]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvme/ctrl.c
Drop more useless casts from void * to pointer
[mirror_qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,detached=<true|false[optional]>
47 *
48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52 *
53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54 * For example:
55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
57 *
58 * The PMR will use BAR 4/5 exclusively.
59 *
60 * To place controller(s) and namespace(s) to a subsystem, then provide
61 * nvme-subsys device as above.
62 *
63 * nvme subsystem device parameters
64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 * - `nqn`
66 * This parameter provides the `<nqn_id>` part of the string
67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68 * of subsystem controllers. Note that `<nqn_id>` should be unique per
69 * subsystem, but this is not enforced by QEMU. If not specified, it will
70 * default to the value of the `id` parameter (`<subsys_id>`).
71 *
72 * nvme device parameters
73 * ~~~~~~~~~~~~~~~~~~~~~~
74 * - `subsys`
75 * Specifying this parameter attaches the controller to the subsystem and
76 * the SUBNQN field in the controller will report the NQN of the subsystem
77 * device. This also enables multi controller capability represented in
78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
79 * Namespace Sharing Capabilities).
80 *
81 * - `aerl`
82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83 * of concurrently outstanding Asynchronous Event Request commands support
84 * by the controller. This is a 0's based value.
85 *
86 * - `aer_max_queued`
87 * This is the maximum number of events that the device will enqueue for
88 * completion when there are no outstanding AERs. When the maximum number of
89 * enqueued events are reached, subsequent events will be dropped.
90 *
91 * - `mdts`
92 * Indicates the maximum data transfer size for a command that transfers data
93 * between host-accessible memory and the controller. The value is specified
94 * as a power of two (2^n) and is in units of the minimum memory page size
95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96 *
97 * - `vsl`
98 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
99 * this value is specified as a power of two (2^n) and is in units of the
100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101 * KiB).
102 *
103 * - `zoned.zasl`
104 * Indicates the maximum data transfer size for the Zone Append command. Like
105 * `mdts`, the value is specified as a power of two (2^n) and is in units of
106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107 * defaulting to the value of `mdts`).
108 *
109 * - `zoned.auto_transition`
110 * Indicates if zones in zone state implicitly opened can be automatically
111 * transitioned to zone state closed for resource management purposes.
112 * Defaults to 'on'.
113 *
114 * - `sriov_max_vfs`
115 * Indicates the maximum number of PCIe virtual functions supported
116 * by the controller. The default value is 0. Specifying a non-zero value
117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118 * Virtual function controllers will not report SR-IOV capability.
119 *
120 * NOTE: Single Root I/O Virtualization support is experimental.
121 * All the related parameters may be subject to change.
122 *
123 * - `sriov_vq_flexible`
124 * Indicates the total number of flexible queue resources assignable to all
125 * the secondary controllers. Implicitly sets the number of primary
126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127 *
128 * - `sriov_vi_flexible`
129 * Indicates the total number of flexible interrupt resources assignable to
130 * all the secondary controllers. Implicitly sets the number of primary
131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132 *
133 * - `sriov_max_vi_per_vf`
134 * Indicates the maximum number of virtual interrupt resources assignable
135 * to a secondary controller. The default 0 resolves to
136 * `(sriov_vi_flexible / sriov_max_vfs)`.
137 *
138 * - `sriov_max_vq_per_vf`
139 * Indicates the maximum number of virtual queue resources assignable to
140 * a secondary controller. The default 0 resolves to
141 * `(sriov_vq_flexible / sriov_max_vfs)`.
142 *
143 * nvme namespace device parameters
144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145 * - `shared`
146 * When the parent nvme device (as defined explicitly by the 'bus' parameter
147 * or implicitly by the most recently defined NvmeBus) is linked to an
148 * nvme-subsys device, the namespace will be attached to all controllers in
149 * the subsystem. If set to 'off' (the default), the namespace will remain a
150 * private namespace and may only be attached to a single controller at a
151 * time.
152 *
153 * - `detached`
154 * This parameter is only valid together with the `subsys` parameter. If left
155 * at the default value (`false/off`), the namespace will be attached to all
156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157 * namespace will be available in the subsystem but not attached to any
158 * controllers.
159 *
160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
161 * In this case, the following namespace properties are available to configure
162 * zoned operation:
163 * zoned.zone_size=<zone size in bytes, default: 128MiB>
164 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
165 *
166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167 * The value 0 (default) forces zone capacity to be the same as zone
168 * size. The value of this property may not exceed zone size.
169 *
170 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
171 * This value needs to be specified in 64B units. If it is zero,
172 * namespace(s) will not support zone descriptor extensions.
173 *
174 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
175 * The default value means there is no limit to the number of
176 * concurrently active zones.
177 *
178 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
179 * The default value means there is no limit to the number of
180 * concurrently open zones.
181 *
182 * zoned.cross_read=<enable RAZB, default: false>
183 * Setting this property to true enables Read Across Zone Boundaries.
184 */
185
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE 4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221 do { \
222 (trace_##trace)(__VA_ARGS__); \
223 qemu_log_mask(LOG_GUEST_ERROR, #trace \
224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225 } while (0)
226
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228 [NVME_ARBITRATION] = true,
229 [NVME_POWER_MANAGEMENT] = true,
230 [NVME_TEMPERATURE_THRESHOLD] = true,
231 [NVME_ERROR_RECOVERY] = true,
232 [NVME_VOLATILE_WRITE_CACHE] = true,
233 [NVME_NUMBER_OF_QUEUES] = true,
234 [NVME_INTERRUPT_COALESCING] = true,
235 [NVME_INTERRUPT_VECTOR_CONF] = true,
236 [NVME_WRITE_ATOMICITY] = true,
237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
238 [NVME_TIMESTAMP] = true,
239 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
240 [NVME_COMMAND_SET_PROFILE] = true,
241 };
242
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
245 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
247 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
248 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
249 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
250 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
251 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
252 };
253
254 static const uint32_t nvme_cse_acs[256] = {
255 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
256 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
257 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
258 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
259 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
260 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
261 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
262 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
263 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
264 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
265 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270
271 static const uint32_t nvme_cse_iocs_none[256];
272
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
278 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
280 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
289 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 };
297
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303 return le16_to_cpu(req->sq->sqid);
304 }
305
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307 NvmeZoneState state)
308 {
309 if (QTAILQ_IN_USE(zone, entry)) {
310 switch (nvme_get_zone_state(zone)) {
311 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313 break;
314 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316 break;
317 case NVME_ZONE_STATE_CLOSED:
318 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319 break;
320 case NVME_ZONE_STATE_FULL:
321 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322 default:
323 ;
324 }
325 }
326
327 nvme_set_zone_state(zone, state);
328
329 switch (state) {
330 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332 break;
333 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335 break;
336 case NVME_ZONE_STATE_CLOSED:
337 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338 break;
339 case NVME_ZONE_STATE_FULL:
340 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341 case NVME_ZONE_STATE_READ_ONLY:
342 break;
343 default:
344 zone->d.za = 0;
345 }
346 }
347
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349 uint32_t opn, uint32_t zrwa)
350 {
351 if (ns->params.max_active_zones != 0 &&
352 ns->nr_active_zones + act > ns->params.max_active_zones) {
353 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355 }
356
357 if (ns->params.max_open_zones != 0 &&
358 ns->nr_open_zones + opn > ns->params.max_open_zones) {
359 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361 }
362
363 if (zrwa > ns->zns.numzrwa) {
364 return NVME_NOZRWA | NVME_DNR;
365 }
366
367 return NVME_SUCCESS;
368 }
369
370 /*
371 * Check if we can open a zone without exceeding open/active limits.
372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373 */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376 return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381 hwaddr hi, lo;
382
383 if (!n->cmb.cmse) {
384 return false;
385 }
386
387 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388 hi = lo + int128_get64(n->cmb.mem.size);
389
390 return addr >= lo && addr < hi;
391 }
392
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396 return &n->cmb.buf[addr - base];
397 }
398
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401 hwaddr hi;
402
403 if (!n->pmr.cmse) {
404 return false;
405 }
406
407 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408
409 return addr >= n->pmr.cba && addr < hi;
410 }
411
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419 hwaddr hi, lo;
420
421 /*
422 * The purpose of this check is to guard against invalid "local" access to
423 * the iomem (i.e. controller registers). Thus, we check against the range
424 * covered by the 'bar0' MemoryRegion since that is currently composed of
425 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426 * that if the device model is ever changed to allow the CMB to be located
427 * in BAR0 as well, then this must be changed.
428 */
429 lo = n->bar0.addr;
430 hi = lo + int128_get64(n->bar0.size);
431
432 return addr >= lo && addr < hi;
433 }
434
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437 hwaddr hi = addr + size - 1;
438 if (hi < addr) {
439 return 1;
440 }
441
442 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444 return 0;
445 }
446
447 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449 return 0;
450 }
451
452 return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457 hwaddr hi = addr + size - 1;
458 if (hi < addr) {
459 return 1;
460 }
461
462 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464 return 0;
465 }
466
467 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469 return 0;
470 }
471
472 return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477 return nsid &&
478 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493 cq->tail++;
494 if (cq->tail >= cq->size) {
495 cq->tail = 0;
496 cq->phase = !cq->phase;
497 }
498 }
499
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502 sq->head = (sq->head + 1) % sq->size;
503 }
504
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507 return (cq->tail + 1) % cq->size == cq->head;
508 }
509
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512 return sq->head == sq->tail;
513 }
514
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517 uint32_t intms = ldl_le_p(&n->bar.intms);
518
519 if (msix_enabled(&(n->parent_obj))) {
520 return;
521 }
522 if (~intms & n->irq_status) {
523 pci_irq_assert(&n->parent_obj);
524 } else {
525 pci_irq_deassert(&n->parent_obj);
526 }
527 }
528
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531 if (cq->irq_enabled) {
532 if (msix_enabled(&(n->parent_obj))) {
533 trace_pci_nvme_irq_msix(cq->vector);
534 msix_notify(&(n->parent_obj), cq->vector);
535 } else {
536 trace_pci_nvme_irq_pin();
537 assert(cq->vector < 32);
538 n->irq_status |= 1 << cq->vector;
539 nvme_irq_check(n);
540 }
541 } else {
542 trace_pci_nvme_irq_masked();
543 }
544 }
545
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548 if (cq->irq_enabled) {
549 if (msix_enabled(&(n->parent_obj))) {
550 return;
551 } else {
552 assert(cq->vector < 32);
553 if (!n->cq_pending) {
554 n->irq_status &= ~(1 << cq->vector);
555 }
556 nvme_irq_check(n);
557 }
558 }
559 }
560
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563 req->ns = NULL;
564 req->opaque = NULL;
565 req->aiocb = NULL;
566 memset(&req->cqe, 0x0, sizeof(req->cqe));
567 req->status = NVME_SUCCESS;
568 }
569
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572 if (dma) {
573 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574 sg->flags = NVME_SG_DMA;
575 } else {
576 qemu_iovec_init(&sg->iov, 0);
577 }
578
579 sg->flags |= NVME_SG_ALLOC;
580 }
581
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584 if (!(sg->flags & NVME_SG_ALLOC)) {
585 return;
586 }
587
588 if (sg->flags & NVME_SG_DMA) {
589 qemu_sglist_destroy(&sg->qsg);
590 } else {
591 qemu_iovec_destroy(&sg->iov);
592 }
593
594 memset(sg, 0x0, sizeof(*sg));
595 }
596
597 /*
598 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599 * holds both data and metadata. This function splits the data and metadata
600 * into two separate QSG/IOVs.
601 */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603 NvmeSg *mdata)
604 {
605 NvmeSg *dst = data;
606 uint32_t trans_len, count = ns->lbasz;
607 uint64_t offset = 0;
608 bool dma = sg->flags & NVME_SG_DMA;
609 size_t sge_len;
610 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611 int sg_idx = 0;
612
613 assert(sg->flags & NVME_SG_ALLOC);
614
615 while (sg_len) {
616 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617
618 trans_len = MIN(sg_len, count);
619 trans_len = MIN(trans_len, sge_len - offset);
620
621 if (dst) {
622 if (dma) {
623 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624 trans_len);
625 } else {
626 qemu_iovec_add(&dst->iov,
627 sg->iov.iov[sg_idx].iov_base + offset,
628 trans_len);
629 }
630 }
631
632 sg_len -= trans_len;
633 count -= trans_len;
634 offset += trans_len;
635
636 if (count == 0) {
637 dst = (dst == data) ? mdata : data;
638 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639 }
640
641 if (sge_len == offset) {
642 offset = 0;
643 sg_idx++;
644 }
645 }
646 }
647
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649 size_t len)
650 {
651 if (!len) {
652 return NVME_SUCCESS;
653 }
654
655 trace_pci_nvme_map_addr_cmb(addr, len);
656
657 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658 return NVME_DATA_TRAS_ERROR;
659 }
660
661 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662
663 return NVME_SUCCESS;
664 }
665
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667 size_t len)
668 {
669 if (!len) {
670 return NVME_SUCCESS;
671 }
672
673 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674 return NVME_DATA_TRAS_ERROR;
675 }
676
677 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678
679 return NVME_SUCCESS;
680 }
681
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684 bool cmb = false, pmr = false;
685
686 if (!len) {
687 return NVME_SUCCESS;
688 }
689
690 trace_pci_nvme_map_addr(addr, len);
691
692 if (nvme_addr_is_iomem(n, addr)) {
693 return NVME_DATA_TRAS_ERROR;
694 }
695
696 if (nvme_addr_is_cmb(n, addr)) {
697 cmb = true;
698 } else if (nvme_addr_is_pmr(n, addr)) {
699 pmr = true;
700 }
701
702 if (cmb || pmr) {
703 if (sg->flags & NVME_SG_DMA) {
704 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705 }
706
707 if (sg->iov.niov + 1 > IOV_MAX) {
708 goto max_mappings_exceeded;
709 }
710
711 if (cmb) {
712 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713 } else {
714 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715 }
716 }
717
718 if (!(sg->flags & NVME_SG_DMA)) {
719 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720 }
721
722 if (sg->qsg.nsg + 1 > IOV_MAX) {
723 goto max_mappings_exceeded;
724 }
725
726 qemu_sglist_add(&sg->qsg, addr, len);
727
728 return NVME_SUCCESS;
729
730 max_mappings_exceeded:
731 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732 "number of mappings exceed 1024");
733 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742 uint64_t prp2, uint32_t len)
743 {
744 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745 trans_len = MIN(len, trans_len);
746 int num_prps = (len >> n->page_bits) + 1;
747 uint16_t status;
748 int ret;
749
750 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751
752 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753
754 status = nvme_map_addr(n, sg, prp1, trans_len);
755 if (status) {
756 goto unmap;
757 }
758
759 len -= trans_len;
760 if (len) {
761 if (len > n->page_size) {
762 uint64_t prp_list[n->max_prp_ents];
763 uint32_t nents, prp_trans;
764 int i = 0;
765
766 /*
767 * The first PRP list entry, pointed to by PRP2 may contain offset.
768 * Hence, we need to calculate the number of entries in based on
769 * that offset.
770 */
771 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774 if (ret) {
775 trace_pci_nvme_err_addr_read(prp2);
776 status = NVME_DATA_TRAS_ERROR;
777 goto unmap;
778 }
779 while (len != 0) {
780 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781
782 if (i == nents - 1 && len > n->page_size) {
783 if (unlikely(prp_ent & (n->page_size - 1))) {
784 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786 goto unmap;
787 }
788
789 i = 0;
790 nents = (len + n->page_size - 1) >> n->page_bits;
791 nents = MIN(nents, n->max_prp_ents);
792 prp_trans = nents * sizeof(uint64_t);
793 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794 prp_trans);
795 if (ret) {
796 trace_pci_nvme_err_addr_read(prp_ent);
797 status = NVME_DATA_TRAS_ERROR;
798 goto unmap;
799 }
800 prp_ent = le64_to_cpu(prp_list[i]);
801 }
802
803 if (unlikely(prp_ent & (n->page_size - 1))) {
804 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806 goto unmap;
807 }
808
809 trans_len = MIN(len, n->page_size);
810 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811 if (status) {
812 goto unmap;
813 }
814
815 len -= trans_len;
816 i++;
817 }
818 } else {
819 if (unlikely(prp2 & (n->page_size - 1))) {
820 trace_pci_nvme_err_invalid_prp2_align(prp2);
821 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822 goto unmap;
823 }
824 status = nvme_map_addr(n, sg, prp2, len);
825 if (status) {
826 goto unmap;
827 }
828 }
829 }
830
831 return NVME_SUCCESS;
832
833 unmap:
834 nvme_sg_unmap(sg);
835 return status;
836 }
837
838 /*
839 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840 * number of bytes mapped in len.
841 */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843 NvmeSglDescriptor *segment, uint64_t nsgld,
844 size_t *len, NvmeCmd *cmd)
845 {
846 dma_addr_t addr, trans_len;
847 uint32_t dlen;
848 uint16_t status;
849
850 for (int i = 0; i < nsgld; i++) {
851 uint8_t type = NVME_SGL_TYPE(segment[i].type);
852
853 switch (type) {
854 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855 break;
856 case NVME_SGL_DESCR_TYPE_SEGMENT:
857 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859 default:
860 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861 }
862
863 dlen = le32_to_cpu(segment[i].len);
864
865 if (!dlen) {
866 continue;
867 }
868
869 if (*len == 0) {
870 /*
871 * All data has been mapped, but the SGL contains additional
872 * segments and/or descriptors. The controller might accept
873 * ignoring the rest of the SGL.
874 */
875 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877 break;
878 }
879
880 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882 }
883
884 trans_len = MIN(*len, dlen);
885
886 addr = le64_to_cpu(segment[i].addr);
887
888 if (UINT64_MAX - addr < dlen) {
889 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890 }
891
892 status = nvme_map_addr(n, sg, addr, trans_len);
893 if (status) {
894 return status;
895 }
896
897 *len -= trans_len;
898 }
899
900 return NVME_SUCCESS;
901 }
902
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904 size_t len, NvmeCmd *cmd)
905 {
906 /*
907 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908 * dynamically allocating a potentially huge SGL. The spec allows the SGL
909 * to be larger (as in number of bytes required to describe the SGL
910 * descriptors and segment chain) than the command transfer size, so it is
911 * not bounded by MDTS.
912 */
913 const int SEG_CHUNK_SIZE = 256;
914
915 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916 uint64_t nsgld;
917 uint32_t seg_len;
918 uint16_t status;
919 hwaddr addr;
920 int ret;
921
922 sgld = &sgl;
923 addr = le64_to_cpu(sgl.addr);
924
925 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926
927 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928
929 /*
930 * If the entire transfer can be described with a single data block it can
931 * be mapped directly.
932 */
933 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935 if (status) {
936 goto unmap;
937 }
938
939 goto out;
940 }
941
942 for (;;) {
943 switch (NVME_SGL_TYPE(sgld->type)) {
944 case NVME_SGL_DESCR_TYPE_SEGMENT:
945 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946 break;
947 default:
948 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949 }
950
951 seg_len = le32_to_cpu(sgld->len);
952
953 /* check the length of the (Last) Segment descriptor */
954 if (!seg_len || seg_len & 0xf) {
955 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956 }
957
958 if (UINT64_MAX - addr < seg_len) {
959 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960 }
961
962 nsgld = seg_len / sizeof(NvmeSglDescriptor);
963
964 while (nsgld > SEG_CHUNK_SIZE) {
965 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966 trace_pci_nvme_err_addr_read(addr);
967 status = NVME_DATA_TRAS_ERROR;
968 goto unmap;
969 }
970
971 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972 &len, cmd);
973 if (status) {
974 goto unmap;
975 }
976
977 nsgld -= SEG_CHUNK_SIZE;
978 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979 }
980
981 ret = nvme_addr_read(n, addr, segment, nsgld *
982 sizeof(NvmeSglDescriptor));
983 if (ret) {
984 trace_pci_nvme_err_addr_read(addr);
985 status = NVME_DATA_TRAS_ERROR;
986 goto unmap;
987 }
988
989 last_sgld = &segment[nsgld - 1];
990
991 /*
992 * If the segment ends with a Data Block, then we are done.
993 */
994 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996 if (status) {
997 goto unmap;
998 }
999
1000 goto out;
1001 }
1002
1003 /*
1004 * If the last descriptor was not a Data Block, then the current
1005 * segment must not be a Last Segment.
1006 */
1007 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009 goto unmap;
1010 }
1011
1012 sgld = last_sgld;
1013 addr = le64_to_cpu(sgld->addr);
1014
1015 /*
1016 * Do not map the last descriptor; it will be a Segment or Last Segment
1017 * descriptor and is handled by the next iteration.
