]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvme/ctrl.c
Merge tag 'pull-tpm-2023-09-12-3' of https://github.com/stefanberger/qemu-tpm into...
[mirror_qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,shared=<true|false[optional]>, \
47 * detached=<true|false[optional]>, \
48 * zoned.zone_size=<N[optional]>, \
49 * zoned.zone_capacity=<N[optional]>, \
50 * zoned.descr_ext_size=<N[optional]>, \
51 * zoned.max_active=<N[optional]>, \
52 * zoned.max_open=<N[optional]>, \
53 * zoned.cross_read=<true|false[optional]>
54 *
55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
59 *
60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
61 * For example:
62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
63 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
64 *
65 * The PMR will use BAR 4/5 exclusively.
66 *
67 * To place controller(s) and namespace(s) to a subsystem, then provide
68 * nvme-subsys device as above.
69 *
70 * nvme subsystem device parameters
71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
72 * - `nqn`
73 * This parameter provides the `<nqn_id>` part of the string
74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
75 * of subsystem controllers. Note that `<nqn_id>` should be unique per
76 * subsystem, but this is not enforced by QEMU. If not specified, it will
77 * default to the value of the `id` parameter (`<subsys_id>`).
78 *
79 * nvme device parameters
80 * ~~~~~~~~~~~~~~~~~~~~~~
81 * - `subsys`
82 * Specifying this parameter attaches the controller to the subsystem and
83 * the SUBNQN field in the controller will report the NQN of the subsystem
84 * device. This also enables multi controller capability represented in
85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
86 * Namespace Sharing Capabilities).
87 *
88 * - `aerl`
89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
90 * of concurrently outstanding Asynchronous Event Request commands support
91 * by the controller. This is a 0's based value.
92 *
93 * - `aer_max_queued`
94 * This is the maximum number of events that the device will enqueue for
95 * completion when there are no outstanding AERs. When the maximum number of
96 * enqueued events are reached, subsequent events will be dropped.
97 *
98 * - `mdts`
99 * Indicates the maximum data transfer size for a command that transfers data
100 * between host-accessible memory and the controller. The value is specified
101 * as a power of two (2^n) and is in units of the minimum memory page size
102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
103 *
104 * - `vsl`
105 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
106 * this value is specified as a power of two (2^n) and is in units of the
107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
108 * KiB).
109 *
110 * - `zoned.zasl`
111 * Indicates the maximum data transfer size for the Zone Append command. Like
112 * `mdts`, the value is specified as a power of two (2^n) and is in units of
113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
114 * defaulting to the value of `mdts`).
115 *
116 * - `zoned.auto_transition`
117 * Indicates if zones in zone state implicitly opened can be automatically
118 * transitioned to zone state closed for resource management purposes.
119 * Defaults to 'on'.
120 *
121 * - `sriov_max_vfs`
122 * Indicates the maximum number of PCIe virtual functions supported
123 * by the controller. The default value is 0. Specifying a non-zero value
124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
125 * Virtual function controllers will not report SR-IOV capability.
126 *
127 * NOTE: Single Root I/O Virtualization support is experimental.
128 * All the related parameters may be subject to change.
129 *
130 * - `sriov_vq_flexible`
131 * Indicates the total number of flexible queue resources assignable to all
132 * the secondary controllers. Implicitly sets the number of primary
133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
134 *
135 * - `sriov_vi_flexible`
136 * Indicates the total number of flexible interrupt resources assignable to
137 * all the secondary controllers. Implicitly sets the number of primary
138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
139 *
140 * - `sriov_max_vi_per_vf`
141 * Indicates the maximum number of virtual interrupt resources assignable
142 * to a secondary controller. The default 0 resolves to
143 * `(sriov_vi_flexible / sriov_max_vfs)`.
144 *
145 * - `sriov_max_vq_per_vf`
146 * Indicates the maximum number of virtual queue resources assignable to
147 * a secondary controller. The default 0 resolves to
148 * `(sriov_vq_flexible / sriov_max_vfs)`.
149 *
150 * nvme namespace device parameters
151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
152 * - `shared`
153 * When the parent nvme device (as defined explicitly by the 'bus' parameter
154 * or implicitly by the most recently defined NvmeBus) is linked to an
155 * nvme-subsys device, the namespace will be attached to all controllers in
156 * the subsystem. If set to 'off' (the default), the namespace will remain a
157 * private namespace and may only be attached to a single controller at a
158 * time.
159 *
160 * - `detached`
161 * This parameter is only valid together with the `subsys` parameter. If left
162 * at the default value (`false/off`), the namespace will be attached to all
163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
164 * namespace will be available in the subsystem but not attached to any
165 * controllers.
166 *
167 * Setting `zoned` to true selects Zoned Command Set at the namespace.
168 * In this case, the following namespace properties are available to configure
169 * zoned operation:
170 * zoned.zone_size=<zone size in bytes, default: 128MiB>
171 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
172 *
173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
174 * The value 0 (default) forces zone capacity to be the same as zone
175 * size. The value of this property may not exceed zone size.
176 *
177 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
178 * This value needs to be specified in 64B units. If it is zero,
179 * namespace(s) will not support zone descriptor extensions.
180 *
181 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
182 * The default value means there is no limit to the number of
183 * concurrently active zones.
184 *
185 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
186 * The default value means there is no limit to the number of
187 * concurrently open zones.
188 *
189 * zoned.cross_read=<enable RAZB, default: false>
190 * Setting this property to true enables Read Across Zone Boundaries.
191 */
192
193 #include "qemu/osdep.h"
194 #include "qemu/cutils.h"
195 #include "qemu/error-report.h"
196 #include "qemu/log.h"
197 #include "qemu/units.h"
198 #include "qemu/range.h"
199 #include "qapi/error.h"
200 #include "qapi/visitor.h"
201 #include "sysemu/sysemu.h"
202 #include "sysemu/block-backend.h"
203 #include "sysemu/hostmem.h"
204 #include "hw/pci/msix.h"
205 #include "hw/pci/pcie_sriov.h"
206 #include "migration/vmstate.h"
207
208 #include "nvme.h"
209 #include "dif.h"
210 #include "trace.h"
211
212 #define NVME_MAX_IOQPAIRS 0xffff
213 #define NVME_DB_SIZE 4
214 #define NVME_SPEC_VER 0x00010400
215 #define NVME_CMB_BIR 2
216 #define NVME_PMR_BIR 4
217 #define NVME_TEMPERATURE 0x143
218 #define NVME_TEMPERATURE_WARNING 0x157
219 #define NVME_TEMPERATURE_CRITICAL 0x175
220 #define NVME_NUM_FW_SLOTS 1
221 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
222 #define NVME_MAX_VFS 127
223 #define NVME_VF_RES_GRANULARITY 1
224 #define NVME_VF_OFFSET 0x1
225 #define NVME_VF_STRIDE 1
226
227 #define NVME_GUEST_ERR(trace, fmt, ...) \
228 do { \
229 (trace_##trace)(__VA_ARGS__); \
230 qemu_log_mask(LOG_GUEST_ERROR, #trace \
231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
232 } while (0)
233
234 static const bool nvme_feature_support[NVME_FID_MAX] = {
235 [NVME_ARBITRATION] = true,
236 [NVME_POWER_MANAGEMENT] = true,
237 [NVME_TEMPERATURE_THRESHOLD] = true,
238 [NVME_ERROR_RECOVERY] = true,
239 [NVME_VOLATILE_WRITE_CACHE] = true,
240 [NVME_NUMBER_OF_QUEUES] = true,
241 [NVME_INTERRUPT_COALESCING] = true,
242 [NVME_INTERRUPT_VECTOR_CONF] = true,
243 [NVME_WRITE_ATOMICITY] = true,
244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
245 [NVME_TIMESTAMP] = true,
246 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
247 [NVME_COMMAND_SET_PROFILE] = true,
248 [NVME_FDP_MODE] = true,
249 [NVME_FDP_EVENTS] = true,
250 };
251
252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE,
262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
263 };
264
265 static const uint32_t nvme_cse_acs[256] = {
266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP,
281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_none[256];
285
286 static const uint32_t nvme_cse_iocs_nvm[256] = {
287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
297 };
298
299 static const uint32_t nvme_cse_iocs_zoned[256] = {
300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
311 };
312
313 static void nvme_process_sq(void *opaque);
314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
316
317 static uint16_t nvme_sqid(NvmeRequest *req)
318 {
319 return le16_to_cpu(req->sq->sqid);
320 }
321
322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
323 uint16_t ph)
324 {
325 uint16_t rgif = ns->endgrp->fdp.rgif;
326
327 if (!rgif) {
328 return ph;
329 }
330
331 return (rg << (16 - rgif)) | ph;
332 }
333
334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
335 {
336 return ph < ns->fdp.nphs;
337 }
338
339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
340 {
341 return rg < endgrp->fdp.nrg;
342 }
343
344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
345 {
346 uint16_t rgif = ns->endgrp->fdp.rgif;
347
348 if (!rgif) {
349 return pid;
350 }
351
352 return pid & ((1 << (15 - rgif)) - 1);
353 }
354
355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
356 {
357 uint16_t rgif = ns->endgrp->fdp.rgif;
358
359 if (!rgif) {
360 return 0;
361 }
362
363 return pid >> (16 - rgif);
364 }
365
366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
367 uint16_t *ph, uint16_t *rg)
368 {
369 *rg = nvme_pid2rg(ns, pid);
370 *ph = nvme_pid2ph(ns, pid);
371
372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
373 }
374
375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
376 NvmeZoneState state)
377 {
378 if (QTAILQ_IN_USE(zone, entry)) {
379 switch (nvme_get_zone_state(zone)) {
380 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
382 break;
383 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
385 break;
386 case NVME_ZONE_STATE_CLOSED:
387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
388 break;
389 case NVME_ZONE_STATE_FULL:
390 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
391 default:
392 ;
393 }
394 }
395
396 nvme_set_zone_state(zone, state);
397
398 switch (state) {
399 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
401 break;
402 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
404 break;
405 case NVME_ZONE_STATE_CLOSED:
406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
407 break;
408 case NVME_ZONE_STATE_FULL:
409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
410 case NVME_ZONE_STATE_READ_ONLY:
411 break;
412 default:
413 zone->d.za = 0;
414 }
415 }
416
417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
418 uint32_t opn, uint32_t zrwa)
419 {
420 if (ns->params.max_active_zones != 0 &&
421 ns->nr_active_zones + act > ns->params.max_active_zones) {
422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
424 }
425
426 if (ns->params.max_open_zones != 0 &&
427 ns->nr_open_zones + opn > ns->params.max_open_zones) {
428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
430 }
431
432 if (zrwa > ns->zns.numzrwa) {
433 return NVME_NOZRWA | NVME_DNR;
434 }
435
436 return NVME_SUCCESS;
437 }
438
439 /*
440 * Check if we can open a zone without exceeding open/active limits.
441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
442 */
443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
444 {
445 return nvme_zns_check_resources(ns, act, opn, 0);
446 }
447
448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
449 {
450 NvmeFdpEvent *ret = NULL;
451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
452
453 ret = &ebuf->events[ebuf->next++];
454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
455 ebuf->next = 0;
456 }
457 if (is_full) {
458 ebuf->start = ebuf->next;
459 } else {
460 ebuf->nelems++;
461 }
462
463 memset(ret, 0, sizeof(NvmeFdpEvent));
464 ret->timestamp = nvme_get_timestamp(n);
465
466 return ret;
467 }
468
469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
470 {
471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
472 }
473
474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
475 {
476 NvmeEnduranceGroup *endgrp = ns->endgrp;
477 NvmeRuHandle *ruh;
478 NvmeReclaimUnit *ru;
479 NvmeFdpEvent *e = NULL;
480 uint16_t ph, rg, ruhid;
481
482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
483 return false;
484 }
485
486 ruhid = ns->fdp.phs[ph];
487
488 ruh = &endgrp->fdp.ruhs[ruhid];
489 ru = &ruh->rus[rg];
490
491 if (ru->ruamw) {
492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
496 e->pid = cpu_to_le16(pid);
497 e->nsid = cpu_to_le32(ns->params.nsid);
498 e->rgid = cpu_to_le16(rg);
499 e->ruhid = cpu_to_le16(ruhid);
500 }
501
502 /* log (eventual) GC overhead of prematurely swapping the RU */
503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
504 }
505
506 ru->ruamw = ruh->ruamw;
507
508 return true;
509 }
510
511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
512 {
513 hwaddr hi, lo;
514
515 if (!n->cmb.cmse) {
516 return false;
517 }
518
519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
520 hi = lo + int128_get64(n->cmb.mem.size);
521
522 return addr >= lo && addr < hi;
523 }
524
525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
526 {
527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
528 return &n->cmb.buf[addr - base];
529 }
530
531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
532 {
533 hwaddr hi;
534
535 if (!n->pmr.cmse) {
536 return false;
537 }
538
539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
540
541 return addr >= n->pmr.cba && addr < hi;
542 }
543
544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
545 {
546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
547 }
548
549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
550 {
551 hwaddr hi, lo;
552
553 /*
554 * The purpose of this check is to guard against invalid "local" access to
555 * the iomem (i.e. controller registers). Thus, we check against the range
556 * covered by the 'bar0' MemoryRegion since that is currently composed of
557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
558 * that if the device model is ever changed to allow the CMB to be located
559 * in BAR0 as well, then this must be changed.
560 */
561 lo = n->bar0.addr;
562 hi = lo + int128_get64(n->bar0.size);
563
564 return addr >= lo && addr < hi;
565 }
566
567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
568 {
569 hwaddr hi = addr + size - 1;
570 if (hi < addr) {
571 return 1;
572 }
573
574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
575 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
576 return 0;
577 }
578
579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
580 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
581 return 0;
582 }
583
584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
585 }
586
587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
588 {
589 hwaddr hi = addr + size - 1;
590 if (hi < addr) {
591 return 1;
592 }
593
594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
595 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
596 return 0;
597 }
598
599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
600 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
601 return 0;
602 }
603
604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
605 }
606
607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
608 {
609 return nsid &&
610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
611 }
612
613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
614 {
615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
616 }
617
618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
619 {
620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
621 }
622
623 static void nvme_inc_cq_tail(NvmeCQueue *cq)
624 {
625 cq->tail++;
626 if (cq->tail >= cq->size) {
627 cq->tail = 0;
628 cq->phase = !cq->phase;
629 }
630 }
631
632 static void nvme_inc_sq_head(NvmeSQueue *sq)
633 {
634 sq->head = (sq->head + 1) % sq->size;
635 }
636
637 static uint8_t nvme_cq_full(NvmeCQueue *cq)
638 {
639 return (cq->tail + 1) % cq->size == cq->head;
640 }
641
642 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
643 {
644 return sq->head == sq->tail;
645 }
646
647 static void nvme_irq_check(NvmeCtrl *n)
648 {
649 PCIDevice *pci = PCI_DEVICE(n);
650 uint32_t intms = ldl_le_p(&n->bar.intms);
651
652 if (msix_enabled(pci)) {
653 return;
654 }
655 if (~intms & n->irq_status) {
656 pci_irq_assert(pci);
657 } else {
658 pci_irq_deassert(pci);
659 }
660 }
661
662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
663 {
664 PCIDevice *pci = PCI_DEVICE(n);
665
666 if (cq->irq_enabled) {
667 if (msix_enabled(pci)) {
668 trace_pci_nvme_irq_msix(cq->vector);
669 msix_notify(pci, cq->vector);
670 } else {
671 trace_pci_nvme_irq_pin();
672 assert(cq->vector < 32);
673 n->irq_status |= 1 << cq->vector;
674 nvme_irq_check(n);
675 }
676 } else {
677 trace_pci_nvme_irq_masked();
678 }
679 }
680
681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
682 {
683 if (cq->irq_enabled) {
684 if (msix_enabled(PCI_DEVICE(n))) {
685 return;
686 } else {
687 assert(cq->vector < 32);
688 if (!n->cq_pending) {
689 n->irq_status &= ~(1 << cq->vector);
690 }
691 nvme_irq_check(n);
692 }
693 }
694 }
695
696 static void nvme_req_clear(NvmeRequest *req)
697 {
698 req->ns = NULL;
699 req->opaque = NULL;
700 req->aiocb = NULL;
701 memset(&req->cqe, 0x0, sizeof(req->cqe));
702 req->status = NVME_SUCCESS;
703 }
704
705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
706 {
707 if (dma) {
708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
709 sg->flags = NVME_SG_DMA;
710 } else {
711 qemu_iovec_init(&sg->iov, 0);
712 }
713
714 sg->flags |= NVME_SG_ALLOC;
715 }
716
717 static inline void nvme_sg_unmap(NvmeSg *sg)
718 {
719 if (!(sg->flags & NVME_SG_ALLOC)) {
720 return;
721 }
722
723 if (sg->flags & NVME_SG_DMA) {
724 qemu_sglist_destroy(&sg->qsg);
725 } else {
726 qemu_iovec_destroy(&sg->iov);
727 }
728
729 memset(sg, 0x0, sizeof(*sg));
730 }
731
732 /*
733 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
734 * holds both data and metadata. This function splits the data and metadata
735 * into two separate QSG/IOVs.
736 */
737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
738 NvmeSg *mdata)
739 {
740 NvmeSg *dst = data;
741 uint32_t trans_len, count = ns->lbasz;
742 uint64_t offset = 0;
743 bool dma = sg->flags & NVME_SG_DMA;
744 size_t sge_len;
745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
746 int sg_idx = 0;
747
748 assert(sg->flags & NVME_SG_ALLOC);
749
750 while (sg_len) {
751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
752
753 trans_len = MIN(sg_len, count);
754 trans_len = MIN(trans_len, sge_len - offset);
755
756 if (dst) {
757 if (dma) {
758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
759 trans_len);
760 } else {
761 qemu_iovec_add(&dst->iov,
762 sg->iov.iov[sg_idx].iov_base + offset,
763 trans_len);
764 }
765 }
766
767 sg_len -= trans_len;
768 count -= trans_len;
769 offset += trans_len;
770
771 if (count == 0) {
772 dst = (dst == data) ? mdata : data;
773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
774 }
775
776 if (sge_len == offset) {
777 offset = 0;
778 sg_idx++;
779 }
780 }
781 }
782
783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
784 size_t len)
785 {
786 if (!len) {
787 return NVME_SUCCESS;
788 }
789
790 trace_pci_nvme_map_addr_cmb(addr, len);
791
792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
793 return NVME_DATA_TRAS_ERROR;
794 }
795
796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
797
798 return NVME_SUCCESS;
799 }
800
801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
802 size_t len)
803 {
804 if (!len) {
805 return NVME_SUCCESS;
806 }
807
808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
809 return NVME_DATA_TRAS_ERROR;
810 }
811
812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
813
814 return NVME_SUCCESS;
815 }
816
817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
818 {
819 bool cmb = false, pmr = false;
820
821 if (!len) {
822 return NVME_SUCCESS;
823 }
824
825 trace_pci_nvme_map_addr(addr, len);
826
827 if (nvme_addr_is_iomem(n, addr)) {
828 return NVME_DATA_TRAS_ERROR;
829 }
830
831 if (nvme_addr_is_cmb(n, addr)) {
832 cmb = true;
833 } else if (nvme_addr_is_pmr(n, addr)) {
834 pmr = true;
835 }
836
837 if (cmb || pmr) {
838 if (sg->flags & NVME_SG_DMA) {
839 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
840 }
841
842 if (sg->iov.niov + 1 > IOV_MAX) {
843 goto max_mappings_exceeded;
844 }
845
846 if (cmb) {
847 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
848 } else {
849 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
850 }
851 }
852
853 if (!(sg->flags & NVME_SG_DMA)) {
854 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
855 }
856
857 if (sg->qsg.nsg + 1 > IOV_MAX) {
858 goto max_mappings_exceeded;
859 }
860
861 qemu_sglist_add(&sg->qsg, addr, len);
862
863 return NVME_SUCCESS;
864
865 max_mappings_exceeded:
866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
867 "number of mappings exceed 1024");
868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
869 }
870
871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
872 {
873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
874 }
875
876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
877 uint64_t prp2, uint32_t len)
878 {
879 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
880 trans_len = MIN(len, trans_len);
881 int num_prps = (len >> n->page_bits) + 1;
882 uint16_t status;
883 int ret;
884
885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
886
887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
888
889 status = nvme_map_addr(n, sg, prp1, trans_len);
890 if (status) {
891 goto unmap;
892 }
893
894 len -= trans_len;
895 if (len) {
896 if (len > n->page_size) {
897 g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents);
898 uint32_t nents, prp_trans;
899 int i = 0;
900
901 /*
902 * The first PRP list entry, pointed to by PRP2 may contain offset.
903 * Hence, we need to calculate the number of entries in based on
904 * that offset.
905 */
906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
909 if (ret) {
910 trace_pci_nvme_err_addr_read(prp2);
911 status = NVME_DATA_TRAS_ERROR;
912 goto unmap;
913 }
914 while (len != 0) {
915 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
916
917 if (i == nents - 1 && len > n->page_size) {
918 if (unlikely(prp_ent & (n->page_size - 1))) {
919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
921 goto unmap;
922 }
923
924 i = 0;
925 nents = (len + n->page_size - 1) >> n->page_bits;
926 nents = MIN(nents, n->max_prp_ents);
927 prp_trans = nents * sizeof(uint64_t);
928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
929 prp_trans);
930 if (ret) {
931 trace_pci_nvme_err_addr_read(prp_ent);
932 status = NVME_DATA_TRAS_ERROR;
933 goto unmap;
934 }
935 prp_ent = le64_to_cpu(prp_list[i]);
936 }
937
938 if (unlikely(prp_ent & (n->page_size - 1))) {
939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
941 goto unmap;
942 }
943
944 trans_len = MIN(len, n->page_size);
945 status = nvme_map_addr(n, sg, prp_ent, trans_len);
946 if (status) {
947 goto unmap;
948 }
949
950 len -= trans_len;
951 i++;
952 }
953 } else {
954 if (unlikely(prp2 & (n->page_size - 1))) {
955 trace_pci_nvme_err_invalid_prp2_align(prp2);
956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
957 goto unmap;
958 }
959 status = nvme_map_addr(n, sg, prp2, len);
960 if (status) {
961 goto unmap;
962 }
963 }
964 }
965
966 return NVME_SUCCESS;
967
968 unmap:
969 nvme_sg_unmap(sg);
970 return status;
971 }
972
973 /*
974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
975 * number of bytes mapped in len.
976 */
977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
978 NvmeSglDescriptor *segment, uint64_t nsgld,
979 size_t *len, NvmeCmd *cmd)
980 {
981 dma_addr_t addr, trans_len;
982 uint32_t dlen;
983 uint16_t status;
984
985 for (int i = 0; i < nsgld; i++) {
986 uint8_t type = NVME_SGL_TYPE(segment[i].type);
987
988 switch (type) {
989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
990 break;
991 case NVME_SGL_DESCR_TYPE_SEGMENT:
992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
994 default:
995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
996 }
997
998 dlen = le32_to_cpu(segment[i].len);
999
1000 if (!dlen) {
1001 continue;
1002 }
1003
1004 if (*len == 0) {
1005 /*
1006 * All data has been mapped, but the SGL contains additional
1007 * segments and/or descriptors. The controller might accept
1008 * ignoring the rest of the SGL.
1009 */
1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1012 break;
1013 }
1014
1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1017 }
1018
1019 trans_len = MIN(*len, dlen);
1020
1021 addr = le64_to_cpu(segment[i].addr);
1022
1023 if (UINT64_MAX - addr < dlen) {
1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1025 }
1026
1027 status = nvme_map_addr(n, sg, addr, trans_len);
1028 if (status) {
1029 return status;
1030 }
1031
1032 *len -= trans_len;
1033 }
1034
1035 return NVME_SUCCESS;
1036 }
1037
1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1039 size_t len, NvmeCmd *cmd)
1040 {
1041 /*
1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL
1044 * to be larger (as in number of bytes required to describe the SGL
1045 * descriptors and segment chain) than the command transfer size, so it is
1046 * not bounded by MDTS.
1047 */
1048 #define SEG_CHUNK_SIZE 256
1049
1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1051 uint64_t nsgld;
1052 uint32_t seg_len;
1053 uint16_t status;
1054 hwaddr addr;
1055 int ret;
1056
1057 sgld = &sgl;
1058 addr = le64_to_cpu(sgl.addr);
1059
1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1061
1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1063
1064 /*
1065 * If the entire transfer can be described with a single data block it can
1066 * be mapped directly.
1067 */
1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1070 if (status) {
1071 goto unmap;
1072 }
1073
1074 goto out;
1075 }
1076
1077 for (;;) {
1078 switch (NVME_SGL_TYPE(sgld->type)) {
1079 case NVME_SGL_DESCR_TYPE_SEGMENT:
1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1081 break;
1082 default:
1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084 }
1085
1086 seg_len = le32_to_cpu(sgld->len);
1087
1088 /* check the length of the (Last) Segment descriptor */
1089 if (!seg_len || seg_len & 0xf) {
1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1091 }
1092
1093 if (UINT64_MAX - addr < seg_len) {
1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1095 }
1096
1097 nsgld = seg_len / sizeof(NvmeSglDescriptor);
1098
1099 while (nsgld > SEG_CHUNK_SIZE) {
1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1101 trace_pci_nvme_err_addr_read(addr);
1102 status = NVME_DATA_TRAS_ERROR;
1103 goto unmap;
1104 }
1105
1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1107 &len, cmd);
1108 if (status) {
1109 goto unmap;
1110 }
1111
1112 nsgld -= SEG_CHUNK_SIZE;
1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1114 }
1115
1116 ret = nvme_addr_read(n, addr, segment, nsgld *
1117 sizeof(NvmeSglDescriptor));
1118 if (ret) {
1119 trace_pci_nvme_err_addr_read(addr);
1120 status = NVME_DATA_TRAS_ERROR;
1121 goto unmap;
1122 }
1123
1124 last_sgld = &segment[nsgld - 1];
1125
1126 /*
1127 * If the segment ends with a Data Block, then we are done.
1128 */
1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1131 if (status) {
1132 goto unmap;
1133 }
1134
1135 goto out;
1136 }
1137
1138 /*
1139 * If the last descriptor was not a Data Block, then the current
1140 * segment must not be a Last Segment.
1141 */
1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1144 goto unmap;
1145 }
1146
1147 sgld = last_sgld;
1148 addr = le64_to_cpu(sgld->addr);
1149
1150 /*
1151 * Do not map the last descriptor; it will be a Segment or Last Segment
1152 * descriptor and is handled by the next iteration.
