 2;
637 break;
638
639 case 0xc6: /* PWRCTL */
640 case 0xc7: /* PPWRCTL */
641 case 0xd0: /* EPWROUT */
642 case 0xd1: /* EPWRIN */
643 case 0xd4: /* RDEV */
644 case 0xd5: /* RDRR */
645 goto bad_cmd;
646
647 case 0xda: /* RDID1 */
648 s->p = 0;
649 s->resp[0] = (s->id >> 16) & 0xff;
650 break;
651 case 0xdb: /* RDID2 */
652 s->p = 0;
653 s->resp[0] = (s->id >> 8) & 0xff;
654 break;
655 case 0xdc: /* RDID3 */
656 s->p = 0;
657 s->resp[0] = (s->id >> 0) & 0xff;
658 break;
659
660 default:
661 bad_cmd:
662 fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd);
663 break;
664 }
665
666 return ret;
667 }
668
669 static void *mipid_init(void)
670 {
671 struct mipid_s *s = (struct mipid_s *) g_malloc0(sizeof(*s));
672
673 s->id = 0x838f03;
674 mipid_reset(s);
675
676 return s;
677 }
678
679 static void n8x0_spi_setup(struct n800_s *s)
680 {
681 void *tsc = s->ts.opaque;
682 void *mipid = mipid_init();
683
684 omap_mcspi_attach(s->cpu->mcspi[0], s->ts.txrx, tsc, 0);
685 omap_mcspi_attach(s->cpu->mcspi[0], mipid_txrx, mipid, 1);
686 }
687
688 /* This task is normally performed by the bootloader. If we're loading
689 * a kernel directly, we need to enable the Blizzard ourselves. */
690 static void n800_dss_init(struct rfbi_chip_s *chip)
691 {
692 uint8_t *fb_blank;
693
694 chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */
695 chip->write(chip->opaque, 1, 0x64);
696 chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */
697 chip->write(chip->opaque, 1, 0x1e);
698 chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */
699 chip->write(chip->opaque, 1, 0xe0);
700 chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */
701 chip->write(chip->opaque, 1, 0x01);
702 chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */
703 chip->write(chip->opaque, 1, 0x06);
704 chip->write(chip->opaque, 0, 0x68); /* Display Mode register */
705 chip->write(chip->opaque, 1, 1); /* Enable bit */
706
707 chip->write(chip->opaque, 0, 0x6c);
708 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
709 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
710 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
711 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
712 chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */
713 chip->write(chip->opaque, 1, 0x03); /* Input X End Position */
714 chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */
715 chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */
716 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
717 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
718 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
719 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
720 chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */
721 chip->write(chip->opaque, 1, 0x03); /* Output X End Position */
722 chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */
723 chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */
724 chip->write(chip->opaque, 1, 0x01); /* Input Data Format */
725 chip->write(chip->opaque, 1, 0x01); /* Data Source Select */
726
727 fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2);
728 /* Display Memory Data Port */
729 chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800);
730 g_free(fb_blank);
731 }
732
733 static void n8x0_dss_setup(struct n800_s *s)
734 {
735 s->blizzard.opaque = s1d13745_init(NULL);
736 s->blizzard.block = s1d13745_write_block;
737 s->blizzard.write = s1d13745_write;
738 s->blizzard.read = s1d13745_read;
739
740 omap_rfbi_attach(s->cpu->dss, 0, &s->blizzard);
741 }
742
743 static void n8x0_cbus_setup(struct n800_s *s)
744 {
745 qemu_irq dat_out = qdev_get_gpio_in(s->cpu->gpio, N8X0_CBUS_DAT_GPIO);
746 qemu_irq retu_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_RETU_GPIO);
747 qemu_irq tahvo_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_TAHVO_GPIO);
748
749 CBus *cbus = cbus_init(dat_out);
750
751 qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk);
752 qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat);