1018 */
1019 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020 if (status) {
1021 goto unmap;
1022 }
1023 }
1024
1025 out:
1026 /* if there is any residual left in len, the SGL was too short */
1027 if (len) {
1028 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029 goto unmap;
1030 }
1031
1032 return NVME_SUCCESS;
1033
1034 unmap:
1035 nvme_sg_unmap(sg);
1036 return status;
1037 }
1038
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040 NvmeCmd *cmd)
1041 {
1042 uint64_t prp1, prp2;
1043
1044 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045 case NVME_PSDT_PRP:
1046 prp1 = le64_to_cpu(cmd->dptr.prp1);
1047 prp2 = le64_to_cpu(cmd->dptr.prp2);
1048
1049 return nvme_map_prp(n, sg, prp1, prp2, len);
1050 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051 case NVME_PSDT_SGL_MPTR_SGL:
1052 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053 default:
1054 return NVME_INVALID_FIELD;
1055 }
1056 }
1057
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059 NvmeCmd *cmd)
1060 {
1061 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062 hwaddr mptr = le64_to_cpu(cmd->mptr);
1063 uint16_t status;
1064
1065 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066 NvmeSglDescriptor sgl;
1067
1068 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069 return NVME_DATA_TRAS_ERROR;
1070 }
1071
1072 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075 }
1076
1077 return status;
1078 }
1079
1080 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081 status = nvme_map_addr(n, sg, mptr, len);
1082 if (status) {
1083 nvme_sg_unmap(sg);
1084 }
1085
1086 return status;
1087 }
1088
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091 NvmeNamespace *ns = req->ns;
1092 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095 size_t len = nvme_l2b(ns, nlb);
1096 uint16_t status;
1097
1098 if (nvme_ns_ext(ns) &&
1099 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100 NvmeSg sg;
1101
1102 len += nvme_m2b(ns, nlb);
1103
1104 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105 if (status) {
1106 return status;
1107 }
1108
1109 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110 nvme_sg_split(&sg, ns, &req->sg, NULL);
1111 nvme_sg_unmap(&sg);
1112
1113 return NVME_SUCCESS;
1114 }
1115
1116 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121 NvmeNamespace *ns = req->ns;
1122 size_t len = nvme_m2b(ns, nlb);
1123 uint16_t status;
1124
1125 if (nvme_ns_ext(ns)) {
1126 NvmeSg sg;
1127
1128 len += nvme_l2b(ns, nlb);
1129
1130 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131 if (status) {
1132 return status;
1133 }
1134
1135 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136 nvme_sg_split(&sg, ns, NULL, &req->sg);
1137 nvme_sg_unmap(&sg);
1138
1139 return NVME_SUCCESS;
1140 }
1141
1142 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146 uint32_t len, uint32_t bytes,
1147 int32_t skip_bytes, int64_t offset,
1148 NvmeTxDirection dir)
1149 {
1150 hwaddr addr;
1151 uint32_t trans_len, count = bytes;
1152 bool dma = sg->flags & NVME_SG_DMA;
1153 int64_t sge_len;
1154 int sg_idx = 0;
1155 int ret;
1156
1157 assert(sg->flags & NVME_SG_ALLOC);
1158
1159 while (len) {
1160 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161
1162 if (sge_len - offset < 0) {
1163 offset -= sge_len;
1164 sg_idx++;
1165 continue;
1166 }
1167
1168 if (sge_len == offset) {
1169 offset = 0;
1170 sg_idx++;
1171 continue;
1172 }
1173
1174 trans_len = MIN(len, count);
1175 trans_len = MIN(trans_len, sge_len - offset);
1176
1177 if (dma) {
1178 addr = sg->qsg.sg[sg_idx].base + offset;
1179 } else {
1180 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181 }
1182
1183 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184 ret = nvme_addr_read(n, addr, ptr, trans_len);
1185 } else {
1186 ret = nvme_addr_write(n, addr, ptr, trans_len);
1187 }
1188
1189 if (ret) {
1190 return NVME_DATA_TRAS_ERROR;
1191 }
1192
1193 ptr += trans_len;
1194 len -= trans_len;
1195 count -= trans_len;
1196 offset += trans_len;
1197
1198 if (count == 0) {
1199 count = bytes;
1200 offset += skip_bytes;
1201 }
1202 }
1203
1204 return NVME_SUCCESS;
1205 }
1206
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208 NvmeTxDirection dir)
1209 {
1210 assert(sg->flags & NVME_SG_ALLOC);
1211
1212 if (sg->flags & NVME_SG_DMA) {
1213 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214 dma_addr_t residual;
1215
1216 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218 } else {
1219 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220 }
1221
1222 if (unlikely(residual)) {
1223 trace_pci_nvme_err_invalid_dma();
1224 return NVME_INVALID_FIELD | NVME_DNR;
1225 }
1226 } else {
1227 size_t bytes;
1228
1229 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231 } else {
1232 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233 }
1234
1235 if (unlikely(bytes != len)) {
1236 trace_pci_nvme_err_invalid_dma();
1237 return NVME_INVALID_FIELD | NVME_DNR;
1238 }
1239 }
1240
1241 return NVME_SUCCESS;
1242 }
1243
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245 NvmeRequest *req)
1246 {
1247 uint16_t status;
1248
1249 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250 if (status) {
1251 return status;
1252 }
1253
1254 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258 NvmeRequest *req)
1259 {
1260 uint16_t status;
1261
1262 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263 if (status) {
1264 return status;
1265 }
1266
1267 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271 NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273 NvmeNamespace *ns = req->ns;
1274 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277
1278 if (nvme_ns_ext(ns) &&
1279 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281 ns->lbaf.ms, 0, dir);
1282 }
1283
1284 return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288 NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290 NvmeNamespace *ns = req->ns;
1291 uint16_t status;
1292
1293 if (nvme_ns_ext(ns)) {
1294 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295 ns->lbasz, ns->lbasz, dir);
1296 }
1297
1298 nvme_sg_unmap(&req->sg);
1299
1300 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301 if (status) {
1302 return status;
1303 }
1304
1305 return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309 BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311 assert(req->sg.flags & NVME_SG_ALLOC);
1312
1313 if (req->sg.flags & NVME_SG_DMA) {
1314 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315 cb, req);
1316 } else {
1317 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318 }
1319 }
1320
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322 BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324 assert(req->sg.flags & NVME_SG_ALLOC);
1325
1326 if (req->sg.flags & NVME_SG_DMA) {
1327 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328 cb, req);
1329 } else {
1330 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331 }
1332 }
1333
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336 pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337 sizeof(cq->head));
1338 trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343 NvmeCQueue *cq = opaque;
1344 NvmeCtrl *n = cq->ctrl;
1345 NvmeRequest *req, *next;
1346 bool pending = cq->head != cq->tail;
1347 int ret;
1348
1349 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350 NvmeSQueue *sq;
1351 hwaddr addr;
1352
1353 if (n->dbbuf_enabled) {
1354 nvme_update_cq_head(cq);
1355 }
1356
1357 if (nvme_cq_full(cq)) {
1358 break;
1359 }
1360
1361 sq = req->sq;
1362 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364 req->cqe.sq_head = cpu_to_le16(sq->head);
1365 addr = cq->dma_addr + cq->tail * n->cqe_size;
1366 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367 sizeof(req->cqe));
1368 if (ret) {
1369 trace_pci_nvme_err_addr_write(addr);
1370 trace_pci_nvme_err_cfs();
1371 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372 break;
1373 }
1374 QTAILQ_REMOVE(&cq->req_list, req, entry);
1375 nvme_inc_cq_tail(cq);
1376 nvme_sg_unmap(&req->sg);
1377 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378 }
1379 if (cq->tail != cq->head) {
1380 if (cq->irq_enabled && !pending) {
1381 n->cq_pending++;
1382 }
1383
1384 nvme_irq_assert(n, cq);
1385 }
1386 }
1387
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390 assert(cq->cqid == req->sq->cqid);
1391 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392 le32_to_cpu(req->cqe.result),
1393 le32_to_cpu(req->cqe.dw1),
1394 req->status);
1395
1396 if (req->status) {
1397 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398 req->status, req->cmd.opcode);
1399 }
1400
1401 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403
1404 qemu_bh_schedule(cq->bh);
1405 }
1406
1407 static void nvme_process_aers(void *opaque)
1408 {
1409 NvmeCtrl *n = opaque;
1410 NvmeAsyncEvent *event, *next;
1411
1412 trace_pci_nvme_process_aers(n->aer_queued);
1413
1414 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1415 NvmeRequest *req;
1416 NvmeAerResult *result;
1417
1418 /* can't post cqe if there is nothing to complete */
1419 if (!n->outstanding_aers) {
1420 trace_pci_nvme_no_outstanding_aers();
1421 break;
1422 }
1423
1424 /* ignore if masked (cqe posted, but event not cleared) */
1425 if (n->aer_mask & (1 << event->result.event_type)) {
1426 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1427 continue;
1428 }
1429
1430 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1431 n->aer_queued--;
1432
1433 n->aer_mask |= 1 << event->result.event_type;
1434 n->outstanding_aers--;
1435
1436 req = n->aer_reqs[n->outstanding_aers];
1437
1438 result = (NvmeAerResult *) &req->cqe.result;
1439 result->event_type = event->result.event_type;
1440 result->event_info = event->result.event_info;
1441 result->log_page = event->result.log_page;
1442 g_free(event);
1443
1444 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1445 result->log_page);
1446
1447 nvme_enqueue_req_completion(&n->admin_cq, req);
1448 }
1449 }
1450
1451 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1452 uint8_t event_info, uint8_t log_page)
1453 {
1454 NvmeAsyncEvent *event;
1455
1456 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1457
1458 if (n->aer_queued == n->params.aer_max_queued) {
1459 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1460 return;
1461 }
1462
1463 event = g_new(NvmeAsyncEvent, 1);
1464 event->result = (NvmeAerResult) {
1465 .event_type = event_type,
1466 .event_info = event_info,
1467 .log_page = log_page,
1468 };
1469
1470 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1471 n->aer_queued++;
1472
1473 nvme_process_aers(n);
1474 }
1475
1476 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1477 {
1478 uint8_t aer_info;
1479
1480 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1481 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1482 return;
1483 }
1484
1485 switch (event) {
1486 case NVME_SMART_SPARE:
1487 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1488 break;
1489 case NVME_SMART_TEMPERATURE:
1490 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1491 break;
1492 case NVME_SMART_RELIABILITY:
1493 case NVME_SMART_MEDIA_READ_ONLY:
1494 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1495 case NVME_SMART_PMR_UNRELIABLE:
1496 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1497 break;
1498 default:
1499 return;
1500 }
1501
1502 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1503 }
1504
1505 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1506 {
1507 n->aer_mask &= ~(1 << event_type);
1508 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1509 nvme_process_aers(n);
1510 }
1511 }
1512
1513 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1514 {
1515 uint8_t mdts = n->params.mdts;
1516
1517 if (mdts && len > n->page_size << mdts) {
1518 trace_pci_nvme_err_mdts(len);
1519 return NVME_INVALID_FIELD | NVME_DNR;
1520 }
1521
1522 return NVME_SUCCESS;
1523 }
1524
1525 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1526 uint32_t nlb)
1527 {
1528 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1529
1530 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1531 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1532 return NVME_LBA_RANGE | NVME_DNR;
1533 }
1534
1535 return NVME_SUCCESS;
1536 }
1537
1538 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1539 uint32_t nlb, int flags)
1540 {
1541 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1542
1543 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1544 int64_t offset = nvme_l2b(ns, slba);
1545 int ret;
1546
1547 /*
1548 * `pnum` holds the number of bytes after offset that shares the same
1549 * allocation status as the byte at offset. If `pnum` is different from
1550 * `bytes`, we should check the allocation status of the next range and
1551 * continue this until all bytes have been checked.
1552 */
1553 do {
1554 bytes -= pnum;
1555
1556 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1557 if (ret < 0) {
1558 return ret;
1559 }
1560
1561
1562 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1563 !!(ret & BDRV_BLOCK_ZERO));
1564
1565 if (!(ret & flags)) {
1566 return 1;
1567 }
1568
1569 offset += pnum;
1570 } while (pnum != bytes);
1571
1572 return 0;
1573 }
1574
1575 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1576 uint32_t nlb)
1577 {
1578 int ret;
1579 Error *err = NULL;
1580
1581 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1582 if (ret) {
1583 if (ret < 0) {
1584 error_setg_errno(&err, -ret, "unable to get block status");
1585 error_report_err(err);
1586
1587 return NVME_INTERNAL_DEV_ERROR;
1588 }
1589
1590 return NVME_DULB;
1591 }
1592
1593 return NVME_SUCCESS;
1594 }
1595
1596 static void nvme_aio_err(NvmeRequest *req, int ret)
1597 {
1598 uint16_t status = NVME_SUCCESS;
1599 Error *local_err = NULL;
1600
1601 switch (req->cmd.opcode) {
1602 case NVME_CMD_READ:
1603 status = NVME_UNRECOVERED_READ;
1604 break;
1605 case NVME_CMD_FLUSH:
1606 case NVME_CMD_WRITE:
1607 case NVME_CMD_WRITE_ZEROES:
1608 case NVME_CMD_ZONE_APPEND:
1609 status = NVME_WRITE_FAULT;
1610 break;
1611 default:
1612 status = NVME_INTERNAL_DEV_ERROR;
1613 break;
1614 }
1615
1616 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1617
1618 error_setg_errno(&local_err, -ret, "aio failed");
1619 error_report_err(local_err);
1620
1621 /*
1622 * Set the command status code to the first encountered error but allow a
1623 * subsequent Internal Device Error to trump it.
1624 */
1625 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1626 return;
1627 }
1628
1629 req->status = status;
1630 }
1631
1632 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1633 {
1634 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1635 slba / ns->zone_size;
1636 }
1637
1638 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1639 {
1640 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1641
1642 if (zone_idx >= ns->num_zones) {
1643 return NULL;
1644 }
1645
1646 return &ns->zone_array[zone_idx];
1647 }
1648
1649 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1650 {
1651 uint64_t zslba = zone->d.zslba;
1652
1653 switch (nvme_get_zone_state(zone)) {
1654 case NVME_ZONE_STATE_EMPTY:
1655 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1656 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1657 case NVME_ZONE_STATE_CLOSED:
1658 return NVME_SUCCESS;
1659 case NVME_ZONE_STATE_FULL:
1660 trace_pci_nvme_err_zone_is_full(zslba);
1661 return NVME_ZONE_FULL;
1662 case NVME_ZONE_STATE_OFFLINE:
1663 trace_pci_nvme_err_zone_is_offline(zslba);
1664 return NVME_ZONE_OFFLINE;
1665 case NVME_ZONE_STATE_READ_ONLY:
1666 trace_pci_nvme_err_zone_is_read_only(zslba);
1667 return NVME_ZONE_READ_ONLY;
1668 default:
1669 assert(false);
1670 }
1671
1672 return NVME_INTERNAL_DEV_ERROR;
1673 }
1674
1675 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1676 uint64_t slba, uint32_t nlb)
1677 {
1678 uint64_t zcap = nvme_zone_wr_boundary(zone);
1679 uint16_t status;
1680
1681 status = nvme_check_zone_state_for_write(zone);
1682 if (status) {
1683 return status;
1684 }
1685
1686 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1687 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1688
1689 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1690 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1691 return NVME_ZONE_INVALID_WRITE;
1692 }
1693 } else {
1694 if (unlikely(slba != zone->w_ptr)) {
1695 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1696 zone->w_ptr);
1697 return NVME_ZONE_INVALID_WRITE;
1698 }
1699 }
1700
1701 if (unlikely((slba + nlb) > zcap)) {
1702 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1703 return NVME_ZONE_BOUNDARY_ERROR;
1704 }
1705
1706 return NVME_SUCCESS;
1707 }
1708
1709 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1710 {
1711 switch (nvme_get_zone_state(zone)) {
1712 case NVME_ZONE_STATE_EMPTY:
1713 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1714 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1715 case NVME_ZONE_STATE_FULL:
1716 case NVME_ZONE_STATE_CLOSED:
1717 case NVME_ZONE_STATE_READ_ONLY:
1718 return NVME_SUCCESS;
1719 case NVME_ZONE_STATE_OFFLINE:
1720 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1721 return NVME_ZONE_OFFLINE;
1722 default:
1723 assert(false);
1724 }
1725
1726 return NVME_INTERNAL_DEV_ERROR;
1727 }
1728
1729 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1730 uint32_t nlb)
1731 {
1732 NvmeZone *zone;
1733 uint64_t bndry, end;
1734 uint16_t status;
1735
1736 zone = nvme_get_zone_by_slba(ns, slba);
1737 assert(zone);
1738
1739 bndry = nvme_zone_rd_boundary(ns, zone);
1740 end = slba + nlb;
1741
1742 status = nvme_check_zone_state_for_read(zone);
1743 if (status) {
1744 ;
1745 } else if (unlikely(end > bndry)) {
1746 if (!ns->params.cross_zone_read) {
1747 status = NVME_ZONE_BOUNDARY_ERROR;
1748 } else {
1749 /*
1750 * Read across zone boundary - check that all subsequent
1751 * zones that are being read have an appropriate state.
1752 */
1753 do {
1754 zone++;
1755 status = nvme_check_zone_state_for_read(zone);
1756 if (status) {
1757 break;
1758 }
1759 } while (end > nvme_zone_rd_boundary(ns, zone));
1760 }
1761 }
1762
1763 return status;
1764 }
1765
1766 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1767 {
1768 switch (nvme_get_zone_state(zone)) {
1769 case NVME_ZONE_STATE_FULL:
1770 return NVME_SUCCESS;
1771
1772 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1773 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1774 nvme_aor_dec_open(ns);
1775 /* fallthrough */
1776 case NVME_ZONE_STATE_CLOSED:
1777 nvme_aor_dec_active(ns);
1778
1779 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1780 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1781 if (ns->params.numzrwa) {
1782 ns->zns.numzrwa++;
1783 }
1784 }
1785
1786 /* fallthrough */
1787 case NVME_ZONE_STATE_EMPTY:
1788 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1789 return NVME_SUCCESS;
1790
1791 default:
1792 return NVME_ZONE_INVAL_TRANSITION;
1793 }
1794 }
1795
1796 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1797 {
1798 switch (nvme_get_zone_state(zone)) {
1799 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1800 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1801 nvme_aor_dec_open(ns);
1802 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1803 /* fall through */
1804 case NVME_ZONE_STATE_CLOSED:
1805 return NVME_SUCCESS;
1806
1807 default:
1808 return NVME_ZONE_INVAL_TRANSITION;
1809 }
1810 }
1811
1812 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1813 {
1814 switch (nvme_get_zone_state(zone)) {
1815 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1816 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1817 nvme_aor_dec_open(ns);
1818 /* fallthrough */
1819 case NVME_ZONE_STATE_CLOSED:
1820 nvme_aor_dec_active(ns);
1821
1822 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1823 if (ns->params.numzrwa) {
1824 ns->zns.numzrwa++;
1825 }
1826 }
1827
1828 /* fallthrough */
1829 case NVME_ZONE_STATE_FULL:
1830 zone->w_ptr = zone->d.zslba;
1831 zone->d.wp = zone->w_ptr;
1832 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1833 /* fallthrough */
1834 case NVME_ZONE_STATE_EMPTY:
1835 return NVME_SUCCESS;
1836
1837 default:
1838 return NVME_ZONE_INVAL_TRANSITION;
1839 }
1840 }
1841
1842 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1843 {
1844 NvmeZone *zone;
1845
1846 if (ns->params.max_open_zones &&
1847 ns->nr_open_zones == ns->params.max_open_zones) {
1848 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1849 if (zone) {
1850 /*
1851 * Automatically close this implicitly open zone.
1852 */
1853 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1854 nvme_zrm_close(ns, zone);
1855 }
1856 }
1857 }
1858
1859 enum {
1860 NVME_ZRM_AUTO = 1 << 0,
1861 NVME_ZRM_ZRWA = 1 << 1,
1862 };
1863
1864 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1865 NvmeZone *zone, int flags)
1866 {
1867 int act = 0;
1868 uint16_t status;
1869
1870 switch (nvme_get_zone_state(zone)) {
1871 case NVME_ZONE_STATE_EMPTY:
1872 act = 1;
1873
1874 /* fallthrough */
1875
1876 case NVME_ZONE_STATE_CLOSED:
1877 if (n->params.auto_transition_zones) {
1878 nvme_zrm_auto_transition_zone(ns);
1879 }
1880 status = nvme_zns_check_resources(ns, act, 1,
1881 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1882 if (status) {
1883 return status;
1884 }
1885
1886 if (act) {
1887 nvme_aor_inc_active(ns);
1888 }
1889
1890 nvme_aor_inc_open(ns);
1891
1892 if (flags & NVME_ZRM_AUTO) {
1893 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1894 return NVME_SUCCESS;
1895 }
1896
1897 /* fallthrough */
1898
1899 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1900 if (flags & NVME_ZRM_AUTO) {
1901 return NVME_SUCCESS;
1902 }
1903
1904 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1905
1906 /* fallthrough */
1907
1908 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1909 if (flags & NVME_ZRM_ZRWA) {
1910 ns->zns.numzrwa--;
1911
1912 zone->d.za |= NVME_ZA_ZRWA_VALID;
1913 }
1914
1915 return NVME_SUCCESS;
1916
1917 default:
1918 return NVME_ZONE_INVAL_TRANSITION;
1919 }
1920 }
1921
1922 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1923 NvmeZone *zone)
1924 {
1925 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1926 }
1927
1928 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1929 uint32_t nlb)
1930 {
1931 zone->d.wp += nlb;
1932
1933 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1934 nvme_zrm_finish(ns, zone);
1935 }
1936 }
1937
1938 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1939 uint32_t nlbc)
1940 {
1941 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1942
1943 nlbc = nzrwafgs * ns->zns.zrwafg;
1944
1945 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1946
1947 zone->w_ptr += nlbc;
1948
1949 nvme_advance_zone_wp(ns, zone, nlbc);
1950 }
1951
1952 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1953 {
1954 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1955 NvmeZone *zone;
1956 uint64_t slba;
1957 uint32_t nlb;
1958
1959 slba = le64_to_cpu(rw->slba);
1960 nlb = le16_to_cpu(rw->nlb) + 1;
1961 zone = nvme_get_zone_by_slba(ns, slba);
1962 assert(zone);
1963
1964 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1965 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1966 uint64_t elba = slba + nlb - 1;
1967
1968 if (elba > ezrwa) {
1969 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1970 }
1971
1972 return;
1973 }
1974
1975 nvme_advance_zone_wp(ns, zone, nlb);
1976 }
1977
1978 static inline bool nvme_is_write(NvmeRequest *req)
1979 {
1980 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1981
1982 return rw->opcode == NVME_CMD_WRITE ||
1983 rw->opcode == NVME_CMD_ZONE_APPEND ||
1984 rw->opcode == NVME_CMD_WRITE_ZEROES;
1985 }
1986
1987 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1988 {
1989 return qemu_get_aio_context();
1990 }
1991
1992 static void nvme_misc_cb(void *opaque, int ret)
1993 {
1994 NvmeRequest *req = opaque;
1995
1996 trace_pci_nvme_misc_cb(nvme_cid(req));
1997
1998 if (ret) {
1999 nvme_aio_err(req, ret);
2000 }
2001
2002 nvme_enqueue_req_completion(nvme_cq(req), req);
2003 }
2004
2005 void nvme_rw_complete_cb(void *opaque, int ret)
2006 {
2007 NvmeRequest *req = opaque;
2008 NvmeNamespace *ns = req->ns;
2009 BlockBackend *blk = ns->blkconf.blk;
2010 BlockAcctCookie *acct = &req->acct;
2011 BlockAcctStats *stats = blk_get_stats(blk);
2012
2013 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2014
2015 if (ret) {
2016 block_acct_failed(stats, acct);
2017 nvme_aio_err(req, ret);
2018 } else {
2019 block_acct_done(stats, acct);
2020 }
2021
2022 if (ns->params.zoned && nvme_is_write(req)) {
2023 nvme_finalize_zoned_write(ns, req);
2024 }
2025
2026 nvme_enqueue_req_completion(nvme_cq(req), req);
2027 }
2028
2029 static void nvme_rw_cb(void *opaque, int ret)
2030 {
2031 NvmeRequest *req = opaque;
2032 NvmeNamespace *ns = req->ns;
2033
2034 BlockBackend *blk = ns->blkconf.blk;
2035
2036 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2037
2038 if (ret) {
2039 goto out;
2040 }
2041
2042 if (ns->lbaf.ms) {
2043 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2044 uint64_t slba = le64_to_cpu(rw->slba);
2045 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2046 uint64_t offset = nvme_moff(ns, slba);
2047
2048 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2049 size_t mlen = nvme_m2b(ns, nlb);
2050
2051 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2052 BDRV_REQ_MAY_UNMAP,
2053 nvme_rw_complete_cb, req);
2054 return;
2055 }
2056
2057 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2058 uint16_t status;
2059
2060 nvme_sg_unmap(&req->sg);
2061 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2062 if (status) {
2063 ret = -EFAULT;
2064 goto out;
2065 }
2066
2067 if (req->cmd.opcode == NVME_CMD_READ) {
2068 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2069 }
2070
2071 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2072 }
2073 }
2074
2075 out:
2076 nvme_rw_complete_cb(req, ret);
2077 }
2078
2079 static void nvme_verify_cb(void *opaque, int ret)
2080 {
2081 NvmeBounceContext *ctx = opaque;
2082 NvmeRequest *req = ctx->req;
2083 NvmeNamespace *ns = req->ns;
2084 BlockBackend *blk = ns->blkconf.blk;
2085 BlockAcctCookie *acct = &req->acct;
2086 BlockAcctStats *stats = blk_get_stats(blk);
2087 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2088 uint64_t slba = le64_to_cpu(rw->slba);
2089 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2090 uint16_t apptag = le16_to_cpu(rw->apptag);
2091 uint16_t appmask = le16_to_cpu(rw->appmask);
2092 uint64_t reftag = le32_to_cpu(rw->reftag);
2093 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2094 uint16_t status;
2095
2096 reftag |= cdw3 << 32;
2097
2098 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2099
2100 if (ret) {
2101 block_acct_failed(stats, acct);
2102 nvme_aio_err(req, ret);
2103 goto out;
2104 }
2105
2106 block_acct_done(stats, acct);
2107
2108 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2109 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2110 ctx->mdata.iov.size, slba);
2111 if (status) {
2112 req->status = status;
2113 goto out;
2114 }
2115
2116 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2117 ctx->mdata.bounce, ctx->mdata.iov.size,
2118 prinfo, slba, apptag, appmask, &reftag);
2119 }
2120
2121 out:
2122 qemu_iovec_destroy(&ctx->data.iov);
2123 g_free(ctx->data.bounce);
2124
2125 qemu_iovec_destroy(&ctx->mdata.iov);
2126 g_free(ctx->mdata.bounce);
2127
2128 g_free(ctx);
2129
2130 nvme_enqueue_req_completion(nvme_cq(req), req);
2131 }
2132
2133
2134 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2135 {
2136 NvmeBounceContext *ctx = opaque;
2137 NvmeRequest *req = ctx->req;
2138 NvmeNamespace *ns = req->ns;
2139 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2140 uint64_t slba = le64_to_cpu(rw->slba);
2141 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2142 size_t mlen = nvme_m2b(ns, nlb);
2143 uint64_t offset = nvme_moff(ns, slba);
2144 BlockBackend *blk = ns->blkconf.blk;
2145
2146 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2147
2148 if (ret) {
2149 goto out;
2150 }
2151
2152 ctx->mdata.bounce = g_malloc(mlen);
2153
2154 qemu_iovec_reset(&ctx->mdata.iov);
2155 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2156
2157 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2158 nvme_verify_cb, ctx);
2159 return;
2160
2161 out:
2162 nvme_verify_cb(ctx, ret);
2163 }
2164
2165 struct nvme_compare_ctx {
2166 struct {
2167 QEMUIOVector iov;
2168 uint8_t *bounce;
2169 } data;
2170
2171 struct {
2172 QEMUIOVector iov;
2173 uint8_t *bounce;
2174 } mdata;
2175 };
2176
2177 static void nvme_compare_mdata_cb(void *opaque, int ret)
2178 {
2179 NvmeRequest *req = opaque;
2180 NvmeNamespace *ns = req->ns;
2181 NvmeCtrl *n = nvme_ctrl(req);
2182 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2183 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2184 uint16_t apptag = le16_to_cpu(rw->apptag);
2185 uint16_t appmask = le16_to_cpu(rw->appmask);
2186 uint64_t reftag = le32_to_cpu(rw->reftag);
2187 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2188 struct nvme_compare_ctx *ctx = req->opaque;
2189 g_autofree uint8_t *buf = NULL;
2190 BlockBackend *blk = ns->blkconf.blk;
2191 BlockAcctCookie *acct = &req->acct;
2192 BlockAcctStats *stats = blk_get_stats(blk);
2193 uint16_t status = NVME_SUCCESS;
2194
2195 reftag |= cdw3 << 32;
2196
2197 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2198
2199 if (ret) {
2200 block_acct_failed(stats, acct);
2201 nvme_aio_err(req, ret);
2202 goto out;
2203 }
2204
2205 buf = g_malloc(ctx->mdata.iov.size);
2206
2207 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2208 NVME_TX_DIRECTION_TO_DEVICE, req);
2209 if (status) {
2210 req->status = status;
2211 goto out;
2212 }
2213
2214 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2215 uint64_t slba = le64_to_cpu(rw->slba);
2216 uint8_t *bufp;
2217 uint8_t *mbufp = ctx->mdata.bounce;
2218 uint8_t *end = mbufp + ctx->mdata.iov.size;
2219 int16_t pil = 0;
2220
2221 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2222 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2223 slba, apptag, appmask, &reftag);
2224 if (status) {
2225 req->status = status;
2226 goto out;
2227 }
2228
2229 /*
2230 * When formatted with protection information, do not compare the DIF
2231 * tuple.