1153 */
1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1155 if (status) {
1156 goto unmap;
1157 }
1158 }
1159
1160 out:
1161 /* if there is any residual left in len, the SGL was too short */
1162 if (len) {
1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1164 goto unmap;
1165 }
1166
1167 return NVME_SUCCESS;
1168
1169 unmap:
1170 nvme_sg_unmap(sg);
1171 return status;
1172 }
1173
1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1175 NvmeCmd *cmd)
1176 {
1177 uint64_t prp1, prp2;
1178
1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1180 case NVME_PSDT_PRP:
1181 prp1 = le64_to_cpu(cmd->dptr.prp1);
1182 prp2 = le64_to_cpu(cmd->dptr.prp2);
1183
1184 return nvme_map_prp(n, sg, prp1, prp2, len);
1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1186 case NVME_PSDT_SGL_MPTR_SGL:
1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1188 default:
1189 return NVME_INVALID_FIELD;
1190 }
1191 }
1192
1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1194 NvmeCmd *cmd)
1195 {
1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1197 hwaddr mptr = le64_to_cpu(cmd->mptr);
1198 uint16_t status;
1199
1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1201 NvmeSglDescriptor sgl;
1202
1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1204 return NVME_DATA_TRAS_ERROR;
1205 }
1206
1207 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1210 }
1211
1212 return status;
1213 }
1214
1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1216 status = nvme_map_addr(n, sg, mptr, len);
1217 if (status) {
1218 nvme_sg_unmap(sg);
1219 }
1220
1221 return status;
1222 }
1223
1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1225 {
1226 NvmeNamespace *ns = req->ns;
1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1230 size_t len = nvme_l2b(ns, nlb);
1231 uint16_t status;
1232
1233 if (nvme_ns_ext(ns) &&
1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1235 NvmeSg sg;
1236
1237 len += nvme_m2b(ns, nlb);
1238
1239 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1240 if (status) {
1241 return status;
1242 }
1243
1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1245 nvme_sg_split(&sg, ns, &req->sg, NULL);
1246 nvme_sg_unmap(&sg);
1247
1248 return NVME_SUCCESS;
1249 }
1250
1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1252 }
1253
1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1255 {
1256 NvmeNamespace *ns = req->ns;
1257 size_t len = nvme_m2b(ns, nlb);
1258 uint16_t status;
1259
1260 if (nvme_ns_ext(ns)) {
1261 NvmeSg sg;
1262
1263 len += nvme_l2b(ns, nlb);
1264
1265 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1266 if (status) {
1267 return status;
1268 }
1269
1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1271 nvme_sg_split(&sg, ns, NULL, &req->sg);
1272 nvme_sg_unmap(&sg);
1273
1274 return NVME_SUCCESS;
1275 }
1276
1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1278 }
1279
1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1281 uint32_t len, uint32_t bytes,
1282 int32_t skip_bytes, int64_t offset,
1283 NvmeTxDirection dir)
1284 {
1285 hwaddr addr;
1286 uint32_t trans_len, count = bytes;
1287 bool dma = sg->flags & NVME_SG_DMA;
1288 int64_t sge_len;
1289 int sg_idx = 0;
1290 int ret;
1291
1292 assert(sg->flags & NVME_SG_ALLOC);
1293
1294 while (len) {
1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1296
1297 if (sge_len - offset < 0) {
1298 offset -= sge_len;
1299 sg_idx++;
1300 continue;
1301 }
1302
1303 if (sge_len == offset) {
1304 offset = 0;
1305 sg_idx++;
1306 continue;
1307 }
1308
1309 trans_len = MIN(len, count);
1310 trans_len = MIN(trans_len, sge_len - offset);
1311
1312 if (dma) {
1313 addr = sg->qsg.sg[sg_idx].base + offset;
1314 } else {
1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1316 }
1317
1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1319 ret = nvme_addr_read(n, addr, ptr, trans_len);
1320 } else {
1321 ret = nvme_addr_write(n, addr, ptr, trans_len);
1322 }
1323
1324 if (ret) {
1325 return NVME_DATA_TRAS_ERROR;
1326 }
1327
1328 ptr += trans_len;
1329 len -= trans_len;
1330 count -= trans_len;
1331 offset += trans_len;
1332
1333 if (count == 0) {
1334 count = bytes;
1335 offset += skip_bytes;
1336 }
1337 }
1338
1339 return NVME_SUCCESS;
1340 }
1341
1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1343 NvmeTxDirection dir)
1344 {
1345 assert(sg->flags & NVME_SG_ALLOC);
1346
1347 if (sg->flags & NVME_SG_DMA) {
1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1349 dma_addr_t residual;
1350
1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1353 } else {
1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1355 }
1356
1357 if (unlikely(residual)) {
1358 trace_pci_nvme_err_invalid_dma();
1359 return NVME_INVALID_FIELD | NVME_DNR;
1360 }
1361 } else {
1362 size_t bytes;
1363
1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1366 } else {
1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1368 }
1369
1370 if (unlikely(bytes != len)) {
1371 trace_pci_nvme_err_invalid_dma();
1372 return NVME_INVALID_FIELD | NVME_DNR;
1373 }
1374 }
1375
1376 return NVME_SUCCESS;
1377 }
1378
1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1380 NvmeRequest *req)
1381 {
1382 uint16_t status;
1383
1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1385 if (status) {
1386 return status;
1387 }
1388
1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1390 }
1391
1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1393 NvmeRequest *req)
1394 {
1395 uint16_t status;
1396
1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1398 if (status) {
1399 return status;
1400 }
1401
1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1403 }
1404
1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1406 NvmeTxDirection dir, NvmeRequest *req)
1407 {
1408 NvmeNamespace *ns = req->ns;
1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1412
1413 if (nvme_ns_ext(ns) &&
1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1416 ns->lbaf.ms, 0, dir);
1417 }
1418
1419 return nvme_tx(n, &req->sg, ptr, len, dir);
1420 }
1421
1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1423 NvmeTxDirection dir, NvmeRequest *req)
1424 {
1425 NvmeNamespace *ns = req->ns;
1426 uint16_t status;
1427
1428 if (nvme_ns_ext(ns)) {
1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1430 ns->lbasz, ns->lbasz, dir);
1431 }
1432
1433 nvme_sg_unmap(&req->sg);
1434
1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1436 if (status) {
1437 return status;
1438 }
1439
1440 return nvme_tx(n, &req->sg, ptr, len, dir);
1441 }
1442
1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1444 uint32_t align, BlockCompletionFunc *cb,
1445 NvmeRequest *req)
1446 {
1447 assert(req->sg.flags & NVME_SG_ALLOC);
1448
1449 if (req->sg.flags & NVME_SG_DMA) {
1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1451 } else {
1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1453 }
1454 }
1455
1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1457 uint32_t align, BlockCompletionFunc *cb,
1458 NvmeRequest *req)
1459 {
1460 assert(req->sg.flags & NVME_SG_ALLOC);
1461
1462 if (req->sg.flags & NVME_SG_DMA) {
1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1464 } else {
1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1466 }
1467 }
1468
1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1470 {
1471 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1472
1473 stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head,
1474 MEMTXATTRS_UNSPECIFIED);
1475 }
1476
1477 static void nvme_update_cq_head(NvmeCQueue *cq)
1478 {
1479 ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head,
1480 MEMTXATTRS_UNSPECIFIED);
1481
1482 trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1483 }
1484
1485 static void nvme_post_cqes(void *opaque)
1486 {
1487 NvmeCQueue *cq = opaque;
1488 NvmeCtrl *n = cq->ctrl;
1489 NvmeRequest *req, *next;
1490 bool pending = cq->head != cq->tail;
1491 int ret;
1492
1493 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1494 NvmeSQueue *sq;
1495 hwaddr addr;
1496
1497 if (n->dbbuf_enabled) {
1498 nvme_update_cq_eventidx(cq);
1499 nvme_update_cq_head(cq);
1500 }
1501
1502 if (nvme_cq_full(cq)) {
1503 break;
1504 }
1505
1506 sq = req->sq;
1507 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1508 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1509 req->cqe.sq_head = cpu_to_le16(sq->head);
1510 addr = cq->dma_addr + (cq->tail << NVME_CQES);
1511 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1512 sizeof(req->cqe));
1513 if (ret) {
1514 trace_pci_nvme_err_addr_write(addr);
1515 trace_pci_nvme_err_cfs();
1516 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1517 break;
1518 }
1519 QTAILQ_REMOVE(&cq->req_list, req, entry);
1520 nvme_inc_cq_tail(cq);
1521 nvme_sg_unmap(&req->sg);
1522 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1523 }
1524 if (cq->tail != cq->head) {
1525 if (cq->irq_enabled && !pending) {
1526 n->cq_pending++;
1527 }
1528
1529 nvme_irq_assert(n, cq);
1530 }
1531 }
1532
1533 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1534 {
1535 assert(cq->cqid == req->sq->cqid);
1536 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1537 le32_to_cpu(req->cqe.result),
1538 le32_to_cpu(req->cqe.dw1),
1539 req->status);
1540
1541 if (req->status) {
1542 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1543 req->status, req->cmd.opcode);
1544 }
1545
1546 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1547 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1548
1549 qemu_bh_schedule(cq->bh);
1550 }
1551
1552 static void nvme_process_aers(void *opaque)
1553 {
1554 NvmeCtrl *n = opaque;
1555 NvmeAsyncEvent *event, *next;
1556
1557 trace_pci_nvme_process_aers(n->aer_queued);
1558
1559 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1560 NvmeRequest *req;
1561 NvmeAerResult *result;
1562
1563 /* can't post cqe if there is nothing to complete */
1564 if (!n->outstanding_aers) {
1565 trace_pci_nvme_no_outstanding_aers();
1566 break;
1567 }
1568
1569 /* ignore if masked (cqe posted, but event not cleared) */
1570 if (n->aer_mask & (1 << event->result.event_type)) {
1571 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1572 continue;
1573 }
1574
1575 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1576 n->aer_queued--;
1577
1578 n->aer_mask |= 1 << event->result.event_type;
1579 n->outstanding_aers--;
1580
1581 req = n->aer_reqs[n->outstanding_aers];
1582
1583 result = (NvmeAerResult *) &req->cqe.result;
1584 result->event_type = event->result.event_type;
1585 result->event_info = event->result.event_info;
1586 result->log_page = event->result.log_page;
1587 g_free(event);
1588
1589 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1590 result->log_page);
1591
1592 nvme_enqueue_req_completion(&n->admin_cq, req);
1593 }
1594 }
1595
1596 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1597 uint8_t event_info, uint8_t log_page)
1598 {
1599 NvmeAsyncEvent *event;
1600
1601 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1602
1603 if (n->aer_queued == n->params.aer_max_queued) {
1604 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1605 return;
1606 }
1607
1608 event = g_new(NvmeAsyncEvent, 1);
1609 event->result = (NvmeAerResult) {
1610 .event_type = event_type,
1611 .event_info = event_info,
1612 .log_page = log_page,
1613 };
1614
1615 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1616 n->aer_queued++;
1617
1618 nvme_process_aers(n);
1619 }
1620
1621 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1622 {
1623 uint8_t aer_info;
1624
1625 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1626 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1627 return;
1628 }
1629
1630 switch (event) {
1631 case NVME_SMART_SPARE:
1632 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1633 break;
1634 case NVME_SMART_TEMPERATURE:
1635 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1636 break;
1637 case NVME_SMART_RELIABILITY:
1638 case NVME_SMART_MEDIA_READ_ONLY:
1639 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1640 case NVME_SMART_PMR_UNRELIABLE:
1641 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1642 break;
1643 default:
1644 return;
1645 }
1646
1647 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1648 }
1649
1650 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1651 {
1652 n->aer_mask &= ~(1 << event_type);
1653 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1654 nvme_process_aers(n);
1655 }
1656 }
1657
1658 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1659 {
1660 uint8_t mdts = n->params.mdts;
1661
1662 if (mdts && len > n->page_size << mdts) {
1663 trace_pci_nvme_err_mdts(len);
1664 return NVME_INVALID_FIELD | NVME_DNR;
1665 }
1666
1667 return NVME_SUCCESS;
1668 }
1669
1670 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1671 uint32_t nlb)
1672 {
1673 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1674
1675 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1676 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1677 return NVME_LBA_RANGE | NVME_DNR;
1678 }
1679
1680 return NVME_SUCCESS;
1681 }
1682
1683 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1684 uint32_t nlb, int flags)
1685 {
1686 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1687
1688 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1689 int64_t offset = nvme_l2b(ns, slba);
1690 int ret;
1691
1692 /*
1693 * `pnum` holds the number of bytes after offset that shares the same
1694 * allocation status as the byte at offset. If `pnum` is different from
1695 * `bytes`, we should check the allocation status of the next range and
1696 * continue this until all bytes have been checked.
1697 */
1698 do {
1699 bytes -= pnum;
1700
1701 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1702 if (ret < 0) {
1703 return ret;
1704 }
1705
1706
1707 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1708 !!(ret & BDRV_BLOCK_ZERO));
1709
1710 if (!(ret & flags)) {
1711 return 1;
1712 }
1713
1714 offset += pnum;
1715 } while (pnum != bytes);
1716
1717 return 0;
1718 }
1719
1720 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1721 uint32_t nlb)
1722 {
1723 int ret;
1724 Error *err = NULL;
1725
1726 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1727 if (ret) {
1728 if (ret < 0) {
1729 error_setg_errno(&err, -ret, "unable to get block status");
1730 error_report_err(err);
1731
1732 return NVME_INTERNAL_DEV_ERROR;
1733 }
1734
1735 return NVME_DULB;
1736 }
1737
1738 return NVME_SUCCESS;
1739 }
1740
1741 static void nvme_aio_err(NvmeRequest *req, int ret)
1742 {
1743 uint16_t status = NVME_SUCCESS;
1744 Error *local_err = NULL;
1745
1746 switch (req->cmd.opcode) {
1747 case NVME_CMD_READ:
1748 status = NVME_UNRECOVERED_READ;
1749 break;
1750 case NVME_CMD_FLUSH:
1751 case NVME_CMD_WRITE:
1752 case NVME_CMD_WRITE_ZEROES:
1753 case NVME_CMD_ZONE_APPEND:
1754 case NVME_CMD_COPY:
1755 status = NVME_WRITE_FAULT;
1756 break;
1757 default:
1758 status = NVME_INTERNAL_DEV_ERROR;
1759 break;
1760 }
1761
1762 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1763
1764 error_setg_errno(&local_err, -ret, "aio failed");
1765 error_report_err(local_err);
1766
1767 /*
1768 * Set the command status code to the first encountered error but allow a
1769 * subsequent Internal Device Error to trump it.
1770 */
1771 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1772 return;
1773 }
1774
1775 req->status = status;
1776 }
1777
1778 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1779 {
1780 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1781 slba / ns->zone_size;
1782 }
1783
1784 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1785 {
1786 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1787
1788 if (zone_idx >= ns->num_zones) {
1789 return NULL;
1790 }
1791
1792 return &ns->zone_array[zone_idx];
1793 }
1794
1795 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1796 {
1797 uint64_t zslba = zone->d.zslba;
1798
1799 switch (nvme_get_zone_state(zone)) {
1800 case NVME_ZONE_STATE_EMPTY:
1801 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1802 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1803 case NVME_ZONE_STATE_CLOSED:
1804 return NVME_SUCCESS;
1805 case NVME_ZONE_STATE_FULL:
1806 trace_pci_nvme_err_zone_is_full(zslba);
1807 return NVME_ZONE_FULL;
1808 case NVME_ZONE_STATE_OFFLINE:
1809 trace_pci_nvme_err_zone_is_offline(zslba);
1810 return NVME_ZONE_OFFLINE;
1811 case NVME_ZONE_STATE_READ_ONLY:
1812 trace_pci_nvme_err_zone_is_read_only(zslba);
1813 return NVME_ZONE_READ_ONLY;
1814 default:
1815 assert(false);
1816 }
1817
1818 return NVME_INTERNAL_DEV_ERROR;
1819 }
1820
1821 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1822 uint64_t slba, uint32_t nlb)
1823 {
1824 uint64_t zcap = nvme_zone_wr_boundary(zone);
1825 uint16_t status;
1826
1827 status = nvme_check_zone_state_for_write(zone);
1828 if (status) {
1829 return status;
1830 }
1831
1832 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1833 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1834
1835 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1836 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1837 return NVME_ZONE_INVALID_WRITE;
1838 }
1839 } else {
1840 if (unlikely(slba != zone->w_ptr)) {
1841 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1842 zone->w_ptr);
1843 return NVME_ZONE_INVALID_WRITE;
1844 }
1845 }
1846
1847 if (unlikely((slba + nlb) > zcap)) {
1848 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1849 return NVME_ZONE_BOUNDARY_ERROR;
1850 }
1851
1852 return NVME_SUCCESS;
1853 }
1854
1855 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1856 {
1857 switch (nvme_get_zone_state(zone)) {
1858 case NVME_ZONE_STATE_EMPTY:
1859 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1860 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1861 case NVME_ZONE_STATE_FULL:
1862 case NVME_ZONE_STATE_CLOSED:
1863 case NVME_ZONE_STATE_READ_ONLY:
1864 return NVME_SUCCESS;
1865 case NVME_ZONE_STATE_OFFLINE:
1866 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1867 return NVME_ZONE_OFFLINE;
1868 default:
1869 assert(false);
1870 }
1871
1872 return NVME_INTERNAL_DEV_ERROR;
1873 }
1874
1875 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1876 uint32_t nlb)
1877 {
1878 NvmeZone *zone;
1879 uint64_t bndry, end;
1880 uint16_t status;
1881
1882 zone = nvme_get_zone_by_slba(ns, slba);
1883 assert(zone);
1884
1885 bndry = nvme_zone_rd_boundary(ns, zone);
1886 end = slba + nlb;
1887
1888 status = nvme_check_zone_state_for_read(zone);
1889 if (status) {
1890 ;
1891 } else if (unlikely(end > bndry)) {
1892 if (!ns->params.cross_zone_read) {
1893 status = NVME_ZONE_BOUNDARY_ERROR;
1894 } else {
1895 /*
1896 * Read across zone boundary - check that all subsequent
1897 * zones that are being read have an appropriate state.
1898 */
1899 do {
1900 zone++;
1901 status = nvme_check_zone_state_for_read(zone);
1902 if (status) {
1903 break;
1904 }
1905 } while (end > nvme_zone_rd_boundary(ns, zone));
1906 }
1907 }
1908
1909 return status;
1910 }
1911
1912 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1913 {
1914 switch (nvme_get_zone_state(zone)) {
1915 case NVME_ZONE_STATE_FULL:
1916 return NVME_SUCCESS;
1917
1918 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1919 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1920 nvme_aor_dec_open(ns);
1921 /* fallthrough */
1922 case NVME_ZONE_STATE_CLOSED:
1923 nvme_aor_dec_active(ns);
1924
1925 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1926 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1927 if (ns->params.numzrwa) {
1928 ns->zns.numzrwa++;
1929 }
1930 }
1931
1932 /* fallthrough */
1933 case NVME_ZONE_STATE_EMPTY:
1934 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1935 return NVME_SUCCESS;
1936
1937 default:
1938 return NVME_ZONE_INVAL_TRANSITION;
1939 }
1940 }
1941
1942 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1943 {
1944 switch (nvme_get_zone_state(zone)) {
1945 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1946 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1947 nvme_aor_dec_open(ns);
1948 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1949 /* fall through */
1950 case NVME_ZONE_STATE_CLOSED:
1951 return NVME_SUCCESS;
1952
1953 default:
1954 return NVME_ZONE_INVAL_TRANSITION;
1955 }
1956 }
1957
1958 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1959 {
1960 switch (nvme_get_zone_state(zone)) {
1961 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1962 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1963 nvme_aor_dec_open(ns);
1964 /* fallthrough */
1965 case NVME_ZONE_STATE_CLOSED:
1966 nvme_aor_dec_active(ns);
1967
1968 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1969 if (ns->params.numzrwa) {
1970 ns->zns.numzrwa++;
1971 }
1972 }
1973
1974 /* fallthrough */
1975 case NVME_ZONE_STATE_FULL:
1976 zone->w_ptr = zone->d.zslba;
1977 zone->d.wp = zone->w_ptr;
1978 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1979 /* fallthrough */
1980 case NVME_ZONE_STATE_EMPTY:
1981 return NVME_SUCCESS;
1982
1983 default:
1984 return NVME_ZONE_INVAL_TRANSITION;
1985 }
1986 }
1987
1988 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1989 {
1990 NvmeZone *zone;
1991
1992 if (ns->params.max_open_zones &&
1993 ns->nr_open_zones == ns->params.max_open_zones) {
1994 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1995 if (zone) {
1996 /*
1997 * Automatically close this implicitly open zone.
1998 */
1999 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
2000 nvme_zrm_close(ns, zone);
2001 }
2002 }
2003 }
2004
2005 enum {
2006 NVME_ZRM_AUTO = 1 << 0,
2007 NVME_ZRM_ZRWA = 1 << 1,
2008 };
2009
2010 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2011 NvmeZone *zone, int flags)
2012 {
2013 int act = 0;
2014 uint16_t status;
2015
2016 switch (nvme_get_zone_state(zone)) {
2017 case NVME_ZONE_STATE_EMPTY:
2018 act = 1;
2019
2020 /* fallthrough */
2021
2022 case NVME_ZONE_STATE_CLOSED:
2023 if (n->params.auto_transition_zones) {
2024 nvme_zrm_auto_transition_zone(ns);
2025 }
2026 status = nvme_zns_check_resources(ns, act, 1,
2027 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2028 if (status) {
2029 return status;
2030 }
2031
2032 if (act) {
2033 nvme_aor_inc_active(ns);
2034 }
2035
2036 nvme_aor_inc_open(ns);
2037
2038 if (flags & NVME_ZRM_AUTO) {
2039 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2040 return NVME_SUCCESS;
2041 }
2042
2043 /* fallthrough */
2044
2045 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2046 if (flags & NVME_ZRM_AUTO) {
2047 return NVME_SUCCESS;
2048 }
2049
2050 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2051
2052 /* fallthrough */
2053
2054 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2055 if (flags & NVME_ZRM_ZRWA) {
2056 ns->zns.numzrwa--;
2057
2058 zone->d.za |= NVME_ZA_ZRWA_VALID;
2059 }
2060
2061 return NVME_SUCCESS;
2062
2063 default:
2064 return NVME_ZONE_INVAL_TRANSITION;
2065 }
2066 }
2067
2068 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2069 NvmeZone *zone)
2070 {
2071 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2072 }
2073
2074 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2075 uint32_t nlb)
2076 {
2077 zone->d.wp += nlb;
2078
2079 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2080 nvme_zrm_finish(ns, zone);
2081 }
2082 }
2083
2084 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2085 uint32_t nlbc)
2086 {
2087 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2088
2089 nlbc = nzrwafgs * ns->zns.zrwafg;
2090
2091 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2092
2093 zone->w_ptr += nlbc;
2094
2095 nvme_advance_zone_wp(ns, zone, nlbc);
2096 }
2097
2098 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2099 {
2100 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2101 NvmeZone *zone;
2102 uint64_t slba;
2103 uint32_t nlb;
2104
2105 slba = le64_to_cpu(rw->slba);
2106 nlb = le16_to_cpu(rw->nlb) + 1;
2107 zone = nvme_get_zone_by_slba(ns, slba);
2108 assert(zone);
2109
2110 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2111 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2112 uint64_t elba = slba + nlb - 1;
2113
2114 if (elba > ezrwa) {
2115 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2116 }
2117
2118 return;
2119 }
2120
2121 nvme_advance_zone_wp(ns, zone, nlb);
2122 }
2123
2124 static inline bool nvme_is_write(NvmeRequest *req)
2125 {
2126 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2127
2128 return rw->opcode == NVME_CMD_WRITE ||
2129 rw->opcode == NVME_CMD_ZONE_APPEND ||
2130 rw->opcode == NVME_CMD_WRITE_ZEROES;
2131 }
2132
2133 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2134 {
2135 return qemu_get_aio_context();
2136 }
2137
2138 static void nvme_misc_cb(void *opaque, int ret)
2139 {
2140 NvmeRequest *req = opaque;
2141
2142 trace_pci_nvme_misc_cb(nvme_cid(req));
2143
2144 if (ret) {
2145 nvme_aio_err(req, ret);
2146 }
2147
2148 nvme_enqueue_req_completion(nvme_cq(req), req);
2149 }
2150
2151 void nvme_rw_complete_cb(void *opaque, int ret)
2152 {
2153 NvmeRequest *req = opaque;
2154 NvmeNamespace *ns = req->ns;
2155 BlockBackend *blk = ns->blkconf.blk;
2156 BlockAcctCookie *acct = &req->acct;
2157 BlockAcctStats *stats = blk_get_stats(blk);
2158
2159 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2160
2161 if (ret) {
2162 block_acct_failed(stats, acct);
2163 nvme_aio_err(req, ret);
2164 } else {
2165 block_acct_done(stats, acct);
2166 }
2167
2168 if (ns->params.zoned && nvme_is_write(req)) {
2169 nvme_finalize_zoned_write(ns, req);
2170 }
2171
2172 nvme_enqueue_req_completion(nvme_cq(req), req);
2173 }
2174
2175 static void nvme_rw_cb(void *opaque, int ret)
2176 {
2177 NvmeRequest *req = opaque;
2178 NvmeNamespace *ns = req->ns;
2179
2180 BlockBackend *blk = ns->blkconf.blk;
2181
2182 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2183
2184 if (ret) {
2185 goto out;
2186 }
2187
2188 if (ns->lbaf.ms) {
2189 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2190 uint64_t slba = le64_to_cpu(rw->slba);
2191 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2192 uint64_t offset = nvme_moff(ns, slba);
2193
2194 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2195 size_t mlen = nvme_m2b(ns, nlb);
2196
2197 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2198 BDRV_REQ_MAY_UNMAP,
2199 nvme_rw_complete_cb, req);
2200 return;
2201 }
2202
2203 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2204 uint16_t status;
2205
2206 nvme_sg_unmap(&req->sg);
2207 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2208 if (status) {
2209 ret = -EFAULT;
2210 goto out;
2211 }
2212
2213 if (req->cmd.opcode == NVME_CMD_READ) {
2214 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2215 }
2216
2217 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2218 }
2219 }
2220
2221 out:
2222 nvme_rw_complete_cb(req, ret);
2223 }
2224
2225 static void nvme_verify_cb(void *opaque, int ret)
2226 {
2227 NvmeBounceContext *ctx = opaque;
2228 NvmeRequest *req = ctx->req;
2229 NvmeNamespace *ns = req->ns;
2230 BlockBackend *blk = ns->blkconf.blk;
2231 BlockAcctCookie *acct = &req->acct;
2232 BlockAcctStats *stats = blk_get_stats(blk);
2233 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2234 uint64_t slba = le64_to_cpu(rw->slba);
2235 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2236 uint16_t apptag = le16_to_cpu(rw->apptag);
2237 uint16_t appmask = le16_to_cpu(rw->appmask);
2238 uint64_t reftag = le32_to_cpu(rw->reftag);
2239 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2240 uint16_t status;
2241
2242 reftag |= cdw3 << 32;
2243
2244 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2245
2246 if (ret) {
2247 block_acct_failed(stats, acct);
2248 nvme_aio_err(req, ret);
2249 goto out;
2250 }
2251
2252 block_acct_done(stats, acct);
2253
2254 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2255 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2256 ctx->mdata.iov.size, slba);
2257 if (status) {
2258 req->status = status;
2259 goto out;
2260 }
2261
2262 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2263 ctx->mdata.bounce, ctx->mdata.iov.size,
2264 prinfo, slba, apptag, appmask, &reftag);
2265 }
2266
2267 out:
2268 qemu_iovec_destroy(&ctx->data.iov);
2269 g_free(ctx->data.bounce);
2270
2271 qemu_iovec_destroy(&ctx->mdata.iov);
2272 g_free(ctx->mdata.bounce);
2273
2274 g_free(ctx);
2275
2276 nvme_enqueue_req_completion(nvme_cq(req), req);
2277 }
2278
2279
2280 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2281 {
2282 NvmeBounceContext *ctx = opaque;
2283 NvmeRequest *req = ctx->req;
2284 NvmeNamespace *ns = req->ns;
2285 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2286 uint64_t slba = le64_to_cpu(rw->slba);
2287 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2288 size_t mlen = nvme_m2b(ns, nlb);
2289 uint64_t offset = nvme_moff(ns, slba);
2290 BlockBackend *blk = ns->blkconf.blk;
2291
2292 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2293
2294 if (ret) {
2295 goto out;
2296 }
2297
2298 ctx->mdata.bounce = g_malloc(mlen);
2299
2300 qemu_iovec_reset(&ctx->mdata.iov);
2301 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2302
2303 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2304 nvme_verify_cb, ctx);
2305 return;
2306
2307 out:
2308 nvme_verify_cb(ctx, ret);
2309 }
2310
2311 struct nvme_compare_ctx {
2312 struct {
2313 QEMUIOVector iov;
2314 uint8_t *bounce;
2315 } data;
2316
2317 struct {
2318 QEMUIOVector iov;
2319 uint8_t *bounce;
2320 } mdata;
2321 };
2322
2323 static void nvme_compare_mdata_cb(void *opaque, int ret)
2324 {
2325 NvmeRequest *req = opaque;
2326 NvmeNamespace *ns = req->ns;
2327 NvmeCtrl *n = nvme_ctrl(req);
2328 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2329 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2330 uint16_t apptag = le16_to_cpu(rw->apptag);
2331 uint16_t appmask = le16_to_cpu(rw->appmask);
2332 uint64_t reftag = le32_to_cpu(rw->reftag);
2333 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2334 struct nvme_compare_ctx *ctx = req->opaque;
2335 g_autofree uint8_t *buf = NULL;
2336 BlockBackend *blk = ns->blkconf.blk;
2337 BlockAcctCookie *acct = &req->acct;
2338 BlockAcctStats *stats = blk_get_stats(blk);
2339 uint16_t status = NVME_SUCCESS;
2340
2341 reftag |= cdw3 << 32;
2342
2343 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2344
2345 if (ret) {
2346 block_acct_failed(stats, acct);
2347 nvme_aio_err(req, ret);
2348 goto out;
2349 }
2350
2351 buf = g_malloc(ctx->mdata.iov.size);
2352
2353 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2354 NVME_TX_DIRECTION_TO_DEVICE, req);
2355 if (status) {
2356 req->status = status;
2357 goto out;
2358 }
2359
2360 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2361 uint64_t slba = le64_to_cpu(rw->slba);
2362 uint8_t *bufp;
2363 uint8_t *mbufp = ctx->mdata.bounce;
2364 uint8_t *end = mbufp + ctx->mdata.iov.size;
2365 int16_t pil = 0;
2366
2367 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2368 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2369 slba, apptag, appmask, &reftag);
2370 if (status) {
2371 req->status = status;
2372 goto out;
2373 }
2374
2375 /*
2376 * When formatted with protection information, do not compare the DIF
2377 * tuple.
