]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvme/ctrl.c
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,shared=<true|false[optional]>, \
47 * detached=<true|false[optional]>, \
48 * zoned.zone_size=<N[optional]>, \
49 * zoned.zone_capacity=<N[optional]>, \
50 * zoned.descr_ext_size=<N[optional]>, \
51 * zoned.max_active=<N[optional]>, \
52 * zoned.max_open=<N[optional]>, \
53 * zoned.cross_read=<true|false[optional]>
54 *
55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
59 *
60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
61 * For example:
62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
63 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
64 *
65 * The PMR will use BAR 4/5 exclusively.
66 *
67 * To place controller(s) and namespace(s) to a subsystem, then provide
68 * nvme-subsys device as above.
69 *
70 * nvme subsystem device parameters
71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
72 * - `nqn`
73 * This parameter provides the `<nqn_id>` part of the string
74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
75 * of subsystem controllers. Note that `<nqn_id>` should be unique per
76 * subsystem, but this is not enforced by QEMU. If not specified, it will
77 * default to the value of the `id` parameter (`<subsys_id>`).
78 *
79 * nvme device parameters
80 * ~~~~~~~~~~~~~~~~~~~~~~
81 * - `subsys`
82 * Specifying this parameter attaches the controller to the subsystem and
83 * the SUBNQN field in the controller will report the NQN of the subsystem
84 * device. This also enables multi controller capability represented in
85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
86 * Namespace Sharing Capabilities).
87 *
88 * - `aerl`
89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
90 * of concurrently outstanding Asynchronous Event Request commands support
91 * by the controller. This is a 0's based value.
92 *
93 * - `aer_max_queued`
94 * This is the maximum number of events that the device will enqueue for
95 * completion when there are no outstanding AERs. When the maximum number of
96 * enqueued events are reached, subsequent events will be dropped.
97 *
98 * - `mdts`
99 * Indicates the maximum data transfer size for a command that transfers data
100 * between host-accessible memory and the controller. The value is specified
101 * as a power of two (2^n) and is in units of the minimum memory page size
102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
103 *
104 * - `vsl`
105 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
106 * this value is specified as a power of two (2^n) and is in units of the
107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
108 * KiB).
109 *
110 * - `zoned.zasl`
111 * Indicates the maximum data transfer size for the Zone Append command. Like
112 * `mdts`, the value is specified as a power of two (2^n) and is in units of
113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
114 * defaulting to the value of `mdts`).
115 *
116 * - `zoned.auto_transition`
117 * Indicates if zones in zone state implicitly opened can be automatically
118 * transitioned to zone state closed for resource management purposes.
119 * Defaults to 'on'.
120 *
121 * - `sriov_max_vfs`
122 * Indicates the maximum number of PCIe virtual functions supported
123 * by the controller. The default value is 0. Specifying a non-zero value
124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
125 * Virtual function controllers will not report SR-IOV capability.
126 *
127 * NOTE: Single Root I/O Virtualization support is experimental.
128 * All the related parameters may be subject to change.
129 *
130 * - `sriov_vq_flexible`
131 * Indicates the total number of flexible queue resources assignable to all
132 * the secondary controllers. Implicitly sets the number of primary
133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
134 *
135 * - `sriov_vi_flexible`
136 * Indicates the total number of flexible interrupt resources assignable to
137 * all the secondary controllers. Implicitly sets the number of primary
138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
139 *
140 * - `sriov_max_vi_per_vf`
141 * Indicates the maximum number of virtual interrupt resources assignable
142 * to a secondary controller. The default 0 resolves to
143 * `(sriov_vi_flexible / sriov_max_vfs)`.
144 *
145 * - `sriov_max_vq_per_vf`
146 * Indicates the maximum number of virtual queue resources assignable to
147 * a secondary controller. The default 0 resolves to
148 * `(sriov_vq_flexible / sriov_max_vfs)`.
149 *
150 * nvme namespace device parameters
151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
152 * - `shared`
153 * When the parent nvme device (as defined explicitly by the 'bus' parameter
154 * or implicitly by the most recently defined NvmeBus) is linked to an
155 * nvme-subsys device, the namespace will be attached to all controllers in
156 * the subsystem. If set to 'off' (the default), the namespace will remain a
157 * private namespace and may only be attached to a single controller at a
158 * time.
159 *
160 * - `detached`
161 * This parameter is only valid together with the `subsys` parameter. If left
162 * at the default value (`false/off`), the namespace will be attached to all
163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
164 * namespace will be available in the subsystem but not attached to any
165 * controllers.