2232 */
2233 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2234 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2235 }
2236
2237 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2238 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2239 req->status = NVME_CMP_FAILURE;
2240 goto out;
2241 }
2242 }
2243
2244 goto out;
2245 }
2246
2247 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2248 req->status = NVME_CMP_FAILURE;
2249 goto out;
2250 }
2251
2252 block_acct_done(stats, acct);
2253
2254 out:
2255 qemu_iovec_destroy(&ctx->data.iov);
2256 g_free(ctx->data.bounce);
2257
2258 qemu_iovec_destroy(&ctx->mdata.iov);
2259 g_free(ctx->mdata.bounce);
2260
2261 g_free(ctx);
2262
2263 nvme_enqueue_req_completion(nvme_cq(req), req);
2264 }
2265
2266 static void nvme_compare_data_cb(void *opaque, int ret)
2267 {
2268 NvmeRequest *req = opaque;
2269 NvmeCtrl *n = nvme_ctrl(req);
2270 NvmeNamespace *ns = req->ns;
2271 BlockBackend *blk = ns->blkconf.blk;
2272 BlockAcctCookie *acct = &req->acct;
2273 BlockAcctStats *stats = blk_get_stats(blk);
2274
2275 struct nvme_compare_ctx *ctx = req->opaque;
2276 g_autofree uint8_t *buf = NULL;
2277 uint16_t status;
2278
2279 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2280
2281 if (ret) {
2282 block_acct_failed(stats, acct);
2283 nvme_aio_err(req, ret);
2284 goto out;
2285 }
2286
2287 buf = g_malloc(ctx->data.iov.size);
2288
2289 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2290 NVME_TX_DIRECTION_TO_DEVICE, req);
2291 if (status) {
2292 req->status = status;
2293 goto out;
2294 }
2295
2296 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2297 req->status = NVME_CMP_FAILURE;
2298 goto out;
2299 }
2300
2301 if (ns->lbaf.ms) {
2302 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2303 uint64_t slba = le64_to_cpu(rw->slba);
2304 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2305 size_t mlen = nvme_m2b(ns, nlb);
2306 uint64_t offset = nvme_moff(ns, slba);
2307
2308 ctx->mdata.bounce = g_malloc(mlen);
2309
2310 qemu_iovec_init(&ctx->mdata.iov, 1);
2311 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2312
2313 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2314 nvme_compare_mdata_cb, req);
2315 return;
2316 }
2317
2318 block_acct_done(stats, acct);
2319
2320 out:
2321 qemu_iovec_destroy(&ctx->data.iov);
2322 g_free(ctx->data.bounce);
2323 g_free(ctx);
2324
2325 nvme_enqueue_req_completion(nvme_cq(req), req);
2326 }
2327
2328 typedef struct NvmeDSMAIOCB {
2329 BlockAIOCB common;
2330 BlockAIOCB *aiocb;
2331 NvmeRequest *req;
2332 int ret;
2333
2334 NvmeDsmRange *range;
2335 unsigned int nr;
2336 unsigned int idx;
2337 } NvmeDSMAIOCB;
2338
2339 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2340 {
2341 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2342
2343 /* break nvme_dsm_cb loop */
2344 iocb->idx = iocb->nr;
2345 iocb->ret = -ECANCELED;
2346
2347 if (iocb->aiocb) {
2348 blk_aio_cancel_async(iocb->aiocb);
2349 iocb->aiocb = NULL;
2350 } else {
2351 /*
2352 * We only reach this if nvme_dsm_cancel() has already been called or
2353 * the command ran to completion.
2354 */
2355 assert(iocb->idx == iocb->nr);
2356 }
2357 }
2358
2359 static const AIOCBInfo nvme_dsm_aiocb_info = {
2360 .aiocb_size = sizeof(NvmeDSMAIOCB),
2361 .cancel_async = nvme_dsm_cancel,
2362 };
2363
2364 static void nvme_dsm_cb(void *opaque, int ret);
2365
2366 static void nvme_dsm_md_cb(void *opaque, int ret)
2367 {
2368 NvmeDSMAIOCB *iocb = opaque;
2369 NvmeRequest *req = iocb->req;
2370 NvmeNamespace *ns = req->ns;
2371 NvmeDsmRange *range;
2372 uint64_t slba;
2373 uint32_t nlb;
2374
2375 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2376 goto done;
2377 }
2378
2379 range = &iocb->range[iocb->idx - 1];
2380 slba = le64_to_cpu(range->slba);
2381 nlb = le32_to_cpu(range->nlb);
2382
2383 /*
2384 * Check that all block were discarded (zeroed); otherwise we do not zero
2385 * the metadata.
2386 */
2387
2388 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2389 if (ret) {
2390 if (ret < 0) {
2391 goto done;
2392 }
2393
2394 nvme_dsm_cb(iocb, 0);
2395 return;
2396 }
2397
2398 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2399 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2400 nvme_dsm_cb, iocb);
2401 return;
2402
2403 done:
2404 nvme_dsm_cb(iocb, ret);
2405 }
2406
2407 static void nvme_dsm_cb(void *opaque, int ret)
2408 {
2409 NvmeDSMAIOCB *iocb = opaque;
2410 NvmeRequest *req = iocb->req;
2411 NvmeCtrl *n = nvme_ctrl(req);
2412 NvmeNamespace *ns = req->ns;
2413 NvmeDsmRange *range;
2414 uint64_t slba;
2415 uint32_t nlb;
2416
2417 if (iocb->ret < 0) {
2418 goto done;
2419 } else if (ret < 0) {
2420 iocb->ret = ret;
2421 goto done;
2422 }
2423
2424 next:
2425 if (iocb->idx == iocb->nr) {
2426 goto done;
2427 }
2428
2429 range = &iocb->range[iocb->idx++];
2430 slba = le64_to_cpu(range->slba);
2431 nlb = le32_to_cpu(range->nlb);
2432
2433 trace_pci_nvme_dsm_deallocate(slba, nlb);
2434
2435 if (nlb > n->dmrsl) {
2436 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2437 goto next;
2438 }
2439
2440 if (nvme_check_bounds(ns, slba, nlb)) {
2441 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2442 ns->id_ns.nsze);
2443 goto next;
2444 }
2445
2446 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2447 nvme_l2b(ns, nlb),
2448 nvme_dsm_md_cb, iocb);
2449 return;
2450
2451 done:
2452 iocb->aiocb = NULL;
2453 iocb->common.cb(iocb->common.opaque, iocb->ret);
2454 qemu_aio_unref(iocb);
2455 }
2456
2457 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2458 {
2459 NvmeNamespace *ns = req->ns;
2460 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2461 uint32_t attr = le32_to_cpu(dsm->attributes);
2462 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2463 uint16_t status = NVME_SUCCESS;
2464
2465 trace_pci_nvme_dsm(nr, attr);
2466
2467 if (attr & NVME_DSMGMT_AD) {
2468 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2469 nvme_misc_cb, req);
2470
2471 iocb->req = req;
2472 iocb->ret = 0;
2473 iocb->range = g_new(NvmeDsmRange, nr);
2474 iocb->nr = nr;
2475 iocb->idx = 0;
2476
2477 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2478 req);
2479 if (status) {
2480 return status;
2481 }
2482
2483 req->aiocb = &iocb->common;
2484 nvme_dsm_cb(iocb, 0);
2485
2486 return NVME_NO_COMPLETE;
2487 }
2488
2489 return status;
2490 }
2491
2492 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2493 {
2494 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2495 NvmeNamespace *ns = req->ns;
2496 BlockBackend *blk = ns->blkconf.blk;
2497 uint64_t slba = le64_to_cpu(rw->slba);
2498 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2499 size_t len = nvme_l2b(ns, nlb);
2500 int64_t offset = nvme_l2b(ns, slba);
2501 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2502 uint32_t reftag = le32_to_cpu(rw->reftag);
2503 NvmeBounceContext *ctx = NULL;
2504 uint16_t status;
2505
2506 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2507
2508 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2509 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2510 if (status) {
2511 return status;
2512 }
2513
2514 if (prinfo & NVME_PRINFO_PRACT) {
2515 return NVME_INVALID_PROT_INFO | NVME_DNR;
2516 }
2517 }
2518
2519 if (len > n->page_size << n->params.vsl) {
2520 return NVME_INVALID_FIELD | NVME_DNR;
2521 }
2522
2523 status = nvme_check_bounds(ns, slba, nlb);
2524 if (status) {
2525 return status;
2526 }
2527
2528 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2529 status = nvme_check_dulbe(ns, slba, nlb);
2530 if (status) {
2531 return status;
2532 }
2533 }
2534
2535 ctx = g_new0(NvmeBounceContext, 1);
2536 ctx->req = req;
2537
2538 ctx->data.bounce = g_malloc(len);
2539
2540 qemu_iovec_init(&ctx->data.iov, 1);
2541 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2542
2543 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2544 BLOCK_ACCT_READ);
2545
2546 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2547 nvme_verify_mdata_in_cb, ctx);
2548 return NVME_NO_COMPLETE;
2549 }
2550
2551 typedef struct NvmeCopyAIOCB {
2552 BlockAIOCB common;
2553 BlockAIOCB *aiocb;
2554 NvmeRequest *req;
2555 int ret;
2556
2557 void *ranges;
2558 unsigned int format;
2559 int nr;
2560 int idx;
2561
2562 uint8_t *bounce;
2563 QEMUIOVector iov;
2564 struct {
2565 BlockAcctCookie read;
2566 BlockAcctCookie write;
2567 } acct;
2568
2569 uint64_t reftag;
2570 uint64_t slba;
2571
2572 NvmeZone *zone;
2573 } NvmeCopyAIOCB;
2574
2575 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2576 {
2577 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2578
2579 iocb->ret = -ECANCELED;
2580
2581 if (iocb->aiocb) {
2582 blk_aio_cancel_async(iocb->aiocb);
2583 iocb->aiocb = NULL;
2584 }
2585 }
2586
2587 static const AIOCBInfo nvme_copy_aiocb_info = {
2588 .aiocb_size = sizeof(NvmeCopyAIOCB),
2589 .cancel_async = nvme_copy_cancel,
2590 };
2591
2592 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2593 {
2594 NvmeRequest *req = iocb->req;
2595 NvmeNamespace *ns = req->ns;
2596 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2597
2598 if (iocb->idx != iocb->nr) {
2599 req->cqe.result = cpu_to_le32(iocb->idx);
2600 }
2601
2602 qemu_iovec_destroy(&iocb->iov);
2603 g_free(iocb->bounce);
2604
2605 if (iocb->ret < 0) {
2606 block_acct_failed(stats, &iocb->acct.read);
2607 block_acct_failed(stats, &iocb->acct.write);
2608 } else {
2609 block_acct_done(stats, &iocb->acct.read);
2610 block_acct_done(stats, &iocb->acct.write);
2611 }
2612
2613 iocb->common.cb(iocb->common.opaque, iocb->ret);
2614 qemu_aio_unref(iocb);
2615 }
2616
2617 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2618
2619 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2620 uint64_t *slba, uint32_t *nlb,
2621 uint16_t *apptag,
2622 uint16_t *appmask,
2623 uint64_t *reftag)
2624 {
2625 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2626
2627 if (slba) {
2628 *slba = le64_to_cpu(_ranges[idx].slba);
2629 }
2630
2631 if (nlb) {
2632 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2633 }
2634
2635 if (apptag) {
2636 *apptag = le16_to_cpu(_ranges[idx].apptag);
2637 }
2638
2639 if (appmask) {
2640 *appmask = le16_to_cpu(_ranges[idx].appmask);
2641 }
2642
2643 if (reftag) {
2644 *reftag = le32_to_cpu(_ranges[idx].reftag);
2645 }
2646 }
2647
2648 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2649 uint64_t *slba, uint32_t *nlb,
2650 uint16_t *apptag,
2651 uint16_t *appmask,
2652 uint64_t *reftag)
2653 {
2654 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2655
2656 if (slba) {
2657 *slba = le64_to_cpu(_ranges[idx].slba);
2658 }
2659
2660 if (nlb) {
2661 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2662 }
2663
2664 if (apptag) {
2665 *apptag = le16_to_cpu(_ranges[idx].apptag);
2666 }
2667
2668 if (appmask) {
2669 *appmask = le16_to_cpu(_ranges[idx].appmask);
2670 }
2671
2672 if (reftag) {
2673 *reftag = 0;
2674
2675 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2676 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2677 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2678 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2679 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2680 *reftag |= (uint64_t)_ranges[idx].sr[9];
2681 }
2682 }
2683
2684 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2685 uint64_t *slba, uint32_t *nlb,
2686 uint16_t *apptag, uint16_t *appmask,
2687 uint64_t *reftag)
2688 {
2689 switch (format) {
2690 case NVME_COPY_FORMAT_0:
2691 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2692 appmask, reftag);
2693 break;
2694
2695 case NVME_COPY_FORMAT_1:
2696 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2697 appmask, reftag);
2698 break;
2699
2700 default:
2701 abort();
2702 }
2703 }
2704
2705 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2706 {
2707 NvmeCopyAIOCB *iocb = opaque;
2708 NvmeRequest *req = iocb->req;
2709 NvmeNamespace *ns = req->ns;
2710 uint32_t nlb;
2711
2712 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2713 &nlb, NULL, NULL, NULL);
2714
2715 if (ret < 0) {
2716 iocb->ret = ret;
2717 goto out;
2718 } else if (iocb->ret < 0) {
2719 goto out;
2720 }
2721
2722 if (ns->params.zoned) {
2723 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2724 }
2725
2726 iocb->idx++;
2727 iocb->slba += nlb;
2728 out:
2729 nvme_do_copy(iocb);
2730 }
2731
2732 static void nvme_copy_out_cb(void *opaque, int ret)
2733 {
2734 NvmeCopyAIOCB *iocb = opaque;
2735 NvmeRequest *req = iocb->req;
2736 NvmeNamespace *ns = req->ns;
2737 uint32_t nlb;
2738 size_t mlen;
2739 uint8_t *mbounce;
2740
2741 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2742 goto out;
2743 }
2744
2745 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2746 &nlb, NULL, NULL, NULL);
2747
2748 mlen = nvme_m2b(ns, nlb);
2749 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2750
2751 qemu_iovec_reset(&iocb->iov);
2752 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2753
2754 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2755 &iocb->iov, 0, nvme_copy_out_completed_cb,
2756 iocb);
2757
2758 return;
2759
2760 out:
2761 nvme_copy_out_completed_cb(iocb, ret);
2762 }
2763
2764 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2765 {
2766 NvmeCopyAIOCB *iocb = opaque;
2767 NvmeRequest *req = iocb->req;
2768 NvmeNamespace *ns = req->ns;
2769 uint32_t nlb;
2770 uint64_t slba;
2771 uint16_t apptag, appmask;
2772 uint64_t reftag;
2773 size_t len;
2774 uint16_t status;
2775
2776 if (ret < 0) {
2777 iocb->ret = ret;
2778 goto out;
2779 } else if (iocb->ret < 0) {
2780 goto out;
2781 }
2782
2783 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2784 &nlb, &apptag, &appmask, &reftag);
2785 len = nvme_l2b(ns, nlb);
2786
2787 trace_pci_nvme_copy_out(iocb->slba, nlb);
2788
2789 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2790 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2791
2792 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2793 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2794
2795 size_t mlen = nvme_m2b(ns, nlb);
2796 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2797
2798 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2799 if (status) {
2800 goto invalid;
2801 }
2802 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2803 slba, apptag, appmask, &reftag);
2804 if (status) {
2805 goto invalid;
2806 }
2807
2808 apptag = le16_to_cpu(copy->apptag);
2809 appmask = le16_to_cpu(copy->appmask);
2810
2811 if (prinfow & NVME_PRINFO_PRACT) {
2812 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2813 if (status) {
2814 goto invalid;
2815 }
2816
2817 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2818 apptag, &iocb->reftag);
2819 } else {
2820 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2821 prinfow, iocb->slba, apptag, appmask,
2822 &iocb->reftag);
2823 if (status) {
2824 goto invalid;
2825 }
2826 }
2827 }
2828
2829 status = nvme_check_bounds(ns, iocb->slba, nlb);
2830 if (status) {
2831 goto invalid;
2832 }
2833
2834 if (ns->params.zoned) {
2835 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2836 if (status) {
2837 goto invalid;
2838 }
2839
2840 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2841 iocb->zone->w_ptr += nlb;
2842 }
2843 }
2844
2845 qemu_iovec_reset(&iocb->iov);
2846 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2847
2848 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2849 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2850
2851 return;
2852
2853 invalid:
2854 req->status = status;
2855 iocb->ret = -1;
2856 out:
2857 nvme_do_copy(iocb);
2858 }
2859
2860 static void nvme_copy_in_cb(void *opaque, int ret)
2861 {
2862 NvmeCopyAIOCB *iocb = opaque;
2863 NvmeRequest *req = iocb->req;
2864 NvmeNamespace *ns = req->ns;
2865 uint64_t slba;
2866 uint32_t nlb;
2867
2868 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2869 goto out;
2870 }
2871
2872 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2873 &nlb, NULL, NULL, NULL);
2874
2875 qemu_iovec_reset(&iocb->iov);
2876 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2877 nvme_m2b(ns, nlb));
2878
2879 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2880 &iocb->iov, 0, nvme_copy_in_completed_cb,
2881 iocb);
2882 return;
2883
2884 out:
2885 nvme_copy_in_completed_cb(iocb, ret);
2886 }
2887
2888 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
2889 {
2890 NvmeRequest *req = iocb->req;
2891 NvmeNamespace *ns = req->ns;
2892 uint64_t slba;
2893 uint32_t nlb;
2894 size_t len;
2895 uint16_t status;
2896
2897 if (iocb->ret < 0) {
2898 goto done;
2899 }
2900
2901 if (iocb->idx == iocb->nr) {
2902 goto done;
2903 }
2904
2905 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2906 &nlb, NULL, NULL, NULL);
2907 len = nvme_l2b(ns, nlb);
2908
2909 trace_pci_nvme_copy_source_range(slba, nlb);
2910
2911 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2912 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2913 goto invalid;
2914 }
2915
2916 status = nvme_check_bounds(ns, slba, nlb);
2917 if (status) {
2918 goto invalid;
2919 }
2920
2921 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2922 status = nvme_check_dulbe(ns, slba, nlb);
2923 if (status) {
2924 goto invalid;
2925 }
2926 }
2927
2928 if (ns->params.zoned) {
2929 status = nvme_check_zone_read(ns, slba, nlb);
2930 if (status) {
2931 goto invalid;
2932 }
2933 }
2934
2935 qemu_iovec_reset(&iocb->iov);
2936 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2937
2938 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2939 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2940 return;
2941
2942 invalid:
2943 req->status = status;
2944 iocb->ret = -1;
2945 done:
2946 nvme_copy_done(iocb);
2947 }
2948
2949 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2950 {
2951 NvmeNamespace *ns = req->ns;
2952 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2953 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2954 nvme_misc_cb, req);
2955 uint16_t nr = copy->nr + 1;
2956 uint8_t format = copy->control[0] & 0xf;
2957 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2958 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2959 size_t len = sizeof(NvmeCopySourceRangeFormat0);
2960
2961 uint16_t status;
2962
2963 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2964
2965 iocb->ranges = NULL;
2966 iocb->zone = NULL;
2967
2968 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2969 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2970 status = NVME_INVALID_FIELD | NVME_DNR;
2971 goto invalid;
2972 }
2973
2974 if (!(n->id_ctrl.ocfs & (1 << format))) {
2975 trace_pci_nvme_err_copy_invalid_format(format);
2976 status = NVME_INVALID_FIELD | NVME_DNR;
2977 goto invalid;
2978 }
2979
2980 if (nr > ns->id_ns.msrc + 1) {
2981 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2982 goto invalid;
2983 }
2984
2985 if ((ns->pif == 0x0 && format != 0x0) ||
2986 (ns->pif != 0x0 && format != 0x1)) {
2987 status = NVME_INVALID_FORMAT | NVME_DNR;
2988 goto invalid;
2989 }
2990
2991 if (ns->pif) {
2992 len = sizeof(NvmeCopySourceRangeFormat1);
2993 }
2994
2995 iocb->format = format;
2996 iocb->ranges = g_malloc_n(nr, len);
2997 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
2998 if (status) {
2999 goto invalid;
3000 }
3001
3002 iocb->slba = le64_to_cpu(copy->sdlba);
3003
3004 if (ns->params.zoned) {
3005 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3006 if (!iocb->zone) {
3007 status = NVME_LBA_RANGE | NVME_DNR;
3008 goto invalid;
3009 }
3010
3011 status = nvme_zrm_auto(n, ns, iocb->zone);
3012 if (status) {
3013 goto invalid;
3014 }
3015 }
3016
3017 iocb->req = req;
3018 iocb->ret = 0;
3019 iocb->nr = nr;
3020 iocb->idx = 0;
3021 iocb->reftag = le32_to_cpu(copy->reftag);
3022 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3023 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3024 ns->lbasz + ns->lbaf.ms);
3025
3026 qemu_iovec_init(&iocb->iov, 1);
3027
3028 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3029 BLOCK_ACCT_READ);
3030 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3031 BLOCK_ACCT_WRITE);
3032
3033 req->aiocb = &iocb->common;
3034 nvme_do_copy(iocb);
3035
3036 return NVME_NO_COMPLETE;
3037
3038 invalid:
3039 g_free(iocb->ranges);
3040 qemu_aio_unref(iocb);
3041 return status;
3042 }
3043
3044 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3045 {
3046 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3047 NvmeNamespace *ns = req->ns;
3048 BlockBackend *blk = ns->blkconf.blk;
3049 uint64_t slba = le64_to_cpu(rw->slba);
3050 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3051 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3052 size_t data_len = nvme_l2b(ns, nlb);
3053 size_t len = data_len;
3054 int64_t offset = nvme_l2b(ns, slba);
3055 struct nvme_compare_ctx *ctx = NULL;
3056 uint16_t status;
3057
3058 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3059
3060 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3061 return NVME_INVALID_PROT_INFO | NVME_DNR;
3062 }
3063
3064 if (nvme_ns_ext(ns)) {
3065 len += nvme_m2b(ns, nlb);
3066 }
3067
3068 status = nvme_check_mdts(n, len);
3069 if (status) {
3070 return status;
3071 }
3072
3073 status = nvme_check_bounds(ns, slba, nlb);
3074 if (status) {
3075 return status;
3076 }
3077
3078 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3079 status = nvme_check_dulbe(ns, slba, nlb);
3080 if (status) {
3081 return status;
3082 }
3083 }
3084
3085 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3086 if (status) {
3087 return status;
3088 }
3089
3090 ctx = g_new(struct nvme_compare_ctx, 1);
3091 ctx->data.bounce = g_malloc(data_len);
3092
3093 req->opaque = ctx;
3094
3095 qemu_iovec_init(&ctx->data.iov, 1);
3096 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3097
3098 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3099 BLOCK_ACCT_READ);
3100 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3101 nvme_compare_data_cb, req);
3102
3103 return NVME_NO_COMPLETE;
3104 }
3105
3106 typedef struct NvmeFlushAIOCB {
3107 BlockAIOCB common;
3108 BlockAIOCB *aiocb;
3109 NvmeRequest *req;
3110 int ret;
3111
3112 NvmeNamespace *ns;
3113 uint32_t nsid;
3114 bool broadcast;
3115 } NvmeFlushAIOCB;
3116
3117 static void nvme_flush_cancel(BlockAIOCB *acb)
3118 {
3119 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3120
3121 iocb->ret = -ECANCELED;
3122
3123 if (iocb->aiocb) {
3124 blk_aio_cancel_async(iocb->aiocb);
3125 iocb->aiocb = NULL;
3126 }
3127 }
3128
3129 static const AIOCBInfo nvme_flush_aiocb_info = {
3130 .aiocb_size = sizeof(NvmeFlushAIOCB),
3131 .cancel_async = nvme_flush_cancel,
3132 .get_aio_context = nvme_get_aio_context,
3133 };
3134
3135 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3136
3137 static void nvme_flush_ns_cb(void *opaque, int ret)
3138 {
3139 NvmeFlushAIOCB *iocb = opaque;
3140 NvmeNamespace *ns = iocb->ns;
3141
3142 if (ret < 0) {
3143 iocb->ret = ret;
3144 goto out;
3145 } else if (iocb->ret < 0) {
3146 goto out;
3147 }
3148
3149 if (ns) {
3150 trace_pci_nvme_flush_ns(iocb->nsid);
3151
3152 iocb->ns = NULL;
3153 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3154 return;
3155 }
3156
3157 out:
3158 nvme_do_flush(iocb);
3159 }
3160
3161 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3162 {
3163 NvmeRequest *req = iocb->req;
3164 NvmeCtrl *n = nvme_ctrl(req);
3165 int i;
3166
3167 if (iocb->ret < 0) {
3168 goto done;
3169 }
3170
3171 if (iocb->broadcast) {
3172 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3173 iocb->ns = nvme_ns(n, i);
3174 if (iocb->ns) {
3175 iocb->nsid = i;
3176 break;
3177 }
3178 }
3179 }
3180
3181 if (!iocb->ns) {
3182 goto done;
3183 }
3184
3185 nvme_flush_ns_cb(iocb, 0);
3186 return;
3187
3188 done:
3189 iocb->common.cb(iocb->common.opaque, iocb->ret);
3190 qemu_aio_unref(iocb);
3191 }
3192
3193 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3194 {
3195 NvmeFlushAIOCB *iocb;
3196 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3197 uint16_t status;
3198
3199 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3200
3201 iocb->req = req;
3202 iocb->ret = 0;
3203 iocb->ns = NULL;