753 qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel);
754
755 cbus_attach(cbus, s->retu = retu_init(retu_irq, 1));
756 cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1));
757 }
758
759 static void n8x0_uart_setup(struct n800_s *s)
760 {
761 CharDriverState *radio = uart_hci_init(
762 qdev_get_gpio_in(s->cpu->gpio, N8X0_BT_HOST_WKUP_GPIO));
763
764 qdev_connect_gpio_out(s->cpu->gpio, N8X0_BT_RESET_GPIO,
765 csrhci_pins_get(radio)[csrhci_pin_reset]);
766 qdev_connect_gpio_out(s->cpu->gpio, N8X0_BT_WKUP_GPIO,
767 csrhci_pins_get(radio)[csrhci_pin_wakeup]);
768
769 omap_uart_attach(s->cpu->uart[BT_UART], radio);
770 }
771
772 static void n8x0_usb_setup(struct n800_s *s)
773 {
774 SysBusDevice *dev;
775 s->usb = qdev_create(NULL, "tusb6010");
776 dev = sysbus_from_qdev(s->usb);
777 qdev_init_nofail(s->usb);
778 sysbus_connect_irq(dev, 0,
779 qdev_get_gpio_in(s->cpu->gpio, N8X0_TUSB_INT_GPIO));
780 /* Using the NOR interface */
781 omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_ASYNC_CS,
782 sysbus_mmio_get_region(dev, 0));
783 omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_SYNC_CS,
784 sysbus_mmio_get_region(dev, 1));
785 qdev_connect_gpio_out(s->cpu->gpio, N8X0_TUSB_ENABLE_GPIO,
786 qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */
787 }
788
789 /* Setup done before the main bootloader starts by some early setup code
790 * - used when we want to run the main bootloader in emulation. This
791 * isn't documented. */
792 static uint32_t n800_pinout[104] = {
793 0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0,
794 0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808,
795 0x08080808, 0x180800c4, 0x00b80000, 0x08080808,
796 0x080800bc, 0x00cc0808, 0x08081818, 0x18180128,
797 0x01241800, 0x18181818, 0x000000f0, 0x01300000,
798 0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b,
799 0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080,
800 0x007c0000, 0x00000000, 0x00000088, 0x00840000,
801 0x00000000, 0x00000094, 0x00980300, 0x0f180003,
802 0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c,
803 0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008,
804 0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f,
805 0x181800f4, 0x00f81818, 0x00000018, 0x000000fc,
806 0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008,
807 0x00000000, 0x00000038, 0x00340000, 0x00000000,
808 0x1a080070, 0x00641a1a, 0x08080808, 0x08080060,
809 0x005c0808, 0x08080808, 0x08080058, 0x00540808,
810 0x08080808, 0x0808006c, 0x00680808, 0x08080808,
811 0x000000a8, 0x00b00000, 0x08080808, 0x000000a0,
812 0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808,
813 0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff,
814 0x000000ac, 0x01040800, 0x08080b0f, 0x18180100,
815 0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a,
816 0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00,
817 0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118,
818 0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b,
819 };
820
821 static void n800_setup_nolo_tags(void *sram_base)
822 {
823 int i;
824 uint32_t *p = sram_base + 0x8000;
825 uint32_t *v = sram_base + 0xa000;
826
827 memset(p, 0, 0x3000);
828
829 strcpy((void *) (p + 0), "QEMU N800");
830
831 strcpy((void *) (p + 8), "F5");
832
833 stl_raw(p + 10, 0x04f70000);
834 strcpy((void *) (p + 9), "RX-34");
835
836 /* RAM size in MB? */
837 stl_raw(p + 12, 0x80);
838
839 /* Pointer to the list of tags */
840 stl_raw(p + 13, OMAP2_SRAM_BASE + 0x9000);
841
842 /* The NOLO tags start here */
843 p = sram_base + 0x9000;
844 #define ADD_TAG(tag, len) \
845 stw_raw((uint16_t *) p + 0, tag); \
846 stw_raw((uint16_t *) p + 1, len); p ++; \
847 stl_raw(p ++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff));
848
849 /* OMAP STI console? Pin out settings? */
850 ADD_TAG(0x6e01, 414);
851 for (i = 0; i < ARRAY_SIZE(n800_pinout); i ++)
852 stl_raw(v ++, n800_pinout[i]);
853
854 /* Kernel memsize? */
855 ADD_TAG(0x6e05, 1);