166 *
167 * Setting `zoned` to true selects Zoned Command Set at the namespace.
168 * In this case, the following namespace properties are available to configure
169 * zoned operation:
170 * zoned.zone_size=<zone size in bytes, default: 128MiB>
171 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
172 *
173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
174 * The value 0 (default) forces zone capacity to be the same as zone
175 * size. The value of this property may not exceed zone size.
176 *
177 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
178 * This value needs to be specified in 64B units. If it is zero,
179 * namespace(s) will not support zone descriptor extensions.
180 *
181 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
182 * The default value means there is no limit to the number of
183 * concurrently active zones.
184 *
185 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
186 * The default value means there is no limit to the number of
187 * concurrently open zones.
188 *
189 * zoned.cross_read=<enable RAZB, default: false>
190 * Setting this property to true enables Read Across Zone Boundaries.
191 */
192
193 #include "qemu/osdep.h"
194 #include "qemu/cutils.h"
195 #include "qemu/error-report.h"
196 #include "qemu/log.h"
197 #include "qemu/units.h"
198 #include "qemu/range.h"
199 #include "qapi/error.h"
200 #include "qapi/visitor.h"
201 #include "sysemu/sysemu.h"
202 #include "sysemu/block-backend.h"
203 #include "sysemu/hostmem.h"
204 #include "hw/pci/msix.h"
205 #include "hw/pci/pcie_sriov.h"
206 #include "migration/vmstate.h"
207
208 #include "nvme.h"
209 #include "dif.h"
210 #include "trace.h"
211
212 #define NVME_MAX_IOQPAIRS 0xffff
213 #define NVME_DB_SIZE 4
214 #define NVME_SPEC_VER 0x00010400
215 #define NVME_CMB_BIR 2
216 #define NVME_PMR_BIR 4
217 #define NVME_TEMPERATURE 0x143
218 #define NVME_TEMPERATURE_WARNING 0x157
219 #define NVME_TEMPERATURE_CRITICAL 0x175
220 #define NVME_NUM_FW_SLOTS 1
221 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
222 #define NVME_MAX_VFS 127
223 #define NVME_VF_RES_GRANULARITY 1
224 #define NVME_VF_OFFSET 0x1
225 #define NVME_VF_STRIDE 1
226
227 #define NVME_GUEST_ERR(trace, fmt, ...) \
228 do { \
229 (trace_##trace)(__VA_ARGS__); \
230 qemu_log_mask(LOG_GUEST_ERROR, #trace \
231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
232 } while (0)
233
234 static const bool nvme_feature_support[NVME_FID_MAX] = {
235 [NVME_ARBITRATION] = true,
236 [NVME_POWER_MANAGEMENT] = true,
237 [NVME_TEMPERATURE_THRESHOLD] = true,
238 [NVME_ERROR_RECOVERY] = true,
239 [NVME_VOLATILE_WRITE_CACHE] = true,
240 [NVME_NUMBER_OF_QUEUES] = true,
241 [NVME_INTERRUPT_COALESCING] = true,
242 [NVME_INTERRUPT_VECTOR_CONF] = true,
243 [NVME_WRITE_ATOMICITY] = true,
244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
245 [NVME_TIMESTAMP] = true,
246 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
247 [NVME_COMMAND_SET_PROFILE] = true,
248 [NVME_FDP_MODE] = true,
249 [NVME_FDP_EVENTS] = true,
250 };
251
252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE,
262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
263 };
264
265 static const uint32_t nvme_cse_acs[256] = {
266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP,
281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_none[256];
285
286 static const uint32_t nvme_cse_iocs_nvm[256] = {
287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
297 };
298
299 static const uint32_t nvme_cse_iocs_zoned[256] = {
300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
311 };
312
313 static void nvme_process_sq(void *opaque);
314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
316
317 static uint16_t nvme_sqid(NvmeRequest *req)
318 {
319 return le16_to_cpu(req->sq->sqid);
320 }
321
322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
323 uint16_t ph)
324 {
325 uint16_t rgif = ns->endgrp->fdp.rgif;
326
327 if (!rgif) {
328 return ph;
329 }
330
331 return (rg << (16 - rgif)) | ph;
332 }
333
334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
335 {
336 return ph < ns->fdp.nphs;
337 }
338
339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
340 {
341 return rg < endgrp->fdp.nrg;
342 }
343
344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
345 {
346 uint16_t rgif = ns->endgrp->fdp.rgif;
347
348 if (!rgif) {
349 return pid;
350 }
351
352 return pid & ((1 << (15 - rgif)) - 1);
353 }
354
355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
356 {
357 uint16_t rgif = ns->endgrp->fdp.rgif;
358
359 if (!rgif) {
360 return 0;
361 }
362
363 return pid >> (16 - rgif);
364 }
365
366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
367 uint16_t *ph, uint16_t *rg)
368 {
369 *rg = nvme_pid2rg(ns, pid);