3204 iocb->nsid = 0;
3205 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3206
3207 if (!iocb->broadcast) {
3208 if (!nvme_nsid_valid(n, nsid)) {
3209 status = NVME_INVALID_NSID | NVME_DNR;
3210 goto out;
3211 }
3212
3213 iocb->ns = nvme_ns(n, nsid);
3214 if (!iocb->ns) {
3215 status = NVME_INVALID_FIELD | NVME_DNR;
3216 goto out;
3217 }
3218
3219 iocb->nsid = nsid;
3220 }
3221
3222 req->aiocb = &iocb->common;
3223 nvme_do_flush(iocb);
3224
3225 return NVME_NO_COMPLETE;
3226
3227 out:
3228 qemu_aio_unref(iocb);
3229
3230 return status;
3231 }
3232
3233 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3234 {
3235 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3236 NvmeNamespace *ns = req->ns;
3237 uint64_t slba = le64_to_cpu(rw->slba);
3238 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3239 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3240 uint64_t data_size = nvme_l2b(ns, nlb);
3241 uint64_t mapped_size = data_size;
3242 uint64_t data_offset;
3243 BlockBackend *blk = ns->blkconf.blk;
3244 uint16_t status;
3245
3246 if (nvme_ns_ext(ns)) {
3247 mapped_size += nvme_m2b(ns, nlb);
3248
3249 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3250 bool pract = prinfo & NVME_PRINFO_PRACT;
3251
3252 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3253 mapped_size = data_size;
3254 }
3255 }
3256 }
3257
3258 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3259
3260 status = nvme_check_mdts(n, mapped_size);
3261 if (status) {
3262 goto invalid;
3263 }
3264
3265 status = nvme_check_bounds(ns, slba, nlb);
3266 if (status) {
3267 goto invalid;
3268 }
3269
3270 if (ns->params.zoned) {
3271 status = nvme_check_zone_read(ns, slba, nlb);
3272 if (status) {
3273 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3274 goto invalid;
3275 }
3276 }
3277
3278 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3279 status = nvme_check_dulbe(ns, slba, nlb);
3280 if (status) {
3281 goto invalid;
3282 }
3283 }
3284
3285 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3286 return nvme_dif_rw(n, req);
3287 }
3288
3289 status = nvme_map_data(n, nlb, req);
3290 if (status) {
3291 goto invalid;
3292 }
3293
3294 data_offset = nvme_l2b(ns, slba);
3295
3296 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3297 BLOCK_ACCT_READ);
3298 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3299 return NVME_NO_COMPLETE;
3300
3301 invalid:
3302 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3303 return status | NVME_DNR;
3304 }
3305
3306 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3307 bool wrz)
3308 {
3309 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3310 NvmeNamespace *ns = req->ns;
3311 uint64_t slba = le64_to_cpu(rw->slba);
3312 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3313 uint16_t ctrl = le16_to_cpu(rw->control);
3314 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3315 uint64_t data_size = nvme_l2b(ns, nlb);
3316 uint64_t mapped_size = data_size;
3317 uint64_t data_offset;
3318 NvmeZone *zone;
3319 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3320 BlockBackend *blk = ns->blkconf.blk;
3321 uint16_t status;
3322
3323 if (nvme_ns_ext(ns)) {
3324 mapped_size += nvme_m2b(ns, nlb);
3325
3326 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3327 bool pract = prinfo & NVME_PRINFO_PRACT;
3328
3329 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3330 mapped_size -= nvme_m2b(ns, nlb);
3331 }
3332 }
3333 }
3334
3335 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3336 nvme_nsid(ns), nlb, mapped_size, slba);
3337
3338 if (!wrz) {
3339 status = nvme_check_mdts(n, mapped_size);
3340 if (status) {
3341 goto invalid;
3342 }
3343 }
3344
3345 status = nvme_check_bounds(ns, slba, nlb);
3346 if (status) {
3347 goto invalid;
3348 }
3349
3350 if (ns->params.zoned) {
3351 zone = nvme_get_zone_by_slba(ns, slba);
3352 assert(zone);
3353
3354 if (append) {
3355 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3356
3357 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3358 return NVME_INVALID_ZONE_OP | NVME_DNR;
3359 }
3360
3361 if (unlikely(slba != zone->d.zslba)) {
3362 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3363 status = NVME_INVALID_FIELD;
3364 goto invalid;
3365 }
3366
3367 if (n->params.zasl &&
3368 data_size > (uint64_t)n->page_size << n->params.zasl) {
3369 trace_pci_nvme_err_zasl(data_size);
3370 return NVME_INVALID_FIELD | NVME_DNR;
3371 }
3372
3373 slba = zone->w_ptr;
3374 rw->slba = cpu_to_le64(slba);
3375 res->slba = cpu_to_le64(slba);
3376
3377 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3378 case NVME_ID_NS_DPS_TYPE_1:
3379 if (!piremap) {
3380 return NVME_INVALID_PROT_INFO | NVME_DNR;
3381 }
3382
3383 /* fallthrough */
3384
3385 case NVME_ID_NS_DPS_TYPE_2:
3386 if (piremap) {
3387 uint32_t reftag = le32_to_cpu(rw->reftag);
3388 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3389 }
3390
3391 break;
3392
3393 case NVME_ID_NS_DPS_TYPE_3:
3394 if (piremap) {
3395 return NVME_INVALID_PROT_INFO | NVME_DNR;
3396 }
3397
3398 break;
3399 }
3400 }
3401
3402 status = nvme_check_zone_write(ns, zone, slba, nlb);
3403 if (status) {
3404 goto invalid;
3405 }
3406
3407 status = nvme_zrm_auto(n, ns, zone);
3408 if (status) {
3409 goto invalid;
3410 }
3411
3412 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3413 zone->w_ptr += nlb;
3414 }
3415 }
3416
3417 data_offset = nvme_l2b(ns, slba);
3418
3419 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3420 return nvme_dif_rw(n, req);
3421 }
3422
3423 if (!wrz) {
3424 status = nvme_map_data(n, nlb, req);
3425 if (status) {
3426 goto invalid;
3427 }
3428
3429 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3430 BLOCK_ACCT_WRITE);
3431 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3432 } else {
3433 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3434 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3435 req);
3436 }
3437
3438 return NVME_NO_COMPLETE;
3439
3440 invalid:
3441 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3442 return status | NVME_DNR;
3443 }
3444
3445 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3446 {
3447 return nvme_do_write(n, req, false, false);
3448 }
3449
3450 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3451 {
3452 return nvme_do_write(n, req, false, true);
3453 }
3454
3455 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3456 {
3457 return nvme_do_write(n, req, true, false);
3458 }
3459
3460 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3461 uint64_t *slba, uint32_t *zone_idx)
3462 {
3463 uint32_t dw10 = le32_to_cpu(c->cdw10);
3464 uint32_t dw11 = le32_to_cpu(c->cdw11);
3465
3466 if (!ns->params.zoned) {
3467 trace_pci_nvme_err_invalid_opc(c->opcode);
3468 return NVME_INVALID_OPCODE | NVME_DNR;
3469 }
3470
3471 *slba = ((uint64_t)dw11) << 32 | dw10;
3472 if (unlikely(*slba >= ns->id_ns.nsze)) {
3473 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3474 *slba = 0;
3475 return NVME_LBA_RANGE | NVME_DNR;
3476 }
3477
3478 *zone_idx = nvme_zone_idx(ns, *slba);
3479 assert(*zone_idx < ns->num_zones);
3480
3481 return NVME_SUCCESS;
3482 }
3483
3484 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3485 NvmeRequest *);
3486
3487 enum NvmeZoneProcessingMask {
3488 NVME_PROC_CURRENT_ZONE = 0,
3489 NVME_PROC_OPENED_ZONES = 1 << 0,
3490 NVME_PROC_CLOSED_ZONES = 1 << 1,
3491 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3492 NVME_PROC_FULL_ZONES = 1 << 3,
3493 };
3494
3495 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3496 NvmeZoneState state, NvmeRequest *req)
3497 {
3498 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3499 int flags = 0;
3500
3501 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3502 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3503
3504 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3505 return NVME_INVALID_ZONE_OP | NVME_DNR;
3506 }
3507
3508 if (zone->w_ptr % ns->zns.zrwafg) {
3509 return NVME_NOZRWA | NVME_DNR;
3510 }
3511
3512 flags = NVME_ZRM_ZRWA;
3513 }
3514
3515 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3516 }
3517
3518 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3519 NvmeZoneState state, NvmeRequest *req)
3520 {
3521 return nvme_zrm_close(ns, zone);
3522 }
3523
3524 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3525 NvmeZoneState state, NvmeRequest *req)
3526 {
3527 return nvme_zrm_finish(ns, zone);
3528 }
3529
3530 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3531 NvmeZoneState state, NvmeRequest *req)
3532 {
3533 switch (state) {
3534 case NVME_ZONE_STATE_READ_ONLY:
3535 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3536 /* fall through */
3537 case NVME_ZONE_STATE_OFFLINE:
3538 return NVME_SUCCESS;
3539 default:
3540 return NVME_ZONE_INVAL_TRANSITION;
3541 }
3542 }
3543
3544 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3545 {
3546 uint16_t status;
3547 uint8_t state = nvme_get_zone_state(zone);
3548
3549 if (state == NVME_ZONE_STATE_EMPTY) {
3550 status = nvme_aor_check(ns, 1, 0);
3551 if (status) {
3552 return status;
3553 }
3554 nvme_aor_inc_active(ns);
3555 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3556 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3557 return NVME_SUCCESS;
3558 }
3559
3560 return NVME_ZONE_INVAL_TRANSITION;
3561 }
3562
3563 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3564 enum NvmeZoneProcessingMask proc_mask,
3565 op_handler_t op_hndlr, NvmeRequest *req)
3566 {
3567 uint16_t status = NVME_SUCCESS;
3568 NvmeZoneState zs = nvme_get_zone_state(zone);
3569 bool proc_zone;
3570
3571 switch (zs) {
3572 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3573 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3574 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3575 break;
3576 case NVME_ZONE_STATE_CLOSED:
3577 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3578 break;
3579 case NVME_ZONE_STATE_READ_ONLY:
3580 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3581 break;
3582 case NVME_ZONE_STATE_FULL:
3583 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3584 break;
3585 default:
3586 proc_zone = false;
3587 }
3588
3589 if (proc_zone) {
3590 status = op_hndlr(ns, zone, zs, req);
3591 }
3592
3593 return status;
3594 }
3595
3596 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3597 enum NvmeZoneProcessingMask proc_mask,
3598 op_handler_t op_hndlr, NvmeRequest *req)
3599 {
3600 NvmeZone *next;
3601 uint16_t status = NVME_SUCCESS;
3602 int i;
3603
3604 if (!proc_mask) {
3605 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3606 } else {
3607 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3608 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3609 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3610 req);
3611 if (status && status != NVME_NO_COMPLETE) {
3612 goto out;
3613 }
3614 }
3615 }
3616 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3617 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3618 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3619 req);
3620 if (status && status != NVME_NO_COMPLETE) {
3621 goto out;
3622 }
3623 }
3624
3625 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3626 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627 req);
3628 if (status && status != NVME_NO_COMPLETE) {
3629 goto out;
3630 }
3631 }
3632 }
3633 if (proc_mask & NVME_PROC_FULL_ZONES) {
3634 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3635 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636 req);
3637 if (status && status != NVME_NO_COMPLETE) {
3638 goto out;
3639 }
3640 }
3641 }
3642
3643 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3644 for (i = 0; i < ns->num_zones; i++, zone++) {
3645 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3646 req);
3647 if (status && status != NVME_NO_COMPLETE) {
3648 goto out;
3649 }
3650 }
3651 }
3652 }
3653
3654 out:
3655 return status;
3656 }
3657
3658 typedef struct NvmeZoneResetAIOCB {
3659 BlockAIOCB common;
3660 BlockAIOCB *aiocb;
3661 NvmeRequest *req;
3662 int ret;
3663
3664 bool all;
3665 int idx;
3666 NvmeZone *zone;
3667 } NvmeZoneResetAIOCB;
3668
3669 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3670 {
3671 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3672 NvmeRequest *req = iocb->req;
3673 NvmeNamespace *ns = req->ns;
3674
3675 iocb->idx = ns->num_zones;
3676
3677 iocb->ret = -ECANCELED;
3678
3679 if (iocb->aiocb) {
3680 blk_aio_cancel_async(iocb->aiocb);
3681 iocb->aiocb = NULL;
3682 }
3683 }
3684
3685 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3686 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3687 .cancel_async = nvme_zone_reset_cancel,
3688 };
3689
3690 static void nvme_zone_reset_cb(void *opaque, int ret);
3691
3692 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3693 {
3694 NvmeZoneResetAIOCB *iocb = opaque;
3695 NvmeRequest *req = iocb->req;
3696 NvmeNamespace *ns = req->ns;
3697 int64_t moff;
3698 int count;
3699
3700 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3701 goto out;
3702 }
3703
3704 moff = nvme_moff(ns, iocb->zone->d.zslba);
3705 count = nvme_m2b(ns, ns->zone_size);
3706
3707 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3708 BDRV_REQ_MAY_UNMAP,
3709 nvme_zone_reset_cb, iocb);
3710 return;
3711
3712 out:
3713 nvme_zone_reset_cb(iocb, ret);
3714 }
3715
3716 static void nvme_zone_reset_cb(void *opaque, int ret)
3717 {
3718 NvmeZoneResetAIOCB *iocb = opaque;
3719 NvmeRequest *req = iocb->req;
3720 NvmeNamespace *ns = req->ns;
3721
3722 if (iocb->ret < 0) {
3723 goto done;
3724 } else if (ret < 0) {
3725 iocb->ret = ret;
3726 goto done;
3727 }
3728
3729 if (iocb->zone) {
3730 nvme_zrm_reset(ns, iocb->zone);
3731
3732 if (!iocb->all) {
3733 goto done;
3734 }
3735 }
3736
3737 while (iocb->idx < ns->num_zones) {
3738 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3739
3740 switch (nvme_get_zone_state(zone)) {
3741 case NVME_ZONE_STATE_EMPTY:
3742 if (!iocb->all) {
3743 goto done;
3744 }
3745
3746 continue;
3747
3748 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3749 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3750 case NVME_ZONE_STATE_CLOSED:
3751 case NVME_ZONE_STATE_FULL:
3752 iocb->zone = zone;
3753 break;
3754
3755 default:
3756 continue;
3757 }
3758
3759 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3760
3761 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3762 nvme_l2b(ns, zone->d.zslba),
3763 nvme_l2b(ns, ns->zone_size),
3764 BDRV_REQ_MAY_UNMAP,
3765 nvme_zone_reset_epilogue_cb,
3766 iocb);
3767 return;
3768 }
3769
3770 done:
3771 iocb->aiocb = NULL;
3772
3773 iocb->common.cb(iocb->common.opaque, iocb->ret);
3774 qemu_aio_unref(iocb);
3775 }
3776
3777 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3778 uint64_t elba, NvmeRequest *req)
3779 {
3780 NvmeNamespace *ns = req->ns;
3781 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3782 uint64_t wp = zone->d.wp;
3783 uint32_t nlb = elba - wp + 1;
3784 uint16_t status;
3785
3786
3787 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3788 return NVME_INVALID_ZONE_OP | NVME_DNR;
3789 }
3790
3791 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3792 return NVME_INVALID_FIELD | NVME_DNR;
3793 }
3794
3795 if (elba < wp || elba > wp + ns->zns.zrwas) {
3796 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3797 }
3798
3799 if (nlb % ns->zns.zrwafg) {
3800 return NVME_INVALID_FIELD | NVME_DNR;
3801 }
3802
3803 status = nvme_zrm_auto(n, ns, zone);
3804 if (status) {
3805 return status;
3806 }
3807
3808 zone->w_ptr += nlb;
3809
3810 nvme_advance_zone_wp(ns, zone, nlb);
3811
3812 return NVME_SUCCESS;
3813 }
3814
3815 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3816 {
3817 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3818 NvmeNamespace *ns = req->ns;
3819 NvmeZone *zone;
3820 NvmeZoneResetAIOCB *iocb;
3821 uint8_t *zd_ext;
3822 uint64_t slba = 0;
3823 uint32_t zone_idx = 0;
3824 uint16_t status;
3825 uint8_t action = cmd->zsa;
3826 bool all;
3827 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3828
3829 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3830
3831 req->status = NVME_SUCCESS;
3832
3833 if (!all) {
3834 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3835 if (status) {
3836 return status;
3837 }
3838 }
3839
3840 zone = &ns->zone_array[zone_idx];
3841 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3842 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3843 return NVME_INVALID_FIELD | NVME_DNR;
3844 }
3845
3846 switch (action) {
3847
3848 case NVME_ZONE_ACTION_OPEN:
3849 if (all) {
3850 proc_mask = NVME_PROC_CLOSED_ZONES;
3851 }
3852 trace_pci_nvme_open_zone(slba, zone_idx, all);
3853 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3854 break;
3855
3856 case NVME_ZONE_ACTION_CLOSE:
3857 if (all) {
3858 proc_mask = NVME_PROC_OPENED_ZONES;
3859 }
3860 trace_pci_nvme_close_zone(slba, zone_idx, all);
3861 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3862 break;
3863
3864 case NVME_ZONE_ACTION_FINISH:
3865 if (all) {
3866 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3867 }
3868 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3869 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3870 break;
3871
3872 case NVME_ZONE_ACTION_RESET:
3873 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3874
3875 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3876 nvme_misc_cb, req);
3877
3878 iocb->req = req;
3879 iocb->ret = 0;
3880 iocb->all = all;
3881 iocb->idx = zone_idx;
3882 iocb->zone = NULL;
3883
3884 req->aiocb = &iocb->common;
3885 nvme_zone_reset_cb(iocb, 0);
3886
3887 return NVME_NO_COMPLETE;
3888
3889 case NVME_ZONE_ACTION_OFFLINE:
3890 if (all) {
3891 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3892 }
3893 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3894 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3895 break;
3896
3897 case NVME_ZONE_ACTION_SET_ZD_EXT:
3898 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3899 if (all || !ns->params.zd_extension_size) {
3900 return NVME_INVALID_FIELD | NVME_DNR;
3901 }
3902 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3903 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3904 if (status) {
3905 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3906 return status;
3907 }
3908
3909 status = nvme_set_zd_ext(ns, zone);
3910 if (status == NVME_SUCCESS) {
3911 trace_pci_nvme_zd_extension_set(zone_idx);
3912 return status;
3913 }
3914 break;
3915
3916 case NVME_ZONE_ACTION_ZRWA_FLUSH:
3917 if (all) {
3918 return NVME_INVALID_FIELD | NVME_DNR;
3919 }
3920
3921 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3922
3923 default:
3924 trace_pci_nvme_err_invalid_mgmt_action(action);
3925 status = NVME_INVALID_FIELD;
3926 }
3927
3928 if (status == NVME_ZONE_INVAL_TRANSITION) {
3929 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3930 zone->d.za);
3931 }
3932 if (status) {
3933 status |= NVME_DNR;
3934 }
3935
3936 return status;
3937 }
3938
3939 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3940 {
3941 NvmeZoneState zs = nvme_get_zone_state(zl);
3942
3943 switch (zafs) {
3944 case NVME_ZONE_REPORT_ALL:
3945 return true;
3946 case NVME_ZONE_REPORT_EMPTY:
3947 return zs == NVME_ZONE_STATE_EMPTY;
3948 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3949 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3950 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3951 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3952 case NVME_ZONE_REPORT_CLOSED:
3953 return zs == NVME_ZONE_STATE_CLOSED;
3954 case NVME_ZONE_REPORT_FULL:
3955 return zs == NVME_ZONE_STATE_FULL;
3956 case NVME_ZONE_REPORT_READ_ONLY:
3957 return zs == NVME_ZONE_STATE_READ_ONLY;
3958 case NVME_ZONE_REPORT_OFFLINE:
3959 return zs == NVME_ZONE_STATE_OFFLINE;
3960 default:
3961 return false;
3962 }
3963 }
3964
3965 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3966 {
3967 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3968 NvmeNamespace *ns = req->ns;
3969 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3970 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3971 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3972 uint32_t zone_idx, zra, zrasf, partial;
3973 uint64_t max_zones, nr_zones = 0;
3974 uint16_t status;
3975 uint64_t slba;
3976 NvmeZoneDescr *z;
3977 NvmeZone *zone;
3978 NvmeZoneReportHeader *header;
3979 void *buf, *buf_p;
3980 size_t zone_entry_sz;
3981 int i;
3982
3983 req->status = NVME_SUCCESS;
3984
3985 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3986 if (status) {
3987 return status;
3988 }
3989
3990 zra = dw13 & 0xff;
3991 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3992 return NVME_INVALID_FIELD | NVME_DNR;
3993 }
3994 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3995 return NVME_INVALID_FIELD | NVME_DNR;
3996 }
3997
3998 zrasf = (dw13 >> 8) & 0xff;
3999 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4000 return NVME_INVALID_FIELD | NVME_DNR;
4001 }
4002
4003 if (data_size < sizeof(NvmeZoneReportHeader)) {
4004 return NVME_INVALID_FIELD | NVME_DNR;
4005 }
4006
4007 status = nvme_check_mdts(n, data_size);
4008 if (status) {
4009 return status;
4010 }
4011
4012 partial = (dw13 >> 16) & 0x01;
4013
4014 zone_entry_sz = sizeof(NvmeZoneDescr);
4015 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4016 zone_entry_sz += ns->params.zd_extension_size;
4017 }
4018
4019 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4020 buf = g_malloc0(data_size);
4021
4022 zone = &ns->zone_array[zone_idx];
4023 for (i = zone_idx; i < ns->num_zones; i++) {
4024 if (partial && nr_zones >= max_zones) {
4025 break;
4026 }
4027 if (nvme_zone_matches_filter(zrasf, zone++)) {
4028 nr_zones++;
4029 }
4030 }
4031 header = buf;
4032 header->nr_zones = cpu_to_le64(nr_zones);
4033
4034 buf_p = buf + sizeof(NvmeZoneReportHeader);
4035 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4036 zone = &ns->zone_array[zone_idx];
4037 if (nvme_zone_matches_filter(zrasf, zone)) {
4038 z = buf_p;
4039 buf_p += sizeof(NvmeZoneDescr);
4040
4041 z->zt = zone->d.zt;
4042 z->zs = zone->d.zs;
4043 z->zcap = cpu_to_le64(zone->d.zcap);
4044 z->zslba = cpu_to_le64(zone->d.zslba);
4045 z->za = zone->d.za;
4046
4047 if (nvme_wp_is_valid(zone)) {
4048 z->wp = cpu_to_le64(zone->d.wp);
4049 } else {
4050 z->wp = cpu_to_le64(~0ULL);
4051 }
4052
4053 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4054 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4055 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4056 ns->params.zd_extension_size);
4057 }
4058 buf_p += ns->params.zd_extension_size;
4059 }
4060
4061 max_zones--;
4062 }
4063 }
4064
4065 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4066
4067 g_free(buf);
4068
4069 return status;
4070 }
4071
4072 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4073 {
4074 NvmeNamespace *ns;
4075 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4076
4077 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4078 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4079
4080 if (!nvme_nsid_valid(n, nsid)) {
4081 return NVME_INVALID_NSID | NVME_DNR;
4082 }
4083
4084 /*
4085 * In the base NVM command set, Flush may apply to all namespaces
4086 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4087 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4088 *
4089 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4090 * opcode with a specific command since we cannot determine a unique I/O
4091 * command set. Opcode 0h could have any other meaning than something
4092 * equivalent to flushing and say it DOES have completely different
4093 * semantics in some other command set - does an NSID of FFFFFFFFh then
4094 * mean "for all namespaces, apply whatever command set specific command
4095 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4096 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4097 * to be FFFFFFFFh"?
4098 *
4099 * Anyway (and luckily), for now, we do not care about this since the
4100 * device only supports namespace types that includes the NVM Flush command
4101 * (NVM and Zoned), so always do an NVM Flush.