2378 */
2379 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2380 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2381 }
2382
2383 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2384 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2385 req->status = NVME_CMP_FAILURE | NVME_DNR;
2386 goto out;
2387 }
2388 }
2389
2390 goto out;
2391 }
2392
2393 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2394 req->status = NVME_CMP_FAILURE | NVME_DNR;
2395 goto out;
2396 }
2397
2398 block_acct_done(stats, acct);
2399
2400 out:
2401 qemu_iovec_destroy(&ctx->data.iov);
2402 g_free(ctx->data.bounce);
2403
2404 qemu_iovec_destroy(&ctx->mdata.iov);
2405 g_free(ctx->mdata.bounce);
2406
2407 g_free(ctx);
2408
2409 nvme_enqueue_req_completion(nvme_cq(req), req);
2410 }
2411
2412 static void nvme_compare_data_cb(void *opaque, int ret)
2413 {
2414 NvmeRequest *req = opaque;
2415 NvmeCtrl *n = nvme_ctrl(req);
2416 NvmeNamespace *ns = req->ns;
2417 BlockBackend *blk = ns->blkconf.blk;
2418 BlockAcctCookie *acct = &req->acct;
2419 BlockAcctStats *stats = blk_get_stats(blk);
2420
2421 struct nvme_compare_ctx *ctx = req->opaque;
2422 g_autofree uint8_t *buf = NULL;
2423 uint16_t status;
2424
2425 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2426
2427 if (ret) {
2428 block_acct_failed(stats, acct);
2429 nvme_aio_err(req, ret);
2430 goto out;
2431 }
2432
2433 buf = g_malloc(ctx->data.iov.size);
2434
2435 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2436 NVME_TX_DIRECTION_TO_DEVICE, req);
2437 if (status) {
2438 req->status = status;
2439 goto out;
2440 }
2441
2442 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2443 req->status = NVME_CMP_FAILURE | NVME_DNR;
2444 goto out;
2445 }
2446
2447 if (ns->lbaf.ms) {
2448 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2449 uint64_t slba = le64_to_cpu(rw->slba);
2450 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2451 size_t mlen = nvme_m2b(ns, nlb);
2452 uint64_t offset = nvme_moff(ns, slba);
2453
2454 ctx->mdata.bounce = g_malloc(mlen);
2455
2456 qemu_iovec_init(&ctx->mdata.iov, 1);
2457 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2458
2459 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2460 nvme_compare_mdata_cb, req);
2461 return;
2462 }
2463
2464 block_acct_done(stats, acct);
2465
2466 out:
2467 qemu_iovec_destroy(&ctx->data.iov);
2468 g_free(ctx->data.bounce);
2469 g_free(ctx);
2470
2471 nvme_enqueue_req_completion(nvme_cq(req), req);
2472 }
2473
2474 typedef struct NvmeDSMAIOCB {
2475 BlockAIOCB common;
2476 BlockAIOCB *aiocb;
2477 NvmeRequest *req;
2478 int ret;
2479
2480 NvmeDsmRange *range;
2481 unsigned int nr;
2482 unsigned int idx;
2483 } NvmeDSMAIOCB;
2484
2485 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2486 {
2487 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2488
2489 /* break nvme_dsm_cb loop */
2490 iocb->idx = iocb->nr;
2491 iocb->ret = -ECANCELED;
2492
2493 if (iocb->aiocb) {
2494 blk_aio_cancel_async(iocb->aiocb);
2495 iocb->aiocb = NULL;
2496 } else {
2497 /*
2498 * We only reach this if nvme_dsm_cancel() has already been called or
2499 * the command ran to completion.
2500 */
2501 assert(iocb->idx == iocb->nr);
2502 }
2503 }
2504
2505 static const AIOCBInfo nvme_dsm_aiocb_info = {
2506 .aiocb_size = sizeof(NvmeDSMAIOCB),
2507 .cancel_async = nvme_dsm_cancel,
2508 };
2509
2510 static void nvme_dsm_cb(void *opaque, int ret);
2511
2512 static void nvme_dsm_md_cb(void *opaque, int ret)
2513 {
2514 NvmeDSMAIOCB *iocb = opaque;
2515 NvmeRequest *req = iocb->req;
2516 NvmeNamespace *ns = req->ns;
2517 NvmeDsmRange *range;
2518 uint64_t slba;
2519 uint32_t nlb;
2520
2521 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2522 goto done;
2523 }
2524
2525 range = &iocb->range[iocb->idx - 1];
2526 slba = le64_to_cpu(range->slba);
2527 nlb = le32_to_cpu(range->nlb);
2528
2529 /*
2530 * Check that all block were discarded (zeroed); otherwise we do not zero
2531 * the metadata.
2532 */
2533
2534 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2535 if (ret) {
2536 if (ret < 0) {
2537 goto done;
2538 }
2539
2540 nvme_dsm_cb(iocb, 0);
2541 return;
2542 }
2543
2544 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2545 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2546 nvme_dsm_cb, iocb);
2547 return;
2548
2549 done:
2550 nvme_dsm_cb(iocb, ret);
2551 }
2552
2553 static void nvme_dsm_cb(void *opaque, int ret)
2554 {
2555 NvmeDSMAIOCB *iocb = opaque;
2556 NvmeRequest *req = iocb->req;
2557 NvmeCtrl *n = nvme_ctrl(req);
2558 NvmeNamespace *ns = req->ns;
2559 NvmeDsmRange *range;
2560 uint64_t slba;
2561 uint32_t nlb;
2562
2563 if (iocb->ret < 0) {
2564 goto done;
2565 } else if (ret < 0) {
2566 iocb->ret = ret;
2567 goto done;
2568 }
2569
2570 next:
2571 if (iocb->idx == iocb->nr) {
2572 goto done;
2573 }
2574
2575 range = &iocb->range[iocb->idx++];
2576 slba = le64_to_cpu(range->slba);
2577 nlb = le32_to_cpu(range->nlb);
2578
2579 trace_pci_nvme_dsm_deallocate(slba, nlb);
2580
2581 if (nlb > n->dmrsl) {
2582 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2583 goto next;
2584 }
2585
2586 if (nvme_check_bounds(ns, slba, nlb)) {
2587 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2588 ns->id_ns.nsze);
2589 goto next;
2590 }
2591
2592 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2593 nvme_l2b(ns, nlb),
2594 nvme_dsm_md_cb, iocb);
2595 return;
2596
2597 done:
2598 iocb->aiocb = NULL;
2599 iocb->common.cb(iocb->common.opaque, iocb->ret);
2600 qemu_aio_unref(iocb);
2601 }
2602
2603 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2604 {
2605 NvmeNamespace *ns = req->ns;
2606 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2607 uint32_t attr = le32_to_cpu(dsm->attributes);
2608 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2609 uint16_t status = NVME_SUCCESS;
2610
2611 trace_pci_nvme_dsm(nr, attr);
2612
2613 if (attr & NVME_DSMGMT_AD) {
2614 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2615 nvme_misc_cb, req);
2616
2617 iocb->req = req;
2618 iocb->ret = 0;
2619 iocb->range = g_new(NvmeDsmRange, nr);
2620 iocb->nr = nr;
2621 iocb->idx = 0;
2622
2623 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2624 req);
2625 if (status) {
2626 g_free(iocb->range);
2627 qemu_aio_unref(iocb);
2628
2629 return status;
2630 }
2631
2632 req->aiocb = &iocb->common;
2633 nvme_dsm_cb(iocb, 0);
2634
2635 return NVME_NO_COMPLETE;
2636 }
2637
2638 return status;
2639 }
2640
2641 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2642 {
2643 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2644 NvmeNamespace *ns = req->ns;
2645 BlockBackend *blk = ns->blkconf.blk;
2646 uint64_t slba = le64_to_cpu(rw->slba);
2647 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2648 size_t len = nvme_l2b(ns, nlb);
2649 int64_t offset = nvme_l2b(ns, slba);
2650 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2651 uint32_t reftag = le32_to_cpu(rw->reftag);
2652 NvmeBounceContext *ctx = NULL;
2653 uint16_t status;
2654
2655 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2656
2657 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2658 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2659 if (status) {
2660 return status;
2661 }
2662
2663 if (prinfo & NVME_PRINFO_PRACT) {
2664 return NVME_INVALID_PROT_INFO | NVME_DNR;
2665 }
2666 }
2667
2668 if (len > n->page_size << n->params.vsl) {
2669 return NVME_INVALID_FIELD | NVME_DNR;
2670 }
2671
2672 status = nvme_check_bounds(ns, slba, nlb);
2673 if (status) {
2674 return status;
2675 }
2676
2677 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2678 status = nvme_check_dulbe(ns, slba, nlb);
2679 if (status) {
2680 return status;
2681 }
2682 }
2683
2684 ctx = g_new0(NvmeBounceContext, 1);
2685 ctx->req = req;
2686
2687 ctx->data.bounce = g_malloc(len);
2688
2689 qemu_iovec_init(&ctx->data.iov, 1);
2690 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2691
2692 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2693 BLOCK_ACCT_READ);
2694
2695 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2696 nvme_verify_mdata_in_cb, ctx);
2697 return NVME_NO_COMPLETE;
2698 }
2699
2700 typedef struct NvmeCopyAIOCB {
2701 BlockAIOCB common;
2702 BlockAIOCB *aiocb;
2703 NvmeRequest *req;
2704 int ret;
2705
2706 void *ranges;
2707 unsigned int format;
2708 int nr;
2709 int idx;
2710
2711 uint8_t *bounce;
2712 QEMUIOVector iov;
2713 struct {
2714 BlockAcctCookie read;
2715 BlockAcctCookie write;
2716 } acct;
2717
2718 uint64_t reftag;
2719 uint64_t slba;
2720
2721 NvmeZone *zone;
2722 } NvmeCopyAIOCB;
2723
2724 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2725 {
2726 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2727
2728 iocb->ret = -ECANCELED;
2729
2730 if (iocb->aiocb) {
2731 blk_aio_cancel_async(iocb->aiocb);
2732 iocb->aiocb = NULL;
2733 }
2734 }
2735
2736 static const AIOCBInfo nvme_copy_aiocb_info = {
2737 .aiocb_size = sizeof(NvmeCopyAIOCB),
2738 .cancel_async = nvme_copy_cancel,
2739 };
2740
2741 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2742 {
2743 NvmeRequest *req = iocb->req;
2744 NvmeNamespace *ns = req->ns;
2745 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2746
2747 if (iocb->idx != iocb->nr) {
2748 req->cqe.result = cpu_to_le32(iocb->idx);
2749 }
2750
2751 qemu_iovec_destroy(&iocb->iov);
2752 g_free(iocb->bounce);
2753
2754 if (iocb->ret < 0) {
2755 block_acct_failed(stats, &iocb->acct.read);
2756 block_acct_failed(stats, &iocb->acct.write);
2757 } else {
2758 block_acct_done(stats, &iocb->acct.read);
2759 block_acct_done(stats, &iocb->acct.write);
2760 }
2761
2762 iocb->common.cb(iocb->common.opaque, iocb->ret);
2763 qemu_aio_unref(iocb);
2764 }
2765
2766 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2767
2768 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2769 uint64_t *slba, uint32_t *nlb,
2770 uint16_t *apptag,
2771 uint16_t *appmask,
2772 uint64_t *reftag)
2773 {
2774 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2775
2776 if (slba) {
2777 *slba = le64_to_cpu(_ranges[idx].slba);
2778 }
2779
2780 if (nlb) {
2781 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2782 }
2783
2784 if (apptag) {
2785 *apptag = le16_to_cpu(_ranges[idx].apptag);
2786 }
2787
2788 if (appmask) {
2789 *appmask = le16_to_cpu(_ranges[idx].appmask);
2790 }
2791
2792 if (reftag) {
2793 *reftag = le32_to_cpu(_ranges[idx].reftag);
2794 }
2795 }
2796
2797 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2798 uint64_t *slba, uint32_t *nlb,
2799 uint16_t *apptag,
2800 uint16_t *appmask,
2801 uint64_t *reftag)
2802 {
2803 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2804
2805 if (slba) {
2806 *slba = le64_to_cpu(_ranges[idx].slba);
2807 }
2808
2809 if (nlb) {
2810 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2811 }
2812
2813 if (apptag) {
2814 *apptag = le16_to_cpu(_ranges[idx].apptag);
2815 }
2816
2817 if (appmask) {
2818 *appmask = le16_to_cpu(_ranges[idx].appmask);
2819 }
2820
2821 if (reftag) {
2822 *reftag = 0;
2823
2824 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2825 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2826 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2827 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2828 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2829 *reftag |= (uint64_t)_ranges[idx].sr[9];
2830 }
2831 }
2832
2833 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2834 uint64_t *slba, uint32_t *nlb,
2835 uint16_t *apptag, uint16_t *appmask,
2836 uint64_t *reftag)
2837 {
2838 switch (format) {
2839 case NVME_COPY_FORMAT_0:
2840 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2841 appmask, reftag);
2842 break;
2843
2844 case NVME_COPY_FORMAT_1:
2845 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2846 appmask, reftag);
2847 break;
2848
2849 default:
2850 abort();
2851 }
2852 }
2853
2854 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
2855 NvmeCopyAIOCB *iocb, uint16_t nr)
2856 {
2857 uint32_t copy_len = 0;
2858
2859 for (int idx = 0; idx < nr; idx++) {
2860 uint32_t nlb;
2861 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
2862 &nlb, NULL, NULL, NULL);
2863 copy_len += nlb + 1;
2864 }
2865
2866 if (copy_len > ns->id_ns.mcl) {
2867 return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2868 }
2869
2870 return NVME_SUCCESS;
2871 }
2872
2873 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2874 {
2875 NvmeCopyAIOCB *iocb = opaque;
2876 NvmeRequest *req = iocb->req;
2877 NvmeNamespace *ns = req->ns;
2878 uint32_t nlb;
2879
2880 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2881 &nlb, NULL, NULL, NULL);
2882
2883 if (ret < 0) {
2884 iocb->ret = ret;
2885 goto out;
2886 } else if (iocb->ret < 0) {
2887 goto out;
2888 }
2889
2890 if (ns->params.zoned) {
2891 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2892 }
2893
2894 iocb->idx++;
2895 iocb->slba += nlb;
2896 out:
2897 nvme_do_copy(iocb);
2898 }
2899
2900 static void nvme_copy_out_cb(void *opaque, int ret)
2901 {
2902 NvmeCopyAIOCB *iocb = opaque;
2903 NvmeRequest *req = iocb->req;
2904 NvmeNamespace *ns = req->ns;
2905 uint32_t nlb;
2906 size_t mlen;
2907 uint8_t *mbounce;
2908
2909 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2910 goto out;
2911 }
2912
2913 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2914 &nlb, NULL, NULL, NULL);
2915
2916 mlen = nvme_m2b(ns, nlb);
2917 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2918
2919 qemu_iovec_reset(&iocb->iov);
2920 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2921
2922 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2923 &iocb->iov, 0, nvme_copy_out_completed_cb,
2924 iocb);
2925
2926 return;
2927
2928 out:
2929 nvme_copy_out_completed_cb(iocb, ret);
2930 }
2931
2932 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2933 {
2934 NvmeCopyAIOCB *iocb = opaque;
2935 NvmeRequest *req = iocb->req;
2936 NvmeNamespace *ns = req->ns;
2937 uint32_t nlb;
2938 uint64_t slba;
2939 uint16_t apptag, appmask;
2940 uint64_t reftag;
2941 size_t len;
2942 uint16_t status;
2943
2944 if (ret < 0) {
2945 iocb->ret = ret;
2946 goto out;
2947 } else if (iocb->ret < 0) {
2948 goto out;
2949 }
2950
2951 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2952 &nlb, &apptag, &appmask, &reftag);
2953 len = nvme_l2b(ns, nlb);
2954
2955 trace_pci_nvme_copy_out(iocb->slba, nlb);
2956
2957 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2958 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2959
2960 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2961 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2962
2963 size_t mlen = nvme_m2b(ns, nlb);
2964 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2965
2966 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2967 if (status) {
2968 goto invalid;
2969 }
2970 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2971 slba, apptag, appmask, &reftag);
2972 if (status) {
2973 goto invalid;
2974 }
2975
2976 apptag = le16_to_cpu(copy->apptag);
2977 appmask = le16_to_cpu(copy->appmask);
2978
2979 if (prinfow & NVME_PRINFO_PRACT) {
2980 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2981 if (status) {
2982 goto invalid;
2983 }
2984
2985 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2986 apptag, &iocb->reftag);
2987 } else {
2988 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2989 prinfow, iocb->slba, apptag, appmask,
2990 &iocb->reftag);
2991 if (status) {
2992 goto invalid;
2993 }
2994 }
2995 }
2996
2997 status = nvme_check_bounds(ns, iocb->slba, nlb);
2998 if (status) {
2999 goto invalid;
3000 }
3001
3002 if (ns->params.zoned) {
3003 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
3004 if (status) {
3005 goto invalid;
3006 }
3007
3008 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
3009 iocb->zone->w_ptr += nlb;
3010 }
3011 }
3012
3013 qemu_iovec_reset(&iocb->iov);
3014 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3015
3016 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
3017 &iocb->iov, 0, nvme_copy_out_cb, iocb);
3018
3019 return;
3020
3021 invalid:
3022 req->status = status;
3023 iocb->ret = -1;
3024 out:
3025 nvme_do_copy(iocb);
3026 }
3027
3028 static void nvme_copy_in_cb(void *opaque, int ret)
3029 {
3030 NvmeCopyAIOCB *iocb = opaque;
3031 NvmeRequest *req = iocb->req;
3032 NvmeNamespace *ns = req->ns;
3033 uint64_t slba;
3034 uint32_t nlb;
3035
3036 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3037 goto out;
3038 }
3039
3040 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3041 &nlb, NULL, NULL, NULL);
3042
3043 qemu_iovec_reset(&iocb->iov);
3044 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3045 nvme_m2b(ns, nlb));
3046
3047 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3048 &iocb->iov, 0, nvme_copy_in_completed_cb,
3049 iocb);
3050 return;
3051
3052 out:
3053 nvme_copy_in_completed_cb(iocb, ret);
3054 }
3055
3056 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3057 {
3058 NvmeRequest *req = iocb->req;
3059 NvmeNamespace *ns = req->ns;
3060 uint64_t slba;
3061 uint32_t nlb;
3062 size_t len;
3063 uint16_t status;
3064
3065 if (iocb->ret < 0) {
3066 goto done;
3067 }
3068
3069 if (iocb->idx == iocb->nr) {
3070 goto done;
3071 }
3072
3073 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3074 &nlb, NULL, NULL, NULL);
3075 len = nvme_l2b(ns, nlb);
3076
3077 trace_pci_nvme_copy_source_range(slba, nlb);
3078
3079 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3080 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3081 goto invalid;
3082 }
3083
3084 status = nvme_check_bounds(ns, slba, nlb);
3085 if (status) {
3086 goto invalid;
3087 }
3088
3089 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3090 status = nvme_check_dulbe(ns, slba, nlb);
3091 if (status) {
3092 goto invalid;
3093 }
3094 }
3095
3096 if (ns->params.zoned) {
3097 status = nvme_check_zone_read(ns, slba, nlb);
3098 if (status) {
3099 goto invalid;
3100 }
3101 }
3102
3103 qemu_iovec_reset(&iocb->iov);
3104 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3105
3106 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3107 &iocb->iov, 0, nvme_copy_in_cb, iocb);
3108 return;
3109
3110 invalid:
3111 req->status = status;
3112 iocb->ret = -1;
3113 done:
3114 nvme_copy_done(iocb);
3115 }
3116
3117 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3118 {
3119 NvmeNamespace *ns = req->ns;
3120 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3121 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3122 nvme_misc_cb, req);
3123 uint16_t nr = copy->nr + 1;
3124 uint8_t format = copy->control[0] & 0xf;
3125 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3126 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3127 size_t len = sizeof(NvmeCopySourceRangeFormat0);
3128
3129 uint16_t status;
3130
3131 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3132
3133 iocb->ranges = NULL;
3134 iocb->zone = NULL;
3135
3136 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3137 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3138 status = NVME_INVALID_FIELD | NVME_DNR;
3139 goto invalid;
3140 }
3141
3142 if (!(n->id_ctrl.ocfs & (1 << format))) {
3143 trace_pci_nvme_err_copy_invalid_format(format);
3144 status = NVME_INVALID_FIELD | NVME_DNR;
3145 goto invalid;
3146 }
3147
3148 if (nr > ns->id_ns.msrc + 1) {
3149 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3150 goto invalid;
3151 }
3152
3153 if ((ns->pif == 0x0 && format != 0x0) ||
3154 (ns->pif != 0x0 && format != 0x1)) {
3155 status = NVME_INVALID_FORMAT | NVME_DNR;
3156 goto invalid;
3157 }
3158
3159 if (ns->pif) {
3160 len = sizeof(NvmeCopySourceRangeFormat1);
3161 }
3162
3163 iocb->format = format;
3164 iocb->ranges = g_malloc_n(nr, len);
3165 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3166 if (status) {
3167 goto invalid;
3168 }
3169
3170 iocb->slba = le64_to_cpu(copy->sdlba);
3171
3172 if (ns->params.zoned) {
3173 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3174 if (!iocb->zone) {
3175 status = NVME_LBA_RANGE | NVME_DNR;
3176 goto invalid;
3177 }
3178
3179 status = nvme_zrm_auto(n, ns, iocb->zone);
3180 if (status) {
3181 goto invalid;
3182 }
3183 }
3184
3185 status = nvme_check_copy_mcl(ns, iocb, nr);
3186 if (status) {
3187 goto invalid;
3188 }
3189
3190 iocb->req = req;
3191 iocb->ret = 0;
3192 iocb->nr = nr;
3193 iocb->idx = 0;
3194 iocb->reftag = le32_to_cpu(copy->reftag);
3195 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3196 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3197 ns->lbasz + ns->lbaf.ms);
3198
3199 qemu_iovec_init(&iocb->iov, 1);
3200
3201 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3202 BLOCK_ACCT_READ);
3203 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3204 BLOCK_ACCT_WRITE);
3205
3206 req->aiocb = &iocb->common;
3207 nvme_do_copy(iocb);
3208
3209 return NVME_NO_COMPLETE;
3210
3211 invalid:
3212 g_free(iocb->ranges);
3213 qemu_aio_unref(iocb);
3214 return status;
3215 }
3216
3217 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3218 {
3219 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3220 NvmeNamespace *ns = req->ns;
3221 BlockBackend *blk = ns->blkconf.blk;
3222 uint64_t slba = le64_to_cpu(rw->slba);
3223 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3224 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3225 size_t data_len = nvme_l2b(ns, nlb);
3226 size_t len = data_len;
3227 int64_t offset = nvme_l2b(ns, slba);
3228 struct nvme_compare_ctx *ctx = NULL;
3229 uint16_t status;
3230
3231 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3232
3233 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3234 return NVME_INVALID_PROT_INFO | NVME_DNR;
3235 }
3236
3237 if (nvme_ns_ext(ns)) {
3238 len += nvme_m2b(ns, nlb);
3239 }
3240
3241 status = nvme_check_mdts(n, len);
3242 if (status) {
3243 return status;
3244 }
3245
3246 status = nvme_check_bounds(ns, slba, nlb);
3247 if (status) {
3248 return status;
3249 }
3250
3251 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3252 status = nvme_check_dulbe(ns, slba, nlb);
3253 if (status) {
3254 return status;
3255 }
3256 }
3257
3258 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3259 if (status) {
3260 return status;
3261 }
3262
3263 ctx = g_new(struct nvme_compare_ctx, 1);
3264 ctx->data.bounce = g_malloc(data_len);
3265
3266 req->opaque = ctx;
3267
3268 qemu_iovec_init(&ctx->data.iov, 1);
3269 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3270
3271 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3272 BLOCK_ACCT_READ);
3273 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3274 nvme_compare_data_cb, req);
3275
3276 return NVME_NO_COMPLETE;
3277 }
3278
3279 typedef struct NvmeFlushAIOCB {
3280 BlockAIOCB common;
3281 BlockAIOCB *aiocb;
3282 NvmeRequest *req;
3283 int ret;
3284
3285 NvmeNamespace *ns;
3286 uint32_t nsid;
3287 bool broadcast;
3288 } NvmeFlushAIOCB;
3289
3290 static void nvme_flush_cancel(BlockAIOCB *acb)
3291 {
3292 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3293
3294 iocb->ret = -ECANCELED;
3295
3296 if (iocb->aiocb) {
3297 blk_aio_cancel_async(iocb->aiocb);
3298 iocb->aiocb = NULL;
3299 }
3300 }
3301
3302 static const AIOCBInfo nvme_flush_aiocb_info = {
3303 .aiocb_size = sizeof(NvmeFlushAIOCB),
3304 .cancel_async = nvme_flush_cancel,
3305 .get_aio_context = nvme_get_aio_context,
3306 };
3307
3308 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3309
3310 static void nvme_flush_ns_cb(void *opaque, int ret)
3311 {
3312 NvmeFlushAIOCB *iocb = opaque;
3313 NvmeNamespace *ns = iocb->ns;
3314
3315 if (ret < 0) {
3316 iocb->ret = ret;
3317 goto out;
3318 } else if (iocb->ret < 0) {
3319 goto out;
3320 }
3321
3322 if (ns) {
3323 trace_pci_nvme_flush_ns(iocb->nsid);
3324
3325 iocb->ns = NULL;
3326 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3327 return;
3328 }
3329
3330 out:
3331 nvme_do_flush(iocb);
3332 }
3333
3334 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3335 {
3336 NvmeRequest *req = iocb->req;
3337 NvmeCtrl *n = nvme_ctrl(req);
3338 int i;
3339
3340 if (iocb->ret < 0) {
3341 goto done;
3342 }
3343
3344 if (iocb->broadcast) {
3345 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3346 iocb->ns = nvme_ns(n, i);
3347 if (iocb->ns) {
3348 iocb->nsid = i;
3349 break;
3350 }
3351 }
3352 }
3353
3354 if (!iocb->ns) {
3355 goto done;
3356 }
3357
3358 nvme_flush_ns_cb(iocb, 0);
3359 return;
3360
3361 done:
3362 iocb->common.cb(iocb->common.opaque, iocb->ret);
3363 qemu_aio_unref(iocb);
3364 }
3365
3366 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3367 {
3368 NvmeFlushAIOCB *iocb;
3369 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3370 uint16_t status;
3371
3372 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3373
3374 iocb->req = req;
3375 iocb->ret = 0;
3376 iocb->ns = NULL;
3377 iocb->nsid = 0;
3378 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3379
3380 if (!iocb->broadcast) {
3381 if (!nvme_nsid_valid(n, nsid)) {
3382 status = NVME_INVALID_NSID | NVME_DNR;
3383 goto out;
3384 }
3385
3386 iocb->ns = nvme_ns(n, nsid);
3387 if (!iocb->ns) {
3388 status = NVME_INVALID_FIELD | NVME_DNR;
3389 goto out;
3390 }
3391
3392 iocb->nsid = nsid;
3393 }
3394
3395 req->aiocb = &iocb->common;
3396 nvme_do_flush(iocb);
3397
3398 return NVME_NO_COMPLETE;
3399
3400 out:
3401 qemu_aio_unref(iocb);
3402
3403 return status;
3404 }
3405
3406 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3407 {
3408 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3409 NvmeNamespace *ns = req->ns;
3410 uint64_t slba = le64_to_cpu(rw->slba);
3411 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3412 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3413 uint64_t data_size = nvme_l2b(ns, nlb);
3414 uint64_t mapped_size = data_size;
3415 uint64_t data_offset;
3416 BlockBackend *blk = ns->blkconf.blk;
3417 uint16_t status;
3418
3419 if (nvme_ns_ext(ns)) {
3420 mapped_size += nvme_m2b(ns, nlb);
3421
3422 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3423 bool pract = prinfo & NVME_PRINFO_PRACT;
3424
3425 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3426 mapped_size = data_size;
3427 }
3428 }
3429 }
3430
3431 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3432
3433 status = nvme_check_mdts(n, mapped_size);
3434 if (status) {
3435 goto invalid;
3436 }
3437
3438 status = nvme_check_bounds(ns, slba, nlb);
3439 if (status) {
3440 goto invalid;
3441 }
3442
3443 if (ns->params.zoned) {
3444 status = nvme_check_zone_read(ns, slba, nlb);
3445 if (status) {
3446 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3447 goto invalid;
3448 }
3449 }
3450