370 *ph = nvme_pid2ph(ns, pid);
371
372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
373 }
374
375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
376 NvmeZoneState state)
377 {
378 if (QTAILQ_IN_USE(zone, entry)) {
379 switch (nvme_get_zone_state(zone)) {
380 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
382 break;
383 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
385 break;
386 case NVME_ZONE_STATE_CLOSED:
387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
388 break;
389 case NVME_ZONE_STATE_FULL:
390 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
391 default:
392 ;
393 }
394 }
395
396 nvme_set_zone_state(zone, state);
397
398 switch (state) {
399 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
401 break;
402 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
404 break;
405 case NVME_ZONE_STATE_CLOSED:
406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
407 break;
408 case NVME_ZONE_STATE_FULL:
409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
410 case NVME_ZONE_STATE_READ_ONLY:
411 break;
412 default:
413 zone->d.za = 0;
414 }
415 }
416
417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
418 uint32_t opn, uint32_t zrwa)
419 {
420 if (ns->params.max_active_zones != 0 &&
421 ns->nr_active_zones + act > ns->params.max_active_zones) {
422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
424 }
425
426 if (ns->params.max_open_zones != 0 &&
427 ns->nr_open_zones + opn > ns->params.max_open_zones) {
428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
430 }
431
432 if (zrwa > ns->zns.numzrwa) {
433 return NVME_NOZRWA | NVME_DNR;
434 }
435
436 return NVME_SUCCESS;
437 }
438
439 /*
440 * Check if we can open a zone without exceeding open/active limits.
441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
442 */
443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
444 {
445 return nvme_zns_check_resources(ns, act, opn, 0);
446 }
447
448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
449 {
450 NvmeFdpEvent *ret = NULL;
451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
452
453 ret = &ebuf->events[ebuf->next++];
454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
455 ebuf->next = 0;
456 }
457 if (is_full) {
458 ebuf->start = ebuf->next;
459 } else {
460 ebuf->nelems++;
461 }
462
463 memset(ret, 0, sizeof(NvmeFdpEvent));
464 ret->timestamp = nvme_get_timestamp(n);
465
466 return ret;
467 }
468
469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
470 {
471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
472 }
473
474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
475 {
476 NvmeEnduranceGroup *endgrp = ns->endgrp;
477 NvmeRuHandle *ruh;
478 NvmeReclaimUnit *ru;
479 NvmeFdpEvent *e = NULL;
480 uint16_t ph, rg, ruhid;
481
482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
483 return false;
484 }
485
486 ruhid = ns->fdp.phs[ph];
487
488 ruh = &endgrp->fdp.ruhs[ruhid];
489 ru = &ruh->rus[rg];
490
491 if (ru->ruamw) {
492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
496 e->pid = cpu_to_le16(pid);
497 e->nsid = cpu_to_le32(ns->params.nsid);
498 e->rgid = cpu_to_le16(rg);
499 e->ruhid = cpu_to_le16(ruhid);
500 }
501
502 /* log (eventual) GC overhead of prematurely swapping the RU */
503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
504 }
505
506 ru->ruamw = ruh->ruamw;
507
508 return true;
509 }
510
511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
512 {
513 hwaddr hi, lo;
514
515 if (!n->cmb.cmse) {
516 return false;
517 }
518
519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
520 hi = lo + int128_get64(n->cmb.mem.size);
521
522 return addr >= lo && addr < hi;
523 }
524
525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
526 {
527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
528 return &n->cmb.buf[addr - base];
529 }
530
531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
532 {
533 hwaddr hi;
534
535 if (!n->pmr.cmse) {
536 return false;
537 }
538
539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
540
541 return addr >= n->pmr.cba && addr < hi;
542 }
543
544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
545 {
546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
547 }
548
549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
550 {
551 hwaddr hi, lo;
552
553 /*
554 * The purpose of this check is to guard against invalid "local" access to
555 * the iomem (i.e. controller registers). Thus, we check against the range
556 * covered by the 'bar0' MemoryRegion since that is currently composed of
557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
558 * that if the device model is ever changed to allow the CMB to be located
559 * in BAR0 as well, then this must be changed.