4102 */
4103 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4104 return nvme_flush(n, req);
4105 }
4106
4107 ns = nvme_ns(n, nsid);
4108 if (unlikely(!ns)) {
4109 return NVME_INVALID_FIELD | NVME_DNR;
4110 }
4111
4112 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4113 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4114 return NVME_INVALID_OPCODE | NVME_DNR;
4115 }
4116
4117 if (ns->status) {
4118 return ns->status;
4119 }
4120
4121 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4122 return NVME_INVALID_FIELD;
4123 }
4124
4125 req->ns = ns;
4126
4127 switch (req->cmd.opcode) {
4128 case NVME_CMD_WRITE_ZEROES:
4129 return nvme_write_zeroes(n, req);
4130 case NVME_CMD_ZONE_APPEND:
4131 return nvme_zone_append(n, req);
4132 case NVME_CMD_WRITE:
4133 return nvme_write(n, req);
4134 case NVME_CMD_READ:
4135 return nvme_read(n, req);
4136 case NVME_CMD_COMPARE:
4137 return nvme_compare(n, req);
4138 case NVME_CMD_DSM:
4139 return nvme_dsm(n, req);
4140 case NVME_CMD_VERIFY:
4141 return nvme_verify(n, req);
4142 case NVME_CMD_COPY:
4143 return nvme_copy(n, req);
4144 case NVME_CMD_ZONE_MGMT_SEND:
4145 return nvme_zone_mgmt_send(n, req);
4146 case NVME_CMD_ZONE_MGMT_RECV:
4147 return nvme_zone_mgmt_recv(n, req);
4148 default:
4149 assert(false);
4150 }
4151
4152 return NVME_INVALID_OPCODE | NVME_DNR;
4153 }
4154
4155 static void nvme_cq_notifier(EventNotifier *e)
4156 {
4157 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4158 NvmeCtrl *n = cq->ctrl;
4159
4160 if (!event_notifier_test_and_clear(e)) {
4161 return;
4162 }
4163
4164 nvme_update_cq_head(cq);
4165
4166 if (cq->tail == cq->head) {
4167 if (cq->irq_enabled) {
4168 n->cq_pending--;
4169 }
4170
4171 nvme_irq_deassert(n, cq);
4172 }
4173
4174 qemu_bh_schedule(cq->bh);
4175 }
4176
4177 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4178 {
4179 NvmeCtrl *n = cq->ctrl;
4180 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4181 int ret;
4182
4183 ret = event_notifier_init(&cq->notifier, 0);
4184 if (ret < 0) {
4185 return ret;
4186 }
4187
4188 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4189 memory_region_add_eventfd(&n->iomem,
4190 0x1000 + offset, 4, false, 0, &cq->notifier);
4191
4192 return 0;
4193 }
4194
4195 static void nvme_sq_notifier(EventNotifier *e)
4196 {
4197 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4198
4199 if (!event_notifier_test_and_clear(e)) {
4200 return;
4201 }
4202
4203 nvme_process_sq(sq);
4204 }
4205
4206 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4207 {
4208 NvmeCtrl *n = sq->ctrl;
4209 uint16_t offset = sq->sqid << 3;
4210 int ret;
4211
4212 ret = event_notifier_init(&sq->notifier, 0);
4213 if (ret < 0) {
4214 return ret;
4215 }
4216
4217 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4218 memory_region_add_eventfd(&n->iomem,
4219 0x1000 + offset, 4, false, 0, &sq->notifier);
4220
4221 return 0;
4222 }
4223
4224 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4225 {
4226 uint16_t offset = sq->sqid << 3;
4227
4228 n->sq[sq->sqid] = NULL;
4229 qemu_bh_delete(sq->bh);
4230 if (sq->ioeventfd_enabled) {
4231 memory_region_del_eventfd(&n->iomem,
4232 0x1000 + offset, 4, false, 0, &sq->notifier);
4233 event_notifier_set_handler(&sq->notifier, NULL);
4234 event_notifier_cleanup(&sq->notifier);
4235 }
4236 g_free(sq->io_req);
4237 if (sq->sqid) {
4238 g_free(sq);
4239 }
4240 }
4241
4242 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4243 {
4244 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4245 NvmeRequest *r, *next;
4246 NvmeSQueue *sq;
4247 NvmeCQueue *cq;
4248 uint16_t qid = le16_to_cpu(c->qid);
4249
4250 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4251 trace_pci_nvme_err_invalid_del_sq(qid);
4252 return NVME_INVALID_QID | NVME_DNR;
4253 }
4254
4255 trace_pci_nvme_del_sq(qid);
4256
4257 sq = n->sq[qid];
4258 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4259 r = QTAILQ_FIRST(&sq->out_req_list);
4260 assert(r->aiocb);
4261 blk_aio_cancel(r->aiocb);
4262 }
4263
4264 assert(QTAILQ_EMPTY(&sq->out_req_list));
4265
4266 if (!nvme_check_cqid(n, sq->cqid)) {
4267 cq = n->cq[sq->cqid];
4268 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4269
4270 nvme_post_cqes(cq);
4271 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4272 if (r->sq == sq) {
4273 QTAILQ_REMOVE(&cq->req_list, r, entry);
4274 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4275 }
4276 }
4277 }
4278
4279 nvme_free_sq(sq, n);
4280 return NVME_SUCCESS;
4281 }
4282
4283 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4284 uint16_t sqid, uint16_t cqid, uint16_t size)
4285 {
4286 int i;
4287 NvmeCQueue *cq;
4288
4289 sq->ctrl = n;
4290 sq->dma_addr = dma_addr;
4291 sq->sqid = sqid;
4292 sq->size = size;
4293 sq->cqid = cqid;
4294 sq->head = sq->tail = 0;
4295 sq->io_req = g_new0(NvmeRequest, sq->size);
4296
4297 QTAILQ_INIT(&sq->req_list);
4298 QTAILQ_INIT(&sq->out_req_list);
4299 for (i = 0; i < sq->size; i++) {
4300 sq->io_req[i].sq = sq;
4301 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4302 }
4303
4304 sq->bh = qemu_bh_new(nvme_process_sq, sq);
4305
4306 if (n->dbbuf_enabled) {
4307 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4308 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4309
4310 if (n->params.ioeventfd && sq->sqid != 0) {
4311 if (!nvme_init_sq_ioeventfd(sq)) {
4312 sq->ioeventfd_enabled = true;
4313 }
4314 }
4315 }
4316
4317 assert(n->cq[cqid]);
4318 cq = n->cq[cqid];
4319 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4320 n->sq[sqid] = sq;
4321 }
4322
4323 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4324 {
4325 NvmeSQueue *sq;
4326 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4327
4328 uint16_t cqid = le16_to_cpu(c->cqid);
4329 uint16_t sqid = le16_to_cpu(c->sqid);
4330 uint16_t qsize = le16_to_cpu(c->qsize);
4331 uint16_t qflags = le16_to_cpu(c->sq_flags);
4332 uint64_t prp1 = le64_to_cpu(c->prp1);
4333
4334 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4335
4336 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4337 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4338 return NVME_INVALID_CQID | NVME_DNR;
4339 }
4340 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4341 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4342 return NVME_INVALID_QID | NVME_DNR;
4343 }
4344 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4345 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4346 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4347 }
4348 if (unlikely(prp1 & (n->page_size - 1))) {
4349 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4350 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4351 }
4352 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4353 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4354 return NVME_INVALID_FIELD | NVME_DNR;
4355 }
4356 sq = g_malloc0(sizeof(*sq));
4357 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4358 return NVME_SUCCESS;
4359 }
4360
4361 struct nvme_stats {
4362 uint64_t units_read;
4363 uint64_t units_written;
4364 uint64_t read_commands;
4365 uint64_t write_commands;
4366 };
4367
4368 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4369 {
4370 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4371
4372 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4373 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4374 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4375 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4376 }
4377
4378 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4379 uint64_t off, NvmeRequest *req)
4380 {
4381 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4382 struct nvme_stats stats = { 0 };
4383 NvmeSmartLog smart = { 0 };
4384 uint32_t trans_len;
4385 NvmeNamespace *ns;
4386 time_t current_ms;
4387
4388 if (off >= sizeof(smart)) {
4389 return NVME_INVALID_FIELD | NVME_DNR;
4390 }
4391
4392 if (nsid != 0xffffffff) {
4393 ns = nvme_ns(n, nsid);
4394 if (!ns) {
4395 return NVME_INVALID_NSID | NVME_DNR;
4396 }
4397 nvme_set_blk_stats(ns, &stats);
4398 } else {
4399 int i;
4400
4401 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4402 ns = nvme_ns(n, i);
4403 if (!ns) {
4404 continue;
4405 }
4406 nvme_set_blk_stats(ns, &stats);
4407 }
4408 }
4409
4410 trans_len = MIN(sizeof(smart) - off, buf_len);
4411 smart.critical_warning = n->smart_critical_warning;
4412
4413 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4414 1000));
4415 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4416 1000));
4417 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4418 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4419
4420 smart.temperature = cpu_to_le16(n->temperature);
4421
4422 if ((n->temperature >= n->features.temp_thresh_hi) ||
4423 (n->temperature <= n->features.temp_thresh_low)) {
4424 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4425 }
4426
4427 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4428 smart.power_on_hours[0] =
4429 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4430
4431 if (!rae) {
4432 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4433 }
4434
4435 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4436 }
4437
4438 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4439 NvmeRequest *req)
4440 {
4441 uint32_t trans_len;
4442 NvmeFwSlotInfoLog fw_log = {
4443 .afi = 0x1,
4444 };
4445
4446 if (off >= sizeof(fw_log)) {
4447 return NVME_INVALID_FIELD | NVME_DNR;
4448 }
4449
4450 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4451 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4452
4453 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4454 }
4455
4456 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4457 uint64_t off, NvmeRequest *req)
4458 {
4459 uint32_t trans_len;
4460 NvmeErrorLog errlog;
4461
4462 if (off >= sizeof(errlog)) {
4463 return NVME_INVALID_FIELD | NVME_DNR;
4464 }
4465
4466 if (!rae) {
4467 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4468 }
4469
4470 memset(&errlog, 0x0, sizeof(errlog));
4471 trans_len = MIN(sizeof(errlog) - off, buf_len);
4472
4473 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4474 }
4475
4476 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4477 uint64_t off, NvmeRequest *req)
4478 {
4479 uint32_t nslist[1024];
4480 uint32_t trans_len;
4481 int i = 0;
4482 uint32_t nsid;
4483
4484 if (off >= sizeof(nslist)) {
4485 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4486 return NVME_INVALID_FIELD | NVME_DNR;
4487 }
4488
4489 memset(nslist, 0x0, sizeof(nslist));
4490 trans_len = MIN(sizeof(nslist) - off, buf_len);
4491
4492 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4493 NVME_CHANGED_NSID_SIZE) {
4494 /*
4495 * If more than 1024 namespaces, the first entry in the log page should
4496 * be set to FFFFFFFFh and the others to 0 as spec.
4497 */
4498 if (i == ARRAY_SIZE(nslist)) {
4499 memset(nslist, 0x0, sizeof(nslist));
4500 nslist[0] = 0xffffffff;
4501 break;
4502 }
4503
4504 nslist[i++] = nsid;
4505 clear_bit(nsid, n->changed_nsids);
4506 }
4507
4508 /*
4509 * Remove all the remaining list entries in case returns directly due to
4510 * more than 1024 namespaces.
4511 */
4512 if (nslist[0] == 0xffffffff) {
4513 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4514 }
4515
4516 if (!rae) {
4517 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4518 }
4519
4520 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4521 }
4522
4523 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4524 uint64_t off, NvmeRequest *req)
4525 {
4526 NvmeEffectsLog log = {};
4527 const uint32_t *src_iocs = NULL;
4528 uint32_t trans_len;
4529
4530 if (off >= sizeof(log)) {
4531 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4532 return NVME_INVALID_FIELD | NVME_DNR;
4533 }
4534
4535 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4536 case NVME_CC_CSS_NVM:
4537 src_iocs = nvme_cse_iocs_nvm;
4538 /* fall through */
4539 case NVME_CC_CSS_ADMIN_ONLY:
4540 break;
4541 case NVME_CC_CSS_CSI:
4542 switch (csi) {
4543 case NVME_CSI_NVM:
4544 src_iocs = nvme_cse_iocs_nvm;
4545 break;
4546 case NVME_CSI_ZONED:
4547 src_iocs = nvme_cse_iocs_zoned;
4548 break;
4549 }
4550 }
4551
4552 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4553
4554 if (src_iocs) {
4555 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4556 }
4557
4558 trans_len = MIN(sizeof(log) - off, buf_len);
4559
4560 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4561 }
4562
4563 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4564 {
4565 NvmeCmd *cmd = &req->cmd;
4566
4567 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4568 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4569 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4570 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4571 uint8_t lid = dw10 & 0xff;
4572 uint8_t lsp = (dw10 >> 8) & 0xf;
4573 uint8_t rae = (dw10 >> 15) & 0x1;
4574 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4575 uint32_t numdl, numdu;
4576 uint64_t off, lpol, lpou;
4577 size_t len;
4578 uint16_t status;
4579
4580 numdl = (dw10 >> 16);
4581 numdu = (dw11 & 0xffff);
4582 lpol = dw12;
4583 lpou = dw13;
4584
4585 len = (((numdu << 16) | numdl) + 1) << 2;
4586 off = (lpou << 32ULL) | lpol;
4587
4588 if (off & 0x3) {
4589 return NVME_INVALID_FIELD | NVME_DNR;
4590 }
4591
4592 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4593
4594 status = nvme_check_mdts(n, len);
4595 if (status) {
4596 return status;
4597 }
4598
4599 switch (lid) {
4600 case NVME_LOG_ERROR_INFO:
4601 return nvme_error_info(n, rae, len, off, req);
4602 case NVME_LOG_SMART_INFO:
4603 return nvme_smart_info(n, rae, len, off, req);
4604 case NVME_LOG_FW_SLOT_INFO:
4605 return nvme_fw_log_info(n, len, off, req);
4606 case NVME_LOG_CHANGED_NSLIST:
4607 return nvme_changed_nslist(n, rae, len, off, req);
4608 case NVME_LOG_CMD_EFFECTS:
4609 return nvme_cmd_effects(n, csi, len, off, req);
4610 default:
4611 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4612 return NVME_INVALID_FIELD | NVME_DNR;
4613 }
4614 }
4615
4616 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4617 {
4618 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4619
4620 n->cq[cq->cqid] = NULL;
4621 qemu_bh_delete(cq->bh);
4622 if (cq->ioeventfd_enabled) {
4623 memory_region_del_eventfd(&n->iomem,
4624 0x1000 + offset, 4, false, 0, &cq->notifier);
4625 event_notifier_set_handler(&cq->notifier, NULL);
4626 event_notifier_cleanup(&cq->notifier);
4627 }
4628 if (msix_enabled(&n->parent_obj)) {
4629 msix_vector_unuse(&n->parent_obj, cq->vector);
4630 }
4631 if (cq->cqid) {
4632 g_free(cq);
4633 }
4634 }
4635
4636 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4637 {
4638 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4639 NvmeCQueue *cq;
4640 uint16_t qid = le16_to_cpu(c->qid);
4641
4642 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4643 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4644 return NVME_INVALID_CQID | NVME_DNR;
4645 }
4646
4647 cq = n->cq[qid];
4648 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4649 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4650 return NVME_INVALID_QUEUE_DEL;
4651 }
4652
4653 if (cq->irq_enabled && cq->tail != cq->head) {
4654 n->cq_pending--;
4655 }
4656
4657 nvme_irq_deassert(n, cq);
4658 trace_pci_nvme_del_cq(qid);
4659 nvme_free_cq(cq, n);
4660 return NVME_SUCCESS;
4661 }
4662
4663 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4664 uint16_t cqid, uint16_t vector, uint16_t size,
4665 uint16_t irq_enabled)
4666 {
4667 if (msix_enabled(&n->parent_obj)) {
4668 msix_vector_use(&n->parent_obj, vector);
4669 }
4670 cq->ctrl = n;
4671 cq->cqid = cqid;
4672 cq->size = size;
4673 cq->dma_addr = dma_addr;
4674 cq->phase = 1;
4675 cq->irq_enabled = irq_enabled;
4676 cq->vector = vector;
4677 cq->head = cq->tail = 0;
4678 QTAILQ_INIT(&cq->req_list);
4679 QTAILQ_INIT(&cq->sq_list);
4680 if (n->dbbuf_enabled) {
4681 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4682 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4683
4684 if (n->params.ioeventfd && cqid != 0) {
4685 if (!nvme_init_cq_ioeventfd(cq)) {
4686 cq->ioeventfd_enabled = true;
4687 }
4688 }
4689 }
4690 n->cq[cqid] = cq;
4691 cq->bh = qemu_bh_new(nvme_post_cqes, cq);
4692 }
4693
4694 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4695 {
4696 NvmeCQueue *cq;
4697 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4698 uint16_t cqid = le16_to_cpu(c->cqid);
4699 uint16_t vector = le16_to_cpu(c->irq_vector);
4700 uint16_t qsize = le16_to_cpu(c->qsize);
4701 uint16_t qflags = le16_to_cpu(c->cq_flags);
4702 uint64_t prp1 = le64_to_cpu(c->prp1);
4703
4704 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4705 NVME_CQ_FLAGS_IEN(qflags) != 0);
4706
4707 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4708 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4709 return NVME_INVALID_QID | NVME_DNR;
4710 }
4711 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4712 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4713 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4714 }
4715 if (unlikely(prp1 & (n->page_size - 1))) {
4716 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4717 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4718 }
4719 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4720 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4721 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4722 }
4723 if (unlikely(vector >= n->conf_msix_qsize)) {
4724 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4725 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4726 }
4727 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4728 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4729 return NVME_INVALID_FIELD | NVME_DNR;
4730 }
4731
4732 cq = g_malloc0(sizeof(*cq));
4733 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4734 NVME_CQ_FLAGS_IEN(qflags));
4735
4736 /*
4737 * It is only required to set qs_created when creating a completion queue;
4738 * creating a submission queue without a matching completion queue will
4739 * fail.
4740 */
4741 n->qs_created = true;
4742 return NVME_SUCCESS;
4743 }
4744
4745 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4746 {
4747 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4748
4749 return nvme_c2h(n, id, sizeof(id), req);
4750 }
4751
4752 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4753 {
4754 trace_pci_nvme_identify_ctrl();
4755
4756 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4757 }
4758
4759 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4760 {
4761 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4762 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4763 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4764
4765 trace_pci_nvme_identify_ctrl_csi(c->csi);
4766
4767 switch (c->csi) {
4768 case NVME_CSI_NVM:
4769 id_nvm->vsl = n->params.vsl;
4770 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4771 break;
4772
4773 case NVME_CSI_ZONED:
4774 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4775 break;
4776
4777 default:
4778 return NVME_INVALID_FIELD | NVME_DNR;
4779 }
4780
4781 return nvme_c2h(n, id, sizeof(id), req);
4782 }
4783
4784 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4785 {
4786 NvmeNamespace *ns;
4787 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4788 uint32_t nsid = le32_to_cpu(c->nsid);
4789
4790 trace_pci_nvme_identify_ns(nsid);
4791
4792 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4793 return NVME_INVALID_NSID | NVME_DNR;
4794 }
4795
4796 ns = nvme_ns(n, nsid);
4797 if (unlikely(!ns)) {
4798 if (!active) {
4799 ns = nvme_subsys_ns(n->subsys, nsid);
4800 if (!ns) {
4801 return nvme_rpt_empty_id_struct(n, req);
4802 }
4803 } else {
4804 return nvme_rpt_empty_id_struct(n, req);
4805 }
4806 }
4807
4808 if (active || ns->csi == NVME_CSI_NVM) {
4809 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4810 }
4811
4812 return NVME_INVALID_CMD_SET | NVME_DNR;
4813 }
4814
4815 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4816 bool attached)
4817 {
4818 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4819 uint32_t nsid = le32_to_cpu(c->nsid);
4820 uint16_t min_id = le16_to_cpu(c->ctrlid);
4821 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4822 uint16_t *ids = &list[1];
4823 NvmeNamespace *ns;
4824 NvmeCtrl *ctrl;
4825 int cntlid, nr_ids = 0;
4826
4827 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4828
4829 if (!n->subsys) {
4830 return NVME_INVALID_FIELD | NVME_DNR;
4831 }
4832
4833 if (attached) {
4834 if (nsid == NVME_NSID_BROADCAST) {
4835 return NVME_INVALID_FIELD | NVME_DNR;
4836 }
4837
4838 ns = nvme_subsys_ns(n->subsys, nsid);
4839 if (!ns) {
4840 return NVME_INVALID_FIELD | NVME_DNR;
4841 }
4842 }
4843
4844 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4845 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4846 if (!ctrl) {
4847 continue;
4848 }
4849
4850 if (attached && !nvme_ns(ctrl, nsid)) {
4851 continue;
4852 }
4853
4854 ids[nr_ids++] = cntlid;
4855 }
4856
4857 list[0] = nr_ids;
4858
4859 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4860 }
4861
4862 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4863 {
4864 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4865
4866 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4867 sizeof(NvmePriCtrlCap), req);
4868 }
4869
4870 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4871 {
4872 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4873 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4874 uint16_t min_id = le16_to_cpu(c->ctrlid);
4875 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4876 NvmeSecCtrlList list = {0};
4877 uint8_t i;
4878
4879 for (i = 0; i < num_sec_ctrl; i++) {
4880 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4881 list.numcntl = num_sec_ctrl - i;
4882 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4883 list.numcntl * sizeof(NvmeSecCtrlEntry));
4884 break;
4885 }
4886 }
4887
4888 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4889
4890 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4891 }
4892
4893 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4894 bool active)
4895 {
4896 NvmeNamespace *ns;
4897 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4898 uint32_t nsid = le32_to_cpu(c->nsid);
4899
4900 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4901
4902 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4903 return NVME_INVALID_NSID | NVME_DNR;
4904 }
4905
4906 ns = nvme_ns(n, nsid);
4907 if (unlikely(!ns)) {
4908 if (!active) {
4909 ns = nvme_subsys_ns(n->subsys, nsid);
4910 if (!ns) {
4911 return nvme_rpt_empty_id_struct(n, req);
4912 }
4913 } else {
4914 return nvme_rpt_empty_id_struct(n, req);
4915 }
4916 }
4917
4918 if (c->csi == NVME_CSI_NVM) {
4919 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4920 req);
4921 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4922 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4923 req);
4924 }
4925
4926 return NVME_INVALID_FIELD | NVME_DNR;
4927 }
4928
4929 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4930 bool active)
4931 {
4932 NvmeNamespace *ns;
4933 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4934 uint32_t min_nsid = le32_to_cpu(c->nsid);
4935 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4936 static const int data_len = sizeof(list);
4937 uint32_t *list_ptr = (uint32_t *)list;
4938 int i, j = 0;
4939
4940 trace_pci_nvme_identify_nslist(min_nsid);
4941
4942 /*
4943 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4944 * since the Active Namespace ID List should return namespaces with ids
4945 * *higher* than the NSID specified in the command. This is also specified
4946 * in the spec (NVM Express v1.3d, Section 5.15.4).