3451 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3452 status = nvme_check_dulbe(ns, slba, nlb);
3453 if (status) {
3454 goto invalid;
3455 }
3456 }
3457
3458 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3459 return nvme_dif_rw(n, req);
3460 }
3461
3462 status = nvme_map_data(n, nlb, req);
3463 if (status) {
3464 goto invalid;
3465 }
3466
3467 data_offset = nvme_l2b(ns, slba);
3468
3469 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3470 BLOCK_ACCT_READ);
3471 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3472 return NVME_NO_COMPLETE;
3473
3474 invalid:
3475 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3476 return status | NVME_DNR;
3477 }
3478
3479 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3480 uint32_t nlb)
3481 {
3482 NvmeNamespace *ns = req->ns;
3483 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3484 uint64_t data_size = nvme_l2b(ns, nlb);
3485 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3486 uint8_t dtype = (dw12 >> 20) & 0xf;
3487 uint16_t pid = le16_to_cpu(rw->dspec);
3488 uint16_t ph, rg, ruhid;
3489 NvmeReclaimUnit *ru;
3490
3491 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3492 !nvme_parse_pid(ns, pid, &ph, &rg)) {
3493 ph = 0;
3494 rg = 0;
3495 }
3496
3497 ruhid = ns->fdp.phs[ph];
3498 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3499
3500 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3501 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3502
3503 while (nlb) {
3504 if (nlb < ru->ruamw) {
3505 ru->ruamw -= nlb;
3506 break;
3507 }
3508
3509 nlb -= ru->ruamw;
3510 nvme_update_ruh(n, ns, pid);
3511 }
3512 }
3513
3514 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3515 bool wrz)
3516 {
3517 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3518 NvmeNamespace *ns = req->ns;
3519 uint64_t slba = le64_to_cpu(rw->slba);
3520 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3521 uint16_t ctrl = le16_to_cpu(rw->control);
3522 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3523 uint64_t data_size = nvme_l2b(ns, nlb);
3524 uint64_t mapped_size = data_size;
3525 uint64_t data_offset;
3526 NvmeZone *zone;
3527 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3528 BlockBackend *blk = ns->blkconf.blk;
3529 uint16_t status;
3530
3531 if (nvme_ns_ext(ns)) {
3532 mapped_size += nvme_m2b(ns, nlb);
3533
3534 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3535 bool pract = prinfo & NVME_PRINFO_PRACT;
3536
3537 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3538 mapped_size -= nvme_m2b(ns, nlb);
3539 }
3540 }
3541 }
3542
3543 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3544 nvme_nsid(ns), nlb, mapped_size, slba);
3545
3546 if (!wrz) {
3547 status = nvme_check_mdts(n, mapped_size);
3548 if (status) {
3549 goto invalid;
3550 }
3551 }
3552
3553 status = nvme_check_bounds(ns, slba, nlb);
3554 if (status) {
3555 goto invalid;
3556 }
3557
3558 if (ns->params.zoned) {
3559 zone = nvme_get_zone_by_slba(ns, slba);
3560 assert(zone);
3561
3562 if (append) {
3563 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3564
3565 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3566 return NVME_INVALID_ZONE_OP | NVME_DNR;
3567 }
3568
3569 if (unlikely(slba != zone->d.zslba)) {
3570 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3571 status = NVME_INVALID_FIELD;
3572 goto invalid;
3573 }
3574
3575 if (n->params.zasl &&
3576 data_size > (uint64_t)n->page_size << n->params.zasl) {
3577 trace_pci_nvme_err_zasl(data_size);
3578 return NVME_INVALID_FIELD | NVME_DNR;
3579 }
3580
3581 slba = zone->w_ptr;
3582 rw->slba = cpu_to_le64(slba);
3583 res->slba = cpu_to_le64(slba);
3584
3585 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3586 case NVME_ID_NS_DPS_TYPE_1:
3587 if (!piremap) {
3588 return NVME_INVALID_PROT_INFO | NVME_DNR;
3589 }
3590
3591 /* fallthrough */
3592
3593 case NVME_ID_NS_DPS_TYPE_2:
3594 if (piremap) {
3595 uint32_t reftag = le32_to_cpu(rw->reftag);
3596 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3597 }
3598
3599 break;
3600
3601 case NVME_ID_NS_DPS_TYPE_3:
3602 if (piremap) {
3603 return NVME_INVALID_PROT_INFO | NVME_DNR;
3604 }
3605
3606 break;
3607 }
3608 }
3609
3610 status = nvme_check_zone_write(ns, zone, slba, nlb);
3611 if (status) {
3612 goto invalid;
3613 }
3614
3615 status = nvme_zrm_auto(n, ns, zone);
3616 if (status) {
3617 goto invalid;
3618 }
3619
3620 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3621 zone->w_ptr += nlb;
3622 }
3623 } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3624 nvme_do_write_fdp(n, req, slba, nlb);
3625 }
3626
3627 data_offset = nvme_l2b(ns, slba);
3628
3629 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3630 return nvme_dif_rw(n, req);
3631 }
3632
3633 if (!wrz) {
3634 status = nvme_map_data(n, nlb, req);
3635 if (status) {
3636 goto invalid;
3637 }
3638
3639 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3640 BLOCK_ACCT_WRITE);
3641 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3642 } else {
3643 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3644 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3645 req);
3646 }
3647
3648 return NVME_NO_COMPLETE;
3649
3650 invalid:
3651 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3652 return status | NVME_DNR;
3653 }
3654
3655 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3656 {
3657 return nvme_do_write(n, req, false, false);
3658 }
3659
3660 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3661 {
3662 return nvme_do_write(n, req, false, true);
3663 }
3664
3665 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3666 {
3667 return nvme_do_write(n, req, true, false);
3668 }
3669
3670 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3671 uint64_t *slba, uint32_t *zone_idx)
3672 {
3673 uint32_t dw10 = le32_to_cpu(c->cdw10);
3674 uint32_t dw11 = le32_to_cpu(c->cdw11);
3675
3676 if (!ns->params.zoned) {
3677 trace_pci_nvme_err_invalid_opc(c->opcode);
3678 return NVME_INVALID_OPCODE | NVME_DNR;
3679 }
3680
3681 *slba = ((uint64_t)dw11) << 32 | dw10;
3682 if (unlikely(*slba >= ns->id_ns.nsze)) {
3683 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3684 *slba = 0;
3685 return NVME_LBA_RANGE | NVME_DNR;
3686 }
3687
3688 *zone_idx = nvme_zone_idx(ns, *slba);
3689 assert(*zone_idx < ns->num_zones);
3690
3691 return NVME_SUCCESS;
3692 }
3693
3694 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3695 NvmeRequest *);
3696
3697 enum NvmeZoneProcessingMask {
3698 NVME_PROC_CURRENT_ZONE = 0,
3699 NVME_PROC_OPENED_ZONES = 1 << 0,
3700 NVME_PROC_CLOSED_ZONES = 1 << 1,
3701 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3702 NVME_PROC_FULL_ZONES = 1 << 3,
3703 };
3704
3705 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3706 NvmeZoneState state, NvmeRequest *req)
3707 {
3708 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3709 int flags = 0;
3710
3711 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3712 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3713
3714 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3715 return NVME_INVALID_ZONE_OP | NVME_DNR;
3716 }
3717
3718 if (zone->w_ptr % ns->zns.zrwafg) {
3719 return NVME_NOZRWA | NVME_DNR;
3720 }
3721
3722 flags = NVME_ZRM_ZRWA;
3723 }
3724
3725 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3726 }
3727
3728 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3729 NvmeZoneState state, NvmeRequest *req)
3730 {
3731 return nvme_zrm_close(ns, zone);
3732 }
3733
3734 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3735 NvmeZoneState state, NvmeRequest *req)
3736 {
3737 return nvme_zrm_finish(ns, zone);
3738 }
3739
3740 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3741 NvmeZoneState state, NvmeRequest *req)
3742 {
3743 switch (state) {
3744 case NVME_ZONE_STATE_READ_ONLY:
3745 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3746 /* fall through */
3747 case NVME_ZONE_STATE_OFFLINE:
3748 return NVME_SUCCESS;
3749 default:
3750 return NVME_ZONE_INVAL_TRANSITION;
3751 }
3752 }
3753
3754 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3755 {
3756 uint16_t status;
3757 uint8_t state = nvme_get_zone_state(zone);
3758
3759 if (state == NVME_ZONE_STATE_EMPTY) {
3760 status = nvme_aor_check(ns, 1, 0);
3761 if (status) {
3762 return status;
3763 }
3764 nvme_aor_inc_active(ns);
3765 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3766 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3767 return NVME_SUCCESS;
3768 }
3769
3770 return NVME_ZONE_INVAL_TRANSITION;
3771 }
3772
3773 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3774 enum NvmeZoneProcessingMask proc_mask,
3775 op_handler_t op_hndlr, NvmeRequest *req)
3776 {
3777 uint16_t status = NVME_SUCCESS;
3778 NvmeZoneState zs = nvme_get_zone_state(zone);
3779 bool proc_zone;
3780
3781 switch (zs) {
3782 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3783 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3784 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3785 break;
3786 case NVME_ZONE_STATE_CLOSED:
3787 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3788 break;
3789 case NVME_ZONE_STATE_READ_ONLY:
3790 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3791 break;
3792 case NVME_ZONE_STATE_FULL:
3793 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3794 break;
3795 default:
3796 proc_zone = false;
3797 }
3798
3799 if (proc_zone) {
3800 status = op_hndlr(ns, zone, zs, req);
3801 }
3802
3803 return status;
3804 }
3805
3806 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3807 enum NvmeZoneProcessingMask proc_mask,
3808 op_handler_t op_hndlr, NvmeRequest *req)
3809 {
3810 NvmeZone *next;
3811 uint16_t status = NVME_SUCCESS;
3812 int i;
3813
3814 if (!proc_mask) {
3815 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3816 } else {
3817 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3818 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3819 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3820 req);
3821 if (status && status != NVME_NO_COMPLETE) {
3822 goto out;
3823 }
3824 }
3825 }
3826 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3827 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3828 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3829 req);
3830 if (status && status != NVME_NO_COMPLETE) {
3831 goto out;
3832 }
3833 }
3834
3835 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3836 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3837 req);
3838 if (status && status != NVME_NO_COMPLETE) {
3839 goto out;
3840 }
3841 }
3842 }
3843 if (proc_mask & NVME_PROC_FULL_ZONES) {
3844 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3845 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3846 req);
3847 if (status && status != NVME_NO_COMPLETE) {
3848 goto out;
3849 }
3850 }
3851 }
3852
3853 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3854 for (i = 0; i < ns->num_zones; i++, zone++) {
3855 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3856 req);
3857 if (status && status != NVME_NO_COMPLETE) {
3858 goto out;
3859 }
3860 }
3861 }
3862 }
3863
3864 out:
3865 return status;
3866 }
3867
3868 typedef struct NvmeZoneResetAIOCB {
3869 BlockAIOCB common;
3870 BlockAIOCB *aiocb;
3871 NvmeRequest *req;
3872 int ret;
3873
3874 bool all;
3875 int idx;
3876 NvmeZone *zone;
3877 } NvmeZoneResetAIOCB;
3878
3879 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3880 {
3881 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3882 NvmeRequest *req = iocb->req;
3883 NvmeNamespace *ns = req->ns;
3884
3885 iocb->idx = ns->num_zones;
3886
3887 iocb->ret = -ECANCELED;
3888
3889 if (iocb->aiocb) {
3890 blk_aio_cancel_async(iocb->aiocb);
3891 iocb->aiocb = NULL;
3892 }
3893 }
3894
3895 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3896 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3897 .cancel_async = nvme_zone_reset_cancel,
3898 };
3899
3900 static void nvme_zone_reset_cb(void *opaque, int ret);
3901
3902 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3903 {
3904 NvmeZoneResetAIOCB *iocb = opaque;
3905 NvmeRequest *req = iocb->req;
3906 NvmeNamespace *ns = req->ns;
3907 int64_t moff;
3908 int count;
3909
3910 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3911 goto out;
3912 }
3913
3914 moff = nvme_moff(ns, iocb->zone->d.zslba);
3915 count = nvme_m2b(ns, ns->zone_size);
3916
3917 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3918 BDRV_REQ_MAY_UNMAP,
3919 nvme_zone_reset_cb, iocb);
3920 return;
3921
3922 out:
3923 nvme_zone_reset_cb(iocb, ret);
3924 }
3925
3926 static void nvme_zone_reset_cb(void *opaque, int ret)
3927 {
3928 NvmeZoneResetAIOCB *iocb = opaque;
3929 NvmeRequest *req = iocb->req;
3930 NvmeNamespace *ns = req->ns;
3931
3932 if (iocb->ret < 0) {
3933 goto done;
3934 } else if (ret < 0) {
3935 iocb->ret = ret;
3936 goto done;
3937 }
3938
3939 if (iocb->zone) {
3940 nvme_zrm_reset(ns, iocb->zone);
3941
3942 if (!iocb->all) {
3943 goto done;
3944 }
3945 }
3946
3947 while (iocb->idx < ns->num_zones) {
3948 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3949
3950 switch (nvme_get_zone_state(zone)) {
3951 case NVME_ZONE_STATE_EMPTY:
3952 if (!iocb->all) {
3953 goto done;
3954 }
3955
3956 continue;
3957
3958 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3959 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3960 case NVME_ZONE_STATE_CLOSED:
3961 case NVME_ZONE_STATE_FULL:
3962 iocb->zone = zone;
3963 break;
3964
3965 default:
3966 continue;
3967 }
3968
3969 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3970
3971 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3972 nvme_l2b(ns, zone->d.zslba),
3973 nvme_l2b(ns, ns->zone_size),
3974 BDRV_REQ_MAY_UNMAP,
3975 nvme_zone_reset_epilogue_cb,
3976 iocb);
3977 return;
3978 }
3979
3980 done:
3981 iocb->aiocb = NULL;
3982
3983 iocb->common.cb(iocb->common.opaque, iocb->ret);
3984 qemu_aio_unref(iocb);
3985 }
3986
3987 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3988 uint64_t elba, NvmeRequest *req)
3989 {
3990 NvmeNamespace *ns = req->ns;
3991 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3992 uint64_t wp = zone->d.wp;
3993 uint32_t nlb = elba - wp + 1;
3994 uint16_t status;
3995
3996
3997 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3998 return NVME_INVALID_ZONE_OP | NVME_DNR;
3999 }
4000
4001 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
4002 return NVME_INVALID_FIELD | NVME_DNR;
4003 }
4004
4005 if (elba < wp || elba > wp + ns->zns.zrwas) {
4006 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
4007 }
4008
4009 if (nlb % ns->zns.zrwafg) {
4010 return NVME_INVALID_FIELD | NVME_DNR;
4011 }
4012
4013 status = nvme_zrm_auto(n, ns, zone);
4014 if (status) {
4015 return status;
4016 }
4017
4018 zone->w_ptr += nlb;
4019
4020 nvme_advance_zone_wp(ns, zone, nlb);
4021
4022 return NVME_SUCCESS;
4023 }
4024
4025 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4026 {
4027 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4028 NvmeNamespace *ns = req->ns;
4029 NvmeZone *zone;
4030 NvmeZoneResetAIOCB *iocb;
4031 uint8_t *zd_ext;
4032 uint64_t slba = 0;
4033 uint32_t zone_idx = 0;
4034 uint16_t status;
4035 uint8_t action = cmd->zsa;
4036 bool all;
4037 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4038
4039 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4040
4041 req->status = NVME_SUCCESS;
4042
4043 if (!all) {
4044 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4045 if (status) {
4046 return status;
4047 }
4048 }
4049
4050 zone = &ns->zone_array[zone_idx];
4051 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4052 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4053 return NVME_INVALID_FIELD | NVME_DNR;
4054 }
4055
4056 switch (action) {
4057
4058 case NVME_ZONE_ACTION_OPEN:
4059 if (all) {
4060 proc_mask = NVME_PROC_CLOSED_ZONES;
4061 }
4062 trace_pci_nvme_open_zone(slba, zone_idx, all);
4063 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4064 break;
4065
4066 case NVME_ZONE_ACTION_CLOSE:
4067 if (all) {
4068 proc_mask = NVME_PROC_OPENED_ZONES;
4069 }
4070 trace_pci_nvme_close_zone(slba, zone_idx, all);
4071 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4072 break;
4073
4074 case NVME_ZONE_ACTION_FINISH:
4075 if (all) {
4076 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4077 }
4078 trace_pci_nvme_finish_zone(slba, zone_idx, all);
4079 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4080 break;
4081
4082 case NVME_ZONE_ACTION_RESET:
4083 trace_pci_nvme_reset_zone(slba, zone_idx, all);
4084
4085 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4086 nvme_misc_cb, req);
4087
4088 iocb->req = req;
4089 iocb->ret = 0;
4090 iocb->all = all;
4091 iocb->idx = zone_idx;
4092 iocb->zone = NULL;
4093
4094 req->aiocb = &iocb->common;
4095 nvme_zone_reset_cb(iocb, 0);
4096
4097 return NVME_NO_COMPLETE;
4098
4099 case NVME_ZONE_ACTION_OFFLINE:
4100 if (all) {
4101 proc_mask = NVME_PROC_READ_ONLY_ZONES;
4102 }
4103 trace_pci_nvme_offline_zone(slba, zone_idx, all);
4104 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4105 break;
4106
4107 case NVME_ZONE_ACTION_SET_ZD_EXT:
4108 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4109 if (all || !ns->params.zd_extension_size) {
4110 return NVME_INVALID_FIELD | NVME_DNR;
4111 }
4112 zd_ext = nvme_get_zd_extension(ns, zone_idx);
4113 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4114 if (status) {
4115 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4116 return status;
4117 }
4118
4119 status = nvme_set_zd_ext(ns, zone);
4120 if (status == NVME_SUCCESS) {
4121 trace_pci_nvme_zd_extension_set(zone_idx);
4122 return status;
4123 }
4124 break;
4125
4126 case NVME_ZONE_ACTION_ZRWA_FLUSH:
4127 if (all) {
4128 return NVME_INVALID_FIELD | NVME_DNR;
4129 }
4130
4131 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4132
4133 default:
4134 trace_pci_nvme_err_invalid_mgmt_action(action);
4135 status = NVME_INVALID_FIELD;
4136 }
4137
4138 if (status == NVME_ZONE_INVAL_TRANSITION) {
4139 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4140 zone->d.za);
4141 }
4142 if (status) {
4143 status |= NVME_DNR;
4144 }
4145
4146 return status;
4147 }
4148
4149 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4150 {
4151 NvmeZoneState zs = nvme_get_zone_state(zl);
4152
4153 switch (zafs) {
4154 case NVME_ZONE_REPORT_ALL:
4155 return true;
4156 case NVME_ZONE_REPORT_EMPTY:
4157 return zs == NVME_ZONE_STATE_EMPTY;
4158 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4159 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4160 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4161 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4162 case NVME_ZONE_REPORT_CLOSED:
4163 return zs == NVME_ZONE_STATE_CLOSED;
4164 case NVME_ZONE_REPORT_FULL:
4165 return zs == NVME_ZONE_STATE_FULL;
4166 case NVME_ZONE_REPORT_READ_ONLY:
4167 return zs == NVME_ZONE_STATE_READ_ONLY;
4168 case NVME_ZONE_REPORT_OFFLINE:
4169 return zs == NVME_ZONE_STATE_OFFLINE;
4170 default:
4171 return false;
4172 }
4173 }
4174
4175 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4176 {
4177 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4178 NvmeNamespace *ns = req->ns;
4179 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4180 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4181 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4182 uint32_t zone_idx, zra, zrasf, partial;
4183 uint64_t max_zones, nr_zones = 0;
4184 uint16_t status;
4185 uint64_t slba;
4186 NvmeZoneDescr *z;
4187 NvmeZone *zone;
4188 NvmeZoneReportHeader *header;
4189 void *buf, *buf_p;
4190 size_t zone_entry_sz;
4191 int i;
4192
4193 req->status = NVME_SUCCESS;
4194
4195 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4196 if (status) {
4197 return status;
4198 }
4199
4200 zra = dw13 & 0xff;
4201 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4202 return NVME_INVALID_FIELD | NVME_DNR;
4203 }
4204 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4205 return NVME_INVALID_FIELD | NVME_DNR;
4206 }
4207
4208 zrasf = (dw13 >> 8) & 0xff;
4209 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4210 return NVME_INVALID_FIELD | NVME_DNR;
4211 }
4212
4213 if (data_size < sizeof(NvmeZoneReportHeader)) {
4214 return NVME_INVALID_FIELD | NVME_DNR;
4215 }
4216
4217 status = nvme_check_mdts(n, data_size);
4218 if (status) {
4219 return status;
4220 }
4221
4222 partial = (dw13 >> 16) & 0x01;
4223
4224 zone_entry_sz = sizeof(NvmeZoneDescr);
4225 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4226 zone_entry_sz += ns->params.zd_extension_size;
4227 }
4228
4229 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4230 buf = g_malloc0(data_size);
4231
4232 zone = &ns->zone_array[zone_idx];
4233 for (i = zone_idx; i < ns->num_zones; i++) {
4234 if (partial && nr_zones >= max_zones) {
4235 break;
4236 }
4237 if (nvme_zone_matches_filter(zrasf, zone++)) {
4238 nr_zones++;
4239 }
4240 }
4241 header = buf;
4242 header->nr_zones = cpu_to_le64(nr_zones);
4243
4244 buf_p = buf + sizeof(NvmeZoneReportHeader);
4245 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4246 zone = &ns->zone_array[zone_idx];
4247 if (nvme_zone_matches_filter(zrasf, zone)) {
4248 z = buf_p;
4249 buf_p += sizeof(NvmeZoneDescr);
4250
4251 z->zt = zone->d.zt;
4252 z->zs = zone->d.zs;
4253 z->zcap = cpu_to_le64(zone->d.zcap);
4254 z->zslba = cpu_to_le64(zone->d.zslba);
4255 z->za = zone->d.za;
4256
4257 if (nvme_wp_is_valid(zone)) {
4258 z->wp = cpu_to_le64(zone->d.wp);
4259 } else {
4260 z->wp = cpu_to_le64(~0ULL);
4261 }
4262
4263 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4264 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4265 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4266 ns->params.zd_extension_size);
4267 }
4268 buf_p += ns->params.zd_extension_size;
4269 }
4270
4271 max_zones--;
4272 }
4273 }
4274
4275 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4276
4277 g_free(buf);
4278
4279 return status;
4280 }
4281
4282 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4283 size_t len)
4284 {
4285 NvmeNamespace *ns = req->ns;
4286 NvmeEnduranceGroup *endgrp;
4287 NvmeRuhStatus *hdr;
4288 NvmeRuhStatusDescr *ruhsd;
4289 unsigned int nruhsd;
4290 uint16_t rg, ph, *ruhid;
4291 size_t trans_len;
4292 g_autofree uint8_t *buf = NULL;
4293
4294 if (!n->subsys) {
4295 return NVME_INVALID_FIELD | NVME_DNR;
4296 }
4297
4298 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4299 return NVME_INVALID_NSID | NVME_DNR;
4300 }
4301
4302 if (!n->subsys->endgrp.fdp.enabled) {
4303 return NVME_FDP_DISABLED | NVME_DNR;
4304 }
4305
4306 endgrp = ns->endgrp;
4307
4308 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4309 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4310 buf = g_malloc(trans_len);
4311
4312 trans_len = MIN(trans_len, len);
4313
4314 hdr = (NvmeRuhStatus *)buf;
4315 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4316
4317 hdr->nruhsd = cpu_to_le16(nruhsd);
4318
4319 ruhid = ns->fdp.phs;
4320
4321 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4322 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4323
4324 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4325 uint16_t pid = nvme_make_pid(ns, rg, ph);
4326
4327 ruhsd->pid = cpu_to_le16(pid);
4328 ruhsd->ruhid = *ruhid;
4329 ruhsd->earutr = 0;
4330 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4331 }
4332 }
4333
4334 return nvme_c2h(n, buf, trans_len, req);
4335 }
4336
4337 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4338 {
4339 NvmeCmd *cmd = &req->cmd;
4340 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4341 uint32_t numd = le32_to_cpu(cmd->cdw11);
4342 uint8_t mo = (cdw10 & 0xff);
4343 size_t len = (numd + 1) << 2;
4344
4345 switch (mo) {
4346 case NVME_IOMR_MO_NOP:
4347 return 0;
4348 case NVME_IOMR_MO_RUH_STATUS:
4349 return nvme_io_mgmt_recv_ruhs(n, req, len);
4350 default:
4351 return NVME_INVALID_FIELD | NVME_DNR;
4352 };
4353 }
4354
4355 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4356 {
4357 NvmeCmd *cmd = &req->cmd;
4358 NvmeNamespace *ns = req->ns;
4359 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4360 uint16_t ret = NVME_SUCCESS;
4361 uint32_t npid = (cdw10 >> 1) + 1;
4362 unsigned int i = 0;
4363 g_autofree uint16_t *pids = NULL;
4364 uint32_t maxnpid;
4365
4366 if (!ns->endgrp || !ns->endgrp->fdp.enabled) {
4367 return NVME_FDP_DISABLED | NVME_DNR;
4368 }
4369
4370 maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4371
4372 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4373 return NVME_INVALID_FIELD | NVME_DNR;
4374 }
4375
4376 pids = g_new(uint16_t, npid);
4377
4378 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4379 if (ret) {
4380 return ret;
4381 }
4382
4383 for (; i < npid; i++) {
4384 if (!nvme_update_ruh(n, ns, pids[i])) {
4385 return NVME_INVALID_FIELD | NVME_DNR;
4386 }
4387 }
4388
4389 return ret;
4390 }
4391
4392 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4393 {
4394 NvmeCmd *cmd = &req->cmd;
4395 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4396 uint8_t mo = (cdw10 & 0xff);
4397
4398 switch (mo) {
4399 case NVME_IOMS_MO_NOP:
4400 return 0;
4401 case NVME_IOMS_MO_RUH_UPDATE:
4402 return nvme_io_mgmt_send_ruh_update(n, req);
4403 default:
4404 return NVME_INVALID_FIELD | NVME_DNR;
4405 };
4406 }
4407
4408 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4409 {
4410 NvmeNamespace *ns;
4411 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4412
4413 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4414 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4415
4416 if (!nvme_nsid_valid(n, nsid)) {
4417 return NVME_INVALID_NSID | NVME_DNR;
4418 }
4419
4420 /*
4421 * In the base NVM command set, Flush may apply to all namespaces
4422 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4423 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4424 *
4425 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4426 * opcode with a specific command since we cannot determine a unique I/O
4427 * command set. Opcode 0h could have any other meaning than something
4428 * equivalent to flushing and say it DOES have completely different
4429 * semantics in some other command set - does an NSID of FFFFFFFFh then
4430 * mean "for all namespaces, apply whatever command set specific command
4431 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4432 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4433 * to be FFFFFFFFh"?
4434 *
4435 * Anyway (and luckily), for now, we do not care about this since the
4436 * device only supports namespace types that includes the NVM Flush command
4437 * (NVM and Zoned), so always do an NVM Flush.