560 */
561 lo = n->bar0.addr;
562 hi = lo + int128_get64(n->bar0.size);
563
564 return addr >= lo && addr < hi;
565 }
566
567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
568 {
569 hwaddr hi = addr + size - 1;
570 if (hi < addr) {
571 return 1;
572 }
573
574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
575 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
576 return 0;
577 }
578
579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
580 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
581 return 0;
582 }
583
584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
585 }
586
587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
588 {
589 hwaddr hi = addr + size - 1;
590 if (hi < addr) {
591 return 1;
592 }
593
594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
595 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
596 return 0;
597 }
598
599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
600 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
601 return 0;
602 }
603
604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
605 }
606
607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
608 {
609 return nsid &&
610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
611 }
612
613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
614 {
615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
616 }
617
618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
619 {
620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
621 }
622
623 static void nvme_inc_cq_tail(NvmeCQueue *cq)
624 {
625 cq->tail++;
626 if (cq->tail >= cq->size) {
627 cq->tail = 0;
628 cq->phase = !cq->phase;
629 }
630 }
631
632 static void nvme_inc_sq_head(NvmeSQueue *sq)
633 {
634 sq->head = (sq->head + 1) % sq->size;
635 }
636
637 static uint8_t nvme_cq_full(NvmeCQueue *cq)
638 {
639 return (cq->tail + 1) % cq->size == cq->head;
640 }
641
642 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
643 {
644 return sq->head == sq->tail;
645 }
646
647 static void nvme_irq_check(NvmeCtrl *n)
648 {
649 PCIDevice *pci = PCI_DEVICE(n);
650 uint32_t intms = ldl_le_p(&n->bar.intms);
651
652 if (msix_enabled(pci)) {
653 return;
654 }
655 if (~intms & n->irq_status) {
656 pci_irq_assert(pci);
657 } else {
658 pci_irq_deassert(pci);
659 }
660 }
661
662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
663 {
664 PCIDevice *pci = PCI_DEVICE(n);
665
666 if (cq->irq_enabled) {
667 if (msix_enabled(pci)) {
668 trace_pci_nvme_irq_msix(cq->vector);
669 msix_notify(pci, cq->vector);
670 } else {
671 trace_pci_nvme_irq_pin();
672 assert(cq->vector < 32);
673 n->irq_status |= 1 << cq->vector;
674 nvme_irq_check(n);
675 }
676 } else {
677 trace_pci_nvme_irq_masked();
678 }
679 }
680
681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
682 {
683 if (cq->irq_enabled) {
684 if (msix_enabled(PCI_DEVICE(n))) {
685 return;
686 } else {
687 assert(cq->vector < 32);
688 if (!n->cq_pending) {
689 n->irq_status &= ~(1 << cq->vector);
690 }
691 nvme_irq_check(n);
692 }
693 }
694 }
695
696 static void nvme_req_clear(NvmeRequest *req)
697 {
698 req->ns = NULL;
699 req->opaque = NULL;
700 req->aiocb = NULL;
701 memset(&req->cqe, 0x0, sizeof(req->cqe));
702 req->status = NVME_SUCCESS;
703 }
704
705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
706 {
707 if (dma) {
708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
709 sg->flags = NVME_SG_DMA;
710 } else {
711 qemu_iovec_init(&sg->iov, 0);
712 }
713
714 sg->flags |= NVME_SG_ALLOC;
715 }
716
717 static inline void nvme_sg_unmap(NvmeSg *sg)
718 {
719 if (!(sg->flags & NVME_SG_ALLOC)) {
720 return;
721 }
722
723 if (sg->flags & NVME_SG_DMA) {
724 qemu_sglist_destroy(&sg->qsg);
725 } else {
726 qemu_iovec_destroy(&sg->iov);
727 }
728
729 memset(sg, 0x0, sizeof(*sg));
730 }
731
732 /*
733 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
734 * holds both data and metadata. This function splits the data and metadata
735 * into two separate QSG/IOVs.