4947 */
4948 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4949 return NVME_INVALID_NSID | NVME_DNR;
4950 }
4951
4952 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4953 ns = nvme_ns(n, i);
4954 if (!ns) {
4955 if (!active) {
4956 ns = nvme_subsys_ns(n->subsys, i);
4957 if (!ns) {
4958 continue;
4959 }
4960 } else {
4961 continue;
4962 }
4963 }
4964 if (ns->params.nsid <= min_nsid) {
4965 continue;
4966 }
4967 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4968 if (j == data_len / sizeof(uint32_t)) {
4969 break;
4970 }
4971 }
4972
4973 return nvme_c2h(n, list, data_len, req);
4974 }
4975
4976 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4977 bool active)
4978 {
4979 NvmeNamespace *ns;
4980 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4981 uint32_t min_nsid = le32_to_cpu(c->nsid);
4982 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4983 static const int data_len = sizeof(list);
4984 uint32_t *list_ptr = (uint32_t *)list;
4985 int i, j = 0;
4986
4987 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4988
4989 /*
4990 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4991 */
4992 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4993 return NVME_INVALID_NSID | NVME_DNR;
4994 }
4995
4996 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4997 return NVME_INVALID_FIELD | NVME_DNR;
4998 }
4999
5000 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5001 ns = nvme_ns(n, i);
5002 if (!ns) {
5003 if (!active) {
5004 ns = nvme_subsys_ns(n->subsys, i);
5005 if (!ns) {
5006 continue;
5007 }
5008 } else {
5009 continue;
5010 }
5011 }
5012 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5013 continue;
5014 }
5015 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5016 if (j == data_len / sizeof(uint32_t)) {
5017 break;
5018 }
5019 }
5020
5021 return nvme_c2h(n, list, data_len, req);
5022 }
5023
5024 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5025 {
5026 NvmeNamespace *ns;
5027 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5028 uint32_t nsid = le32_to_cpu(c->nsid);
5029 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5030 uint8_t *pos = list;
5031 struct {
5032 NvmeIdNsDescr hdr;
5033 uint8_t v[NVME_NIDL_UUID];
5034 } QEMU_PACKED uuid = {};
5035 struct {
5036 NvmeIdNsDescr hdr;
5037 uint64_t v;
5038 } QEMU_PACKED eui64 = {};
5039 struct {
5040 NvmeIdNsDescr hdr;
5041 uint8_t v;
5042 } QEMU_PACKED csi = {};
5043
5044 trace_pci_nvme_identify_ns_descr_list(nsid);
5045
5046 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5047 return NVME_INVALID_NSID | NVME_DNR;
5048 }
5049
5050 ns = nvme_ns(n, nsid);
5051 if (unlikely(!ns)) {
5052 return NVME_INVALID_FIELD | NVME_DNR;
5053 }
5054
5055 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5056 uuid.hdr.nidt = NVME_NIDT_UUID;
5057 uuid.hdr.nidl = NVME_NIDL_UUID;
5058 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5059 memcpy(pos, &uuid, sizeof(uuid));
5060 pos += sizeof(uuid);
5061 }
5062
5063 if (ns->params.eui64) {
5064 eui64.hdr.nidt = NVME_NIDT_EUI64;
5065 eui64.hdr.nidl = NVME_NIDL_EUI64;
5066 eui64.v = cpu_to_be64(ns->params.eui64);
5067 memcpy(pos, &eui64, sizeof(eui64));
5068 pos += sizeof(eui64);
5069 }
5070
5071 csi.hdr.nidt = NVME_NIDT_CSI;
5072 csi.hdr.nidl = NVME_NIDL_CSI;
5073 csi.v = ns->csi;
5074 memcpy(pos, &csi, sizeof(csi));
5075 pos += sizeof(csi);
5076
5077 return nvme_c2h(n, list, sizeof(list), req);
5078 }
5079
5080 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5081 {
5082 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5083 static const int data_len = sizeof(list);
5084
5085 trace_pci_nvme_identify_cmd_set();
5086
5087 NVME_SET_CSI(*list, NVME_CSI_NVM);
5088 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5089
5090 return nvme_c2h(n, list, data_len, req);
5091 }
5092
5093 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5094 {
5095 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5096
5097 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5098 c->csi);
5099
5100 switch (c->cns) {
5101 case NVME_ID_CNS_NS:
5102 return nvme_identify_ns(n, req, true);
5103 case NVME_ID_CNS_NS_PRESENT:
5104 return nvme_identify_ns(n, req, false);
5105 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5106 return nvme_identify_ctrl_list(n, req, true);
5107 case NVME_ID_CNS_CTRL_LIST:
5108 return nvme_identify_ctrl_list(n, req, false);
5109 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5110 return nvme_identify_pri_ctrl_cap(n, req);
5111 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5112 return nvme_identify_sec_ctrl_list(n, req);
5113 case NVME_ID_CNS_CS_NS:
5114 return nvme_identify_ns_csi(n, req, true);
5115 case NVME_ID_CNS_CS_NS_PRESENT:
5116 return nvme_identify_ns_csi(n, req, false);
5117 case NVME_ID_CNS_CTRL:
5118 return nvme_identify_ctrl(n, req);
5119 case NVME_ID_CNS_CS_CTRL:
5120 return nvme_identify_ctrl_csi(n, req);
5121 case NVME_ID_CNS_NS_ACTIVE_LIST:
5122 return nvme_identify_nslist(n, req, true);
5123 case NVME_ID_CNS_NS_PRESENT_LIST:
5124 return nvme_identify_nslist(n, req, false);
5125 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5126 return nvme_identify_nslist_csi(n, req, true);
5127 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5128 return nvme_identify_nslist_csi(n, req, false);
5129 case NVME_ID_CNS_NS_DESCR_LIST:
5130 return nvme_identify_ns_descr_list(n, req);
5131 case NVME_ID_CNS_IO_COMMAND_SET:
5132 return nvme_identify_cmd_set(n, req);
5133 default:
5134 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5135 return NVME_INVALID_FIELD | NVME_DNR;
5136 }
5137 }
5138
5139 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5140 {
5141 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5142
5143 req->cqe.result = 1;
5144 if (nvme_check_sqid(n, sqid)) {
5145 return NVME_INVALID_FIELD | NVME_DNR;
5146 }
5147
5148 return NVME_SUCCESS;
5149 }
5150
5151 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5152 {
5153 trace_pci_nvme_setfeat_timestamp(ts);
5154
5155 n->host_timestamp = le64_to_cpu(ts);
5156 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5157 }
5158
5159 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5160 {
5161 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5162 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5163
5164 union nvme_timestamp {
5165 struct {
5166 uint64_t timestamp:48;
5167 uint64_t sync:1;
5168 uint64_t origin:3;
5169 uint64_t rsvd1:12;
5170 };
5171 uint64_t all;
5172 };
5173
5174 union nvme_timestamp ts;
5175 ts.all = 0;
5176 ts.timestamp = n->host_timestamp + elapsed_time;
5177
5178 /* If the host timestamp is non-zero, set the timestamp origin */
5179 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5180
5181 trace_pci_nvme_getfeat_timestamp(ts.all);
5182
5183 return cpu_to_le64(ts.all);
5184 }
5185
5186 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5187 {
5188 uint64_t timestamp = nvme_get_timestamp(n);
5189
5190 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5191 }
5192
5193 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5194 {
5195 NvmeCmd *cmd = &req->cmd;
5196 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5197 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5198 uint32_t nsid = le32_to_cpu(cmd->nsid);
5199 uint32_t result;
5200 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5201 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5202 uint16_t iv;
5203 NvmeNamespace *ns;
5204 int i;
5205
5206 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5207 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5208 };
5209
5210 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5211
5212 if (!nvme_feature_support[fid]) {
5213 return NVME_INVALID_FIELD | NVME_DNR;
5214 }
5215
5216 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5217 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5218 /*
5219 * The Reservation Notification Mask and Reservation Persistence
5220 * features require a status code of Invalid Field in Command when
5221 * NSID is FFFFFFFFh. Since the device does not support those
5222 * features we can always return Invalid Namespace or Format as we
5223 * should do for all other features.
5224 */
5225 return NVME_INVALID_NSID | NVME_DNR;
5226 }
5227
5228 if (!nvme_ns(n, nsid)) {
5229 return NVME_INVALID_FIELD | NVME_DNR;
5230 }
5231 }
5232
5233 switch (sel) {
5234 case NVME_GETFEAT_SELECT_CURRENT:
5235 break;
5236 case NVME_GETFEAT_SELECT_SAVED:
5237 /* no features are saveable by the controller; fallthrough */
5238 case NVME_GETFEAT_SELECT_DEFAULT:
5239 goto defaults;
5240 case NVME_GETFEAT_SELECT_CAP:
5241 result = nvme_feature_cap[fid];
5242 goto out;
5243 }
5244
5245 switch (fid) {
5246 case NVME_TEMPERATURE_THRESHOLD:
5247 result = 0;
5248
5249 /*
5250 * The controller only implements the Composite Temperature sensor, so
5251 * return 0 for all other sensors.
5252 */
5253 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5254 goto out;
5255 }
5256
5257 switch (NVME_TEMP_THSEL(dw11)) {
5258 case NVME_TEMP_THSEL_OVER:
5259 result = n->features.temp_thresh_hi;
5260 goto out;
5261 case NVME_TEMP_THSEL_UNDER:
5262 result = n->features.temp_thresh_low;
5263 goto out;
5264 }
5265
5266 return NVME_INVALID_FIELD | NVME_DNR;
5267 case NVME_ERROR_RECOVERY:
5268 if (!nvme_nsid_valid(n, nsid)) {
5269 return NVME_INVALID_NSID | NVME_DNR;
5270 }
5271
5272 ns = nvme_ns(n, nsid);
5273 if (unlikely(!ns)) {
5274 return NVME_INVALID_FIELD | NVME_DNR;
5275 }
5276
5277 result = ns->features.err_rec;
5278 goto out;
5279 case NVME_VOLATILE_WRITE_CACHE:
5280 result = 0;
5281 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5282 ns = nvme_ns(n, i);
5283 if (!ns) {
5284 continue;
5285 }
5286
5287 result = blk_enable_write_cache(ns->blkconf.blk);
5288 if (result) {
5289 break;
5290 }
5291 }
5292 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5293 goto out;
5294 case NVME_ASYNCHRONOUS_EVENT_CONF:
5295 result = n->features.async_config;
5296 goto out;
5297 case NVME_TIMESTAMP:
5298 return nvme_get_feature_timestamp(n, req);
5299 case NVME_HOST_BEHAVIOR_SUPPORT:
5300 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5301 sizeof(n->features.hbs), req);
5302 default:
5303 break;
5304 }
5305
5306 defaults:
5307 switch (fid) {
5308 case NVME_TEMPERATURE_THRESHOLD:
5309 result = 0;
5310
5311 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5312 break;
5313 }
5314
5315 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5316 result = NVME_TEMPERATURE_WARNING;
5317 }
5318
5319 break;
5320 case NVME_NUMBER_OF_QUEUES:
5321 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5322 trace_pci_nvme_getfeat_numq(result);
5323 break;
5324 case NVME_INTERRUPT_VECTOR_CONF:
5325 iv = dw11 & 0xffff;
5326 if (iv >= n->conf_ioqpairs + 1) {
5327 return NVME_INVALID_FIELD | NVME_DNR;
5328 }
5329
5330 result = iv;
5331 if (iv == n->admin_cq.vector) {
5332 result |= NVME_INTVC_NOCOALESCING;
5333 }
5334 break;
5335 default:
5336 result = nvme_feature_default[fid];
5337 break;
5338 }
5339
5340 out:
5341 req->cqe.result = cpu_to_le32(result);
5342 return NVME_SUCCESS;
5343 }
5344
5345 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5346 {
5347 uint16_t ret;
5348 uint64_t timestamp;
5349
5350 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5351 if (ret) {
5352 return ret;
5353 }
5354
5355 nvme_set_timestamp(n, timestamp);
5356
5357 return NVME_SUCCESS;
5358 }
5359
5360 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5361 {
5362 NvmeNamespace *ns = NULL;
5363
5364 NvmeCmd *cmd = &req->cmd;
5365 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5366 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5367 uint32_t nsid = le32_to_cpu(cmd->nsid);
5368 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5369 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5370 uint16_t status;
5371 int i;
5372
5373 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5374
5375 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5376 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5377 }
5378
5379 if (!nvme_feature_support[fid]) {
5380 return NVME_INVALID_FIELD | NVME_DNR;
5381 }
5382
5383 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5384 if (nsid != NVME_NSID_BROADCAST) {
5385 if (!nvme_nsid_valid(n, nsid)) {
5386 return NVME_INVALID_NSID | NVME_DNR;
5387 }
5388
5389 ns = nvme_ns(n, nsid);
5390 if (unlikely(!ns)) {
5391 return NVME_INVALID_FIELD | NVME_DNR;
5392 }
5393 }
5394 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5395 if (!nvme_nsid_valid(n, nsid)) {
5396 return NVME_INVALID_NSID | NVME_DNR;
5397 }
5398
5399 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5400 }
5401
5402 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5403 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5404 }
5405
5406 switch (fid) {
5407 case NVME_TEMPERATURE_THRESHOLD:
5408 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5409 break;
5410 }
5411
5412 switch (NVME_TEMP_THSEL(dw11)) {
5413 case NVME_TEMP_THSEL_OVER:
5414 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5415 break;
5416 case NVME_TEMP_THSEL_UNDER:
5417 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5418 break;
5419 default:
5420 return NVME_INVALID_FIELD | NVME_DNR;
5421 }
5422
5423 if ((n->temperature >= n->features.temp_thresh_hi) ||
5424 (n->temperature <= n->features.temp_thresh_low)) {
5425 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5426 }
5427
5428 break;
5429 case NVME_ERROR_RECOVERY:
5430 if (nsid == NVME_NSID_BROADCAST) {
5431 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5432 ns = nvme_ns(n, i);
5433
5434 if (!ns) {
5435 continue;
5436 }
5437
5438 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5439 ns->features.err_rec = dw11;
5440 }
5441 }
5442
5443 break;
5444 }
5445
5446 assert(ns);
5447 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5448 ns->features.err_rec = dw11;
5449 }
5450 break;
5451 case NVME_VOLATILE_WRITE_CACHE:
5452 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5453 ns = nvme_ns(n, i);
5454 if (!ns) {
5455 continue;
5456 }
5457
5458 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5459 blk_flush(ns->blkconf.blk);
5460 }
5461
5462 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5463 }
5464
5465 break;
5466
5467 case NVME_NUMBER_OF_QUEUES:
5468 if (n->qs_created) {
5469 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5470 }
5471
5472 /*
5473 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5474 * and NSQR.
5475 */
5476 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5477 return NVME_INVALID_FIELD | NVME_DNR;
5478 }
5479
5480 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5481 ((dw11 >> 16) & 0xffff) + 1,
5482 n->conf_ioqpairs,
5483 n->conf_ioqpairs);
5484 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5485 ((n->conf_ioqpairs - 1) << 16));
5486 break;
5487 case NVME_ASYNCHRONOUS_EVENT_CONF:
5488 n->features.async_config = dw11;
5489 break;
5490 case NVME_TIMESTAMP:
5491 return nvme_set_feature_timestamp(n, req);
5492 case NVME_HOST_BEHAVIOR_SUPPORT:
5493 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5494 sizeof(n->features.hbs), req);
5495 if (status) {
5496 return status;
5497 }
5498
5499 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5500 ns = nvme_ns(n, i);
5501
5502 if (!ns) {
5503 continue;
5504 }
5505
5506 ns->id_ns.nlbaf = ns->nlbaf - 1;
5507 if (!n->features.hbs.lbafee) {
5508 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5509 }
5510 }
5511
5512 return status;
5513 case NVME_COMMAND_SET_PROFILE:
5514 if (dw11 & 0x1ff) {
5515 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5516 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5517 }
5518 break;
5519 default:
5520 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5521 }
5522 return NVME_SUCCESS;
5523 }
5524
5525 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5526 {
5527 trace_pci_nvme_aer(nvme_cid(req));
5528
5529 if (n->outstanding_aers > n->params.aerl) {
5530 trace_pci_nvme_aer_aerl_exceeded();
5531 return NVME_AER_LIMIT_EXCEEDED;
5532 }
5533
5534 n->aer_reqs[n->outstanding_aers] = req;
5535 n->outstanding_aers++;
5536
5537 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5538 nvme_process_aers(n);
5539 }
5540
5541 return NVME_NO_COMPLETE;
5542 }
5543
5544 static void nvme_update_dmrsl(NvmeCtrl *n)
5545 {
5546 int nsid;
5547
5548 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5549 NvmeNamespace *ns = nvme_ns(n, nsid);
5550 if (!ns) {
5551 continue;
5552 }
5553
5554 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5555 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5556 }
5557 }
5558
5559 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5560 {
5561 uint32_t cc = ldl_le_p(&n->bar.cc);
5562
5563 ns->iocs = nvme_cse_iocs_none;
5564 switch (ns->csi) {
5565 case NVME_CSI_NVM:
5566 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5567 ns->iocs = nvme_cse_iocs_nvm;
5568 }
5569 break;
5570 case NVME_CSI_ZONED:
5571 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5572 ns->iocs = nvme_cse_iocs_zoned;
5573 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5574 ns->iocs = nvme_cse_iocs_nvm;
5575 }
5576 break;
5577 }
5578 }
5579
5580 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5581 {
5582 NvmeNamespace *ns;
5583 NvmeCtrl *ctrl;
5584 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5585 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5586 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5587 uint8_t sel = dw10 & 0xf;
5588 uint16_t *nr_ids = &list[0];
5589 uint16_t *ids = &list[1];
5590 uint16_t ret;
5591 int i;
5592
5593 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5594
5595 if (!nvme_nsid_valid(n, nsid)) {
5596 return NVME_INVALID_NSID | NVME_DNR;
5597 }
5598
5599 ns = nvme_subsys_ns(n->subsys, nsid);
5600 if (!ns) {
5601 return NVME_INVALID_FIELD | NVME_DNR;
5602 }
5603
5604 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5605 if (ret) {
5606 return ret;
5607 }
5608
5609 if (!*nr_ids) {
5610 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5611 }
5612
5613 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5614 for (i = 0; i < *nr_ids; i++) {
5615 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5616 if (!ctrl) {
5617 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5618 }
5619
5620 switch (sel) {
5621 case NVME_NS_ATTACHMENT_ATTACH:
5622 if (nvme_ns(ctrl, nsid)) {
5623 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5624 }
5625
5626 if (ns->attached && !ns->params.shared) {
5627 return NVME_NS_PRIVATE | NVME_DNR;
5628 }
5629
5630 nvme_attach_ns(ctrl, ns);
5631 nvme_select_iocs_ns(ctrl, ns);
5632
5633 break;
5634
5635 case NVME_NS_ATTACHMENT_DETACH:
5636 if (!nvme_ns(ctrl, nsid)) {
5637 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5638 }
5639
5640 ctrl->namespaces[nsid] = NULL;
5641 ns->attached--;
5642
5643 nvme_update_dmrsl(ctrl);
5644
5645 break;
5646
5647 default:
5648 return NVME_INVALID_FIELD | NVME_DNR;
5649 }
5650
5651 /*
5652 * Add namespace id to the changed namespace id list for event clearing
5653 * via Get Log Page command.
5654 */
5655 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5656 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5657 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5658 NVME_LOG_CHANGED_NSLIST);
5659 }
5660 }
5661
5662 return NVME_SUCCESS;
5663 }
5664
5665 typedef struct NvmeFormatAIOCB {
5666 BlockAIOCB common;
5667 BlockAIOCB *aiocb;
5668 NvmeRequest *req;
5669 int ret;
5670
5671 NvmeNamespace *ns;
5672 uint32_t nsid;
5673 bool broadcast;
5674 int64_t offset;
5675
5676 uint8_t lbaf;
5677 uint8_t mset;
5678 uint8_t pi;
5679 uint8_t pil;
5680 } NvmeFormatAIOCB;
5681
5682 static void nvme_format_cancel(BlockAIOCB *aiocb)
5683 {
5684 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5685
5686 iocb->ret = -ECANCELED;
5687
5688 if (iocb->aiocb) {
5689 blk_aio_cancel_async(iocb->aiocb);
5690 iocb->aiocb = NULL;
5691 }
5692 }
5693
5694 static const AIOCBInfo nvme_format_aiocb_info = {
5695 .aiocb_size = sizeof(NvmeFormatAIOCB),
5696 .cancel_async = nvme_format_cancel,
5697 .get_aio_context = nvme_get_aio_context,
5698 };
5699
5700 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5701 uint8_t pi, uint8_t pil)
5702 {
5703 uint8_t lbafl = lbaf & 0xf;
5704 uint8_t lbafu = lbaf >> 4;
5705
5706 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5707
5708 ns->id_ns.dps = (pil << 3) | pi;
5709 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5710
5711 nvme_ns_init_format(ns);
5712 }
5713
5714 static void nvme_do_format(NvmeFormatAIOCB *iocb);
5715
5716 static void nvme_format_ns_cb(void *opaque, int ret)
5717 {
5718 NvmeFormatAIOCB *iocb = opaque;
5719 NvmeNamespace *ns = iocb->ns;
5720 int bytes;
5721
5722 if (iocb->ret < 0) {
5723 goto done;
5724 } else if (ret < 0) {
5725 iocb->ret = ret;
5726 goto done;
5727 }
5728
5729 assert(ns);
5730
5731 if (iocb->offset < ns->size) {
5732 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5733
5734 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5735 bytes, BDRV_REQ_MAY_UNMAP,
5736 nvme_format_ns_cb, iocb);
5737
5738 iocb->offset += bytes;
5739 return;
5740 }
5741
5742 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5743 ns->status = 0x0;
5744 iocb->ns = NULL;
5745 iocb->offset = 0;
5746
5747 done:
5748 nvme_do_format(iocb);
5749 }
5750
5751 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5752 {
5753 if (ns->params.zoned) {
5754 return NVME_INVALID_FORMAT | NVME_DNR;
5755 }
5756
5757 if (lbaf > ns->id_ns.nlbaf) {
5758 return NVME_INVALID_FORMAT | NVME_DNR;
5759 }
5760
5761 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5762 return NVME_INVALID_FORMAT | NVME_DNR;
5763 }
5764
5765 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5766 return NVME_INVALID_FIELD | NVME_DNR;
5767 }
5768
5769 return NVME_SUCCESS;
5770 }
5771
5772 static void nvme_do_format(NvmeFormatAIOCB *iocb)
5773 {
5774 NvmeRequest *req = iocb->req;
5775 NvmeCtrl *n = nvme_ctrl(req);
5776 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5777 uint8_t lbaf = dw10 & 0xf;
5778 uint8_t pi = (dw10 >> 5) & 0x7;
5779 uint16_t status;
5780 int i;
5781
5782 if (iocb->ret < 0) {
5783 goto done;
5784 }
5785
5786 if (iocb->broadcast) {
5787 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5788 iocb->ns = nvme_ns(n, i);
5789 if (iocb->ns) {
5790 iocb->nsid = i;
5791 break;
5792 }
5793 }
5794 }
5795
5796 if (!iocb->ns) {
5797 goto done;
5798 }
5799
5800 status = nvme_format_check(iocb->ns, lbaf, pi);
5801 if (status) {
5802 req->status = status;
5803 goto done;
5804 }
5805
5806 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5807 nvme_format_ns_cb(iocb, 0);
5808 return;
5809
5810 done:
5811 iocb->common.cb(iocb->common.opaque, iocb->ret);
5812 qemu_aio_unref(iocb);
5813 }
5814
5815 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5816 {
5817 NvmeFormatAIOCB *iocb;
5818 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5819 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5820 uint8_t lbaf = dw10 & 0xf;
5821 uint8_t mset = (dw10 >> 4) & 0x1;
5822 uint8_t pi = (dw10 >> 5) & 0x7;
5823 uint8_t pil = (dw10 >> 8) & 0x1;
5824 uint8_t lbafu = (dw10 >> 12) & 0x3;
5825 uint16_t status;
5826
5827 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5828
5829 iocb->req = req;
5830 iocb->ret = 0;
5831 iocb->ns = NULL;
5832 iocb->nsid = 0;
5833 iocb->lbaf = lbaf;
5834 iocb->mset = mset;
5835 iocb->pi = pi;
5836 iocb->pil = pil;
5837 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5838 iocb->offset = 0;
5839
5840 if (n->features.hbs.lbafee) {
5841 iocb->lbaf |= lbafu << 4;
5842 }
5843
5844 if (!iocb->broadcast) {
5845 if (!nvme_nsid_valid(n, nsid)) {
5846 status = NVME_INVALID_NSID | NVME_DNR;
5847 goto out;
5848 }
5849
5850 iocb->ns = nvme_ns(n, nsid);
5851 if (!iocb->ns) {
5852 status = NVME_INVALID_FIELD | NVME_DNR;
5853 goto out;
5854 }
5855 }
5856
5857 req->aiocb = &iocb->common;
5858 nvme_do_format(iocb);
5859
5860 return NVME_NO_COMPLETE;
5861
5862 out:
5863 qemu_aio_unref(iocb);
5864
5865 return status;
5866 }
5867
5868 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5869 int *num_prim, int *num_sec)
5870 {
5871 *num_total = le32_to_cpu(rt ?
5872 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5873 *num_prim = le16_to_cpu(rt ?