4438 */
4439 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4440 return nvme_flush(n, req);
4441 }
4442
4443 ns = nvme_ns(n, nsid);
4444 if (unlikely(!ns)) {
4445 return NVME_INVALID_FIELD | NVME_DNR;
4446 }
4447
4448 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4449 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4450 return NVME_INVALID_OPCODE | NVME_DNR;
4451 }
4452
4453 if (ns->status) {
4454 return ns->status;
4455 }
4456
4457 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4458 return NVME_INVALID_FIELD;
4459 }
4460
4461 req->ns = ns;
4462
4463 switch (req->cmd.opcode) {
4464 case NVME_CMD_WRITE_ZEROES:
4465 return nvme_write_zeroes(n, req);
4466 case NVME_CMD_ZONE_APPEND:
4467 return nvme_zone_append(n, req);
4468 case NVME_CMD_WRITE:
4469 return nvme_write(n, req);
4470 case NVME_CMD_READ:
4471 return nvme_read(n, req);
4472 case NVME_CMD_COMPARE:
4473 return nvme_compare(n, req);
4474 case NVME_CMD_DSM:
4475 return nvme_dsm(n, req);
4476 case NVME_CMD_VERIFY:
4477 return nvme_verify(n, req);
4478 case NVME_CMD_COPY:
4479 return nvme_copy(n, req);
4480 case NVME_CMD_ZONE_MGMT_SEND:
4481 return nvme_zone_mgmt_send(n, req);
4482 case NVME_CMD_ZONE_MGMT_RECV:
4483 return nvme_zone_mgmt_recv(n, req);
4484 case NVME_CMD_IO_MGMT_RECV:
4485 return nvme_io_mgmt_recv(n, req);
4486 case NVME_CMD_IO_MGMT_SEND:
4487 return nvme_io_mgmt_send(n, req);
4488 default:
4489 assert(false);
4490 }
4491
4492 return NVME_INVALID_OPCODE | NVME_DNR;
4493 }
4494
4495 static void nvme_cq_notifier(EventNotifier *e)
4496 {
4497 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4498 NvmeCtrl *n = cq->ctrl;
4499
4500 if (!event_notifier_test_and_clear(e)) {
4501 return;
4502 }
4503
4504 nvme_update_cq_head(cq);
4505
4506 if (cq->tail == cq->head) {
4507 if (cq->irq_enabled) {
4508 n->cq_pending--;
4509 }
4510
4511 nvme_irq_deassert(n, cq);
4512 }
4513
4514 qemu_bh_schedule(cq->bh);
4515 }
4516
4517 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4518 {
4519 NvmeCtrl *n = cq->ctrl;
4520 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4521 int ret;
4522
4523 ret = event_notifier_init(&cq->notifier, 0);
4524 if (ret < 0) {
4525 return ret;
4526 }
4527
4528 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4529 memory_region_add_eventfd(&n->iomem,
4530 0x1000 + offset, 4, false, 0, &cq->notifier);
4531
4532 return 0;
4533 }
4534
4535 static void nvme_sq_notifier(EventNotifier *e)
4536 {
4537 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4538
4539 if (!event_notifier_test_and_clear(e)) {
4540 return;
4541 }
4542
4543 nvme_process_sq(sq);
4544 }
4545
4546 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4547 {
4548 NvmeCtrl *n = sq->ctrl;
4549 uint16_t offset = sq->sqid << 3;
4550 int ret;
4551
4552 ret = event_notifier_init(&sq->notifier, 0);
4553 if (ret < 0) {
4554 return ret;
4555 }
4556
4557 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4558 memory_region_add_eventfd(&n->iomem,
4559 0x1000 + offset, 4, false, 0, &sq->notifier);
4560
4561 return 0;
4562 }
4563
4564 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4565 {
4566 uint16_t offset = sq->sqid << 3;
4567
4568 n->sq[sq->sqid] = NULL;
4569 qemu_bh_delete(sq->bh);
4570 if (sq->ioeventfd_enabled) {
4571 memory_region_del_eventfd(&n->iomem,
4572 0x1000 + offset, 4, false, 0, &sq->notifier);
4573 event_notifier_set_handler(&sq->notifier, NULL);
4574 event_notifier_cleanup(&sq->notifier);
4575 }
4576 g_free(sq->io_req);
4577 if (sq->sqid) {
4578 g_free(sq);
4579 }
4580 }
4581
4582 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4583 {
4584 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4585 NvmeRequest *r, *next;
4586 NvmeSQueue *sq;
4587 NvmeCQueue *cq;
4588 uint16_t qid = le16_to_cpu(c->qid);
4589
4590 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4591 trace_pci_nvme_err_invalid_del_sq(qid);
4592 return NVME_INVALID_QID | NVME_DNR;
4593 }
4594
4595 trace_pci_nvme_del_sq(qid);
4596
4597 sq = n->sq[qid];
4598 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4599 r = QTAILQ_FIRST(&sq->out_req_list);
4600 assert(r->aiocb);
4601 blk_aio_cancel(r->aiocb);
4602 }
4603
4604 assert(QTAILQ_EMPTY(&sq->out_req_list));
4605
4606 if (!nvme_check_cqid(n, sq->cqid)) {
4607 cq = n->cq[sq->cqid];
4608 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4609
4610 nvme_post_cqes(cq);
4611 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4612 if (r->sq == sq) {
4613 QTAILQ_REMOVE(&cq->req_list, r, entry);
4614 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4615 }
4616 }
4617 }
4618
4619 nvme_free_sq(sq, n);
4620 return NVME_SUCCESS;
4621 }
4622
4623 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4624 uint16_t sqid, uint16_t cqid, uint16_t size)
4625 {
4626 int i;
4627 NvmeCQueue *cq;
4628
4629 sq->ctrl = n;
4630 sq->dma_addr = dma_addr;
4631 sq->sqid = sqid;
4632 sq->size = size;
4633 sq->cqid = cqid;
4634 sq->head = sq->tail = 0;
4635 sq->io_req = g_new0(NvmeRequest, sq->size);
4636
4637 QTAILQ_INIT(&sq->req_list);
4638 QTAILQ_INIT(&sq->out_req_list);
4639 for (i = 0; i < sq->size; i++) {
4640 sq->io_req[i].sq = sq;
4641 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4642 }
4643
4644 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
4645 &DEVICE(sq->ctrl)->mem_reentrancy_guard);
4646
4647 if (n->dbbuf_enabled) {
4648 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4649 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4650
4651 if (n->params.ioeventfd && sq->sqid != 0) {
4652 if (!nvme_init_sq_ioeventfd(sq)) {
4653 sq->ioeventfd_enabled = true;
4654 }
4655 }
4656 }
4657
4658 assert(n->cq[cqid]);
4659 cq = n->cq[cqid];
4660 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4661 n->sq[sqid] = sq;
4662 }
4663
4664 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4665 {
4666 NvmeSQueue *sq;
4667 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4668
4669 uint16_t cqid = le16_to_cpu(c->cqid);
4670 uint16_t sqid = le16_to_cpu(c->sqid);
4671 uint16_t qsize = le16_to_cpu(c->qsize);
4672 uint16_t qflags = le16_to_cpu(c->sq_flags);
4673 uint64_t prp1 = le64_to_cpu(c->prp1);
4674
4675 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4676
4677 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4678 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4679 return NVME_INVALID_CQID | NVME_DNR;
4680 }
4681 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4682 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4683 return NVME_INVALID_QID | NVME_DNR;
4684 }
4685 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4686 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4687 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4688 }
4689 if (unlikely(prp1 & (n->page_size - 1))) {
4690 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4691 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4692 }
4693 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4694 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4695 return NVME_INVALID_FIELD | NVME_DNR;
4696 }
4697 sq = g_malloc0(sizeof(*sq));
4698 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4699 return NVME_SUCCESS;
4700 }
4701
4702 struct nvme_stats {
4703 uint64_t units_read;
4704 uint64_t units_written;
4705 uint64_t read_commands;
4706 uint64_t write_commands;
4707 };
4708
4709 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4710 {
4711 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4712
4713 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4714 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4715 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4716 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4717 }
4718
4719 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4720 uint64_t off, NvmeRequest *req)
4721 {
4722 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4723 struct nvme_stats stats = { 0 };
4724 NvmeSmartLog smart = { 0 };
4725 uint32_t trans_len;
4726 NvmeNamespace *ns;
4727 time_t current_ms;
4728 uint64_t u_read, u_written;
4729
4730 if (off >= sizeof(smart)) {
4731 return NVME_INVALID_FIELD | NVME_DNR;
4732 }
4733
4734 if (nsid != 0xffffffff) {
4735 ns = nvme_ns(n, nsid);
4736 if (!ns) {
4737 return NVME_INVALID_NSID | NVME_DNR;
4738 }
4739 nvme_set_blk_stats(ns, &stats);
4740 } else {
4741 int i;
4742
4743 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4744 ns = nvme_ns(n, i);
4745 if (!ns) {
4746 continue;
4747 }
4748 nvme_set_blk_stats(ns, &stats);
4749 }
4750 }
4751
4752 trans_len = MIN(sizeof(smart) - off, buf_len);
4753 smart.critical_warning = n->smart_critical_warning;
4754
4755 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4756 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4757
4758 smart.data_units_read[0] = cpu_to_le64(u_read);
4759 smart.data_units_written[0] = cpu_to_le64(u_written);
4760 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4761 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4762
4763 smart.temperature = cpu_to_le16(n->temperature);
4764
4765 if ((n->temperature >= n->features.temp_thresh_hi) ||
4766 (n->temperature <= n->features.temp_thresh_low)) {
4767 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4768 }
4769
4770 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4771 smart.power_on_hours[0] =
4772 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4773
4774 if (!rae) {
4775 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4776 }
4777
4778 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4779 }
4780
4781 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4782 uint64_t off, NvmeRequest *req)
4783 {
4784 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4785 uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4786 struct nvme_stats stats = {};
4787 NvmeEndGrpLog info = {};
4788 int i;
4789
4790 if (!n->subsys || endgrpid != 0x1) {
4791 return NVME_INVALID_FIELD | NVME_DNR;
4792 }
4793
4794 if (off >= sizeof(info)) {
4795 return NVME_INVALID_FIELD | NVME_DNR;
4796 }
4797
4798 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4799 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4800 if (!ns) {
4801 continue;
4802 }
4803
4804 nvme_set_blk_stats(ns, &stats);
4805 }
4806
4807 info.data_units_read[0] =
4808 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4809 info.data_units_written[0] =
4810 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4811 info.media_units_written[0] =
4812 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4813
4814 info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4815 info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4816
4817 buf_len = MIN(sizeof(info) - off, buf_len);
4818
4819 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4820 }
4821
4822
4823 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4824 NvmeRequest *req)
4825 {
4826 uint32_t trans_len;
4827 NvmeFwSlotInfoLog fw_log = {
4828 .afi = 0x1,
4829 };
4830
4831 if (off >= sizeof(fw_log)) {
4832 return NVME_INVALID_FIELD | NVME_DNR;
4833 }
4834
4835 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4836 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4837
4838 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4839 }
4840
4841 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4842 uint64_t off, NvmeRequest *req)
4843 {
4844 uint32_t trans_len;
4845 NvmeErrorLog errlog;
4846
4847 if (off >= sizeof(errlog)) {
4848 return NVME_INVALID_FIELD | NVME_DNR;
4849 }
4850
4851 if (!rae) {
4852 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4853 }
4854
4855 memset(&errlog, 0x0, sizeof(errlog));
4856 trans_len = MIN(sizeof(errlog) - off, buf_len);
4857
4858 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4859 }
4860
4861 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4862 uint64_t off, NvmeRequest *req)
4863 {
4864 uint32_t nslist[1024];
4865 uint32_t trans_len;
4866 int i = 0;
4867 uint32_t nsid;
4868
4869 if (off >= sizeof(nslist)) {
4870 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4871 return NVME_INVALID_FIELD | NVME_DNR;
4872 }
4873
4874 memset(nslist, 0x0, sizeof(nslist));
4875 trans_len = MIN(sizeof(nslist) - off, buf_len);
4876
4877 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4878 NVME_CHANGED_NSID_SIZE) {
4879 /*
4880 * If more than 1024 namespaces, the first entry in the log page should
4881 * be set to FFFFFFFFh and the others to 0 as spec.
4882 */
4883 if (i == ARRAY_SIZE(nslist)) {
4884 memset(nslist, 0x0, sizeof(nslist));
4885 nslist[0] = 0xffffffff;
4886 break;
4887 }
4888
4889 nslist[i++] = nsid;
4890 clear_bit(nsid, n->changed_nsids);
4891 }
4892
4893 /*
4894 * Remove all the remaining list entries in case returns directly due to
4895 * more than 1024 namespaces.
4896 */
4897 if (nslist[0] == 0xffffffff) {
4898 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4899 }
4900
4901 if (!rae) {
4902 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4903 }
4904
4905 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4906 }
4907
4908 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4909 uint64_t off, NvmeRequest *req)
4910 {
4911 NvmeEffectsLog log = {};
4912 const uint32_t *src_iocs = NULL;
4913 uint32_t trans_len;
4914
4915 if (off >= sizeof(log)) {
4916 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4917 return NVME_INVALID_FIELD | NVME_DNR;
4918 }
4919
4920 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4921 case NVME_CC_CSS_NVM:
4922 src_iocs = nvme_cse_iocs_nvm;
4923 /* fall through */
4924 case NVME_CC_CSS_ADMIN_ONLY:
4925 break;
4926 case NVME_CC_CSS_CSI:
4927 switch (csi) {
4928 case NVME_CSI_NVM:
4929 src_iocs = nvme_cse_iocs_nvm;
4930 break;
4931 case NVME_CSI_ZONED:
4932 src_iocs = nvme_cse_iocs_zoned;
4933 break;
4934 }
4935 }
4936
4937 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4938
4939 if (src_iocs) {
4940 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4941 }
4942
4943 trans_len = MIN(sizeof(log) - off, buf_len);
4944
4945 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4946 }
4947
4948 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4949 {
4950 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4951 + vss;
4952 return ROUND_UP(entry_siz, 8);
4953 }
4954
4955 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4956 uint64_t off, NvmeRequest *req)
4957 {
4958 uint32_t log_size, trans_len;
4959 g_autofree uint8_t *buf = NULL;
4960 NvmeFdpDescrHdr *hdr;
4961 NvmeRuhDescr *ruhd;
4962 NvmeEnduranceGroup *endgrp;
4963 NvmeFdpConfsHdr *log;
4964 size_t nruh, fdp_descr_size;
4965 int i;
4966
4967 if (endgrpid != 1 || !n->subsys) {
4968 return NVME_INVALID_FIELD | NVME_DNR;
4969 }
4970
4971 endgrp = &n->subsys->endgrp;
4972
4973 if (endgrp->fdp.enabled) {
4974 nruh = endgrp->fdp.nruh;
4975 } else {
4976 nruh = 1;
4977 }
4978
4979 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4980 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4981
4982 if (off >= log_size) {
4983 return NVME_INVALID_FIELD | NVME_DNR;
4984 }
4985
4986 trans_len = MIN(log_size - off, buf_len);
4987
4988 buf = g_malloc0(log_size);
4989 log = (NvmeFdpConfsHdr *)buf;
4990 hdr = (NvmeFdpDescrHdr *)(log + 1);
4991 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4992
4993 log->num_confs = cpu_to_le16(0);
4994 log->size = cpu_to_le32(log_size);
4995
4996 hdr->descr_size = cpu_to_le16(fdp_descr_size);
4997 if (endgrp->fdp.enabled) {
4998 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4999 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
5000 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
5001 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5002 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5003 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
5004 hdr->runs = cpu_to_le64(endgrp->fdp.runs);
5005
5006 for (i = 0; i < nruh; i++) {
5007 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5008 ruhd++;
5009 }
5010 } else {
5011 /* 1 bit for RUH in PIF -> 2 RUHs max. */
5012 hdr->nrg = cpu_to_le16(1);
5013 hdr->nruh = cpu_to_le16(1);
5014 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5015 hdr->nnss = cpu_to_le32(1);
5016 hdr->runs = cpu_to_le64(96 * MiB);
5017
5018 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5019 }
5020
5021 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5022 }
5023
5024 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
5025 uint32_t dw10, uint32_t dw12,
5026 uint32_t buf_len, uint64_t off,
5027 NvmeRequest *req)
5028 {
5029 NvmeRuHandle *ruh;
5030 NvmeRuhuLog *hdr;
5031 NvmeRuhuDescr *ruhud;
5032 NvmeEnduranceGroup *endgrp;
5033 g_autofree uint8_t *buf = NULL;
5034 uint32_t log_size, trans_len;
5035 uint16_t i;
5036
5037 if (endgrpid != 1 || !n->subsys) {
5038 return NVME_INVALID_FIELD | NVME_DNR;
5039 }
5040
5041 endgrp = &n->subsys->endgrp;
5042
5043 if (!endgrp->fdp.enabled) {
5044 return NVME_FDP_DISABLED | NVME_DNR;
5045 }
5046
5047 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5048
5049 if (off >= log_size) {
5050 return NVME_INVALID_FIELD | NVME_DNR;
5051 }
5052
5053 trans_len = MIN(log_size - off, buf_len);
5054
5055 buf = g_malloc0(log_size);
5056 hdr = (NvmeRuhuLog *)buf;
5057 ruhud = (NvmeRuhuDescr *)(hdr + 1);
5058
5059 ruh = endgrp->fdp.ruhs;
5060 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5061
5062 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5063 ruhud->ruha = ruh->ruha;
5064 }
5065
5066 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5067 }
5068
5069 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5070 uint64_t off, NvmeRequest *req)
5071 {
5072 NvmeEnduranceGroup *endgrp;
5073 NvmeFdpStatsLog log = {};
5074 uint32_t trans_len;
5075
5076 if (off >= sizeof(NvmeFdpStatsLog)) {
5077 return NVME_INVALID_FIELD | NVME_DNR;
5078 }
5079
5080 if (endgrpid != 1 || !n->subsys) {
5081 return NVME_INVALID_FIELD | NVME_DNR;
5082 }
5083
5084 if (!n->subsys->endgrp.fdp.enabled) {
5085 return NVME_FDP_DISABLED | NVME_DNR;
5086 }
5087
5088 endgrp = &n->subsys->endgrp;
5089
5090 trans_len = MIN(sizeof(log) - off, buf_len);
5091
5092 /* spec value is 128 bit, we only use 64 bit */
5093 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5094 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5095 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5096
5097 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5098 }
5099
5100 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5101 uint32_t buf_len, uint64_t off,
5102 NvmeRequest *req)
5103 {
5104 NvmeEnduranceGroup *endgrp;
5105 NvmeCmd *cmd = &req->cmd;
5106 bool host_events = (cmd->cdw10 >> 8) & 0x1;
5107 uint32_t log_size, trans_len;
5108 NvmeFdpEventBuffer *ebuf;
5109 g_autofree NvmeFdpEventsLog *elog = NULL;
5110 NvmeFdpEvent *event;
5111
5112 if (endgrpid != 1 || !n->subsys) {
5113 return NVME_INVALID_FIELD | NVME_DNR;
5114 }
5115
5116 endgrp = &n->subsys->endgrp;
5117
5118 if (!endgrp->fdp.enabled) {
5119 return NVME_FDP_DISABLED | NVME_DNR;
5120 }
5121
5122 if (host_events) {
5123 ebuf = &endgrp->fdp.host_events;
5124 } else {
5125 ebuf = &endgrp->fdp.ctrl_events;
5126 }
5127
5128 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5129
5130 if (off >= log_size) {
5131 return NVME_INVALID_FIELD | NVME_DNR;
5132 }
5133
5134 trans_len = MIN(log_size - off, buf_len);
5135 elog = g_malloc0(log_size);
5136 elog->num_events = cpu_to_le32(ebuf->nelems);
5137 event = (NvmeFdpEvent *)(elog + 1);
5138
5139 if (ebuf->nelems && ebuf->start == ebuf->next) {
5140 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5141 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5142 memcpy(event, &ebuf->events[ebuf->start],
5143 sizeof(NvmeFdpEvent) * nelems);
5144 memcpy(event + nelems, ebuf->events,
5145 sizeof(NvmeFdpEvent) * ebuf->next);
5146 } else if (ebuf->start < ebuf->next) {
5147 memcpy(event, &ebuf->events[ebuf->start],
5148 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5149 }
5150
5151 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5152 }
5153
5154 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5155 {
5156 NvmeCmd *cmd = &req->cmd;
5157
5158 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5159 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5160 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5161 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5162 uint8_t lid = dw10 & 0xff;
5163 uint8_t lsp = (dw10 >> 8) & 0xf;
5164 uint8_t rae = (dw10 >> 15) & 0x1;
5165 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
5166 uint32_t numdl, numdu, lspi;
5167 uint64_t off, lpol, lpou;
5168 size_t len;
5169 uint16_t status;
5170
5171 numdl = (dw10 >> 16);
5172 numdu = (dw11 & 0xffff);
5173 lspi = (dw11 >> 16);
5174 lpol = dw12;
5175 lpou = dw13;
5176
5177 len = (((numdu << 16) | numdl) + 1) << 2;
5178 off = (lpou << 32ULL) | lpol;
5179
5180 if (off & 0x3) {
5181 return NVME_INVALID_FIELD | NVME_DNR;
5182 }
5183
5184 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5185
5186 status = nvme_check_mdts(n, len);
5187 if (status) {
5188 return status;
5189 }
5190
5191 switch (lid) {
5192 case NVME_LOG_ERROR_INFO:
5193 return nvme_error_info(n, rae, len, off, req);
5194 case NVME_LOG_SMART_INFO:
5195 return nvme_smart_info(n, rae, len, off, req);
5196 case NVME_LOG_FW_SLOT_INFO:
5197 return nvme_fw_log_info(n, len, off, req);
5198 case NVME_LOG_CHANGED_NSLIST:
5199 return nvme_changed_nslist(n, rae, len, off, req);
5200 case NVME_LOG_CMD_EFFECTS:
5201 return nvme_cmd_effects(n, csi, len, off, req);
5202 case NVME_LOG_ENDGRP:
5203 return nvme_endgrp_info(n, rae, len, off, req);
5204 case NVME_LOG_FDP_CONFS:
5205 return nvme_fdp_confs(n, lspi, len, off, req);
5206 case NVME_LOG_FDP_RUH_USAGE:
5207 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5208 case NVME_LOG_FDP_STATS:
5209 return nvme_fdp_stats(n, lspi, len, off, req);
5210 case NVME_LOG_FDP_EVENTS:
5211 return nvme_fdp_events(n, lspi, len, off, req);
5212 default:
5213 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5214 return NVME_INVALID_FIELD | NVME_DNR;
5215 }
5216 }
5217
5218 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5219 {
5220 PCIDevice *pci = PCI_DEVICE(n);
5221 uint16_t offset = (cq->cqid << 3) + (1 << 2);
5222
5223 n->cq[cq->cqid] = NULL;
5224 qemu_bh_delete(cq->bh);
5225 if (cq->ioeventfd_enabled) {
5226 memory_region_del_eventfd(&n->iomem,
5227 0x1000 + offset, 4, false, 0, &cq->notifier);
5228 event_notifier_set_handler(&cq->notifier, NULL);
5229 event_notifier_cleanup(&cq->notifier);
5230 }
5231 if (msix_enabled(pci)) {
5232 msix_vector_unuse(pci, cq->vector);
5233 }
5234 if (cq->cqid) {
5235 g_free(cq);
5236 }
5237 }
5238
5239 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5240 {
5241 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5242 NvmeCQueue *cq;
5243 uint16_t qid = le16_to_cpu(c->qid);
5244
5245 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5246 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5247 return NVME_INVALID_CQID | NVME_DNR;
5248 }
5249
5250 cq = n->cq[qid];
5251 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5252 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5253 return NVME_INVALID_QUEUE_DEL;
5254 }
5255
5256 if (cq->irq_enabled && cq->tail != cq->head) {
5257 n->cq_pending--;
5258 }
5259
5260 nvme_irq_deassert(n, cq);
5261 trace_pci_nvme_del_cq(qid);
5262 nvme_free_cq(cq, n);
5263 return NVME_SUCCESS;
5264 }
5265
5266 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5267 uint16_t cqid, uint16_t vector, uint16_t size,
5268 uint16_t irq_enabled)
5269 {
5270 PCIDevice *pci = PCI_DEVICE(n);
5271
5272 if (msix_enabled(pci)) {
5273 msix_vector_use(pci, vector);
5274 }
5275 cq->ctrl = n;
5276 cq->cqid = cqid;
5277 cq->size = size;
5278 cq->dma_addr = dma_addr;
5279 cq->phase = 1;
5280 cq->irq_enabled = irq_enabled;
5281 cq->vector = vector;
5282 cq->head = cq->tail = 0;
5283 QTAILQ_INIT(&cq->req_list);
5284 QTAILQ_INIT(&cq->sq_list);
5285 if (n->dbbuf_enabled) {
5286 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5287 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5288
5289 if (n->params.ioeventfd && cqid != 0) {
5290 if (!nvme_init_cq_ioeventfd(cq)) {
5291 cq->ioeventfd_enabled = true;
5292 }
5293 }
5294 }
5295 n->cq[cqid] = cq;
5296 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
5297 &DEVICE(cq->ctrl)->mem_reentrancy_guard);
5298 }
5299
5300 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5301 {
5302 NvmeCQueue *cq;
5303 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5304 uint16_t cqid = le16_to_cpu(c->cqid);
5305 uint16_t vector = le16_to_cpu(c->irq_vector);
5306 uint16_t qsize = le16_to_cpu(c->qsize);
5307 uint16_t qflags = le16_to_cpu(c->cq_flags);
5308 uint64_t prp1 = le64_to_cpu(c->prp1);
5309 uint32_t cc = ldq_le_p(&n->bar.cc);
5310 uint8_t iocqes = NVME_CC_IOCQES(cc);
5311 uint8_t iosqes = NVME_CC_IOSQES(cc);
5312
5313 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5314 NVME_CQ_FLAGS_IEN(qflags) != 0);
5315
5316 if (iosqes != NVME_SQES || iocqes != NVME_CQES) {
5317 trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes);
5318 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5319 }
5320
5321 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5322 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5323 return NVME_INVALID_QID | NVME_DNR;
5324 }
5325 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5326 trace_pci_nvme_err_invalid_create_cq_size(qsize);
5327 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5328 }
5329 if (unlikely(prp1 & (n->page_size - 1))) {
5330 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5331 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5332 }
5333 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5334 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5335 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5336 }
5337 if (unlikely(vector >= n->conf_msix_qsize)) {
5338 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5339 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5340 }
5341 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5342 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5343 return NVME_INVALID_FIELD | NVME_DNR;
5344 }
5345
5346 cq = g_malloc0(sizeof(*cq));
5347 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5348 NVME_CQ_FLAGS_IEN(qflags));
5349
5350 /*
5351 * It is only required to set qs_created when creating a completion queue;
5352 * creating a submission queue without a matching completion queue will
5353 * fail.
5354 */
5355 n->qs_created = true;
5356 return NVME_SUCCESS;
5357 }
5358
5359 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5360 {
5361 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5362
5363 return nvme_c2h(n, id, sizeof(id), req);
5364 }
5365
5366 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5367 {
5368 trace_pci_nvme_identify_ctrl();
5369
5370 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5371 }
5372
5373 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5374 {
5375 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5376 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5377 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5378
5379 trace_pci_nvme_identify_ctrl_csi(c->csi);
5380
5381 switch (c->csi) {
5382 case NVME_CSI_NVM:
5383 id_nvm->vsl = n->params.vsl;
5384 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5385 break;
5386
5387 case NVME_CSI_ZONED:
5388 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5389 break;
5390
5391 default:
5392 return NVME_INVALID_FIELD | NVME_DNR;
5393 }
5394
5395 return nvme_c2h(n, id, sizeof(id), req);
5396 }
5397
5398 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5399 {
5400 NvmeNamespace *ns;
5401 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5402 uint32_t nsid = le32_to_cpu(c->nsid);
5403
5404 trace_pci_nvme_identify_ns(nsid);
5405
5406 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5407 return NVME_INVALID_NSID | NVME_DNR;
5408 }
5409
5410 ns = nvme_ns(n, nsid);
5411 if (unlikely(!ns)) {
5412 if (!active) {
5413 ns = nvme_subsys_ns(n->subsys, nsid);
5414 if (!ns) {
5415 return nvme_rpt_empty_id_struct(n, req);
5416 }
5417 } else {
5418 return nvme_rpt_empty_id_struct(n, req);
5419 }
5420 }
5421
5422 if (active || ns->csi == NVME_CSI_NVM) {
5423 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5424 }
5425
5426 return NVME_INVALID_CMD_SET | NVME_DNR;
5427 }
5428
5429 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5430 bool attached)
5431 {
5432 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5433 uint32_t nsid = le32_to_cpu(c->nsid);
5434 uint16_t min_id = le16_to_cpu(c->ctrlid);
5435 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5436 uint16_t *ids = &list[1];
5437 NvmeNamespace *ns;
5438 NvmeCtrl *ctrl;
5439 int cntlid, nr_ids = 0;
5440
5441 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5442
5443 if (!n->subsys) {
5444 return NVME_INVALID_FIELD | NVME_DNR;
5445 }
5446
5447 if (attached) {
5448 if (nsid == NVME_NSID_BROADCAST) {
5449 return NVME_INVALID_FIELD | NVME_DNR;
5450 }
5451
5452 ns = nvme_subsys_ns(n->subsys, nsid);
5453 if (!ns) {
5454 return NVME_INVALID_FIELD | NVME_DNR;
5455 }
5456 }
5457
5458 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5459 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5460 if (!ctrl) {
5461 continue;
5462 }
5463
5464 if (attached && !nvme_ns(ctrl, nsid)) {
5465 continue;
5466 }
5467
5468 ids[nr_ids++] = cntlid;
5469 }
5470
5471 list[0] = nr_ids;
5472
5473 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5474 }
5475
5476 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5477 {
5478 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5479
5480 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5481 sizeof(NvmePriCtrlCap), req);
5482 }
5483
5484 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5485 {
5486 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5487 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5488 uint16_t min_id = le16_to_cpu(c->ctrlid);
5489 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5490 NvmeSecCtrlList list = {0};
5491 uint8_t i;
5492
5493 for (i = 0; i < num_sec_ctrl; i++) {
5494 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5495 list.numcntl = num_sec_ctrl - i;
5496 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5497 list.numcntl * sizeof(NvmeSecCtrlEntry));
5498 break;
5499 }
5500 }
5501
5502 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5503
5504 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5505 }
5506
5507 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5508 bool active)
5509 {
5510 NvmeNamespace *ns;
5511 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5512 uint32_t nsid = le32_to_cpu(c->nsid);
5513
5514 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5515
5516 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5517 return NVME_INVALID_NSID | NVME_DNR;
5518 }
5519
5520 ns = nvme_ns(n, nsid);
5521 if (unlikely(!ns)) {
5522 if (!active) {
5523 ns = nvme_subsys_ns(n->subsys, nsid);
5524 if (!ns) {
5525 return nvme_rpt_empty_id_struct(n, req);
5526 }
5527 } else {
5528 return nvme_rpt_empty_id_struct(n, req);
5529 }
5530 }
5531
5532 if (c->csi == NVME_CSI_NVM) {
5533 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5534 req);
5535 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5536 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5537 req);
5538 }
5539
5540 return NVME_INVALID_FIELD | NVME_DNR;
5541 }
5542
5543 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5544 bool active)
5545 {
5546 NvmeNamespace *ns;
5547 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5548 uint32_t min_nsid = le32_to_cpu(c->nsid);
5549 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5550 static const int data_len = sizeof(list);
5551 uint32_t *list_ptr = (uint32_t *)list;
5552 int i, j = 0;
5553
5554 trace_pci_nvme_identify_nslist(min_nsid);
5555
5556 /*
5557 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5558 * since the Active Namespace ID List should return namespaces with ids
5559 * *higher* than the NSID specified in the command. This is also specified
5560 * in the spec (NVM Express v1.3d, Section 5.15.4).