856 stl_raw(v ++, 2);
857
858 /* NOLO serial console */
859 ADD_TAG(0x6e02, 4);
860 stl_raw(v ++, XLDR_LL_UART); /* UART number (1 - 3) */
861
862 #if 0
863 /* CBUS settings (Retu/AVilma) */
864 ADD_TAG(0x6e03, 6);
865 stw_raw((uint16_t *) v + 0, 65); /* CBUS GPIO0 */
866 stw_raw((uint16_t *) v + 1, 66); /* CBUS GPIO1 */
867 stw_raw((uint16_t *) v + 2, 64); /* CBUS GPIO2 */
868 v += 2;
869 #endif
870
871 /* Nokia ASIC BB5 (Retu/Tahvo) */
872 ADD_TAG(0x6e0a, 4);
873 stw_raw((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */
874 stw_raw((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */
875 v ++;
876
877 /* LCD console? */
878 ADD_TAG(0x6e04, 4);
879 stw_raw((uint16_t *) v + 0, 30); /* ??? */
880 stw_raw((uint16_t *) v + 1, 24); /* ??? */
881 v ++;
882
883 #if 0
884 /* LCD settings */
885 ADD_TAG(0x6e06, 2);
886 stw_raw((uint16_t *) (v ++), 15); /* ??? */
887 #endif
888
889 /* I^2C (Menelaus) */
890 ADD_TAG(0x6e07, 4);
891 stl_raw(v ++, 0x00720000); /* ??? */
892
893 /* Unknown */
894 ADD_TAG(0x6e0b, 6);
895 stw_raw((uint16_t *) v + 0, 94); /* ??? */
896 stw_raw((uint16_t *) v + 1, 23); /* ??? */
897 stw_raw((uint16_t *) v + 2, 0); /* ??? */
898 v += 2;
899
900 /* OMAP gpio switch info */
901 ADD_TAG(0x6e0c, 80);
902 strcpy((void *) v, "bat_cover"); v += 3;
903 stw_raw((uint16_t *) v + 0, 110); /* GPIO num ??? */
904 stw_raw((uint16_t *) v + 1, 1); /* GPIO num ??? */
905 v += 2;
906 strcpy((void *) v, "cam_act"); v += 3;
907 stw_raw((uint16_t *) v + 0, 95); /* GPIO num ??? */
908 stw_raw((uint16_t *) v + 1, 32); /* GPIO num ??? */
909 v += 2;
910 strcpy((void *) v, "cam_turn"); v += 3;
911 stw_raw((uint16_t *) v + 0, 12); /* GPIO num ??? */
912 stw_raw((uint16_t *) v + 1, 33); /* GPIO num ??? */
913 v += 2;
914 strcpy((void *) v, "headphone"); v += 3;
915 stw_raw((uint16_t *) v + 0, 107); /* GPIO num ??? */
916 stw_raw((uint16_t *) v + 1, 17); /* GPIO num ??? */
917 v += 2;
918
919 /* Bluetooth */
920 ADD_TAG(0x6e0e, 12);
921 stl_raw(v ++, 0x5c623d01); /* ??? */
922 stl_raw(v ++, 0x00000201); /* ??? */
923 stl_raw(v ++, 0x00000000); /* ??? */
924
925 /* CX3110x WLAN settings */
926 ADD_TAG(0x6e0f, 8);
927 stl_raw(v ++, 0x00610025); /* ??? */
928 stl_raw(v ++, 0xffff0057); /* ??? */
929
930 /* MMC host settings */
931 ADD_TAG(0x6e10, 12);
932 stl_raw(v ++, 0xffff000f); /* ??? */
933 stl_raw(v ++, 0xffffffff); /* ??? */
934 stl_raw(v ++, 0x00000060); /* ??? */
935
936 /* OneNAND chip select */
937 ADD_TAG(0x6e11, 10);
938 stl_raw(v ++, 0x00000401); /* ??? */
939 stl_raw(v ++, 0x0002003a); /* ??? */
940 stl_raw(v ++, 0x00000002); /* ??? */
941
942 /* TEA5761 sensor settings */
943 ADD_TAG(0x6e12, 2);
944 stl_raw(v ++, 93); /* GPIO num ??? */
945
946 #if 0
947 /* Unknown tag */
948 ADD_TAG(6e09, 0);
949
950 /* Kernel UART / console */
951 ADD_TAG(6e12, 0);
952 #endif
953
954 /* End of the list */
955 stl_raw(p ++, 0x00000000);
956 stl_raw(p ++, 0x00000000);
957 }
958
959 /* This task is normally performed by the bootloader. If we're loading
960 * a kernel directly, we need to set up GPMC mappings ourselves. */
961 static void n800_gpmc_init(struct n800_s *s)
962 {
963 uint32_t config7 =
964 (0xf << 8) | /* MASKADDRESS */
965 (1 << 6) | /* CSVALID */
966 (4 << 0); /* BASEADDRESS */
967
968 cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */
969 (void *) &config7, sizeof(config7));
970 }
971
972 /* Setup sequence done by the bootloader */
973 static void n8x0_boot_init(void *opaque)
974 {
975 struct n800_s *s = (struct n800_s *) opaque;
976 uint32_t buf;
977
978 /* PRCM setup */
979 #define omap_writel(addr, val) \
980 buf = (val); \
981 cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf))
982
983 omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */
984 omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */
985 omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */
986 omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */
987 omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */
988 omap_writel(0x48008098, 0); /* PRCM_POLCTRL */
989 omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */
990 omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */
991 omap_writel(0x48008158, 1); /* RM_RSTST_MPU */
992 omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */
993 omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */
994 omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */
995 omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */
996 omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */
997 omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */
998 omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */
999 omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */
1000 omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */
1001 omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */
1002 omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */
1003 omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */
1004 omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */
1005 omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */
1006 omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */
1007 omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */
1008 omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */
1009 omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */
1010 omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */
1011 omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */
1012 omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */
1013 omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */
1014 omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */
1015 omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */
1016 omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */
1017 omap_writel(0x48008540, /* CM_CLKSEL1_PLL */
1018 (0x78 << 12) | (6 << 8));
1019 omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */
1020
1021 /* GPMC setup */
1022 n800_gpmc_init(s);
1023
1024 /* Video setup */
1025 n800_dss_init(&s->blizzard);
1026
1027 /* CPU setup */
1028 s->cpu->env->GE = 0x5;
1029
1030 /* If the machine has a slided keyboard, open it */
1031 if (s->kbd)
1032 qemu_irq_raise(qdev_get_gpio_in(s->cpu->gpio, N810_SLIDE_GPIO));
1033 }
1034
1035 #define OMAP_TAG_NOKIA_BT 0x4e01
1036 #define OMAP_TAG_WLAN_CX3110X 0x4e02
1037 #define OMAP_TAG_CBUS 0x4e03
1038 #define OMAP_TAG_EM_ASIC_BB5 0x4e04
1039
1040 static struct omap_gpiosw_info_s {
1041 const char *name;
1042 int line;
1043 int type;
1044 } n800_gpiosw_info[] = {
1045 {
1046 "bat_cover", N800_BAT_COVER_GPIO,
1047 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
1048 }, {
1049 "cam_act", N800_CAM_ACT_GPIO,
1050 OMAP_GPIOSW_TYPE_ACTIVITY,
1051 }, {
1052 "cam_turn", N800_CAM_TURN_GPIO,
1053 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED,
1054 }, {
1055 "headphone", N8X0_HEADPHONE_GPIO,
1056 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
1057 },
1058 { NULL }
1059 }, n810_gpiosw_info[] = {
1060 {
1061 "gps_reset", N810_GPS_RESET_GPIO,
1062 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
1063 }, {
1064 "gps_wakeup", N810_GPS_WAKEUP_GPIO,
1065 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
1066 }, {
1067 "headphone", N8X0_HEADPHONE_GPIO,
1068 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
1069 }, {
1070 "kb_lock", N810_KB_LOCK_GPIO,
1071 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
1072 }, {
1073 "sleepx_led", N810_SLEEPX_LED_GPIO,
1074 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT,
1075 }, {
1076 "slide", N810_SLIDE_GPIO,
1077 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
1078 },
1079 { NULL }
1080 };
1081
1082 static struct omap_partition_info_s {
1083 uint32_t offset;
1084 uint32_t size;
1085 int mask;
1086 const char *name;
1087 } n800_part_info[] = {
1088 { 0x00000000, 0x00020000, 0x3, "bootloader" },
1089 { 0x00020000, 0x00060000, 0x0, "config" },
1090 { 0x00080000, 0x00200000, 0x0, "kernel" },
1091 { 0x00280000, 0x00200000, 0x3, "initfs" },