5874 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5875 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5876 }
5877
5878 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5879 uint16_t cntlid, uint8_t rt,
5880 int nr)
5881 {
5882 int num_total, num_prim, num_sec;
5883
5884 if (cntlid != n->cntlid) {
5885 return NVME_INVALID_CTRL_ID | NVME_DNR;
5886 }
5887
5888 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5889
5890 if (nr > num_total) {
5891 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5892 }
5893
5894 if (nr > num_total - num_sec) {
5895 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5896 }
5897
5898 if (rt) {
5899 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5900 } else {
5901 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5902 }
5903
5904 req->cqe.result = cpu_to_le32(nr);
5905 return req->status;
5906 }
5907
5908 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5909 uint8_t rt, int nr)
5910 {
5911 int prev_nr, prev_total;
5912
5913 if (rt) {
5914 prev_nr = le16_to_cpu(sctrl->nvi);
5915 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5916 sctrl->nvi = cpu_to_le16(nr);
5917 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5918 } else {
5919 prev_nr = le16_to_cpu(sctrl->nvq);
5920 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
5921 sctrl->nvq = cpu_to_le16(nr);
5922 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
5923 }
5924 }
5925
5926 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
5927 uint16_t cntlid, uint8_t rt, int nr)
5928 {
5929 int num_total, num_prim, num_sec, num_free, diff, limit;
5930 NvmeSecCtrlEntry *sctrl;
5931
5932 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5933 if (!sctrl) {
5934 return NVME_INVALID_CTRL_ID | NVME_DNR;
5935 }
5936
5937 if (sctrl->scs) {
5938 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5939 }
5940
5941 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
5942 if (nr > limit) {
5943 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5944 }
5945
5946 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5947 num_free = num_total - num_prim - num_sec;
5948 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
5949
5950 if (diff > num_free) {
5951 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5952 }
5953
5954 nvme_update_virt_res(n, sctrl, rt, nr);
5955 req->cqe.result = cpu_to_le32(nr);
5956
5957 return req->status;
5958 }
5959
5960 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
5961 {
5962 NvmeCtrl *sn = NULL;
5963 NvmeSecCtrlEntry *sctrl;
5964 int vf_index;
5965
5966 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5967 if (!sctrl) {
5968 return NVME_INVALID_CTRL_ID | NVME_DNR;
5969 }
5970
5971 if (!pci_is_vf(&n->parent_obj)) {
5972 vf_index = le16_to_cpu(sctrl->vfn) - 1;
5973 sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
5974 }
5975
5976 if (online) {
5977 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
5978 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5979 }
5980
5981 if (!sctrl->scs) {
5982 sctrl->scs = 0x1;
5983 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5984 }
5985 } else {
5986 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
5987 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
5988
5989 if (sctrl->scs) {
5990 sctrl->scs = 0x0;
5991 if (sn) {
5992 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5993 }
5994 }
5995 }
5996
5997 return NVME_SUCCESS;
5998 }
5999
6000 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6001 {
6002 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6003 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6004 uint8_t act = dw10 & 0xf;
6005 uint8_t rt = (dw10 >> 8) & 0x7;
6006 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6007 int nr = dw11 & 0xffff;
6008
6009 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6010
6011 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6012 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6013 }
6014
6015 switch (act) {
6016 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6017 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6018 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6019 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6020 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6021 return nvme_virt_set_state(n, cntlid, true);
6022 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6023 return nvme_virt_set_state(n, cntlid, false);
6024 default:
6025 return NVME_INVALID_FIELD | NVME_DNR;
6026 }
6027 }
6028
6029 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6030 {
6031 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6032 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6033 int i;
6034
6035 /* Address should be page aligned */
6036 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6037 return NVME_INVALID_FIELD | NVME_DNR;
6038 }
6039
6040 /* Save shadow buffer base addr for use during queue creation */
6041 n->dbbuf_dbs = dbs_addr;
6042 n->dbbuf_eis = eis_addr;
6043 n->dbbuf_enabled = true;
6044
6045 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6046 NvmeSQueue *sq = n->sq[i];
6047 NvmeCQueue *cq = n->cq[i];
6048
6049 if (sq) {
6050 /*
6051 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6052 * nvme_process_db() uses this hard-coded way to calculate
6053 * doorbell offsets. Be consistent with that here.
6054 */
6055 sq->db_addr = dbs_addr + (i << 3);
6056 sq->ei_addr = eis_addr + (i << 3);
6057 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6058 sizeof(sq->tail));
6059
6060 if (n->params.ioeventfd && sq->sqid != 0) {
6061 if (!nvme_init_sq_ioeventfd(sq)) {
6062 sq->ioeventfd_enabled = true;
6063 }
6064 }
6065 }
6066
6067 if (cq) {
6068 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6069 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6070 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6071 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6072 sizeof(cq->head));
6073
6074 if (n->params.ioeventfd && cq->cqid != 0) {
6075 if (!nvme_init_cq_ioeventfd(cq)) {
6076 cq->ioeventfd_enabled = true;
6077 }
6078 }
6079 }
6080 }
6081
6082 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6083
6084 return NVME_SUCCESS;
6085 }
6086
6087 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6088 {
6089 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6090 nvme_adm_opc_str(req->cmd.opcode));
6091
6092 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6093 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6094 return NVME_INVALID_OPCODE | NVME_DNR;
6095 }
6096
6097 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6098 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6099 return NVME_INVALID_FIELD | NVME_DNR;
6100 }
6101
6102 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6103 return NVME_INVALID_FIELD;
6104 }
6105
6106 switch (req->cmd.opcode) {
6107 case NVME_ADM_CMD_DELETE_SQ:
6108 return nvme_del_sq(n, req);
6109 case NVME_ADM_CMD_CREATE_SQ:
6110 return nvme_create_sq(n, req);
6111 case NVME_ADM_CMD_GET_LOG_PAGE:
6112 return nvme_get_log(n, req);
6113 case NVME_ADM_CMD_DELETE_CQ:
6114 return nvme_del_cq(n, req);
6115 case NVME_ADM_CMD_CREATE_CQ:
6116 return nvme_create_cq(n, req);
6117 case NVME_ADM_CMD_IDENTIFY:
6118 return nvme_identify(n, req);
6119 case NVME_ADM_CMD_ABORT:
6120 return nvme_abort(n, req);
6121 case NVME_ADM_CMD_SET_FEATURES:
6122 return nvme_set_feature(n, req);
6123 case NVME_ADM_CMD_GET_FEATURES:
6124 return nvme_get_feature(n, req);
6125 case NVME_ADM_CMD_ASYNC_EV_REQ:
6126 return nvme_aer(n, req);
6127 case NVME_ADM_CMD_NS_ATTACHMENT:
6128 return nvme_ns_attachment(n, req);
6129 case NVME_ADM_CMD_VIRT_MNGMT:
6130 return nvme_virt_mngmt(n, req);
6131 case NVME_ADM_CMD_DBBUF_CONFIG:
6132 return nvme_dbbuf_config(n, req);
6133 case NVME_ADM_CMD_FORMAT_NVM:
6134 return nvme_format(n, req);
6135 default:
6136 assert(false);
6137 }
6138
6139 return NVME_INVALID_OPCODE | NVME_DNR;
6140 }
6141
6142 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6143 {
6144 pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6145 sizeof(sq->tail));
6146 trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6147 }
6148
6149 static void nvme_update_sq_tail(NvmeSQueue *sq)
6150 {
6151 pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6152 sizeof(sq->tail));
6153 trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6154 }
6155
6156 static void nvme_process_sq(void *opaque)
6157 {
6158 NvmeSQueue *sq = opaque;
6159 NvmeCtrl *n = sq->ctrl;
6160 NvmeCQueue *cq = n->cq[sq->cqid];
6161
6162 uint16_t status;
6163 hwaddr addr;
6164 NvmeCmd cmd;
6165 NvmeRequest *req;
6166
6167 if (n->dbbuf_enabled) {
6168 nvme_update_sq_tail(sq);
6169 }
6170
6171 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6172 addr = sq->dma_addr + sq->head * n->sqe_size;
6173 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6174 trace_pci_nvme_err_addr_read(addr);
6175 trace_pci_nvme_err_cfs();
6176 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6177 break;
6178 }
6179 nvme_inc_sq_head(sq);
6180
6181 req = QTAILQ_FIRST(&sq->req_list);
6182 QTAILQ_REMOVE(&sq->req_list, req, entry);
6183 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6184 nvme_req_clear(req);
6185 req->cqe.cid = cmd.cid;
6186 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6187
6188 status = sq->sqid ? nvme_io_cmd(n, req) :
6189 nvme_admin_cmd(n, req);
6190 if (status != NVME_NO_COMPLETE) {
6191 req->status = status;
6192 nvme_enqueue_req_completion(cq, req);
6193 }
6194
6195 if (n->dbbuf_enabled) {
6196 nvme_update_sq_eventidx(sq);
6197 nvme_update_sq_tail(sq);
6198 }
6199 }
6200 }
6201
6202 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6203 {
6204 uint8_t *config;
6205
6206 if (!msix_present(pci_dev)) {
6207 return;
6208 }
6209
6210 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6211
6212 config = pci_dev->config + pci_dev->msix_cap;
6213 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6214 table_size - 1);
6215 }
6216
6217 static void nvme_activate_virt_res(NvmeCtrl *n)
6218 {
6219 PCIDevice *pci_dev = &n->parent_obj;
6220 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6221 NvmeSecCtrlEntry *sctrl;
6222
6223 /* -1 to account for the admin queue */
6224 if (pci_is_vf(pci_dev)) {
6225 sctrl = nvme_sctrl(n);
6226 cap->vqprt = sctrl->nvq;
6227 cap->viprt = sctrl->nvi;
6228 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6229 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6230 } else {
6231 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6232 cap->virfap = n->next_pri_ctrl_cap.virfap;
6233 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6234 le16_to_cpu(cap->vqrfap) - 1;
6235 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6236 le16_to_cpu(cap->virfap);
6237 }
6238 }
6239
6240 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6241 {
6242 PCIDevice *pci_dev = &n->parent_obj;
6243 NvmeSecCtrlEntry *sctrl;
6244 NvmeNamespace *ns;
6245 int i;
6246
6247 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6248 ns = nvme_ns(n, i);
6249 if (!ns) {
6250 continue;
6251 }
6252
6253 nvme_ns_drain(ns);
6254 }
6255
6256 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6257 if (n->sq[i] != NULL) {
6258 nvme_free_sq(n->sq[i], n);
6259 }
6260 }
6261 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6262 if (n->cq[i] != NULL) {
6263 nvme_free_cq(n->cq[i], n);
6264 }
6265 }
6266
6267 while (!QTAILQ_EMPTY(&n->aer_queue)) {
6268 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6269 QTAILQ_REMOVE(&n->aer_queue, event, entry);
6270 g_free(event);
6271 }
6272
6273 if (n->params.sriov_max_vfs) {
6274 if (!pci_is_vf(pci_dev)) {
6275 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6276 sctrl = &n->sec_ctrl_list.sec[i];
6277 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6278 }
6279
6280 if (rst != NVME_RESET_CONTROLLER) {
6281 pcie_sriov_pf_disable_vfs(pci_dev);
6282 }
6283 }
6284
6285 if (rst != NVME_RESET_CONTROLLER) {
6286 nvme_activate_virt_res(n);
6287 }
6288 }
6289
6290 n->aer_queued = 0;
6291 n->aer_mask = 0;
6292 n->outstanding_aers = 0;
6293 n->qs_created = false;
6294
6295 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6296
6297 if (pci_is_vf(pci_dev)) {
6298 sctrl = nvme_sctrl(n);
6299
6300 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6301 } else {
6302 stl_le_p(&n->bar.csts, 0);
6303 }
6304
6305 stl_le_p(&n->bar.intms, 0);
6306 stl_le_p(&n->bar.intmc, 0);
6307 stl_le_p(&n->bar.cc, 0);
6308
6309 n->dbbuf_dbs = 0;
6310 n->dbbuf_eis = 0;
6311 n->dbbuf_enabled = false;
6312 }
6313
6314 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6315 {
6316 NvmeNamespace *ns;
6317 int i;
6318
6319 if (n->pmr.dev) {
6320 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6321 }
6322
6323 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6324 ns = nvme_ns(n, i);
6325 if (!ns) {
6326 continue;
6327 }
6328
6329 nvme_ns_shutdown(ns);
6330 }
6331 }
6332
6333 static void nvme_select_iocs(NvmeCtrl *n)
6334 {
6335 NvmeNamespace *ns;
6336 int i;
6337
6338 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6339 ns = nvme_ns(n, i);
6340 if (!ns) {
6341 continue;
6342 }
6343
6344 nvme_select_iocs_ns(n, ns);
6345 }
6346 }
6347
6348 static int nvme_start_ctrl(NvmeCtrl *n)
6349 {
6350 uint64_t cap = ldq_le_p(&n->bar.cap);
6351 uint32_t cc = ldl_le_p(&n->bar.cc);
6352 uint32_t aqa = ldl_le_p(&n->bar.aqa);
6353 uint64_t asq = ldq_le_p(&n->bar.asq);
6354 uint64_t acq = ldq_le_p(&n->bar.acq);
6355 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6356 uint32_t page_size = 1 << page_bits;
6357 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6358
6359 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6360 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6361 le16_to_cpu(sctrl->nvq),
6362 sctrl->scs ? "ONLINE" :
6363 "OFFLINE");
6364 return -1;
6365 }
6366 if (unlikely(n->cq[0])) {
6367 trace_pci_nvme_err_startfail_cq();
6368 return -1;
6369 }
6370 if (unlikely(n->sq[0])) {
6371 trace_pci_nvme_err_startfail_sq();
6372 return -1;
6373 }
6374 if (unlikely(asq & (page_size - 1))) {
6375 trace_pci_nvme_err_startfail_asq_misaligned(asq);
6376 return -1;
6377 }
6378 if (unlikely(acq & (page_size - 1))) {
6379 trace_pci_nvme_err_startfail_acq_misaligned(acq);
6380 return -1;
6381 }
6382 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6383 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6384 return -1;
6385 }
6386 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6387 trace_pci_nvme_err_startfail_page_too_small(
6388 NVME_CC_MPS(cc),
6389 NVME_CAP_MPSMIN(cap));
6390 return -1;
6391 }
6392 if (unlikely(NVME_CC_MPS(cc) >
6393 NVME_CAP_MPSMAX(cap))) {
6394 trace_pci_nvme_err_startfail_page_too_large(
6395 NVME_CC_MPS(cc),
6396 NVME_CAP_MPSMAX(cap));
6397 return -1;
6398 }
6399 if (unlikely(NVME_CC_IOCQES(cc) <
6400 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6401 trace_pci_nvme_err_startfail_cqent_too_small(
6402 NVME_CC_IOCQES(cc),
6403 NVME_CTRL_CQES_MIN(cap));
6404 return -1;
6405 }
6406 if (unlikely(NVME_CC_IOCQES(cc) >
6407 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6408 trace_pci_nvme_err_startfail_cqent_too_large(
6409 NVME_CC_IOCQES(cc),
6410 NVME_CTRL_CQES_MAX(cap));
6411 return -1;
6412 }
6413 if (unlikely(NVME_CC_IOSQES(cc) <
6414 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6415 trace_pci_nvme_err_startfail_sqent_too_small(
6416 NVME_CC_IOSQES(cc),
6417 NVME_CTRL_SQES_MIN(cap));
6418 return -1;
6419 }
6420 if (unlikely(NVME_CC_IOSQES(cc) >
6421 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6422 trace_pci_nvme_err_startfail_sqent_too_large(
6423 NVME_CC_IOSQES(cc),
6424 NVME_CTRL_SQES_MAX(cap));
6425 return -1;
6426 }
6427 if (unlikely(!NVME_AQA_ASQS(aqa))) {
6428 trace_pci_nvme_err_startfail_asqent_sz_zero();
6429 return -1;
6430 }
6431 if (unlikely(!NVME_AQA_ACQS(aqa))) {
6432 trace_pci_nvme_err_startfail_acqent_sz_zero();
6433 return -1;
6434 }
6435
6436 n->page_bits = page_bits;
6437 n->page_size = page_size;
6438 n->max_prp_ents = n->page_size / sizeof(uint64_t);
6439 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6440 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6441 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6442 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6443
6444 nvme_set_timestamp(n, 0ULL);
6445
6446 nvme_select_iocs(n);
6447
6448 return 0;
6449 }
6450
6451 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6452 {
6453 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6454 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6455
6456 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6457 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6458 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6459 stl_le_p(&n->bar.cmbloc, cmbloc);
6460
6461 NVME_CMBSZ_SET_SQS(cmbsz, 1);
6462 NVME_CMBSZ_SET_CQS(cmbsz, 0);
6463 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6464 NVME_CMBSZ_SET_RDS(cmbsz, 1);
6465 NVME_CMBSZ_SET_WDS(cmbsz, 1);
6466 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6467 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6468 stl_le_p(&n->bar.cmbsz, cmbsz);
6469 }
6470
6471 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6472 unsigned size)
6473 {
6474 uint64_t cap = ldq_le_p(&n->bar.cap);
6475 uint32_t cc = ldl_le_p(&n->bar.cc);
6476 uint32_t intms = ldl_le_p(&n->bar.intms);
6477 uint32_t csts = ldl_le_p(&n->bar.csts);
6478 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6479
6480 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6481 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6482 "MMIO write not 32-bit aligned,"
6483 " offset=0x%"PRIx64"", offset);
6484 /* should be ignored, fall through for now */
6485 }
6486
6487 if (unlikely(size < sizeof(uint32_t))) {
6488 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6489 "MMIO write smaller than 32-bits,"
6490 " offset=0x%"PRIx64", size=%u",
6491 offset, size);
6492 /* should be ignored, fall through for now */
6493 }
6494
6495 switch (offset) {
6496 case NVME_REG_INTMS:
6497 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6498 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6499 "undefined access to interrupt mask set"
6500 " when MSI-X is enabled");
6501 /* should be ignored, fall through for now */
6502 }
6503 intms |= data;
6504 stl_le_p(&n->bar.intms, intms);
6505 n->bar.intmc = n->bar.intms;
6506 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6507 nvme_irq_check(n);
6508 break;
6509 case NVME_REG_INTMC:
6510 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6511 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6512 "undefined access to interrupt mask clr"
6513 " when MSI-X is enabled");
6514 /* should be ignored, fall through for now */
6515 }
6516 intms &= ~data;
6517 stl_le_p(&n->bar.intms, intms);
6518 n->bar.intmc = n->bar.intms;
6519 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6520 nvme_irq_check(n);
6521 break;
6522 case NVME_REG_CC:
6523 stl_le_p(&n->bar.cc, data);
6524
6525 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6526
6527 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6528 trace_pci_nvme_mmio_shutdown_set();
6529 nvme_ctrl_shutdown(n);
6530 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6531 csts |= NVME_CSTS_SHST_COMPLETE;
6532 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6533 trace_pci_nvme_mmio_shutdown_cleared();
6534 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6535 }
6536
6537 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6538 if (unlikely(nvme_start_ctrl(n))) {
6539 trace_pci_nvme_err_startfail();
6540 csts = NVME_CSTS_FAILED;
6541 } else {
6542 trace_pci_nvme_mmio_start_success();
6543 csts = NVME_CSTS_READY;
6544 }
6545 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6546 trace_pci_nvme_mmio_stopped();
6547 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6548
6549 break;
6550 }
6551
6552 stl_le_p(&n->bar.csts, csts);
6553
6554 break;
6555 case NVME_REG_CSTS:
6556 if (data & (1 << 4)) {
6557 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6558 "attempted to W1C CSTS.NSSRO"
6559 " but CAP.NSSRS is zero (not supported)");
6560 } else if (data != 0) {
6561 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6562 "attempted to set a read only bit"
6563 " of controller status");
6564 }
6565 break;
6566 case NVME_REG_NSSR:
6567 if (data == 0x4e564d65) {
6568 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6569 } else {
6570 /* The spec says that writes of other values have no effect */
6571 return;
6572 }
6573 break;
6574 case NVME_REG_AQA:
6575 stl_le_p(&n->bar.aqa, data);
6576 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6577 break;
6578 case NVME_REG_ASQ:
6579 stn_le_p(&n->bar.asq, size, data);
6580 trace_pci_nvme_mmio_asqaddr(data);
6581 break;
6582 case NVME_REG_ASQ + 4:
6583 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6584 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6585 break;
6586 case NVME_REG_ACQ:
6587 trace_pci_nvme_mmio_acqaddr(data);
6588 stn_le_p(&n->bar.acq, size, data);
6589 break;
6590 case NVME_REG_ACQ + 4:
6591 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6592 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6593 break;
6594 case NVME_REG_CMBLOC:
6595 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6596 "invalid write to reserved CMBLOC"
6597 " when CMBSZ is zero, ignored");
6598 return;
6599 case NVME_REG_CMBSZ:
6600 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6601 "invalid write to read only CMBSZ, ignored");
6602 return;
6603 case NVME_REG_CMBMSC:
6604 if (!NVME_CAP_CMBS(cap)) {
6605 return;
6606 }
6607
6608 stn_le_p(&n->bar.cmbmsc, size, data);
6609 n->cmb.cmse = false;
6610
6611 if (NVME_CMBMSC_CRE(data)) {
6612 nvme_cmb_enable_regs(n);
6613
6614 if (NVME_CMBMSC_CMSE(data)) {
6615 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6616 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6617 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6618 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6619 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6620 stl_le_p(&n->bar.cmbsts, cmbsts);
6621 return;
6622 }
6623
6624 n->cmb.cba = cba;
6625 n->cmb.cmse = true;
6626 }
6627 } else {
6628 n->bar.cmbsz = 0;
6629 n->bar.cmbloc = 0;
6630 }
6631
6632 return;
6633 case NVME_REG_CMBMSC + 4:
6634 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6635 return;
6636
6637 case NVME_REG_PMRCAP:
6638 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6639 "invalid write to PMRCAP register, ignored");
6640 return;
6641 case NVME_REG_PMRCTL:
6642 if (!NVME_CAP_PMRS(cap)) {
6643 return;
6644 }
6645
6646 stl_le_p(&n->bar.pmrctl, data);
6647 if (NVME_PMRCTL_EN(data)) {
6648 memory_region_set_enabled(&n->pmr.dev->mr, true);
6649 pmrsts = 0;
6650 } else {
6651 memory_region_set_enabled(&n->pmr.dev->mr, false);
6652 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6653 n->pmr.cmse = false;
6654 }
6655 stl_le_p(&n->bar.pmrsts, pmrsts);
6656 return;
6657 case NVME_REG_PMRSTS:
6658 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6659 "invalid write to PMRSTS register, ignored");
6660 return;
6661 case NVME_REG_PMREBS:
6662 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6663 "invalid write to PMREBS register, ignored");
6664 return;
6665 case NVME_REG_PMRSWTP:
6666 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6667 "invalid write to PMRSWTP register, ignored");
6668 return;
6669 case NVME_REG_PMRMSCL:
6670 if (!NVME_CAP_PMRS(cap)) {
6671 return;
6672 }
6673
6674 stl_le_p(&n->bar.pmrmscl, data);
6675 n->pmr.cmse = false;
6676
6677 if (NVME_PMRMSCL_CMSE(data)) {
6678 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6679 hwaddr cba = pmrmscu << 32 |
6680 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6681 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6682 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6683 stl_le_p(&n->bar.pmrsts, pmrsts);
6684 return;
6685 }
6686
6687 n->pmr.cmse = true;
6688 n->pmr.cba = cba;
6689 }
6690
6691 return;
6692 case NVME_REG_PMRMSCU:
6693 if (!NVME_CAP_PMRS(cap)) {
6694 return;
6695 }
6696
6697 stl_le_p(&n->bar.pmrmscu, data);
6698 return;
6699 default:
6700 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6701 "invalid MMIO write,"
6702 " offset=0x%"PRIx64", data=%"PRIx64"",
6703 offset, data);
6704 break;
6705 }
6706 }
6707
6708 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6709 {
6710 NvmeCtrl *n = (NvmeCtrl *)opaque;
6711 uint8_t *ptr = (uint8_t *)&n->bar;
6712
6713 trace_pci_nvme_mmio_read(addr, size);
6714
6715 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6716 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6717 "MMIO read not 32-bit aligned,"
6718 " offset=0x%"PRIx64"", addr);
6719 /* should RAZ, fall through for now */
6720 } else if (unlikely(size < sizeof(uint32_t))) {
6721 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6722 "MMIO read smaller than 32-bits,"
6723 " offset=0x%"PRIx64"", addr);
6724 /* should RAZ, fall through for now */
6725 }
6726
6727 if (addr > sizeof(n->bar) - size) {
6728 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6729 "MMIO read beyond last register,"
6730 " offset=0x%"PRIx64", returning 0", addr);
6731
6732 return 0;
6733 }
6734
6735 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6736 addr != NVME_REG_CSTS) {
6737 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6738 return 0;
6739 }
6740
6741 /*
6742 * When PMRWBM bit 1 is set then read from
6743 * from PMRSTS should ensure prior writes
6744 * made it to persistent media
6745 */
6746 if (addr == NVME_REG_PMRSTS &&
6747 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6748 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6749 }
6750
6751 return ldn_le_p(ptr + addr, size);
6752 }
6753
6754 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6755 {
6756 uint32_t qid;
6757
6758 if (unlikely(addr & ((1 << 2) - 1))) {
6759 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6760 "doorbell write not 32-bit aligned,"
6761 " offset=0x%"PRIx64", ignoring", addr);
6762 return;
6763 }
6764
6765 if (((addr - 0x1000) >> 2) & 1) {
6766 /* Completion queue doorbell write */
6767
6768 uint16_t new_head = val & 0xffff;
6769 int start_sqs;
6770 NvmeCQueue *cq;
6771
6772 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6773 if (unlikely(nvme_check_cqid(n, qid))) {
6774 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6775 "completion queue doorbell write"
6776 " for nonexistent queue,"
6777 " sqid=%"PRIu32", ignoring", qid);
6778
6779 /*
6780 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6781 * an invalid value to the Submission Queue Tail Doorbell or
6782 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6783 * Request command is outstanding, then an asynchronous event is
6784 * posted to the Admin Completion Queue with a status code of
6785 * Invalid Doorbell Write Value."
6786 *
6787 * Also note that the spec includes the "Invalid Doorbell Register"
6788 * status code, but nowhere does it specify when to use it.
6789 * However, it seems reasonable to use it here in a similar
6790 * fashion.