5561 */
5562 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5563 return NVME_INVALID_NSID | NVME_DNR;
5564 }
5565
5566 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5567 ns = nvme_ns(n, i);
5568 if (!ns) {
5569 if (!active) {
5570 ns = nvme_subsys_ns(n->subsys, i);
5571 if (!ns) {
5572 continue;
5573 }
5574 } else {
5575 continue;
5576 }
5577 }
5578 if (ns->params.nsid <= min_nsid) {
5579 continue;
5580 }
5581 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5582 if (j == data_len / sizeof(uint32_t)) {
5583 break;
5584 }
5585 }
5586
5587 return nvme_c2h(n, list, data_len, req);
5588 }
5589
5590 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5591 bool active)
5592 {
5593 NvmeNamespace *ns;
5594 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5595 uint32_t min_nsid = le32_to_cpu(c->nsid);
5596 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5597 static const int data_len = sizeof(list);
5598 uint32_t *list_ptr = (uint32_t *)list;
5599 int i, j = 0;
5600
5601 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5602
5603 /*
5604 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5605 */
5606 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5607 return NVME_INVALID_NSID | NVME_DNR;
5608 }
5609
5610 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5611 return NVME_INVALID_FIELD | NVME_DNR;
5612 }
5613
5614 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5615 ns = nvme_ns(n, i);
5616 if (!ns) {
5617 if (!active) {
5618 ns = nvme_subsys_ns(n->subsys, i);
5619 if (!ns) {
5620 continue;
5621 }
5622 } else {
5623 continue;
5624 }
5625 }
5626 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5627 continue;
5628 }
5629 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5630 if (j == data_len / sizeof(uint32_t)) {
5631 break;
5632 }
5633 }
5634
5635 return nvme_c2h(n, list, data_len, req);
5636 }
5637
5638 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5639 {
5640 NvmeNamespace *ns;
5641 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5642 uint32_t nsid = le32_to_cpu(c->nsid);
5643 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5644 uint8_t *pos = list;
5645 struct {
5646 NvmeIdNsDescr hdr;
5647 uint8_t v[NVME_NIDL_UUID];
5648 } QEMU_PACKED uuid = {};
5649 struct {
5650 NvmeIdNsDescr hdr;
5651 uint64_t v;
5652 } QEMU_PACKED eui64 = {};
5653 struct {
5654 NvmeIdNsDescr hdr;
5655 uint8_t v;
5656 } QEMU_PACKED csi = {};
5657
5658 trace_pci_nvme_identify_ns_descr_list(nsid);
5659
5660 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5661 return NVME_INVALID_NSID | NVME_DNR;
5662 }
5663
5664 ns = nvme_ns(n, nsid);
5665 if (unlikely(!ns)) {
5666 return NVME_INVALID_FIELD | NVME_DNR;
5667 }
5668
5669 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5670 uuid.hdr.nidt = NVME_NIDT_UUID;
5671 uuid.hdr.nidl = NVME_NIDL_UUID;
5672 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5673 memcpy(pos, &uuid, sizeof(uuid));
5674 pos += sizeof(uuid);
5675 }
5676
5677 if (ns->params.eui64) {
5678 eui64.hdr.nidt = NVME_NIDT_EUI64;
5679 eui64.hdr.nidl = NVME_NIDL_EUI64;
5680 eui64.v = cpu_to_be64(ns->params.eui64);
5681 memcpy(pos, &eui64, sizeof(eui64));
5682 pos += sizeof(eui64);
5683 }
5684
5685 csi.hdr.nidt = NVME_NIDT_CSI;
5686 csi.hdr.nidl = NVME_NIDL_CSI;
5687 csi.v = ns->csi;
5688 memcpy(pos, &csi, sizeof(csi));
5689 pos += sizeof(csi);
5690
5691 return nvme_c2h(n, list, sizeof(list), req);
5692 }
5693
5694 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5695 {
5696 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5697 static const int data_len = sizeof(list);
5698
5699 trace_pci_nvme_identify_cmd_set();
5700
5701 NVME_SET_CSI(*list, NVME_CSI_NVM);
5702 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5703
5704 return nvme_c2h(n, list, data_len, req);
5705 }
5706
5707 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5708 {
5709 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5710
5711 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5712 c->csi);
5713
5714 switch (c->cns) {
5715 case NVME_ID_CNS_NS:
5716 return nvme_identify_ns(n, req, true);
5717 case NVME_ID_CNS_NS_PRESENT:
5718 return nvme_identify_ns(n, req, false);
5719 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5720 return nvme_identify_ctrl_list(n, req, true);
5721 case NVME_ID_CNS_CTRL_LIST:
5722 return nvme_identify_ctrl_list(n, req, false);
5723 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5724 return nvme_identify_pri_ctrl_cap(n, req);
5725 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5726 return nvme_identify_sec_ctrl_list(n, req);
5727 case NVME_ID_CNS_CS_NS:
5728 return nvme_identify_ns_csi(n, req, true);
5729 case NVME_ID_CNS_CS_NS_PRESENT:
5730 return nvme_identify_ns_csi(n, req, false);
5731 case NVME_ID_CNS_CTRL:
5732 return nvme_identify_ctrl(n, req);
5733 case NVME_ID_CNS_CS_CTRL:
5734 return nvme_identify_ctrl_csi(n, req);
5735 case NVME_ID_CNS_NS_ACTIVE_LIST:
5736 return nvme_identify_nslist(n, req, true);
5737 case NVME_ID_CNS_NS_PRESENT_LIST:
5738 return nvme_identify_nslist(n, req, false);
5739 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5740 return nvme_identify_nslist_csi(n, req, true);
5741 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5742 return nvme_identify_nslist_csi(n, req, false);
5743 case NVME_ID_CNS_NS_DESCR_LIST:
5744 return nvme_identify_ns_descr_list(n, req);
5745 case NVME_ID_CNS_IO_COMMAND_SET:
5746 return nvme_identify_cmd_set(n, req);
5747 default:
5748 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5749 return NVME_INVALID_FIELD | NVME_DNR;
5750 }
5751 }
5752
5753 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5754 {
5755 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5756
5757 req->cqe.result = 1;
5758 if (nvme_check_sqid(n, sqid)) {
5759 return NVME_INVALID_FIELD | NVME_DNR;
5760 }
5761
5762 return NVME_SUCCESS;
5763 }
5764
5765 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5766 {
5767 trace_pci_nvme_setfeat_timestamp(ts);
5768
5769 n->host_timestamp = le64_to_cpu(ts);
5770 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5771 }
5772
5773 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5774 {
5775 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5776 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5777
5778 union nvme_timestamp {
5779 struct {
5780 uint64_t timestamp:48;
5781 uint64_t sync:1;
5782 uint64_t origin:3;
5783 uint64_t rsvd1:12;
5784 };
5785 uint64_t all;
5786 };
5787
5788 union nvme_timestamp ts;
5789 ts.all = 0;
5790 ts.timestamp = n->host_timestamp + elapsed_time;
5791
5792 /* If the host timestamp is non-zero, set the timestamp origin */
5793 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5794
5795 trace_pci_nvme_getfeat_timestamp(ts.all);
5796
5797 return cpu_to_le64(ts.all);
5798 }
5799
5800 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5801 {
5802 uint64_t timestamp = nvme_get_timestamp(n);
5803
5804 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5805 }
5806
5807 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5808 uint32_t *result)
5809 {
5810 *result = 0;
5811
5812 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5813 return NVME_INVALID_FIELD | NVME_DNR;
5814 }
5815
5816 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5817 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5818
5819 return NVME_SUCCESS;
5820 }
5821
5822 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5823 NvmeRequest *req, uint32_t *result)
5824 {
5825 NvmeCmd *cmd = &req->cmd;
5826 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5827 uint16_t ph = cdw11 & 0xffff;
5828 uint8_t noet = (cdw11 >> 16) & 0xff;
5829 uint16_t ruhid, ret;
5830 uint32_t nentries = 0;
5831 uint8_t s_events_ndx = 0;
5832 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5833 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5834 NvmeRuHandle *ruh;
5835 NvmeFdpEventDescr *s_event;
5836
5837 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5838 return NVME_FDP_DISABLED | NVME_DNR;
5839 }
5840
5841 if (!nvme_ph_valid(ns, ph)) {
5842 return NVME_INVALID_FIELD | NVME_DNR;
5843 }
5844
5845 ruhid = ns->fdp.phs[ph];
5846 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5847
5848 assert(ruh);
5849
5850 if (unlikely(noet == 0)) {
5851 return NVME_INVALID_FIELD | NVME_DNR;
5852 }
5853
5854 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5855 uint8_t shift = nvme_fdp_evf_shifts[event_type];
5856 if (!shift && event_type) {
5857 /*
5858 * only first entry (event_type == 0) has a shift value of 0
5859 * other entries are simply unpopulated.
5860 */
5861 continue;
5862 }
5863
5864 nentries++;
5865
5866 s_event = &s_events[s_events_ndx];
5867 s_event->evt = event_type;
5868 s_event->evta = (ruh->event_filter >> shift) & 0x1;
5869
5870 /* break if all `noet` entries are filled */
5871 if ((++s_events_ndx) == noet) {
5872 break;
5873 }
5874 }
5875
5876 ret = nvme_c2h(n, s_events, s_events_siz, req);
5877 if (ret) {
5878 return ret;
5879 }
5880
5881 *result = nentries;
5882 return NVME_SUCCESS;
5883 }
5884
5885 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5886 {
5887 NvmeCmd *cmd = &req->cmd;
5888 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5889 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5890 uint32_t nsid = le32_to_cpu(cmd->nsid);
5891 uint32_t result;
5892 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5893 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5894 uint16_t iv;
5895 NvmeNamespace *ns;
5896 int i;
5897 uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5898
5899 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5900 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5901 };
5902
5903 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5904
5905 if (!nvme_feature_support[fid]) {
5906 return NVME_INVALID_FIELD | NVME_DNR;
5907 }
5908
5909 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5910 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5911 /*
5912 * The Reservation Notification Mask and Reservation Persistence
5913 * features require a status code of Invalid Field in Command when
5914 * NSID is FFFFFFFFh. Since the device does not support those
5915 * features we can always return Invalid Namespace or Format as we
5916 * should do for all other features.
5917 */
5918 return NVME_INVALID_NSID | NVME_DNR;
5919 }
5920
5921 if (!nvme_ns(n, nsid)) {
5922 return NVME_INVALID_FIELD | NVME_DNR;
5923 }
5924 }
5925
5926 switch (sel) {
5927 case NVME_GETFEAT_SELECT_CURRENT:
5928 break;
5929 case NVME_GETFEAT_SELECT_SAVED:
5930 /* no features are saveable by the controller; fallthrough */
5931 case NVME_GETFEAT_SELECT_DEFAULT:
5932 goto defaults;
5933 case NVME_GETFEAT_SELECT_CAP:
5934 result = nvme_feature_cap[fid];
5935 goto out;
5936 }
5937
5938 switch (fid) {
5939 case NVME_TEMPERATURE_THRESHOLD:
5940 result = 0;
5941
5942 /*
5943 * The controller only implements the Composite Temperature sensor, so
5944 * return 0 for all other sensors.
5945 */
5946 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5947 goto out;
5948 }
5949
5950 switch (NVME_TEMP_THSEL(dw11)) {
5951 case NVME_TEMP_THSEL_OVER:
5952 result = n->features.temp_thresh_hi;
5953 goto out;
5954 case NVME_TEMP_THSEL_UNDER:
5955 result = n->features.temp_thresh_low;
5956 goto out;
5957 }
5958
5959 return NVME_INVALID_FIELD | NVME_DNR;
5960 case NVME_ERROR_RECOVERY:
5961 if (!nvme_nsid_valid(n, nsid)) {
5962 return NVME_INVALID_NSID | NVME_DNR;
5963 }
5964
5965 ns = nvme_ns(n, nsid);
5966 if (unlikely(!ns)) {
5967 return NVME_INVALID_FIELD | NVME_DNR;
5968 }
5969
5970 result = ns->features.err_rec;
5971 goto out;
5972 case NVME_VOLATILE_WRITE_CACHE:
5973 result = 0;
5974 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5975 ns = nvme_ns(n, i);
5976 if (!ns) {
5977 continue;
5978 }
5979
5980 result = blk_enable_write_cache(ns->blkconf.blk);
5981 if (result) {
5982 break;
5983 }
5984 }
5985 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5986 goto out;
5987 case NVME_ASYNCHRONOUS_EVENT_CONF:
5988 result = n->features.async_config;
5989 goto out;
5990 case NVME_TIMESTAMP:
5991 return nvme_get_feature_timestamp(n, req);
5992 case NVME_HOST_BEHAVIOR_SUPPORT:
5993 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5994 sizeof(n->features.hbs), req);
5995 case NVME_FDP_MODE:
5996 endgrpid = dw11 & 0xff;
5997
5998 if (endgrpid != 0x1) {
5999 return NVME_INVALID_FIELD | NVME_DNR;
6000 }
6001
6002 ret = nvme_get_feature_fdp(n, endgrpid, &result);
6003 if (ret) {
6004 return ret;
6005 }
6006 goto out;
6007 case NVME_FDP_EVENTS:
6008 if (!nvme_nsid_valid(n, nsid)) {
6009 return NVME_INVALID_NSID | NVME_DNR;
6010 }
6011
6012 ns = nvme_ns(n, nsid);
6013 if (unlikely(!ns)) {
6014 return NVME_INVALID_FIELD | NVME_DNR;
6015 }
6016
6017 ret = nvme_get_feature_fdp_events(n, ns, req, &result);
6018 if (ret) {
6019 return ret;
6020 }
6021 goto out;
6022 default:
6023 break;
6024 }
6025
6026 defaults:
6027 switch (fid) {
6028 case NVME_TEMPERATURE_THRESHOLD:
6029 result = 0;
6030
6031 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6032 break;
6033 }
6034
6035 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
6036 result = NVME_TEMPERATURE_WARNING;
6037 }
6038
6039 break;
6040 case NVME_NUMBER_OF_QUEUES:
6041 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
6042 trace_pci_nvme_getfeat_numq(result);
6043 break;
6044 case NVME_INTERRUPT_VECTOR_CONF:
6045 iv = dw11 & 0xffff;
6046 if (iv >= n->conf_ioqpairs + 1) {
6047 return NVME_INVALID_FIELD | NVME_DNR;
6048 }
6049
6050 result = iv;
6051 if (iv == n->admin_cq.vector) {
6052 result |= NVME_INTVC_NOCOALESCING;
6053 }
6054 break;
6055 case NVME_FDP_MODE:
6056 endgrpid = dw11 & 0xff;
6057
6058 if (endgrpid != 0x1) {
6059 return NVME_INVALID_FIELD | NVME_DNR;
6060 }
6061
6062 ret = nvme_get_feature_fdp(n, endgrpid, &result);
6063 if (ret) {
6064 return ret;
6065 }
6066 goto out;
6067
6068 break;
6069 default:
6070 result = nvme_feature_default[fid];
6071 break;
6072 }
6073
6074 out:
6075 req->cqe.result = cpu_to_le32(result);
6076 return ret;
6077 }
6078
6079 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6080 {
6081 uint16_t ret;
6082 uint64_t timestamp;
6083
6084 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6085 if (ret) {
6086 return ret;
6087 }
6088
6089 nvme_set_timestamp(n, timestamp);
6090
6091 return NVME_SUCCESS;
6092 }
6093
6094 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6095 NvmeRequest *req)
6096 {
6097 NvmeCmd *cmd = &req->cmd;
6098 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6099 uint16_t ph = cdw11 & 0xffff;
6100 uint8_t noet = (cdw11 >> 16) & 0xff;
6101 uint16_t ret, ruhid;
6102 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6103 uint8_t event_mask = 0;
6104 unsigned int i;
6105 g_autofree uint8_t *events = g_malloc0(noet);
6106 NvmeRuHandle *ruh = NULL;
6107
6108 assert(ns);
6109
6110 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6111 return NVME_FDP_DISABLED | NVME_DNR;
6112 }
6113
6114 if (!nvme_ph_valid(ns, ph)) {
6115 return NVME_INVALID_FIELD | NVME_DNR;
6116 }
6117
6118 ruhid = ns->fdp.phs[ph];
6119 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6120
6121 ret = nvme_h2c(n, events, noet, req);
6122 if (ret) {
6123 return ret;
6124 }
6125
6126 for (i = 0; i < noet; i++) {
6127 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6128 }
6129
6130 if (enable) {
6131 ruh->event_filter |= event_mask;
6132 } else {
6133 ruh->event_filter = ruh->event_filter & ~event_mask;
6134 }
6135
6136 return NVME_SUCCESS;
6137 }
6138
6139 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6140 {
6141 NvmeNamespace *ns = NULL;
6142
6143 NvmeCmd *cmd = &req->cmd;
6144 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6145 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6146 uint32_t nsid = le32_to_cpu(cmd->nsid);
6147 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6148 uint8_t save = NVME_SETFEAT_SAVE(dw10);
6149 uint16_t status;
6150 int i;
6151
6152 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6153
6154 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6155 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6156 }
6157
6158 if (!nvme_feature_support[fid]) {
6159 return NVME_INVALID_FIELD | NVME_DNR;
6160 }
6161
6162 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6163 if (nsid != NVME_NSID_BROADCAST) {
6164 if (!nvme_nsid_valid(n, nsid)) {
6165 return NVME_INVALID_NSID | NVME_DNR;
6166 }
6167
6168 ns = nvme_ns(n, nsid);
6169 if (unlikely(!ns)) {
6170 return NVME_INVALID_FIELD | NVME_DNR;
6171 }
6172 }
6173 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6174 if (!nvme_nsid_valid(n, nsid)) {
6175 return NVME_INVALID_NSID | NVME_DNR;
6176 }
6177
6178 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6179 }
6180
6181 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6182 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6183 }
6184
6185 switch (fid) {
6186 case NVME_TEMPERATURE_THRESHOLD:
6187 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6188 break;
6189 }
6190
6191 switch (NVME_TEMP_THSEL(dw11)) {
6192 case NVME_TEMP_THSEL_OVER:
6193 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6194 break;
6195 case NVME_TEMP_THSEL_UNDER:
6196 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6197 break;
6198 default:
6199 return NVME_INVALID_FIELD | NVME_DNR;
6200 }
6201
6202 if ((n->temperature >= n->features.temp_thresh_hi) ||
6203 (n->temperature <= n->features.temp_thresh_low)) {
6204 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6205 }
6206
6207 break;
6208 case NVME_ERROR_RECOVERY:
6209 if (nsid == NVME_NSID_BROADCAST) {
6210 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6211 ns = nvme_ns(n, i);
6212
6213 if (!ns) {
6214 continue;
6215 }
6216
6217 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6218 ns->features.err_rec = dw11;
6219 }
6220 }
6221
6222 break;
6223 }
6224
6225 assert(ns);
6226 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6227 ns->features.err_rec = dw11;
6228 }
6229 break;
6230 case NVME_VOLATILE_WRITE_CACHE:
6231 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6232 ns = nvme_ns(n, i);
6233 if (!ns) {
6234 continue;
6235 }
6236
6237 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6238 blk_flush(ns->blkconf.blk);
6239 }
6240
6241 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6242 }
6243
6244 break;
6245
6246 case NVME_NUMBER_OF_QUEUES:
6247 if (n->qs_created) {
6248 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6249 }
6250
6251 /*
6252 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6253 * and NSQR.
6254 */
6255 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6256 return NVME_INVALID_FIELD | NVME_DNR;
6257 }
6258
6259 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6260 ((dw11 >> 16) & 0xffff) + 1,
6261 n->conf_ioqpairs,
6262 n->conf_ioqpairs);
6263 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6264 ((n->conf_ioqpairs - 1) << 16));
6265 break;
6266 case NVME_ASYNCHRONOUS_EVENT_CONF:
6267 n->features.async_config = dw11;
6268 break;
6269 case NVME_TIMESTAMP:
6270 return nvme_set_feature_timestamp(n, req);
6271 case NVME_HOST_BEHAVIOR_SUPPORT:
6272 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6273 sizeof(n->features.hbs), req);
6274 if (status) {
6275 return status;
6276 }
6277
6278 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6279 ns = nvme_ns(n, i);
6280
6281 if (!ns) {
6282 continue;
6283 }
6284
6285 ns->id_ns.nlbaf = ns->nlbaf - 1;
6286 if (!n->features.hbs.lbafee) {
6287 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6288 }
6289 }
6290
6291 return status;
6292 case NVME_COMMAND_SET_PROFILE:
6293 if (dw11 & 0x1ff) {
6294 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6295 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6296 }
6297 break;
6298 case NVME_FDP_MODE:
6299 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6300 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6301 case NVME_FDP_EVENTS:
6302 return nvme_set_feature_fdp_events(n, ns, req);
6303 default:
6304 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6305 }
6306 return NVME_SUCCESS;
6307 }
6308
6309 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6310 {
6311 trace_pci_nvme_aer(nvme_cid(req));
6312
6313 if (n->outstanding_aers > n->params.aerl) {
6314 trace_pci_nvme_aer_aerl_exceeded();
6315 return NVME_AER_LIMIT_EXCEEDED;
6316 }
6317
6318 n->aer_reqs[n->outstanding_aers] = req;
6319 n->outstanding_aers++;
6320
6321 if (!QTAILQ_EMPTY(&n->aer_queue)) {
6322 nvme_process_aers(n);
6323 }
6324
6325 return NVME_NO_COMPLETE;
6326 }
6327
6328 static void nvme_update_dmrsl(NvmeCtrl *n)
6329 {
6330 int nsid;
6331
6332 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6333 NvmeNamespace *ns = nvme_ns(n, nsid);
6334 if (!ns) {
6335 continue;
6336 }
6337
6338 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6339 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6340 }
6341 }
6342
6343 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6344 {
6345 uint32_t cc = ldl_le_p(&n->bar.cc);
6346
6347 ns->iocs = nvme_cse_iocs_none;
6348 switch (ns->csi) {
6349 case NVME_CSI_NVM:
6350 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6351 ns->iocs = nvme_cse_iocs_nvm;
6352 }
6353 break;
6354 case NVME_CSI_ZONED:
6355 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6356 ns->iocs = nvme_cse_iocs_zoned;
6357 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6358 ns->iocs = nvme_cse_iocs_nvm;
6359 }
6360 break;
6361 }
6362 }
6363
6364 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6365 {
6366 NvmeNamespace *ns;
6367 NvmeCtrl *ctrl;
6368 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6369 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6370 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6371 uint8_t sel = dw10 & 0xf;
6372 uint16_t *nr_ids = &list[0];
6373 uint16_t *ids = &list[1];
6374 uint16_t ret;
6375 int i;
6376
6377 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6378
6379 if (!nvme_nsid_valid(n, nsid)) {
6380 return NVME_INVALID_NSID | NVME_DNR;
6381 }
6382
6383 ns = nvme_subsys_ns(n->subsys, nsid);
6384 if (!ns) {
6385 return NVME_INVALID_FIELD | NVME_DNR;
6386 }
6387
6388 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6389 if (ret) {
6390 return ret;
6391 }
6392
6393 if (!*nr_ids) {
6394 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6395 }
6396
6397 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6398 for (i = 0; i < *nr_ids; i++) {
6399 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6400 if (!ctrl) {
6401 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6402 }
6403
6404 switch (sel) {
6405 case NVME_NS_ATTACHMENT_ATTACH:
6406 if (nvme_ns(ctrl, nsid)) {
6407 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6408 }
6409
6410 if (ns->attached && !ns->params.shared) {
6411 return NVME_NS_PRIVATE | NVME_DNR;
6412 }
6413
6414 nvme_attach_ns(ctrl, ns);
6415 nvme_select_iocs_ns(ctrl, ns);
6416
6417 break;
6418
6419 case NVME_NS_ATTACHMENT_DETACH:
6420 if (!nvme_ns(ctrl, nsid)) {
6421 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6422 }
6423
6424 ctrl->namespaces[nsid] = NULL;
6425 ns->attached--;
6426
6427 nvme_update_dmrsl(ctrl);
6428
6429 break;
6430
6431 default:
6432 return NVME_INVALID_FIELD | NVME_DNR;
6433 }
6434
6435 /*
6436 * Add namespace id to the changed namespace id list for event clearing
6437 * via Get Log Page command.