736 */
737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
738 NvmeSg *mdata)
739 {
740 NvmeSg *dst = data;
741 uint32_t trans_len, count = ns->lbasz;
742 uint64_t offset = 0;
743 bool dma = sg->flags & NVME_SG_DMA;
744 size_t sge_len;
745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
746 int sg_idx = 0;
747
748 assert(sg->flags & NVME_SG_ALLOC);
749
750 while (sg_len) {
751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
752
753 trans_len = MIN(sg_len, count);
754 trans_len = MIN(trans_len, sge_len - offset);
755
756 if (dst) {
757 if (dma) {
758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
759 trans_len);
760 } else {
761 qemu_iovec_add(&dst->iov,
762 sg->iov.iov[sg_idx].iov_base + offset,
763 trans_len);
764 }
765 }
766
767 sg_len -= trans_len;
768 count -= trans_len;
769 offset += trans_len;
770
771 if (count == 0) {
772 dst = (dst == data) ? mdata : data;
773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
774 }
775
776 if (sge_len == offset) {
777 offset = 0;
778 sg_idx++;
779 }
780 }
781 }
782
783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
784 size_t len)
785 {
786 if (!len) {
787 return NVME_SUCCESS;
788 }
789
790 trace_pci_nvme_map_addr_cmb(addr, len);
791
792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
793 return NVME_DATA_TRAS_ERROR;
794 }
795
796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
797
798 return NVME_SUCCESS;
799 }
800
801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
802 size_t len)
803 {
804 if (!len) {
805 return NVME_SUCCESS;
806 }
807
808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
809 return NVME_DATA_TRAS_ERROR;
810 }
811
812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
813
814 return NVME_SUCCESS;
815 }
816
817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
818 {
819 bool cmb = false, pmr = false;
820
821 if (!len) {
822 return NVME_SUCCESS;
823 }
824
825 trace_pci_nvme_map_addr(addr, len);
826
827 if (nvme_addr_is_iomem(n, addr)) {
828 return NVME_DATA_TRAS_ERROR;
829 }
830
831 if (nvme_addr_is_cmb(n, addr)) {
832 cmb = true;
833 } else if (nvme_addr_is_pmr(n, addr)) {
834 pmr = true;
835 }
836
837 if (cmb || pmr) {
838 if (sg->flags & NVME_SG_DMA) {
839 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
840 }
841
842 if (sg->iov.niov + 1 > IOV_MAX) {
843 goto max_mappings_exceeded;
844 }
845
846 if (cmb) {
847 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
848 } else {
849 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
850 }
851 }
852
853 if (!(sg->flags & NVME_SG_DMA)) {
854 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
855 }
856
857 if (sg->qsg.nsg + 1 > IOV_MAX) {
858 goto max_mappings_exceeded;
859 }
860
861 qemu_sglist_add(&sg->qsg, addr, len);
862
863 return NVME_SUCCESS;
864
865 max_mappings_exceeded:
866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
867 "number of mappings exceed 1024");
868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
869 }
870
871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
872 {
873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
874 }
875
876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
877 uint64_t prp2, uint32_t len)
878 {
879 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
880 trans_len = MIN(len, trans_len);
881 int num_prps = (len >> n->page_bits) + 1;
882 uint16_t status;
883 int ret;
884
885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
886
887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
888
889 status = nvme_map_addr(n, sg, prp1, trans_len);
890 if (status) {
891 goto unmap;
892 }
893
894 len -= trans_len;
895 if (len) {
896 if (len > n->page_size) {
897 uint64_t prp_list[n->max_prp_ents];
898 uint32_t nents, prp_trans;
899 int i = 0;
900
901 /*
902 * The first PRP list entry, pointed to by PRP2 may contain offset.
903 * Hence, we need to calculate the number of entries in based on
904 * that offset.
905 */
906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
909 if (ret) {
910 trace_pci_nvme_err_addr_read(prp2);
911 status = NVME_DATA_TRAS_ERROR;
912 goto unmap;
913 }
914 while (len != 0) {
915 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
916
917 if (i == nents - 1 && len > n->page_size) {
918 if (unlikely(prp_ent & (n->page_size - 1))) {
919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
921 goto unmap;
922 }
923
924 i = 0;
925 nents = (len + n->page_size - 1) >> n->page_bits;
926 nents = MIN(nents, n->max_prp_ents);
927 prp_trans = nents * sizeof(uint64_t);
928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
929 prp_trans);
930 if (ret) {
931 trace_pci_nvme_err_addr_read(prp_ent);
932 status = NVME_DATA_TRAS_ERROR;
933 goto unmap;
934 }
935 prp_ent = le64_to_cpu(prp_list[i]);
936 }
937
938 if (unlikely(prp_ent & (n->page_size - 1))) {
939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
941 goto unmap;
942 }
943
944 trans_len = MIN(len, n->page_size);
945 status = nvme_map_addr(n, sg, prp_ent, trans_len);
946 if (status) {
947 goto unmap;
948 }
949
950 len -= trans_len;
951 i++;
952 }
953 } else {
954 if (unlikely(prp2 & (n->page_size - 1))) {
955 trace_pci_nvme_err_invalid_prp2_align(prp2);
956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
957 goto unmap;
958 }
959 status = nvme_map_addr(n, sg, prp2, len);
960 if (status) {
961 goto unmap;
962 }
963 }
964 }
965
966 return NVME_SUCCESS;
967
968 unmap:
969 nvme_sg_unmap(sg);
970 return status;
971 }
972
973 /*
974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
975 * number of bytes mapped in len.