1092 { 0x00480000, 0x0fb80000, 0x3, "rootfs" },
1093
1094 { 0, 0, 0, NULL }
1095 }, n810_part_info[] = {
1096 { 0x00000000, 0x00020000, 0x3, "bootloader" },
1097 { 0x00020000, 0x00060000, 0x0, "config" },
1098 { 0x00080000, 0x00220000, 0x0, "kernel" },
1099 { 0x002a0000, 0x00400000, 0x0, "initfs" },
1100 { 0x006a0000, 0x0f960000, 0x0, "rootfs" },
1101
1102 { 0, 0, 0, NULL }
1103 };
1104
1105 static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }};
1106
1107 static int n8x0_atag_setup(void *p, int model)
1108 {
1109 uint8_t *b;
1110 uint16_t *w;
1111 uint32_t *l;
1112 struct omap_gpiosw_info_s *gpiosw;
1113 struct omap_partition_info_s *partition;
1114 const char *tag;
1115
1116 w = p;
1117
1118 stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */
1119 stw_raw(w ++, 4); /* u16 len */
1120 stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */
1121 w ++;
1122
1123 #if 0
1124 stw_raw(w ++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */
1125 stw_raw(w ++, 4); /* u16 len */
1126 stw_raw(w ++, XLDR_LL_UART + 1); /* u8 console_uart */
1127 stw_raw(w ++, 115200); /* u32 console_speed */
1128 #endif
1129
1130 stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */
1131 stw_raw(w ++, 36); /* u16 len */
1132 strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */
1133 w += 8;
1134 strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */
1135 w += 8;
1136 stw_raw(w ++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */
1137 stw_raw(w ++, 24); /* u8 data_lines */
1138
1139 stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */
1140 stw_raw(w ++, 8); /* u16 len */
1141 stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */
1142 stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */
1143 stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */
1144 w ++;
1145
1146 stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */
1147 stw_raw(w ++, 4); /* u16 len */
1148 stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */
1149 stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */
1150
1151 gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info;
1152 for (; gpiosw->name; gpiosw ++) {
1153 stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
1154 stw_raw(w ++, 20); /* u16 len */
1155 strcpy((void *) w, gpiosw->name); /* char name[12] */
1156 w += 6;
1157 stw_raw(w ++, gpiosw->line); /* u16 gpio */
1158 stw_raw(w ++, gpiosw->type);
1159 stw_raw(w ++, 0);
1160 stw_raw(w ++, 0);
1161 }
1162
1163 stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */
1164 stw_raw(w ++, 12); /* u16 len */
1165 b = (void *) w;
1166 stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */
1167 stb_raw(b ++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */
1168 stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */
1169 stb_raw(b ++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */
1170 stb_raw(b ++, BT_UART + 1); /* u8 bt_uart */
1171 memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */
1172 b += 6;
1173 stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */
1174 w = (void *) b;
1175
1176 stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */
1177 stw_raw(w ++, 8); /* u16 len */
1178 stw_raw(w ++, 0x25); /* u8 chip_type */
1179 stw_raw(w ++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */
1180 stw_raw(w ++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */
1181 stw_raw(w ++, -1); /* s16 spi_cs_gpio */
1182
1183 stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */
1184 stw_raw(w ++, 16); /* u16 len */
1185 if (model == 810) {
1186 stw_raw(w ++, 0x23f); /* unsigned flags */
1187 stw_raw(w ++, -1); /* s16 power_pin */
1188 stw_raw(w ++, -1); /* s16 switch_pin */
1189 stw_raw(w ++, -1); /* s16 wp_pin */
1190 stw_raw(w ++, 0x240); /* unsigned flags */
1191 stw_raw(w ++, 0xc000); /* s16 power_pin */
1192 stw_raw(w ++, 0x0248); /* s16 switch_pin */
1193 stw_raw(w ++, 0xc000); /* s16 wp_pin */
1194 } else {
1195 stw_raw(w ++, 0xf); /* unsigned flags */