6438 */
6439 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6440 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6441 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6442 NVME_LOG_CHANGED_NSLIST);
6443 }
6444 }
6445
6446 return NVME_SUCCESS;
6447 }
6448
6449 typedef struct NvmeFormatAIOCB {
6450 BlockAIOCB common;
6451 BlockAIOCB *aiocb;
6452 NvmeRequest *req;
6453 int ret;
6454
6455 NvmeNamespace *ns;
6456 uint32_t nsid;
6457 bool broadcast;
6458 int64_t offset;
6459
6460 uint8_t lbaf;
6461 uint8_t mset;
6462 uint8_t pi;
6463 uint8_t pil;
6464 } NvmeFormatAIOCB;
6465
6466 static void nvme_format_cancel(BlockAIOCB *aiocb)
6467 {
6468 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6469
6470 iocb->ret = -ECANCELED;
6471
6472 if (iocb->aiocb) {
6473 blk_aio_cancel_async(iocb->aiocb);
6474 iocb->aiocb = NULL;
6475 }
6476 }
6477
6478 static const AIOCBInfo nvme_format_aiocb_info = {
6479 .aiocb_size = sizeof(NvmeFormatAIOCB),
6480 .cancel_async = nvme_format_cancel,
6481 .get_aio_context = nvme_get_aio_context,
6482 };
6483
6484 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6485 uint8_t pi, uint8_t pil)
6486 {
6487 uint8_t lbafl = lbaf & 0xf;
6488 uint8_t lbafu = lbaf >> 4;
6489
6490 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6491
6492 ns->id_ns.dps = (pil << 3) | pi;
6493 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6494
6495 nvme_ns_init_format(ns);
6496 }
6497
6498 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6499
6500 static void nvme_format_ns_cb(void *opaque, int ret)
6501 {
6502 NvmeFormatAIOCB *iocb = opaque;
6503 NvmeNamespace *ns = iocb->ns;
6504 int bytes;
6505
6506 if (iocb->ret < 0) {
6507 goto done;
6508 } else if (ret < 0) {
6509 iocb->ret = ret;
6510 goto done;
6511 }
6512
6513 assert(ns);
6514
6515 if (iocb->offset < ns->size) {
6516 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6517
6518 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6519 bytes, BDRV_REQ_MAY_UNMAP,
6520 nvme_format_ns_cb, iocb);
6521
6522 iocb->offset += bytes;
6523 return;
6524 }
6525
6526 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6527 ns->status = 0x0;
6528 iocb->ns = NULL;
6529 iocb->offset = 0;
6530
6531 done:
6532 nvme_do_format(iocb);
6533 }
6534
6535 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6536 {
6537 if (ns->params.zoned) {
6538 return NVME_INVALID_FORMAT | NVME_DNR;
6539 }
6540
6541 if (lbaf > ns->id_ns.nlbaf) {
6542 return NVME_INVALID_FORMAT | NVME_DNR;
6543 }
6544
6545 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6546 return NVME_INVALID_FORMAT | NVME_DNR;
6547 }
6548
6549 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6550 return NVME_INVALID_FIELD | NVME_DNR;
6551 }
6552
6553 return NVME_SUCCESS;
6554 }
6555
6556 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6557 {
6558 NvmeRequest *req = iocb->req;
6559 NvmeCtrl *n = nvme_ctrl(req);
6560 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6561 uint8_t lbaf = dw10 & 0xf;
6562 uint8_t pi = (dw10 >> 5) & 0x7;
6563 uint16_t status;
6564 int i;
6565
6566 if (iocb->ret < 0) {
6567 goto done;
6568 }
6569
6570 if (iocb->broadcast) {
6571 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6572 iocb->ns = nvme_ns(n, i);
6573 if (iocb->ns) {
6574 iocb->nsid = i;
6575 break;
6576 }
6577 }
6578 }
6579
6580 if (!iocb->ns) {
6581 goto done;
6582 }
6583
6584 status = nvme_format_check(iocb->ns, lbaf, pi);
6585 if (status) {
6586 req->status = status;
6587 goto done;
6588 }
6589
6590 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6591 nvme_format_ns_cb(iocb, 0);
6592 return;
6593
6594 done:
6595 iocb->common.cb(iocb->common.opaque, iocb->ret);
6596 qemu_aio_unref(iocb);
6597 }
6598
6599 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6600 {
6601 NvmeFormatAIOCB *iocb;
6602 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6603 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6604 uint8_t lbaf = dw10 & 0xf;
6605 uint8_t mset = (dw10 >> 4) & 0x1;
6606 uint8_t pi = (dw10 >> 5) & 0x7;
6607 uint8_t pil = (dw10 >> 8) & 0x1;
6608 uint8_t lbafu = (dw10 >> 12) & 0x3;
6609 uint16_t status;
6610
6611 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6612
6613 iocb->req = req;
6614 iocb->ret = 0;
6615 iocb->ns = NULL;
6616 iocb->nsid = 0;
6617 iocb->lbaf = lbaf;
6618 iocb->mset = mset;
6619 iocb->pi = pi;
6620 iocb->pil = pil;
6621 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6622 iocb->offset = 0;
6623
6624 if (n->features.hbs.lbafee) {
6625 iocb->lbaf |= lbafu << 4;
6626 }
6627
6628 if (!iocb->broadcast) {
6629 if (!nvme_nsid_valid(n, nsid)) {
6630 status = NVME_INVALID_NSID | NVME_DNR;
6631 goto out;
6632 }
6633
6634 iocb->ns = nvme_ns(n, nsid);
6635 if (!iocb->ns) {
6636 status = NVME_INVALID_FIELD | NVME_DNR;
6637 goto out;
6638 }
6639 }
6640
6641 req->aiocb = &iocb->common;
6642 nvme_do_format(iocb);
6643
6644 return NVME_NO_COMPLETE;
6645
6646 out:
6647 qemu_aio_unref(iocb);
6648
6649 return status;
6650 }
6651
6652 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6653 int *num_prim, int *num_sec)
6654 {
6655 *num_total = le32_to_cpu(rt ?
6656 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6657 *num_prim = le16_to_cpu(rt ?
6658 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6659 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6660 }
6661
6662 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6663 uint16_t cntlid, uint8_t rt,
6664 int nr)
6665 {
6666 int num_total, num_prim, num_sec;
6667
6668 if (cntlid != n->cntlid) {
6669 return NVME_INVALID_CTRL_ID | NVME_DNR;
6670 }
6671
6672 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6673
6674 if (nr > num_total) {
6675 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6676 }
6677
6678 if (nr > num_total - num_sec) {
6679 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6680 }
6681
6682 if (rt) {
6683 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6684 } else {
6685 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6686 }
6687
6688 req->cqe.result = cpu_to_le32(nr);
6689 return req->status;
6690 }
6691
6692 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6693 uint8_t rt, int nr)
6694 {
6695 int prev_nr, prev_total;
6696
6697 if (rt) {
6698 prev_nr = le16_to_cpu(sctrl->nvi);
6699 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6700 sctrl->nvi = cpu_to_le16(nr);
6701 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6702 } else {
6703 prev_nr = le16_to_cpu(sctrl->nvq);
6704 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6705 sctrl->nvq = cpu_to_le16(nr);
6706 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6707 }
6708 }
6709
6710 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6711 uint16_t cntlid, uint8_t rt, int nr)
6712 {
6713 int num_total, num_prim, num_sec, num_free, diff, limit;
6714 NvmeSecCtrlEntry *sctrl;
6715
6716 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6717 if (!sctrl) {
6718 return NVME_INVALID_CTRL_ID | NVME_DNR;
6719 }
6720
6721 if (sctrl->scs) {
6722 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6723 }
6724
6725 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6726 if (nr > limit) {
6727 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6728 }
6729
6730 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6731 num_free = num_total - num_prim - num_sec;
6732 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6733
6734 if (diff > num_free) {
6735 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6736 }
6737
6738 nvme_update_virt_res(n, sctrl, rt, nr);
6739 req->cqe.result = cpu_to_le32(nr);
6740
6741 return req->status;
6742 }
6743
6744 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6745 {
6746 PCIDevice *pci = PCI_DEVICE(n);
6747 NvmeCtrl *sn = NULL;
6748 NvmeSecCtrlEntry *sctrl;
6749 int vf_index;
6750
6751 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6752 if (!sctrl) {
6753 return NVME_INVALID_CTRL_ID | NVME_DNR;
6754 }
6755
6756 if (!pci_is_vf(pci)) {
6757 vf_index = le16_to_cpu(sctrl->vfn) - 1;
6758 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6759 }
6760
6761 if (online) {
6762 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6763 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6764 }
6765
6766 if (!sctrl->scs) {
6767 sctrl->scs = 0x1;
6768 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6769 }
6770 } else {
6771 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6772 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6773
6774 if (sctrl->scs) {
6775 sctrl->scs = 0x0;
6776 if (sn) {
6777 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6778 }
6779 }
6780 }
6781
6782 return NVME_SUCCESS;
6783 }
6784
6785 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6786 {
6787 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6788 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6789 uint8_t act = dw10 & 0xf;
6790 uint8_t rt = (dw10 >> 8) & 0x7;
6791 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6792 int nr = dw11 & 0xffff;
6793
6794 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6795
6796 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6797 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6798 }
6799
6800 switch (act) {
6801 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6802 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6803 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6804 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6805 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6806 return nvme_virt_set_state(n, cntlid, true);
6807 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6808 return nvme_virt_set_state(n, cntlid, false);
6809 default:
6810 return NVME_INVALID_FIELD | NVME_DNR;
6811 }
6812 }
6813
6814 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6815 {
6816 PCIDevice *pci = PCI_DEVICE(n);
6817 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6818 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6819 int i;
6820
6821 /* Address should be page aligned */
6822 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6823 return NVME_INVALID_FIELD | NVME_DNR;
6824 }
6825
6826 /* Save shadow buffer base addr for use during queue creation */
6827 n->dbbuf_dbs = dbs_addr;
6828 n->dbbuf_eis = eis_addr;
6829 n->dbbuf_enabled = true;
6830
6831 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6832 NvmeSQueue *sq = n->sq[i];
6833 NvmeCQueue *cq = n->cq[i];
6834
6835 if (sq) {
6836 /*
6837 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6838 * nvme_process_db() uses this hard-coded way to calculate
6839 * doorbell offsets. Be consistent with that here.
6840 */
6841 sq->db_addr = dbs_addr + (i << 3);
6842 sq->ei_addr = eis_addr + (i << 3);
6843 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
6844
6845 if (n->params.ioeventfd && sq->sqid != 0) {
6846 if (!nvme_init_sq_ioeventfd(sq)) {
6847 sq->ioeventfd_enabled = true;
6848 }
6849 }
6850 }
6851
6852 if (cq) {
6853 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6854 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6855 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6856 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
6857
6858 if (n->params.ioeventfd && cq->cqid != 0) {
6859 if (!nvme_init_cq_ioeventfd(cq)) {
6860 cq->ioeventfd_enabled = true;
6861 }
6862 }
6863 }
6864 }
6865
6866 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6867
6868 return NVME_SUCCESS;
6869 }
6870
6871 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6872 {
6873 return NVME_INVALID_FIELD | NVME_DNR;
6874 }
6875
6876 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6877 {
6878 NvmeNamespace *ns;
6879 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6880 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6881 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6882 uint8_t doper, dtype;
6883 uint32_t numd, trans_len;
6884 NvmeDirectiveIdentify id = {
6885 .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6886 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6887 };
6888
6889 numd = dw10 + 1;
6890 doper = dw11 & 0xff;
6891 dtype = (dw11 >> 8) & 0xff;
6892
6893 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6894
6895 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6896 doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6897 return NVME_INVALID_FIELD | NVME_DNR;
6898 }
6899
6900 ns = nvme_ns(n, nsid);
6901 if (!ns) {
6902 return NVME_INVALID_FIELD | NVME_DNR;
6903 }
6904
6905 switch (dtype) {
6906 case NVME_DIRECTIVE_IDENTIFY:
6907 switch (doper) {
6908 case NVME_DIRECTIVE_RETURN_PARAMS:
6909 if (ns->endgrp && ns->endgrp->fdp.enabled) {
6910 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6911 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6912 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6913 }
6914
6915 return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6916
6917 default:
6918 return NVME_INVALID_FIELD | NVME_DNR;
6919 }
6920
6921 default:
6922 return NVME_INVALID_FIELD;
6923 }
6924 }
6925
6926 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6927 {
6928 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6929 nvme_adm_opc_str(req->cmd.opcode));
6930
6931 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6932 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6933 return NVME_INVALID_OPCODE | NVME_DNR;
6934 }
6935
6936 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6937 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6938 return NVME_INVALID_FIELD | NVME_DNR;
6939 }
6940
6941 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6942 return NVME_INVALID_FIELD;
6943 }
6944
6945 switch (req->cmd.opcode) {
6946 case NVME_ADM_CMD_DELETE_SQ:
6947 return nvme_del_sq(n, req);
6948 case NVME_ADM_CMD_CREATE_SQ:
6949 return nvme_create_sq(n, req);
6950 case NVME_ADM_CMD_GET_LOG_PAGE:
6951 return nvme_get_log(n, req);
6952 case NVME_ADM_CMD_DELETE_CQ:
6953 return nvme_del_cq(n, req);
6954 case NVME_ADM_CMD_CREATE_CQ:
6955 return nvme_create_cq(n, req);
6956 case NVME_ADM_CMD_IDENTIFY:
6957 return nvme_identify(n, req);
6958 case NVME_ADM_CMD_ABORT:
6959 return nvme_abort(n, req);
6960 case NVME_ADM_CMD_SET_FEATURES:
6961 return nvme_set_feature(n, req);
6962 case NVME_ADM_CMD_GET_FEATURES:
6963 return nvme_get_feature(n, req);
6964 case NVME_ADM_CMD_ASYNC_EV_REQ:
6965 return nvme_aer(n, req);
6966 case NVME_ADM_CMD_NS_ATTACHMENT:
6967 return nvme_ns_attachment(n, req);
6968 case NVME_ADM_CMD_VIRT_MNGMT:
6969 return nvme_virt_mngmt(n, req);
6970 case NVME_ADM_CMD_DBBUF_CONFIG:
6971 return nvme_dbbuf_config(n, req);
6972 case NVME_ADM_CMD_FORMAT_NVM:
6973 return nvme_format(n, req);
6974 case NVME_ADM_CMD_DIRECTIVE_SEND:
6975 return nvme_directive_send(n, req);
6976 case NVME_ADM_CMD_DIRECTIVE_RECV:
6977 return nvme_directive_receive(n, req);
6978 default:
6979 assert(false);
6980 }
6981
6982 return NVME_INVALID_OPCODE | NVME_DNR;
6983 }
6984
6985 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6986 {
6987 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6988
6989 stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail,
6990 MEMTXATTRS_UNSPECIFIED);
6991 }
6992
6993 static void nvme_update_sq_tail(NvmeSQueue *sq)
6994 {
6995 ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail,
6996 MEMTXATTRS_UNSPECIFIED);
6997
6998 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6999 }
7000
7001 static void nvme_process_sq(void *opaque)
7002 {
7003 NvmeSQueue *sq = opaque;
7004 NvmeCtrl *n = sq->ctrl;
7005 NvmeCQueue *cq = n->cq[sq->cqid];
7006
7007 uint16_t status;
7008 hwaddr addr;
7009 NvmeCmd cmd;
7010 NvmeRequest *req;
7011
7012 if (n->dbbuf_enabled) {
7013 nvme_update_sq_tail(sq);
7014 }
7015
7016 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
7017 addr = sq->dma_addr + (sq->head << NVME_SQES);
7018 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
7019 trace_pci_nvme_err_addr_read(addr);
7020 trace_pci_nvme_err_cfs();
7021 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7022 break;
7023 }
7024 nvme_inc_sq_head(sq);
7025
7026 req = QTAILQ_FIRST(&sq->req_list);
7027 QTAILQ_REMOVE(&sq->req_list, req, entry);
7028 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
7029 nvme_req_clear(req);
7030 req->cqe.cid = cmd.cid;
7031 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
7032
7033 status = sq->sqid ? nvme_io_cmd(n, req) :
7034 nvme_admin_cmd(n, req);
7035 if (status != NVME_NO_COMPLETE) {
7036 req->status = status;
7037 nvme_enqueue_req_completion(cq, req);
7038 }
7039
7040 if (n->dbbuf_enabled) {
7041 nvme_update_sq_eventidx(sq);
7042 nvme_update_sq_tail(sq);
7043 }
7044 }
7045 }
7046
7047 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7048 {
7049 uint8_t *config;
7050
7051 if (!msix_present(pci_dev)) {
7052 return;
7053 }
7054
7055 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7056
7057 config = pci_dev->config + pci_dev->msix_cap;
7058 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7059 table_size - 1);
7060 }
7061
7062 static void nvme_activate_virt_res(NvmeCtrl *n)
7063 {
7064 PCIDevice *pci_dev = PCI_DEVICE(n);
7065 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7066 NvmeSecCtrlEntry *sctrl;
7067
7068 /* -1 to account for the admin queue */
7069 if (pci_is_vf(pci_dev)) {
7070 sctrl = nvme_sctrl(n);
7071 cap->vqprt = sctrl->nvq;
7072 cap->viprt = sctrl->nvi;
7073 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7074 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7075 } else {
7076 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7077 cap->virfap = n->next_pri_ctrl_cap.virfap;
7078 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7079 le16_to_cpu(cap->vqrfap) - 1;
7080 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7081 le16_to_cpu(cap->virfap);
7082 }
7083 }
7084
7085 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7086 {
7087 PCIDevice *pci_dev = PCI_DEVICE(n);
7088 NvmeSecCtrlEntry *sctrl;
7089 NvmeNamespace *ns;
7090 int i;
7091
7092 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7093 ns = nvme_ns(n, i);
7094 if (!ns) {
7095 continue;
7096 }
7097
7098 nvme_ns_drain(ns);
7099 }
7100
7101 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7102 if (n->sq[i] != NULL) {
7103 nvme_free_sq(n->sq[i], n);
7104 }
7105 }
7106 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7107 if (n->cq[i] != NULL) {
7108 nvme_free_cq(n->cq[i], n);
7109 }
7110 }
7111
7112 while (!QTAILQ_EMPTY(&n->aer_queue)) {
7113 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7114 QTAILQ_REMOVE(&n->aer_queue, event, entry);
7115 g_free(event);
7116 }
7117
7118 if (n->params.sriov_max_vfs) {
7119 if (!pci_is_vf(pci_dev)) {
7120 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7121 sctrl = &n->sec_ctrl_list.sec[i];
7122 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7123 }
7124
7125 if (rst != NVME_RESET_CONTROLLER) {
7126 pcie_sriov_pf_disable_vfs(pci_dev);
7127 }
7128 }
7129
7130 if (rst != NVME_RESET_CONTROLLER) {
7131 nvme_activate_virt_res(n);
7132 }
7133 }
7134
7135 n->aer_queued = 0;
7136 n->aer_mask = 0;
7137 n->outstanding_aers = 0;
7138 n->qs_created = false;
7139
7140 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7141
7142 if (pci_is_vf(pci_dev)) {
7143 sctrl = nvme_sctrl(n);
7144
7145 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7146 } else {
7147 stl_le_p(&n->bar.csts, 0);
7148 }
7149
7150 stl_le_p(&n->bar.intms, 0);
7151 stl_le_p(&n->bar.intmc, 0);
7152 stl_le_p(&n->bar.cc, 0);
7153
7154 n->dbbuf_dbs = 0;
7155 n->dbbuf_eis = 0;
7156 n->dbbuf_enabled = false;
7157 }
7158
7159 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7160 {
7161 NvmeNamespace *ns;
7162 int i;
7163
7164 if (n->pmr.dev) {
7165 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7166 }
7167
7168 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7169 ns = nvme_ns(n, i);
7170 if (!ns) {
7171 continue;
7172 }
7173
7174 nvme_ns_shutdown(ns);
7175 }
7176 }
7177
7178 static void nvme_select_iocs(NvmeCtrl *n)
7179 {
7180 NvmeNamespace *ns;
7181 int i;
7182
7183 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7184 ns = nvme_ns(n, i);
7185 if (!ns) {
7186 continue;
7187 }
7188
7189 nvme_select_iocs_ns(n, ns);
7190 }
7191 }
7192
7193 static int nvme_start_ctrl(NvmeCtrl *n)
7194 {
7195 uint64_t cap = ldq_le_p(&n->bar.cap);
7196 uint32_t cc = ldl_le_p(&n->bar.cc);
7197 uint32_t aqa = ldl_le_p(&n->bar.aqa);
7198 uint64_t asq = ldq_le_p(&n->bar.asq);
7199 uint64_t acq = ldq_le_p(&n->bar.acq);
7200 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7201 uint32_t page_size = 1 << page_bits;
7202 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7203
7204 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7205 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7206 le16_to_cpu(sctrl->nvq));
7207 return -1;
7208 }
7209 if (unlikely(n->cq[0])) {
7210 trace_pci_nvme_err_startfail_cq();
7211 return -1;
7212 }
7213 if (unlikely(n->sq[0])) {
7214 trace_pci_nvme_err_startfail_sq();
7215 return -1;
7216 }
7217 if (unlikely(asq & (page_size - 1))) {
7218 trace_pci_nvme_err_startfail_asq_misaligned(asq);
7219 return -1;
7220 }
7221 if (unlikely(acq & (page_size - 1))) {
7222 trace_pci_nvme_err_startfail_acq_misaligned(acq);
7223 return -1;
7224 }
7225 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7226 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7227 return -1;
7228 }
7229 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7230 trace_pci_nvme_err_startfail_page_too_small(
7231 NVME_CC_MPS(cc),
7232 NVME_CAP_MPSMIN(cap));
7233 return -1;
7234 }
7235 if (unlikely(NVME_CC_MPS(cc) >
7236 NVME_CAP_MPSMAX(cap))) {
7237 trace_pci_nvme_err_startfail_page_too_large(
7238 NVME_CC_MPS(cc),
7239 NVME_CAP_MPSMAX(cap));
7240 return -1;
7241 }
7242 if (unlikely(!NVME_AQA_ASQS(aqa))) {
7243 trace_pci_nvme_err_startfail_asqent_sz_zero();
7244 return -1;
7245 }
7246 if (unlikely(!NVME_AQA_ACQS(aqa))) {
7247 trace_pci_nvme_err_startfail_acqent_sz_zero();
7248 return -1;
7249 }
7250
7251 n->page_bits = page_bits;
7252 n->page_size = page_size;
7253 n->max_prp_ents = n->page_size / sizeof(uint64_t);
7254 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7255 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7256
7257 nvme_set_timestamp(n, 0ULL);
7258
7259 nvme_select_iocs(n);
7260
7261 return 0;
7262 }
7263
7264 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7265 {
7266 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7267 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7268
7269 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7270 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7271 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7272 stl_le_p(&n->bar.cmbloc, cmbloc);
7273
7274 NVME_CMBSZ_SET_SQS(cmbsz, 1);
7275 NVME_CMBSZ_SET_CQS(cmbsz, 0);
7276 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7277 NVME_CMBSZ_SET_RDS(cmbsz, 1);
7278 NVME_CMBSZ_SET_WDS(cmbsz, 1);
7279 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7280 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7281 stl_le_p(&n->bar.cmbsz, cmbsz);
7282 }
7283
7284 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7285 unsigned size)
7286 {
7287 PCIDevice *pci = PCI_DEVICE(n);
7288 uint64_t cap = ldq_le_p(&n->bar.cap);
7289 uint32_t cc = ldl_le_p(&n->bar.cc);
7290 uint32_t intms = ldl_le_p(&n->bar.intms);
7291 uint32_t csts = ldl_le_p(&n->bar.csts);
7292 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7293
7294 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7295 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7296 "MMIO write not 32-bit aligned,"
7297 " offset=0x%"PRIx64"", offset);
7298 /* should be ignored, fall through for now */
7299 }
7300
7301 if (unlikely(size < sizeof(uint32_t))) {
7302 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7303 "MMIO write smaller than 32-bits,"
7304 " offset=0x%"PRIx64", size=%u",
7305 offset, size);
7306 /* should be ignored, fall through for now */
7307 }
7308
7309 switch (offset) {
7310 case NVME_REG_INTMS:
7311 if (unlikely(msix_enabled(pci))) {
7312 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7313 "undefined access to interrupt mask set"
7314 " when MSI-X is enabled");
7315 /* should be ignored, fall through for now */
7316 }
7317 intms |= data;
7318 stl_le_p(&n->bar.intms, intms);
7319 n->bar.intmc = n->bar.intms;
7320 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7321 nvme_irq_check(n);
7322 break;
7323 case NVME_REG_INTMC:
7324 if (unlikely(msix_enabled(pci))) {
7325 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7326 "undefined access to interrupt mask clr"
7327 " when MSI-X is enabled");
7328 /* should be ignored, fall through for now */
7329 }
7330 intms &= ~data;
7331 stl_le_p(&n->bar.intms, intms);
7332 n->bar.intmc = n->bar.intms;
7333 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7334 nvme_irq_check(n);
7335 break;
7336 case NVME_REG_CC:
7337 stl_le_p(&n->bar.cc, data);
7338
7339 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7340
7341 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7342 trace_pci_nvme_mmio_shutdown_set();
7343 nvme_ctrl_shutdown(n);
7344 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7345 csts |= NVME_CSTS_SHST_COMPLETE;
7346 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7347 trace_pci_nvme_mmio_shutdown_cleared();
7348 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7349 }
7350
7351 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7352 if (unlikely(nvme_start_ctrl(n))) {
7353 trace_pci_nvme_err_startfail();
7354 csts = NVME_CSTS_FAILED;
7355 } else {
7356 trace_pci_nvme_mmio_start_success();
7357 csts = NVME_CSTS_READY;
7358 }
7359 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7360 trace_pci_nvme_mmio_stopped();
7361 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7362
7363 break;
7364 }
7365
7366 stl_le_p(&n->bar.csts, csts);
7367
7368 break;
7369 case NVME_REG_CSTS:
7370 if (data & (1 << 4)) {
7371 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7372 "attempted to W1C CSTS.NSSRO"
7373 " but CAP.NSSRS is zero (not supported)");
7374 } else if (data != 0) {
7375 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7376 "attempted to set a read only bit"
7377 " of controller status");
7378 }
7379 break;
7380 case NVME_REG_NSSR:
7381 if (data == 0x4e564d65) {
7382 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7383 } else {
7384 /* The spec says that writes of other values have no effect */
7385 return;
7386 }
7387 break;
7388 case NVME_REG_AQA:
7389 stl_le_p(&n->bar.aqa, data);
7390 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7391 break;
7392 case NVME_REG_ASQ:
7393 stn_le_p(&n->bar.asq, size, data);
7394 trace_pci_nvme_mmio_asqaddr(data);
7395 break;
7396 case NVME_REG_ASQ + 4:
7397 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7398 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7399 break;
7400 case NVME_REG_ACQ:
7401 trace_pci_nvme_mmio_acqaddr(data);
7402 stn_le_p(&n->bar.acq, size, data);
7403 break;
7404 case NVME_REG_ACQ + 4:
7405 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7406 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7407 break;
7408 case NVME_REG_CMBLOC:
7409 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7410 "invalid write to reserved CMBLOC"
7411 " when CMBSZ is zero, ignored");
7412 return;
7413 case NVME_REG_CMBSZ:
7414 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7415 "invalid write to read only CMBSZ, ignored");
7416 return;
7417 case NVME_REG_CMBMSC:
7418 if (!NVME_CAP_CMBS(cap)) {
7419 return;
7420 }
7421
7422 stn_le_p(&n->bar.cmbmsc, size, data);
7423 n->cmb.cmse = false;
7424
7425 if (NVME_CMBMSC_CRE(data)) {
7426 nvme_cmb_enable_regs(n);
7427
7428 if (NVME_CMBMSC_CMSE(data)) {
7429 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7430 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7431 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7432 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7433 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7434 stl_le_p(&n->bar.cmbsts, cmbsts);
7435 return;
7436 }
7437
7438 n->cmb.cba = cba;
7439 n->cmb.cmse = true;
7440 }
7441 } else {
7442 n->bar.cmbsz = 0;
7443 n->bar.cmbloc = 0;
7444 }
7445
7446 return;
7447 case NVME_REG_CMBMSC + 4:
7448 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7449 return;
7450
7451 case NVME_REG_PMRCAP:
7452 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7453 "invalid write to PMRCAP register, ignored");
7454 return;
7455 case NVME_REG_PMRCTL:
7456 if (!NVME_CAP_PMRS(cap)) {
7457 return;
7458 }
7459
7460 stl_le_p(&n->bar.pmrctl, data);
7461 if (NVME_PMRCTL_EN(data)) {
7462 memory_region_set_enabled(&n->pmr.dev->mr, true);
7463 pmrsts = 0;
7464 } else {
7465 memory_region_set_enabled(&n->pmr.dev->mr, false);
7466 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7467 n->pmr.cmse = false;
7468 }
7469 stl_le_p(&n->bar.pmrsts, pmrsts);
7470 return;
7471 case NVME_REG_PMRSTS:
7472 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7473 "invalid write to PMRSTS register, ignored");
7474 return;
7475 case NVME_REG_PMREBS:
7476 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7477 "invalid write to PMREBS register, ignored");
7478 return;
7479 case NVME_REG_PMRSWTP:
7480 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7481 "invalid write to PMRSWTP register, ignored");
7482 return;
7483 case NVME_REG_PMRMSCL:
7484 if (!NVME_CAP_PMRS(cap)) {
7485 return;
7486 }
7487
7488 stl_le_p(&n->bar.pmrmscl, data);
7489 n->pmr.cmse = false;
7490
7491 if (NVME_PMRMSCL_CMSE(data)) {
7492 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7493 hwaddr cba = pmrmscu << 32 |
7494 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7495 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7496 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7497 stl_le_p(&n->bar.pmrsts, pmrsts);
7498 return;
7499 }
7500
7501 n->pmr.cmse = true;
7502 n->pmr.cba = cba;
7503 }
7504
7505 return;
7506 case NVME_REG_PMRMSCU:
7507 if (!NVME_CAP_PMRS(cap)) {
7508 return;
7509 }
7510
7511 stl_le_p(&n->bar.pmrmscu, data);
7512 return;
7513 default:
7514 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7515 "invalid MMIO write,"
7516 " offset=0x%"PRIx64", data=%"PRIx64"",
7517 offset, data);
7518 break;
7519 }
7520 }
7521
7522 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7523 {
7524 NvmeCtrl *n = (NvmeCtrl *)opaque;
7525 uint8_t *ptr = (uint8_t *)&n->bar;
7526
7527 trace_pci_nvme_mmio_read(addr, size);
7528
7529 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7530 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7531 "MMIO read not 32-bit aligned,"
7532 " offset=0x%"PRIx64"", addr);
7533 /* should RAZ, fall through for now */
7534 } else if (unlikely(size < sizeof(uint32_t))) {
7535 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7536 "MMIO read smaller than 32-bits,"
7537 " offset=0x%"PRIx64"", addr);
7538 /* should RAZ, fall through for now */
7539 }
7540
7541 if (addr > sizeof(n->bar) - size) {
7542 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7543 "MMIO read beyond last register,"
7544 " offset=0x%"PRIx64", returning 0", addr);
7545
7546 return 0;
7547 }
7548
7549 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7550 addr != NVME_REG_CSTS) {
7551 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7552 return 0;
7553 }
7554
7555 /*
7556 * When PMRWBM bit 1 is set then read from
7557 * from PMRSTS should ensure prior writes
7558 * made it to persistent media
7559 */
7560 if (addr == NVME_REG_PMRSTS &&
7561 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7562 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7563 }
7564
7565 return ldn_le_p(ptr + addr, size);
7566 }
7567
7568 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7569 {
7570 PCIDevice *pci = PCI_DEVICE(n);
7571 uint32_t qid;
7572
7573 if (unlikely(addr & ((1 << 2) - 1))) {
7574 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7575 "doorbell write not 32-bit aligned,"
7576 " offset=0x%"PRIx64", ignoring", addr);
7577 return;
7578 }
7579
7580 if (((addr - 0x1000) >> 2) & 1) {
7581 /* Completion queue doorbell write */
7582
7583 uint16_t new_head = val & 0xffff;
7584 int start_sqs;
7585 NvmeCQueue *cq;
7586
7587 qid = (addr - (0x1000 + (1 << 2))) >> 3;
7588 if (unlikely(nvme_check_cqid(n, qid))) {
7589 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7590 "completion queue doorbell write"
7591 " for nonexistent queue,"
7592 " sqid=%"PRIu32", ignoring", qid);
7593
7594 /*
7595 * NVM Express v1.3d, Section 4.1 state: "If host software writes
7596 * an invalid value to the Submission Queue Tail Doorbell or
7597 * Completion Queue Head Doorbell regiter and an Asynchronous Event
7598 * Request command is outstanding, then an asynchronous event is
7599 * posted to the Admin Completion Queue with a status code of
7600 * Invalid Doorbell Write Value."