976 */
977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
978 NvmeSglDescriptor *segment, uint64_t nsgld,
979 size_t *len, NvmeCmd *cmd)
980 {
981 dma_addr_t addr, trans_len;
982 uint32_t dlen;
983 uint16_t status;
984
985 for (int i = 0; i < nsgld; i++) {
986 uint8_t type = NVME_SGL_TYPE(segment[i].type);
987
988 switch (type) {
989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
990 break;
991 case NVME_SGL_DESCR_TYPE_SEGMENT:
992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
994 default:
995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
996 }
997
998 dlen = le32_to_cpu(segment[i].len);
999
1000 if (!dlen) {
1001 continue;
1002 }
1003
1004 if (*len == 0) {
1005 /*
1006 * All data has been mapped, but the SGL contains additional
1007 * segments and/or descriptors. The controller might accept
1008 * ignoring the rest of the SGL.
1009 */
1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1012 break;
1013 }
1014
1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1017 }
1018
1019 trans_len = MIN(*len, dlen);
1020
1021 addr = le64_to_cpu(segment[i].addr);
1022
1023 if (UINT64_MAX - addr < dlen) {
1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1025 }
1026
1027 status = nvme_map_addr(n, sg, addr, trans_len);
1028 if (status) {
1029 return status;
1030 }
1031
1032 *len -= trans_len;
1033 }
1034
1035 return NVME_SUCCESS;
1036 }
1037
1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1039 size_t len, NvmeCmd *cmd)
1040 {
1041 /*
1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL
1044 * to be larger (as in number of bytes required to describe the SGL
1045 * descriptors and segment chain) than the command transfer size, so it is
1046 * not bounded by MDTS.
1047 */
1048 const int SEG_CHUNK_SIZE = 256;
1049
1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1051 uint64_t nsgld;
1052 uint32_t seg_len;
1053 uint16_t status;
1054 hwaddr addr;
1055 int ret;
1056
1057 sgld = &sgl;
1058 addr = le64_to_cpu(sgl.addr);
1059
1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1061
1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1063
1064 /*
1065 * If the entire transfer can be described with a single data block it can
1066 * be mapped directly.
1067 */
1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1070 if (status) {
1071 goto unmap;
1072 }
1073
1074 goto out;
1075 }
1076
1077 for (;;) {
1078 switch (NVME_SGL_TYPE(sgld->type)) {
1079 case NVME_SGL_DESCR_TYPE_SEGMENT:
1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1081 break;
1082 default:
1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084 }
1085
1086 seg_len = le32_to_cpu(sgld->len);
1087
1088 /* check the length of the (Last) Segment descriptor */
1089 if (!seg_len || seg_len & 0xf) {
1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1091 }
1092
1093 if (UINT64_MAX - addr < seg_len) {
1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1095 }
1096
1097 nsgld = seg_len / sizeof(NvmeSglDescriptor);
1098
1099 while (nsgld > SEG_CHUNK_SIZE) {
1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1101 trace_pci_nvme_err_addr_read(addr);
1102 status = NVME_DATA_TRAS_ERROR;
1103 goto unmap;
1104 }
1105
1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1107 &len, cmd);
1108 if (status) {
1109 goto unmap;
1110 }
1111
1112 nsgld -= SEG_CHUNK_SIZE;
1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1114 }
1115
1116 ret = nvme_addr_read(n, addr, segment, nsgld *
1117 sizeof(NvmeSglDescriptor));
1118 if (ret) {
1119 trace_pci_nvme_err_addr_read(addr);
1120 status = NVME_DATA_TRAS_ERROR;
1121 goto unmap;
1122 }
1123
1124 last_sgld = &segment[nsgld - 1];
1125
1126 /*
1127 * If the segment ends with a Data Block, then we are done.
1128 */
1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1131 if (status) {
1132 goto unmap;
1133 }
1134
1135 goto out;
1136 }
1137
1138 /*
1139 * If the last descriptor was not a Data Block, then the current
1140 * segment must not be a Last Segment.