1196 stw_raw(w ++, -1); /* s16 power_pin */
1197 stw_raw(w ++, -1); /* s16 switch_pin */
1198 stw_raw(w ++, -1); /* s16 wp_pin */
1199 stw_raw(w ++, 0); /* unsigned flags */
1200 stw_raw(w ++, 0); /* s16 power_pin */
1201 stw_raw(w ++, 0); /* s16 switch_pin */
1202 stw_raw(w ++, 0); /* s16 wp_pin */
1203 }
1204
1205 stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */
1206 stw_raw(w ++, 4); /* u16 len */
1207 stw_raw(w ++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */
1208 w ++;
1209
1210 partition = (model == 810) ? n810_part_info : n800_part_info;
1211 for (; partition->name; partition ++) {
1212 stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
1213 stw_raw(w ++, 28); /* u16 len */
1214 strcpy((void *) w, partition->name); /* char name[16] */
1215 l = (void *) (w + 8);
1216 stl_raw(l ++, partition->size); /* unsigned int size */
1217 stl_raw(l ++, partition->offset); /* unsigned int offset */
1218 stl_raw(l ++, partition->mask); /* unsigned int mask_flags */
1219 w = (void *) l;
1220 }
1221
1222 stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */
1223 stw_raw(w ++, 12); /* u16 len */
1224 #if 0
1225 strcpy((void *) w, "por"); /* char reason_str[12] */
1226 strcpy((void *) w, "charger"); /* char reason_str[12] */
1227 strcpy((void *) w, "32wd_to"); /* char reason_str[12] */
1228 strcpy((void *) w, "sw_rst"); /* char reason_str[12] */
1229 strcpy((void *) w, "mbus"); /* char reason_str[12] */
1230 strcpy((void *) w, "unknown"); /* char reason_str[12] */
1231 strcpy((void *) w, "swdg_to"); /* char reason_str[12] */
1232 strcpy((void *) w, "sec_vio"); /* char reason_str[12] */
1233 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
1234 strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */
1235 #else
1236 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
1237 #endif
1238 w += 6;
1239
1240 tag = (model == 810) ? "RX-44" : "RX-34";
1241 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
1242 stw_raw(w ++, 24); /* u16 len */
1243 strcpy((void *) w, "product"); /* char component[12] */
1244 w += 6;
1245 strcpy((void *) w, tag); /* char version[12] */
1246 w += 6;
1247
1248 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
1249 stw_raw(w ++, 24); /* u16 len */
1250 strcpy((void *) w, "hw-build"); /* char component[12] */
1251 w += 6;
1252 strcpy((void *) w, "QEMU " QEMU_VERSION); /* char version[12] */
1253 w += 6;
1254
1255 tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu";
1256 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
1257 stw_raw(w ++, 24); /* u16 len */
1258 strcpy((void *) w, "nolo"); /* char component[12] */
1259 w += 6;
1260 strcpy((void *) w, tag); /* char version[12] */
1261 w += 6;
1262
1263 return (void *) w - p;
1264 }
1265
1266 static int n800_atag_setup(const struct arm_boot_info *info, void *p)
1267 {
1268 return n8x0_atag_setup(p, 800);
1269 }
1270
1271 static int n810_atag_setup(const struct arm_boot_info *info, void *p)
1272 {
1273 return n8x0_atag_setup(p, 810);
1274 }
1275
1276 static void n8x0_init(ram_addr_t ram_size, const char *boot_device,
1277 const char *kernel_filename,
1278 const char *kernel_cmdline, const char *initrd_filename,
1279 const char *cpu_model, struct arm_boot_info *binfo, int model)
1280 {
1281 MemoryRegion *sysmem = get_system_memory();
1282 struct n800_s *s = (struct n800_s *) g_malloc0(sizeof(*s));
1283 int sdram_size = binfo->ram_size;
1284 DisplayState *ds;
1285
1286 s->cpu = omap2420_mpu_init(sysmem, sdram_size, cpu_model);
1287
1288 /* Setup peripherals
1289 *
1290 * Believed external peripherals layout in the N810:
1291 * (spi bus 1)
1292 * tsc2005
1293 * lcd_mipid
1294 * (spi bus 2)
1295 * Conexant cx3110x (WLAN)
1296 * optional: pc2400m (WiMAX)
1297 * (i2c bus 0)
1298 * TLV320AIC33 (audio codec)
1299 * TCM825x (camera by Toshiba)
1300 * lp5521 (clever LEDs)
1301 * tsl2563 (light sensor, hwmon, model 7, rev. 0)
1302 * lm8323 (keypad, manf 00, rev 04)
1303 * (i2c bus 1)
1304 * tmp105 (temperature sensor, hwmon)