7601 *
7602 * Also note that the spec includes the "Invalid Doorbell Register"
7603 * status code, but nowhere does it specify when to use it.
7604 * However, it seems reasonable to use it here in a similar
7605 * fashion.
7606 */
7607 if (n->outstanding_aers) {
7608 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7609 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7610 NVME_LOG_ERROR_INFO);
7611 }
7612
7613 return;
7614 }
7615
7616 cq = n->cq[qid];
7617 if (unlikely(new_head >= cq->size)) {
7618 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7619 "completion queue doorbell write value"
7620 " beyond queue size, sqid=%"PRIu32","
7621 " new_head=%"PRIu16", ignoring",
7622 qid, new_head);
7623
7624 if (n->outstanding_aers) {
7625 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7626 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7627 NVME_LOG_ERROR_INFO);
7628 }
7629
7630 return;
7631 }
7632
7633 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7634
7635 start_sqs = nvme_cq_full(cq) ? 1 : 0;
7636 cq->head = new_head;
7637 if (!qid && n->dbbuf_enabled) {
7638 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
7639 }
7640 if (start_sqs) {
7641 NvmeSQueue *sq;
7642 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7643 qemu_bh_schedule(sq->bh);
7644 }
7645 qemu_bh_schedule(cq->bh);
7646 }
7647
7648 if (cq->tail == cq->head) {
7649 if (cq->irq_enabled) {
7650 n->cq_pending--;
7651 }
7652
7653 nvme_irq_deassert(n, cq);
7654 }
7655 } else {
7656 /* Submission queue doorbell write */
7657
7658 uint16_t new_tail = val & 0xffff;
7659 NvmeSQueue *sq;
7660
7661 qid = (addr - 0x1000) >> 3;
7662 if (unlikely(nvme_check_sqid(n, qid))) {
7663 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7664 "submission queue doorbell write"
7665 " for nonexistent queue,"
7666 " sqid=%"PRIu32", ignoring", qid);
7667
7668 if (n->outstanding_aers) {
7669 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7670 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7671 NVME_LOG_ERROR_INFO);
7672 }
7673
7674 return;
7675 }
7676
7677 sq = n->sq[qid];
7678 if (unlikely(new_tail >= sq->size)) {
7679 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7680 "submission queue doorbell write value"
7681 " beyond queue size, sqid=%"PRIu32","
7682 " new_tail=%"PRIu16", ignoring",
7683 qid, new_tail);
7684
7685 if (n->outstanding_aers) {
7686 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7687 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7688 NVME_LOG_ERROR_INFO);
7689 }
7690
7691 return;
7692 }
7693
7694 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7695
7696 sq->tail = new_tail;
7697 if (!qid && n->dbbuf_enabled) {
7698 /*
7699 * The spec states "the host shall also update the controller's
7700 * corresponding doorbell property to match the value of that entry
7701 * in the Shadow Doorbell buffer."
7702 *
7703 * Since this context is currently a VM trap, we can safely enforce
7704 * the requirement from the device side in case the host is
7705 * misbehaving.
7706 *
7707 * Note, we shouldn't have to do this, but various drivers
7708 * including ones that run on Linux, are not updating Admin Queues,
7709 * so we can't trust reading it for an appropriate sq tail.
7710 */
7711 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
7712 }
7713
7714 qemu_bh_schedule(sq->bh);
7715 }
7716 }
7717
7718 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7719 unsigned size)
7720 {
7721 NvmeCtrl *n = (NvmeCtrl *)opaque;
7722
7723 trace_pci_nvme_mmio_write(addr, data, size);
7724
7725 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7726 addr != NVME_REG_CSTS) {
7727 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7728 return;
7729 }
7730
7731 if (addr < sizeof(n->bar)) {
7732 nvme_write_bar(n, addr, data, size);
7733 } else {
7734 nvme_process_db(n, addr, data);
7735 }
7736 }
7737
7738 static const MemoryRegionOps nvme_mmio_ops = {
7739 .read = nvme_mmio_read,
7740 .write = nvme_mmio_write,
7741 .endianness = DEVICE_LITTLE_ENDIAN,
7742 .impl = {
7743 .min_access_size = 2,
7744 .max_access_size = 8,
7745 },
7746 };
7747
7748 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7749 unsigned size)
7750 {
7751 NvmeCtrl *n = (NvmeCtrl *)opaque;
7752 stn_le_p(&n->cmb.buf[addr], size, data);
7753 }
7754
7755 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7756 {
7757 NvmeCtrl *n = (NvmeCtrl *)opaque;
7758 return ldn_le_p(&n->cmb.buf[addr], size);
7759 }
7760
7761 static const MemoryRegionOps nvme_cmb_ops = {
7762 .read = nvme_cmb_read,
7763 .write = nvme_cmb_write,
7764 .endianness = DEVICE_LITTLE_ENDIAN,
7765 .impl = {
7766 .min_access_size = 1,
7767 .max_access_size = 8,
7768 },
7769 };
7770
7771 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7772 {
7773 NvmeParams *params = &n->params;
7774
7775 if (params->num_queues) {
7776 warn_report("num_queues is deprecated; please use max_ioqpairs "
7777 "instead");
7778
7779 params->max_ioqpairs = params->num_queues - 1;
7780 }
7781
7782 if (n->namespace.blkconf.blk && n->subsys) {
7783 error_setg(errp, "subsystem support is unavailable with legacy "
7784 "namespace ('drive' property)");
7785 return false;
7786 }
7787
7788 if (params->max_ioqpairs < 1 ||
7789 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7790 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7791 NVME_MAX_IOQPAIRS);
7792 return false;
7793 }
7794
7795 if (params->msix_qsize < 1 ||
7796 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7797 error_setg(errp, "msix_qsize must be between 1 and %d",
7798 PCI_MSIX_FLAGS_QSIZE + 1);
7799 return false;
7800 }
7801
7802 if (!params->serial) {
7803 error_setg(errp, "serial property not set");
7804 return false;
7805 }
7806
7807 if (n->pmr.dev) {
7808 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7809 error_setg(errp, "can't use already busy memdev: %s",
7810 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7811 return false;
7812 }
7813
7814 if (!is_power_of_2(n->pmr.dev->size)) {
7815 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7816 return false;
7817 }
7818
7819 host_memory_backend_set_mapped(n->pmr.dev, true);
7820 }
7821
7822 if (n->params.zasl > n->params.mdts) {
7823 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7824 "than or equal to mdts (Maximum Data Transfer Size)");
7825 return false;
7826 }
7827
7828 if (!n->params.vsl) {
7829 error_setg(errp, "vsl must be non-zero");
7830 return false;
7831 }
7832
7833 if (params->sriov_max_vfs) {
7834 if (!n->subsys) {
7835 error_setg(errp, "subsystem is required for the use of SR-IOV");
7836 return false;
7837 }
7838
7839 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7840 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7841 NVME_MAX_VFS);
7842 return false;
7843 }
7844
7845 if (params->cmb_size_mb) {
7846 error_setg(errp, "CMB is not supported with SR-IOV");
7847 return false;
7848 }
7849
7850 if (n->pmr.dev) {
7851 error_setg(errp, "PMR is not supported with SR-IOV");
7852 return false;
7853 }
7854
7855 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7856 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7857 " must be set for the use of SR-IOV");
7858 return false;
7859 }
7860
7861 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7862 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7863 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7864 return false;
7865 }
7866
7867 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7868 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7869 " greater than or equal to 2");
7870 return false;
7871 }
7872
7873 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7874 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7875 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7876 return false;
7877 }
7878
7879 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7880 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7881 " greater than or equal to 1");
7882 return false;
7883 }
7884
7885 if (params->sriov_max_vi_per_vf &&
7886 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7887 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7888 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7889 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7890 return false;
7891 }
7892
7893 if (params->sriov_max_vq_per_vf &&
7894 (params->sriov_max_vq_per_vf < 2 ||
7895 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7896 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7897 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7898 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7899 return false;
7900 }
7901 }
7902
7903 return true;
7904 }
7905
7906 static void nvme_init_state(NvmeCtrl *n)
7907 {
7908 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7909 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7910 NvmeSecCtrlEntry *sctrl;
7911 PCIDevice *pci = PCI_DEVICE(n);
7912 uint8_t max_vfs;
7913 int i;
7914
7915 if (pci_is_vf(pci)) {
7916 sctrl = nvme_sctrl(n);
7917 max_vfs = 0;
7918 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7919 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7920 } else {
7921 max_vfs = n->params.sriov_max_vfs;
7922 n->conf_ioqpairs = n->params.max_ioqpairs;
7923 n->conf_msix_qsize = n->params.msix_qsize;
7924 }
7925
7926 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7927 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7928 n->temperature = NVME_TEMPERATURE;
7929 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7930 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7931 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7932 QTAILQ_INIT(&n->aer_queue);
7933
7934 list->numcntl = cpu_to_le16(max_vfs);
7935 for (i = 0; i < max_vfs; i++) {
7936 sctrl = &list->sec[i];
7937 sctrl->pcid = cpu_to_le16(n->cntlid);
7938 sctrl->vfn = cpu_to_le16(i + 1);
7939 }
7940
7941 cap->cntlid = cpu_to_le16(n->cntlid);
7942 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7943
7944 if (pci_is_vf(pci)) {
7945 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7946 } else {
7947 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7948 n->params.sriov_vq_flexible);
7949 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7950 cap->vqrfap = cap->vqfrt;
7951 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7952 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7953 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7954 cap->vqfrt / MAX(max_vfs, 1);
7955 }
7956
7957 if (pci_is_vf(pci)) {
7958 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7959 } else {
7960 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7961 n->params.sriov_vi_flexible);
7962 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7963 cap->virfap = cap->vifrt;
7964 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7965 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7966 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7967 cap->vifrt / MAX(max_vfs, 1);
7968 }
7969 }
7970
7971 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7972 {
7973 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7974 uint64_t cap = ldq_le_p(&n->bar.cap);
7975
7976 n->cmb.buf = g_malloc0(cmb_size);
7977 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7978 "nvme-cmb", cmb_size);
7979 pci_register_bar(pci_dev, NVME_CMB_BIR,
7980 PCI_BASE_ADDRESS_SPACE_MEMORY |
7981 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7982 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7983
7984 NVME_CAP_SET_CMBS(cap, 1);
7985 stq_le_p(&n->bar.cap, cap);
7986
7987 if (n->params.legacy_cmb) {
7988 nvme_cmb_enable_regs(n);
7989 n->cmb.cmse = true;
7990 }
7991 }
7992
7993 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7994 {
7995 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7996
7997 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7998 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7999 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
8000 /* Turn on bit 1 support */
8001 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
8002 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
8003 stl_le_p(&n->bar.pmrcap, pmrcap);
8004
8005 pci_register_bar(pci_dev, NVME_PMR_BIR,
8006 PCI_BASE_ADDRESS_SPACE_MEMORY |
8007 PCI_BASE_ADDRESS_MEM_TYPE_64 |
8008 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
8009
8010 memory_region_set_enabled(&n->pmr.dev->mr, false);
8011 }
8012
8013 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
8014 unsigned *msix_table_offset,
8015 unsigned *msix_pba_offset)
8016 {
8017 uint64_t bar_size, msix_table_size, msix_pba_size;
8018
8019 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8020 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8021
8022 if (msix_table_offset) {
8023 *msix_table_offset = bar_size;
8024 }
8025
8026 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8027 bar_size += msix_table_size;
8028 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8029
8030 if (msix_pba_offset) {
8031 *msix_pba_offset = bar_size;
8032 }
8033
8034 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8035 bar_size += msix_pba_size;
8036
8037 bar_size = pow2ceil(bar_size);
8038 return bar_size;
8039 }
8040
8041 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8042 {
8043 uint16_t vf_dev_id = n->params.use_intel_id ?
8044 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8045 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8046 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8047 le16_to_cpu(cap->vifrsm),
8048 NULL, NULL);
8049
8050 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8051 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8052 NVME_VF_OFFSET, NVME_VF_STRIDE);
8053
8054 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8055 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8056 }
8057
8058 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8059 {
8060 Error *err = NULL;
8061 int ret;
8062
8063 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8064 PCI_PM_SIZEOF, &err);
8065 if (err) {
8066 error_report_err(err);
8067 return ret;
8068 }
8069
8070 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8071 PCI_PM_CAP_VER_1_2);
8072 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8073 PCI_PM_CTRL_NO_SOFT_RESET);
8074 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8075 PCI_PM_CTRL_STATE_MASK);
8076
8077 return 0;
8078 }
8079
8080 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8081 {
8082 ERRP_GUARD();
8083 uint8_t *pci_conf = pci_dev->config;
8084 uint64_t bar_size;
8085 unsigned msix_table_offset, msix_pba_offset;
8086 int ret;
8087
8088 pci_conf[PCI_INTERRUPT_PIN] = 1;
8089 pci_config_set_prog_interface(pci_conf, 0x2);
8090
8091 if (n->params.use_intel_id) {
8092 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8093 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8094 } else {
8095 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8096 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8097 }
8098
8099 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8100 nvme_add_pm_capability(pci_dev, 0x60);
8101 pcie_endpoint_cap_init(pci_dev, 0x80);
8102 pcie_cap_flr_init(pci_dev);
8103 if (n->params.sriov_max_vfs) {
8104 pcie_ari_init(pci_dev, 0x100);
8105 }
8106
8107 /* add one to max_ioqpairs to account for the admin queue pair */
8108 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8109 &msix_table_offset, &msix_pba_offset);
8110
8111 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8112 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8113 msix_table_offset);
8114 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8115
8116 if (pci_is_vf(pci_dev)) {
8117 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8118 } else {
8119 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8120 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8121 }
8122 ret = msix_init(pci_dev, n->params.msix_qsize,
8123 &n->bar0, 0, msix_table_offset,
8124 &n->bar0, 0, msix_pba_offset, 0, errp);
8125 if (ret == -ENOTSUP) {
8126 /* report that msix is not supported, but do not error out */
8127 warn_report_err(*errp);
8128 *errp = NULL;
8129 } else if (ret < 0) {
8130 /* propagate error to caller */
8131 return false;
8132 }
8133
8134 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8135
8136 if (n->params.cmb_size_mb) {
8137 nvme_init_cmb(n, pci_dev);
8138 }
8139
8140 if (n->pmr.dev) {
8141 nvme_init_pmr(n, pci_dev);
8142 }
8143
8144 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8145 nvme_init_sriov(n, pci_dev, 0x120);
8146 }
8147
8148 return true;
8149 }
8150
8151 static void nvme_init_subnqn(NvmeCtrl *n)
8152 {
8153 NvmeSubsystem *subsys = n->subsys;
8154 NvmeIdCtrl *id = &n->id_ctrl;
8155
8156 if (!subsys) {
8157 snprintf((char *)id->subnqn, sizeof(id->subnqn),
8158 "nqn.2019-08.org.qemu:%s", n->params.serial);
8159 } else {
8160 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8161 }
8162 }
8163
8164 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8165 {
8166 NvmeIdCtrl *id = &n->id_ctrl;
8167 uint8_t *pci_conf = pci_dev->config;
8168 uint64_t cap = ldq_le_p(&n->bar.cap);
8169 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8170 uint32_t ctratt;
8171
8172 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8173 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8174 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8175 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8176 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8177
8178 id->cntlid = cpu_to_le16(n->cntlid);
8179
8180 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8181 ctratt = NVME_CTRATT_ELBAS;
8182
8183 id->rab = 6;
8184
8185 if (n->params.use_intel_id) {
8186 id->ieee[0] = 0xb3;
8187 id->ieee[1] = 0x02;
8188 id->ieee[2] = 0x00;
8189 } else {
8190 id->ieee[0] = 0x00;
8191 id->ieee[1] = 0x54;
8192 id->ieee[2] = 0x52;
8193 }
8194
8195 id->mdts = n->params.mdts;
8196 id->ver = cpu_to_le32(NVME_SPEC_VER);
8197 id->oacs =
8198 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8199 NVME_OACS_DIRECTIVES);
8200 id->cntrltype = 0x1;
8201
8202 /*
8203 * Because the controller always completes the Abort command immediately,
8204 * there can never be more than one concurrently executing Abort command,
8205 * so this value is never used for anything. Note that there can easily be
8206 * many Abort commands in the queues, but they are not considered
8207 * "executing" until processed by nvme_abort.
8208 *
8209 * The specification recommends a value of 3 for Abort Command Limit (four
8210 * concurrently outstanding Abort commands), so lets use that though it is
8211 * inconsequential.
8212 */
8213 id->acl = 3;
8214 id->aerl = n->params.aerl;
8215 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8216 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8217
8218 /* recommended default value (~70 C) */
8219 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8220 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8221
8222 id->sqes = (NVME_SQES << 4) | NVME_SQES;
8223 id->cqes = (NVME_CQES << 4) | NVME_CQES;
8224 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8225 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8226 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8227 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8228
8229 /*
8230 * NOTE: If this device ever supports a command set that does NOT use 0x0
8231 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8232 * should probably be removed.
8233 *
8234 * See comment in nvme_io_cmd.
8235 */
8236 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8237
8238 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8239 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8240
8241 nvme_init_subnqn(n);
8242
8243 id->psd[0].mp = cpu_to_le16(0x9c4);
8244 id->psd[0].enlat = cpu_to_le32(0x10);
8245 id->psd[0].exlat = cpu_to_le32(0x4);
8246
8247 if (n->subsys) {
8248 id->cmic |= NVME_CMIC_MULTI_CTRL;
8249 ctratt |= NVME_CTRATT_ENDGRPS;
8250
8251 id->endgidmax = cpu_to_le16(0x1);
8252
8253 if (n->subsys->endgrp.fdp.enabled) {
8254 ctratt |= NVME_CTRATT_FDPS;
8255 }
8256 }
8257
8258 id->ctratt = cpu_to_le32(ctratt);
8259
8260 NVME_CAP_SET_MQES(cap, 0x7ff);
8261 NVME_CAP_SET_CQR(cap, 1);
8262 NVME_CAP_SET_TO(cap, 0xf);
8263 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8264 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8265 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8266 NVME_CAP_SET_MPSMAX(cap, 4);
8267 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8268 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8269 stq_le_p(&n->bar.cap, cap);
8270
8271 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8272 n->bar.intmc = n->bar.intms = 0;
8273
8274 if (pci_is_vf(pci_dev) && !sctrl->scs) {
8275 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8276 }
8277 }
8278
8279 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8280 {
8281 int cntlid;
8282
8283 if (!n->subsys) {
8284 return 0;
8285 }
8286
8287 cntlid = nvme_subsys_register_ctrl(n, errp);
8288 if (cntlid < 0) {
8289 return -1;
8290 }
8291
8292 n->cntlid = cntlid;
8293
8294 return 0;
8295 }
8296
8297 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8298 {
8299 uint32_t nsid = ns->params.nsid;
8300 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8301
8302 n->namespaces[nsid] = ns;
8303 ns->attached++;
8304
8305 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8306 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8307 }
8308
8309 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8310 {
8311 NvmeCtrl *n = NVME(pci_dev);
8312 DeviceState *dev = DEVICE(pci_dev);
8313 NvmeNamespace *ns;
8314 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8315
8316 if (pci_is_vf(pci_dev)) {
8317 /*
8318 * VFs derive settings from the parent. PF's lifespan exceeds
8319 * that of VF's, so it's safe to share params.serial.
8320 */
8321 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8322 n->subsys = pn->subsys;
8323 }
8324
8325 if (!nvme_check_params(n, errp)) {
8326 return;
8327 }
8328
8329 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8330
8331 if (nvme_init_subsys(n, errp)) {
8332 return;
8333 }
8334 nvme_init_state(n);
8335 if (!nvme_init_pci(n, pci_dev, errp)) {
8336 return;
8337 }
8338 nvme_init_ctrl(n, pci_dev);
8339
8340 /* setup a namespace if the controller drive property was given */
8341 if (n->namespace.blkconf.blk) {
8342 ns = &n->namespace;
8343 ns->params.nsid = 1;
8344
8345 if (nvme_ns_setup(ns, errp)) {
8346 return;
8347 }
8348
8349 nvme_attach_ns(n, ns);
8350 }
8351 }
8352
8353 static void nvme_exit(PCIDevice *pci_dev)
8354 {
8355 NvmeCtrl *n = NVME(pci_dev);
8356 NvmeNamespace *ns;
8357 int i;
8358
8359 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8360
8361 if (n->subsys) {
8362 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8363 ns = nvme_ns(n, i);
8364 if (ns) {
8365 ns->attached--;
8366 }
8367 }
8368
8369 nvme_subsys_unregister_ctrl(n->subsys, n);
8370 }
8371
8372 g_free(n->cq);
8373 g_free(n->sq);
8374 g_free(n->aer_reqs);
8375
8376 if (n->params.cmb_size_mb) {
8377 g_free(n->cmb.buf);
8378 }
8379
8380 if (n->pmr.dev) {
8381 host_memory_backend_set_mapped(n->pmr.dev, false);
8382 }
8383
8384 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8385 pcie_sriov_pf_exit(pci_dev);
8386 }
8387
8388 msix_uninit(pci_dev, &n->bar0, &n->bar0);
8389 memory_region_del_subregion(&n->bar0, &n->iomem);
8390 }
8391
8392 static Property nvme_props[] = {
8393 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8394 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8395 HostMemoryBackend *),
8396 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8397 NvmeSubsystem *),
8398 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8399 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8400 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8401 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8402 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8403 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8404 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8405 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8406 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8407 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8408 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8409 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8410 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8411 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8412 params.auto_transition_zones, true),
8413 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8414 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8415 params.sriov_vq_flexible, 0),
8416 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8417 params.sriov_vi_flexible, 0),
8418 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8419 params.sriov_max_vi_per_vf, 0),
8420 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8421 params.sriov_max_vq_per_vf, 0),
8422 DEFINE_PROP_END_OF_LIST(),
8423 };
8424
8425 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8426 void *opaque, Error **errp)
8427 {
8428 NvmeCtrl *n = NVME(obj);
8429 uint8_t value = n->smart_critical_warning;
8430
8431 visit_type_uint8(v, name, &value, errp);
8432 }
8433
8434 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8435 void *opaque, Error **errp)
8436 {
8437 NvmeCtrl *n = NVME(obj);
8438 uint8_t value, old_value, cap = 0, index, event;
8439
8440 if (!visit_type_uint8(v, name, &value, errp)) {
8441 return;
8442 }
8443
8444 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8445 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8446 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8447 cap |= NVME_SMART_PMR_UNRELIABLE;
8448 }
8449
8450 if ((value & cap) != value) {
8451 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8452 value & ~cap);
8453 return;
8454 }
8455
8456 old_value = n->smart_critical_warning;
8457 n->smart_critical_warning = value;
8458
8459 /* only inject new bits of smart critical warning */
8460 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8461 event = 1 << index;
8462 if (value & ~old_value & event)
8463 nvme_smart_event(n, event);
8464 }
8465 }
8466
8467 static void nvme_pci_reset(DeviceState *qdev)
8468 {
8469 PCIDevice *pci_dev = PCI_DEVICE(qdev);
8470 NvmeCtrl *n = NVME(pci_dev);
8471
8472 trace_pci_nvme_pci_reset();
8473 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8474 }
8475
8476 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8477 uint32_t val, int len)
8478 {
8479 NvmeCtrl *n = NVME(dev);
8480 NvmeSecCtrlEntry *sctrl;
8481 uint16_t sriov_cap = dev->exp.sriov_cap;
8482 uint32_t off = address - sriov_cap;
8483 int i, num_vfs;
8484
8485 if (!sriov_cap) {
8486 return;
8487 }
8488
8489 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8490 if (!(val & PCI_SRIOV_CTRL_VFE)) {
8491 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8492 for (i = 0; i < num_vfs; i++) {
8493 sctrl = &n->sec_ctrl_list.sec[i];
8494 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8495 }
8496 }
8497 }
8498 }
8499
8500 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8501 uint32_t val, int len)
8502 {
8503 nvme_sriov_pre_write_ctrl(dev, address, val, len);
8504 pci_default_write_config(dev, address, val, len);
8505 pcie_cap_flr_write_config(dev, address, val, len);
8506 }
8507
8508 static const VMStateDescription nvme_vmstate = {
8509 .name = "nvme",
8510 .unmigratable = 1,
8511 };
8512
8513 static void nvme_class_init(ObjectClass *oc, void *data)
8514 {
8515 DeviceClass *dc = DEVICE_CLASS(oc);
8516 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8517
8518 pc->realize = nvme_realize;
8519 pc->config_write = nvme_pci_write_config;
8520 pc->exit = nvme_exit;
8521 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8522 pc->revision = 2;
8523
8524 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8525 dc->desc = "Non-Volatile Memory Express";
8526 device_class_set_props(dc, nvme_props);
8527 dc->vmsd = &nvme_vmstate;
8528 dc->reset = nvme_pci_reset;
8529 }
8530
8531 static void nvme_instance_init(Object *obj)
8532 {
8533 NvmeCtrl *n = NVME(obj);
8534
8535 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8536 "bootindex", "/namespace@1,0",
8537 DEVICE(obj));
8538
8539 object_property_add(obj, "smart_critical_warning", "uint8",
8540 nvme_get_smart_warning,
8541 nvme_set_smart_warning, NULL, NULL);
8542 }
8543
8544 static const TypeInfo nvme_info = {
8545 .name = TYPE_NVME,
8546 .parent = TYPE_PCI_DEVICE,
8547 .instance_size = sizeof(NvmeCtrl),
8548 .instance_init = nvme_instance_init,
8549 .class_init = nvme_class_init,
8550 .interfaces = (InterfaceInfo[]) {
8551 { INTERFACE_PCIE_DEVICE },
8552 { }
8553 },
8554 };
8555
8556 static const TypeInfo nvme_bus_info = {
8557 .name = TYPE_NVME_BUS,
8558 .parent = TYPE_BUS,
8559 .instance_size = sizeof(NvmeBus),
8560 };
8561
8562 static void nvme_register_types(void)
8563 {
8564 type_register_static(&nvme_info);
8565 type_register_static(&nvme_bus_info);
8566 }
8567
8568 type_init(nvme_register_types)