1141 */
1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1144 goto unmap;
1145 }
1146
1147 sgld = last_sgld;
1148 addr = le64_to_cpu(sgld->addr);
1149
1150 /*
1151 * Do not map the last descriptor; it will be a Segment or Last Segment
1152 * descriptor and is handled by the next iteration.
1153 */
1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1155 if (status) {
1156 goto unmap;
1157 }
1158 }
1159
1160 out:
1161 /* if there is any residual left in len, the SGL was too short */
1162 if (len) {
1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1164 goto unmap;
1165 }
1166
1167 return NVME_SUCCESS;
1168
1169 unmap:
1170 nvme_sg_unmap(sg);
1171 return status;
1172 }
1173
1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1175 NvmeCmd *cmd)
1176 {
1177 uint64_t prp1, prp2;
1178
1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1180 case NVME_PSDT_PRP:
1181 prp1 = le64_to_cpu(cmd->dptr.prp1);
1182 prp2 = le64_to_cpu(cmd->dptr.prp2);
1183
1184 return nvme_map_prp(n, sg, prp1, prp2, len);
1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1186 case NVME_PSDT_SGL_MPTR_SGL:
1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1188 default:
1189 return NVME_INVALID_FIELD;
1190 }
1191 }
1192
1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1194 NvmeCmd *cmd)
1195 {
1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1197 hwaddr mptr = le64_to_cpu(cmd->mptr);
1198 uint16_t status;
1199
1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1201 NvmeSglDescriptor sgl;
1202
1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1204 return NVME_DATA_TRAS_ERROR;
1205 }
1206
1207 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1210 }
1211
1212 return status;
1213 }
1214
1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1216 status = nvme_map_addr(n, sg, mptr, len);
1217 if (status) {
1218 nvme_sg_unmap(sg);
1219 }
1220
1221 return status;
1222 }
1223
1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1225 {
1226 NvmeNamespace *ns = req->ns;
1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1230 size_t len = nvme_l2b(ns, nlb);
1231 uint16_t status;
1232
1233 if (nvme_ns_ext(ns) &&
1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1235 NvmeSg sg;
1236
1237 len += nvme_m2b(ns, nlb);
1238
1239 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1240 if (status) {
1241 return status;
1242 }
1243
1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1245 nvme_sg_split(&sg, ns, &req->sg, NULL);
1246 nvme_sg_unmap(&sg);
1247
1248 return NVME_SUCCESS;
1249 }
1250
1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1252 }
1253
1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1255 {
1256 NvmeNamespace *ns = req->ns;
1257 size_t len = nvme_m2b(ns, nlb);
1258 uint16_t status;
1259
1260 if (nvme_ns_ext(ns)) {
1261 NvmeSg sg;
1262
1263 len += nvme_l2b(ns, nlb);
1264
1265 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1266 if (status) {
1267 return status;
1268 }
1269
1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1271 nvme_sg_split(&sg, ns, NULL, &req->sg);
1272 nvme_sg_unmap(&sg);
1273
1274 return NVME_SUCCESS;
1275 }
1276
1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1278 }
1279
1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1281 uint32_t len, uint32_t bytes,
1282 int32_t skip_bytes, int64_t offset,
1283 NvmeTxDirection dir)
1284 {
1285 hwaddr addr;
1286 uint32_t trans_len, count = bytes;
1287 bool dma = sg->flags & NVME_SG_DMA;
1288 int64_t sge_len;
1289 int sg_idx = 0;
1290 int ret;
1291
1292 assert(sg->flags & NVME_SG_ALLOC);
1293
1294 while (len) {
1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1296
1297 if (sge_len - offset < 0) {
1298 offset -= sge_len;
1299 sg_idx++;
1300 continue;
1301 }
1302
1303 if (sge_len == offset) {
1304 offset = 0;
1305 sg_idx++;
1306 continue;
1307 }
1308
1309 trans_len = MIN(len, count);
1310 trans_len = MIN(trans_len, sge_len - offset);
1311
1312 if (dma) {
1313 addr = sg->qsg.sg[sg_idx].base + offset;
1314 } else {
1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1316 }
1317
1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1319 ret = nvme_addr_read(n, addr, ptr, trans_len);
1320 } else {
1321 ret = nvme_addr_write(n, addr, ptr, trans_len);
1322 }
1323
1324 if (ret) {
1325 return NVME_DATA_TRAS_ERROR;
1326 }
1327
1328 ptr += trans_len;
1329 len -= trans_len;
1330 count -= trans_len;
1331 offset += trans_len;
1332
1333 if (count == 0) {
1334 count = bytes;
1335 offset += skip_bytes;
1336 }
1337 }
1338
1339 return NVME_SUCCESS;
1340 }
1341