1305 * menelaus (pm)
1306 * (somewhere on i2c - maybe N800-only)
1307 * tea5761 (FM tuner)
1308 * (serial 0)
1309 * GPS
1310 * (some serial port)
1311 * csr41814 (Bluetooth)
1312 */
1313 n8x0_gpio_setup(s);
1314 n8x0_nand_setup(s);
1315 n8x0_i2c_setup(s);
1316 if (model == 800)
1317 n800_tsc_kbd_setup(s);
1318 else if (model == 810) {
1319 n810_tsc_setup(s);
1320 n810_kbd_setup(s);
1321 }
1322 n8x0_spi_setup(s);
1323 n8x0_dss_setup(s);
1324 n8x0_cbus_setup(s);
1325 n8x0_uart_setup(s);
1326 if (usb_enabled)
1327 n8x0_usb_setup(s);
1328
1329 if (kernel_filename) {
1330 /* Or at the linux loader. */
1331 binfo->kernel_filename = kernel_filename;
1332 binfo->kernel_cmdline = kernel_cmdline;
1333 binfo->initrd_filename = initrd_filename;
1334 arm_load_kernel(s->cpu->env, binfo);
1335
1336 qemu_register_reset(n8x0_boot_init, s);
1337 }
1338
1339 if (option_rom[0].name && (boot_device[0] == 'n' || !kernel_filename)) {
1340 int rom_size;
1341 uint8_t nolo_tags[0x10000];
1342 /* No, wait, better start at the ROM. */
1343 s->cpu->env->regs[15] = OMAP2_Q2_BASE + 0x400000;
1344
1345 /* This is intended for loading the `secondary.bin' program from
1346 * Nokia images (the NOLO bootloader). The entry point seems
1347 * to be at OMAP2_Q2_BASE + 0x400000.
1348 *
1349 * The `2nd.bin' files contain some kind of earlier boot code and
1350 * for them the entry point needs to be set to OMAP2_SRAM_BASE.
1351 *
1352 * The code above is for loading the `zImage' file from Nokia
1353 * images. */
1354 rom_size = load_image_targphys(option_rom[0].name,
1355 OMAP2_Q2_BASE + 0x400000,
1356 sdram_size - 0x400000);
1357 printf("%i bytes of image loaded\n", rom_size);
1358
1359 n800_setup_nolo_tags(nolo_tags);
1360 cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000);
1361 }
1362 /* FIXME: We shouldn't really be doing this here. The LCD controller
1363 will set the size once configured, so this just sets an initial
1364 size until the guest activates the display. */
1365 ds = get_displaystate();
1366 ds->surface = qemu_resize_displaysurface(ds, 800, 480);
1367 dpy_resize(ds);
1368 }
1369
1370 static struct arm_boot_info n800_binfo = {
1371 .loader_start = OMAP2_Q2_BASE,
1372 /* Actually two chips of 0x4000000 bytes each */
1373 .ram_size = 0x08000000,
1374 .board_id = 0x4f7,
1375 .atag_board = n800_atag_setup,
1376 };
1377
1378 static struct arm_boot_info n810_binfo = {
1379 .loader_start = OMAP2_Q2_BASE,
1380 /* Actually two chips of 0x4000000 bytes each */
1381 .ram_size = 0x08000000,
1382 /* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not
1383 * used by some older versions of the bootloader and 5555 is used
1384 * instead (including versions that shipped with many devices). */
1385 .board_id = 0x60c,
1386 .atag_board = n810_atag_setup,
1387 };
1388
1389 static void n800_init(ram_addr_t ram_size,
1390 const char *boot_device,
1391 const char *kernel_filename, const char *kernel_cmdline,
1392 const char *initrd_filename, const char *cpu_model)
1393 {
1394 return n8x0_init(ram_size, boot_device,
1395 kernel_filename, kernel_cmdline, initrd_filename,
1396 cpu_model, &n800_binfo, 800);
1397 }
1398
1399 static void n810_init(ram_addr_t ram_size,
1400 const char *boot_device,
1401 const char *kernel_filename, const char *kernel_cmdline,
1402 const char *initrd_filename, const char *cpu_model)
1403 {
1404 return n8x0_init(ram_size, boot_device,
1405 kernel_filename, kernel_cmdline, initrd_filename,
1406 cpu_model, &n810_binfo, 810);
1407 }
1408
1409 static QEMUMachine n800_machine = {
1410 .name = "n800",
1411 .desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)",
1412 .init = n800_init,
1413 };
1414
1415 static QEMUMachine n810_machine = {
1416 .name = "n810",
1417 .desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)",
1418 .init = n810_init,
1419 };
1420
1421 static void nseries_machine_init(void)
1422 {
1423 qemu_register_machine(&n800_machine);
1424 qemu_register_machine(&n810_machine);
1425 }
1426
1427 machine_init(nseries_machine_init);