6791 */
6792 if (n->outstanding_aers) {
6793 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6794 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6795 NVME_LOG_ERROR_INFO);
6796 }
6797
6798 return;
6799 }
6800
6801 cq = n->cq[qid];
6802 if (unlikely(new_head >= cq->size)) {
6803 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6804 "completion queue doorbell write value"
6805 " beyond queue size, sqid=%"PRIu32","
6806 " new_head=%"PRIu16", ignoring",
6807 qid, new_head);
6808
6809 if (n->outstanding_aers) {
6810 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6811 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6812 NVME_LOG_ERROR_INFO);
6813 }
6814
6815 return;
6816 }
6817
6818 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6819
6820 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6821 cq->head = new_head;
6822 if (!qid && n->dbbuf_enabled) {
6823 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6824 sizeof(cq->head));
6825 }
6826 if (start_sqs) {
6827 NvmeSQueue *sq;
6828 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6829 qemu_bh_schedule(sq->bh);
6830 }
6831 qemu_bh_schedule(cq->bh);
6832 }
6833
6834 if (cq->tail == cq->head) {
6835 if (cq->irq_enabled) {
6836 n->cq_pending--;
6837 }
6838
6839 nvme_irq_deassert(n, cq);
6840 }
6841 } else {
6842 /* Submission queue doorbell write */
6843
6844 uint16_t new_tail = val & 0xffff;
6845 NvmeSQueue *sq;
6846
6847 qid = (addr - 0x1000) >> 3;
6848 if (unlikely(nvme_check_sqid(n, qid))) {
6849 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6850 "submission queue doorbell write"
6851 " for nonexistent queue,"
6852 " sqid=%"PRIu32", ignoring", qid);
6853
6854 if (n->outstanding_aers) {
6855 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6856 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6857 NVME_LOG_ERROR_INFO);
6858 }
6859
6860 return;
6861 }
6862
6863 sq = n->sq[qid];
6864 if (unlikely(new_tail >= sq->size)) {
6865 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6866 "submission queue doorbell write value"
6867 " beyond queue size, sqid=%"PRIu32","
6868 " new_tail=%"PRIu16", ignoring",
6869 qid, new_tail);
6870
6871 if (n->outstanding_aers) {
6872 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6873 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6874 NVME_LOG_ERROR_INFO);
6875 }
6876
6877 return;
6878 }
6879
6880 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6881
6882 sq->tail = new_tail;
6883 if (!qid && n->dbbuf_enabled) {
6884 /*
6885 * The spec states "the host shall also update the controller's
6886 * corresponding doorbell property to match the value of that entry
6887 * in the Shadow Doorbell buffer."
6888 *
6889 * Since this context is currently a VM trap, we can safely enforce
6890 * the requirement from the device side in case the host is
6891 * misbehaving.
6892 *
6893 * Note, we shouldn't have to do this, but various drivers
6894 * including ones that run on Linux, are not updating Admin Queues,
6895 * so we can't trust reading it for an appropriate sq tail.
6896 */
6897 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6898 sizeof(sq->tail));
6899 }
6900
6901 qemu_bh_schedule(sq->bh);
6902 }
6903 }
6904
6905 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6906 unsigned size)
6907 {
6908 NvmeCtrl *n = (NvmeCtrl *)opaque;
6909
6910 trace_pci_nvme_mmio_write(addr, data, size);
6911
6912 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6913 addr != NVME_REG_CSTS) {
6914 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6915 return;
6916 }
6917
6918 if (addr < sizeof(n->bar)) {
6919 nvme_write_bar(n, addr, data, size);
6920 } else {
6921 nvme_process_db(n, addr, data);
6922 }
6923 }
6924
6925 static const MemoryRegionOps nvme_mmio_ops = {
6926 .read = nvme_mmio_read,
6927 .write = nvme_mmio_write,
6928 .endianness = DEVICE_LITTLE_ENDIAN,
6929 .impl = {
6930 .min_access_size = 2,
6931 .max_access_size = 8,
6932 },
6933 };
6934
6935 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6936 unsigned size)
6937 {
6938 NvmeCtrl *n = (NvmeCtrl *)opaque;
6939 stn_le_p(&n->cmb.buf[addr], size, data);
6940 }
6941
6942 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6943 {
6944 NvmeCtrl *n = (NvmeCtrl *)opaque;
6945 return ldn_le_p(&n->cmb.buf[addr], size);
6946 }
6947
6948 static const MemoryRegionOps nvme_cmb_ops = {
6949 .read = nvme_cmb_read,
6950 .write = nvme_cmb_write,
6951 .endianness = DEVICE_LITTLE_ENDIAN,
6952 .impl = {
6953 .min_access_size = 1,
6954 .max_access_size = 8,
6955 },
6956 };
6957
6958 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6959 {
6960 NvmeParams *params = &n->params;
6961
6962 if (params->num_queues) {
6963 warn_report("num_queues is deprecated; please use max_ioqpairs "
6964 "instead");
6965
6966 params->max_ioqpairs = params->num_queues - 1;
6967 }
6968
6969 if (n->namespace.blkconf.blk && n->subsys) {
6970 error_setg(errp, "subsystem support is unavailable with legacy "
6971 "namespace ('drive' property)");
6972 return;
6973 }
6974
6975 if (params->max_ioqpairs < 1 ||
6976 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6977 error_setg(errp, "max_ioqpairs must be between 1 and %d",
6978 NVME_MAX_IOQPAIRS);
6979 return;
6980 }
6981
6982 if (params->msix_qsize < 1 ||
6983 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6984 error_setg(errp, "msix_qsize must be between 1 and %d",
6985 PCI_MSIX_FLAGS_QSIZE + 1);
6986 return;
6987 }
6988
6989 if (!params->serial) {
6990 error_setg(errp, "serial property not set");
6991 return;
6992 }
6993
6994 if (n->pmr.dev) {
6995 if (host_memory_backend_is_mapped(n->pmr.dev)) {
6996 error_setg(errp, "can't use already busy memdev: %s",
6997 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6998 return;
6999 }
7000
7001 if (!is_power_of_2(n->pmr.dev->size)) {
7002 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7003 return;
7004 }
7005
7006 host_memory_backend_set_mapped(n->pmr.dev, true);
7007 }
7008
7009 if (n->params.zasl > n->params.mdts) {
7010 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7011 "than or equal to mdts (Maximum Data Transfer Size)");
7012 return;
7013 }
7014
7015 if (!n->params.vsl) {
7016 error_setg(errp, "vsl must be non-zero");
7017 return;
7018 }
7019
7020 if (params->sriov_max_vfs) {
7021 if (!n->subsys) {
7022 error_setg(errp, "subsystem is required for the use of SR-IOV");
7023 return;
7024 }
7025
7026 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7027 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7028 NVME_MAX_VFS);
7029 return;
7030 }
7031
7032 if (params->cmb_size_mb) {
7033 error_setg(errp, "CMB is not supported with SR-IOV");
7034 return;
7035 }
7036
7037 if (n->pmr.dev) {
7038 error_setg(errp, "PMR is not supported with SR-IOV");
7039 return;
7040 }
7041
7042 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7043 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7044 " must be set for the use of SR-IOV");
7045 return;
7046 }
7047
7048 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7049 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7050 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7051 return;
7052 }
7053
7054 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7055 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7056 " greater than or equal to 2");
7057 return;
7058 }
7059
7060 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7061 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7062 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7063 return;
7064 }
7065
7066 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7067 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7068 " greater than or equal to 1");
7069 return;
7070 }
7071
7072 if (params->sriov_max_vi_per_vf &&
7073 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7074 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7075 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7076 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7077 return;
7078 }
7079
7080 if (params->sriov_max_vq_per_vf &&
7081 (params->sriov_max_vq_per_vf < 2 ||
7082 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7083 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7084 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7085 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7086 return;
7087 }
7088 }
7089 }
7090
7091 static void nvme_init_state(NvmeCtrl *n)
7092 {
7093 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7094 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7095 NvmeSecCtrlEntry *sctrl;
7096 uint8_t max_vfs;
7097 int i;
7098
7099 if (pci_is_vf(&n->parent_obj)) {
7100 sctrl = nvme_sctrl(n);
7101 max_vfs = 0;
7102 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7103 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7104 } else {
7105 max_vfs = n->params.sriov_max_vfs;
7106 n->conf_ioqpairs = n->params.max_ioqpairs;
7107 n->conf_msix_qsize = n->params.msix_qsize;
7108 }
7109
7110 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7111 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7112 n->temperature = NVME_TEMPERATURE;
7113 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7114 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7115 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7116 QTAILQ_INIT(&n->aer_queue);
7117
7118 list->numcntl = cpu_to_le16(max_vfs);
7119 for (i = 0; i < max_vfs; i++) {
7120 sctrl = &list->sec[i];
7121 sctrl->pcid = cpu_to_le16(n->cntlid);
7122 sctrl->vfn = cpu_to_le16(i + 1);
7123 }
7124
7125 cap->cntlid = cpu_to_le16(n->cntlid);
7126 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7127
7128 if (pci_is_vf(&n->parent_obj)) {
7129 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7130 } else {
7131 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7132 n->params.sriov_vq_flexible);
7133 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7134 cap->vqrfap = cap->vqfrt;
7135 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7136 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7137 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7138 cap->vqfrt / MAX(max_vfs, 1);
7139 }
7140
7141 if (pci_is_vf(&n->parent_obj)) {
7142 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7143 } else {
7144 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7145 n->params.sriov_vi_flexible);
7146 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7147 cap->virfap = cap->vifrt;
7148 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7149 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7150 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7151 cap->vifrt / MAX(max_vfs, 1);
7152 }
7153 }
7154
7155 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7156 {
7157 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7158 uint64_t cap = ldq_le_p(&n->bar.cap);
7159
7160 n->cmb.buf = g_malloc0(cmb_size);
7161 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7162 "nvme-cmb", cmb_size);
7163 pci_register_bar(pci_dev, NVME_CMB_BIR,
7164 PCI_BASE_ADDRESS_SPACE_MEMORY |
7165 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7166 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7167
7168 NVME_CAP_SET_CMBS(cap, 1);
7169 stq_le_p(&n->bar.cap, cap);
7170
7171 if (n->params.legacy_cmb) {
7172 nvme_cmb_enable_regs(n);
7173 n->cmb.cmse = true;
7174 }
7175 }
7176
7177 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7178 {
7179 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7180
7181 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7182 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7183 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7184 /* Turn on bit 1 support */
7185 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7186 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7187 stl_le_p(&n->bar.pmrcap, pmrcap);
7188
7189 pci_register_bar(pci_dev, NVME_PMR_BIR,
7190 PCI_BASE_ADDRESS_SPACE_MEMORY |
7191 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7192 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7193
7194 memory_region_set_enabled(&n->pmr.dev->mr, false);
7195 }
7196
7197 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7198 unsigned *msix_table_offset,
7199 unsigned *msix_pba_offset)
7200 {
7201 uint64_t bar_size, msix_table_size, msix_pba_size;
7202
7203 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7204 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7205
7206 if (msix_table_offset) {
7207 *msix_table_offset = bar_size;
7208 }
7209
7210 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7211 bar_size += msix_table_size;
7212 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7213
7214 if (msix_pba_offset) {
7215 *msix_pba_offset = bar_size;
7216 }
7217
7218 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7219 bar_size += msix_pba_size;
7220
7221 bar_size = pow2ceil(bar_size);
7222 return bar_size;
7223 }
7224
7225 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7226 {
7227 uint16_t vf_dev_id = n->params.use_intel_id ?
7228 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7229 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7230 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7231 le16_to_cpu(cap->vifrsm),
7232 NULL, NULL);
7233
7234 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7235 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7236 NVME_VF_OFFSET, NVME_VF_STRIDE);
7237
7238 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7239 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7240 }
7241
7242 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7243 {
7244 Error *err = NULL;
7245 int ret;
7246
7247 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7248 PCI_PM_SIZEOF, &err);
7249 if (err) {
7250 error_report_err(err);
7251 return ret;
7252 }
7253
7254 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7255 PCI_PM_CAP_VER_1_2);
7256 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7257 PCI_PM_CTRL_NO_SOFT_RESET);
7258 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7259 PCI_PM_CTRL_STATE_MASK);
7260
7261 return 0;
7262 }
7263
7264 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7265 {
7266 uint8_t *pci_conf = pci_dev->config;
7267 uint64_t bar_size;
7268 unsigned msix_table_offset, msix_pba_offset;
7269 int ret;
7270
7271 Error *err = NULL;
7272
7273 pci_conf[PCI_INTERRUPT_PIN] = 1;
7274 pci_config_set_prog_interface(pci_conf, 0x2);
7275
7276 if (n->params.use_intel_id) {
7277 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7278 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7279 } else {
7280 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7281 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7282 }
7283
7284 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7285 nvme_add_pm_capability(pci_dev, 0x60);
7286 pcie_endpoint_cap_init(pci_dev, 0x80);
7287 pcie_cap_flr_init(pci_dev);
7288 if (n->params.sriov_max_vfs) {
7289 pcie_ari_init(pci_dev, 0x100, 1);
7290 }
7291
7292 /* add one to max_ioqpairs to account for the admin queue pair */
7293 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7294 &msix_table_offset, &msix_pba_offset);
7295
7296 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7297 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7298 msix_table_offset);
7299 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7300
7301 if (pci_is_vf(pci_dev)) {
7302 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7303 } else {
7304 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7305 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7306 }
7307 ret = msix_init(pci_dev, n->params.msix_qsize,
7308 &n->bar0, 0, msix_table_offset,
7309 &n->bar0, 0, msix_pba_offset, 0, &err);
7310 if (ret < 0) {
7311 if (ret == -ENOTSUP) {
7312 warn_report_err(err);
7313 } else {
7314 error_propagate(errp, err);
7315 return ret;
7316 }
7317 }
7318
7319 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7320
7321 if (n->params.cmb_size_mb) {
7322 nvme_init_cmb(n, pci_dev);
7323 }
7324
7325 if (n->pmr.dev) {
7326 nvme_init_pmr(n, pci_dev);
7327 }
7328
7329 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7330 nvme_init_sriov(n, pci_dev, 0x120);
7331 }
7332
7333 return 0;
7334 }
7335
7336 static void nvme_init_subnqn(NvmeCtrl *n)
7337 {
7338 NvmeSubsystem *subsys = n->subsys;
7339 NvmeIdCtrl *id = &n->id_ctrl;
7340
7341 if (!subsys) {
7342 snprintf((char *)id->subnqn, sizeof(id->subnqn),
7343 "nqn.2019-08.org.qemu:%s", n->params.serial);
7344 } else {
7345 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7346 }
7347 }
7348
7349 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7350 {
7351 NvmeIdCtrl *id = &n->id_ctrl;
7352 uint8_t *pci_conf = pci_dev->config;
7353 uint64_t cap = ldq_le_p(&n->bar.cap);
7354 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7355
7356 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7357 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7358 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7359 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7360 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7361
7362 id->cntlid = cpu_to_le16(n->cntlid);
7363
7364 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7365 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7366
7367 id->rab = 6;
7368
7369 if (n->params.use_intel_id) {
7370 id->ieee[0] = 0xb3;
7371 id->ieee[1] = 0x02;
7372 id->ieee[2] = 0x00;
7373 } else {
7374 id->ieee[0] = 0x00;
7375 id->ieee[1] = 0x54;
7376 id->ieee[2] = 0x52;
7377 }
7378
7379 id->mdts = n->params.mdts;
7380 id->ver = cpu_to_le32(NVME_SPEC_VER);
7381 id->oacs =
7382 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7383 id->cntrltype = 0x1;
7384
7385 /*
7386 * Because the controller always completes the Abort command immediately,
7387 * there can never be more than one concurrently executing Abort command,
7388 * so this value is never used for anything. Note that there can easily be
7389 * many Abort commands in the queues, but they are not considered
7390 * "executing" until processed by nvme_abort.
7391 *
7392 * The specification recommends a value of 3 for Abort Command Limit (four
7393 * concurrently outstanding Abort commands), so lets use that though it is
7394 * inconsequential.
7395 */
7396 id->acl = 3;
7397 id->aerl = n->params.aerl;
7398 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7399 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7400
7401 /* recommended default value (~70 C) */
7402 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7403 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7404
7405 id->sqes = (0x6 << 4) | 0x6;
7406 id->cqes = (0x4 << 4) | 0x4;
7407 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7408 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7409 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7410 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7411
7412 /*
7413 * NOTE: If this device ever supports a command set that does NOT use 0x0
7414 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7415 * should probably be removed.
7416 *
7417 * See comment in nvme_io_cmd.
7418 */
7419 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7420
7421 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7422 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7423
7424 nvme_init_subnqn(n);
7425
7426 id->psd[0].mp = cpu_to_le16(0x9c4);
7427 id->psd[0].enlat = cpu_to_le32(0x10);
7428 id->psd[0].exlat = cpu_to_le32(0x4);
7429
7430 if (n->subsys) {
7431 id->cmic |= NVME_CMIC_MULTI_CTRL;
7432 }
7433
7434 NVME_CAP_SET_MQES(cap, 0x7ff);
7435 NVME_CAP_SET_CQR(cap, 1);
7436 NVME_CAP_SET_TO(cap, 0xf);
7437 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7438 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7439 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7440 NVME_CAP_SET_MPSMAX(cap, 4);
7441 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7442 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7443 stq_le_p(&n->bar.cap, cap);
7444
7445 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7446 n->bar.intmc = n->bar.intms = 0;
7447
7448 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7449 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7450 }
7451 }
7452
7453 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7454 {
7455 int cntlid;
7456
7457 if (!n->subsys) {
7458 return 0;
7459 }
7460
7461 cntlid = nvme_subsys_register_ctrl(n, errp);
7462 if (cntlid < 0) {
7463 return -1;
7464 }
7465
7466 n->cntlid = cntlid;
7467
7468 return 0;
7469 }
7470
7471 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7472 {
7473 uint32_t nsid = ns->params.nsid;
7474 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7475
7476 n->namespaces[nsid] = ns;
7477 ns->attached++;
7478
7479 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7480 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7481 }
7482
7483 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7484 {
7485 NvmeCtrl *n = NVME(pci_dev);
7486 NvmeNamespace *ns;
7487 Error *local_err = NULL;
7488 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7489
7490 if (pci_is_vf(pci_dev)) {
7491 /*
7492 * VFs derive settings from the parent. PF's lifespan exceeds
7493 * that of VF's, so it's safe to share params.serial.
7494 */
7495 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7496 n->subsys = pn->subsys;
7497 }
7498
7499 nvme_check_constraints(n, &local_err);
7500 if (local_err) {
7501 error_propagate(errp, local_err);
7502 return;
7503 }
7504
7505 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7506 &pci_dev->qdev, n->parent_obj.qdev.id);
7507
7508 if (nvme_init_subsys(n, errp)) {
7509 error_propagate(errp, local_err);
7510 return;
7511 }
7512 nvme_init_state(n);
7513 if (nvme_init_pci(n, pci_dev, errp)) {
7514 return;
7515 }
7516 nvme_init_ctrl(n, pci_dev);
7517
7518 /* setup a namespace if the controller drive property was given */
7519 if (n->namespace.blkconf.blk) {
7520 ns = &n->namespace;
7521 ns->params.nsid = 1;
7522
7523 if (nvme_ns_setup(ns, errp)) {
7524 return;
7525 }
7526
7527 nvme_attach_ns(n, ns);
7528 }
7529 }
7530
7531 static void nvme_exit(PCIDevice *pci_dev)
7532 {
7533 NvmeCtrl *n = NVME(pci_dev);
7534 NvmeNamespace *ns;
7535 int i;
7536
7537 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7538
7539 if (n->subsys) {
7540 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7541 ns = nvme_ns(n, i);
7542 if (ns) {
7543 ns->attached--;
7544 }
7545 }
7546
7547 nvme_subsys_unregister_ctrl(n->subsys, n);
7548 }
7549
7550 g_free(n->cq);
7551 g_free(n->sq);
7552 g_free(n->aer_reqs);
7553
7554 if (n->params.cmb_size_mb) {
7555 g_free(n->cmb.buf);
7556 }
7557
7558 if (n->pmr.dev) {
7559 host_memory_backend_set_mapped(n->pmr.dev, false);
7560 }
7561
7562 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7563 pcie_sriov_pf_exit(pci_dev);
7564 }
7565
7566 msix_uninit(pci_dev, &n->bar0, &n->bar0);
7567 memory_region_del_subregion(&n->bar0, &n->iomem);
7568 }
7569
7570 static Property nvme_props[] = {
7571 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7572 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7573 HostMemoryBackend *),
7574 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7575 NvmeSubsystem *),
7576 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7577 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7578 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7579 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7580 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7581 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7582 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7583 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7584 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7585 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7586 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7587 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7588 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7589 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7590 params.auto_transition_zones, true),
7591 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7592 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7593 params.sriov_vq_flexible, 0),
7594 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7595 params.sriov_vi_flexible, 0),
7596 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7597 params.sriov_max_vi_per_vf, 0),
7598 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7599 params.sriov_max_vq_per_vf, 0),
7600 DEFINE_PROP_END_OF_LIST(),
7601 };
7602
7603 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7604 void *opaque, Error **errp)
7605 {
7606 NvmeCtrl *n = NVME(obj);
7607 uint8_t value = n->smart_critical_warning;
7608
7609 visit_type_uint8(v, name, &value, errp);
7610 }
7611
7612 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7613 void *opaque, Error **errp)
7614 {
7615 NvmeCtrl *n = NVME(obj);
7616 uint8_t value, old_value, cap = 0, index, event;
7617
7618 if (!visit_type_uint8(v, name, &value, errp)) {
7619 return;
7620 }
7621
7622 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7623 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7624 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7625 cap |= NVME_SMART_PMR_UNRELIABLE;
7626 }
7627
7628 if ((value & cap) != value) {
7629 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7630 value & ~cap);
7631 return;
7632 }
7633
7634 old_value = n->smart_critical_warning;
7635 n->smart_critical_warning = value;
7636
7637 /* only inject new bits of smart critical warning */
7638 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7639 event = 1 << index;
7640 if (value & ~old_value & event)
7641 nvme_smart_event(n, event);
7642 }
7643 }
7644
7645 static void nvme_pci_reset(DeviceState *qdev)
7646 {
7647 PCIDevice *pci_dev = PCI_DEVICE(qdev);
7648 NvmeCtrl *n = NVME(pci_dev);
7649
7650 trace_pci_nvme_pci_reset();
7651 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7652 }
7653
7654 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7655 uint32_t val, int len)
7656 {
7657 NvmeCtrl *n = NVME(dev);
7658 NvmeSecCtrlEntry *sctrl;
7659 uint16_t sriov_cap = dev->exp.sriov_cap;
7660 uint32_t off = address - sriov_cap;
7661 int i, num_vfs;
7662
7663 if (!sriov_cap) {
7664 return;
7665 }
7666
7667 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7668 if (!(val & PCI_SRIOV_CTRL_VFE)) {
7669 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7670 for (i = 0; i < num_vfs; i++) {
7671 sctrl = &n->sec_ctrl_list.sec[i];
7672 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7673 }
7674 }
7675 }
7676 }
7677
7678 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7679 uint32_t val, int len)
7680 {
7681 nvme_sriov_pre_write_ctrl(dev, address, val, len);
7682 pci_default_write_config(dev, address, val, len);
7683 pcie_cap_flr_write_config(dev, address, val, len);
7684 }
7685
7686 static const VMStateDescription nvme_vmstate = {
7687 .name = "nvme",
7688 .unmigratable = 1,
7689 };
7690
7691 static void nvme_class_init(ObjectClass *oc, void *data)
7692 {
7693 DeviceClass *dc = DEVICE_CLASS(oc);
7694 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7695
7696 pc->realize = nvme_realize;
7697 pc->config_write = nvme_pci_write_config;
7698 pc->exit = nvme_exit;
7699 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7700 pc->revision = 2;
7701
7702 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7703 dc->desc = "Non-Volatile Memory Express";
7704 device_class_set_props(dc, nvme_props);
7705 dc->vmsd = &nvme_vmstate;
7706 dc->reset = nvme_pci_reset;
7707 }
7708
7709 static void nvme_instance_init(Object *obj)
7710 {
7711 NvmeCtrl *n = NVME(obj);
7712
7713 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7714 "bootindex", "/namespace@1,0",
7715 DEVICE(obj));
7716
7717 object_property_add(obj, "smart_critical_warning", "uint8",
7718 nvme_get_smart_warning,
7719 nvme_set_smart_warning, NULL, NULL);
7720 }
7721
7722 static const TypeInfo nvme_info = {
7723 .name = TYPE_NVME,
7724 .parent = TYPE_PCI_DEVICE,
7725 .instance_size = sizeof(NvmeCtrl),
7726 .instance_init = nvme_instance_init,
7727 .class_init = nvme_class_init,
7728 .interfaces = (InterfaceInfo[]) {
7729 { INTERFACE_PCIE_DEVICE },
7730 { }
7731 },
7732 };
7733
7734 static const TypeInfo nvme_bus_info = {
7735 .name = TYPE_NVME_BUS,
7736 .parent = TYPE_BUS,
7737 .instance_size = sizeof(NvmeBus),
7738 };
7739
7740 static void nvme_register_types(void)
7741 {
7742 type_register_static(&nvme_info);
7743 type_register_static(&nvme_bus_info);
7744 }
7745
7746 type_init(nvme_register_types)