1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1343 NvmeTxDirection dir)
1344 {
1345 assert(sg->flags & NVME_SG_ALLOC);
1346
1347 if (sg->flags & NVME_SG_DMA) {
1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1349 dma_addr_t residual;
1350
1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1353 } else {
1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1355 }
1356
1357 if (unlikely(residual)) {
1358 trace_pci_nvme_err_invalid_dma();
1359 return NVME_INVALID_FIELD | NVME_DNR;
1360 }
1361 } else {
1362 size_t bytes;
1363
1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1366 } else {
1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1368 }
1369
1370 if (unlikely(bytes != len)) {
1371 trace_pci_nvme_err_invalid_dma();
1372 return NVME_INVALID_FIELD | NVME_DNR;
1373 }
1374 }
1375
1376 return NVME_SUCCESS;
1377 }
1378
1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1380 NvmeRequest *req)
1381 {
1382 uint16_t status;
1383
1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1385 if (status) {
1386 return status;
1387 }
1388
1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1390 }
1391
1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1393 NvmeRequest *req)
1394 {
1395 uint16_t status;
1396
1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1398 if (status) {
1399 return status;
1400 }
1401
1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1403 }
1404
1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1406 NvmeTxDirection dir, NvmeRequest *req)
1407 {
1408 NvmeNamespace *ns = req->ns;
1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1412
1413 if (nvme_ns_ext(ns) &&
1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1416 ns->lbaf.ms, 0, dir);
1417 }
1418
1419 return nvme_tx(n, &req->sg, ptr, len, dir);
1420 }
1421
1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1423 NvmeTxDirection dir, NvmeRequest *req)
1424 {
1425 NvmeNamespace *ns = req->ns;
1426 uint16_t status;
1427
1428 if (nvme_ns_ext(ns)) {
1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1430 ns->lbasz, ns->lbasz, dir);
1431 }
1432
1433 nvme_sg_unmap(&req->sg);
1434
1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1436 if (status) {
1437 return status;
1438 }
1439
1440 return nvme_tx(n, &req->sg, ptr, len, dir);
1441 }
1442
1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1444 uint32_t align, BlockCompletionFunc *cb,
1445 NvmeRequest *req)
1446 {
1447 assert(req->sg.flags & NVME_SG_ALLOC);
1448
1449 if (req->sg.flags & NVME_SG_DMA) {
1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1451 } else {
1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1453 }
1454 }
1455
1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1457 uint32_t align, BlockCompletionFunc *cb,
1458 NvmeRequest *req)
1459 {
1460 assert(req->sg.flags & NVME_SG_ALLOC);
1461
1462 if (req->sg.flags & NVME_SG_DMA) {
1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1464 } else {
1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1466 }
1467 }
1468
1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1470 {
1471 uint32_t v = cpu_to_le32(cq->head);
1472
1473 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1474
1475 pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v));
1476 }
1477
1478 static void nvme_update_cq_head(NvmeCQueue *cq)
1479 {
1480 uint32_t v;
1481
1482 pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v));
1483
1484 cq->head = le32_to_cpu(v);
1485
1486 trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1487 }
1488
1489 static void nvme_post_cqes(void *opaque)
1490 {
1491 NvmeCQueue *cq = opaque;
1492 NvmeCtrl *n = cq->ctrl;
1493 NvmeRequest *req, *next;
1494 bool pending = cq->head != cq->tail;
1495 int ret;
1496
1497 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1498 NvmeSQueue *sq;
1499 hwaddr addr;
1500
1501 if (n->dbbuf_enabled) {
1502 nvme_update_cq_eventidx(cq);
1503 nvme_update_cq_head(cq);
1504 }
1505
1506 if (nvme_cq_full(cq)) {
1507 break;
1508 }
1509
1510 sq = req->sq;
1511 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1512 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1513 req->cqe.sq_head = cpu_to_le16(sq->head);
1514 addr = cq->dma_addr + cq->tail * n->cqe_size;
1515 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1516 sizeof(req->cqe));
1517 if (ret) {
1518 trace_pci_nvme_err_addr_write(addr);
1519 trace_pci_nvme_err_cfs();
1520 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1521 break;
1522 }
1523 QTAILQ_REMOVE(&cq->req_list, req, entry);
1524 nvme_inc_cq_tail(cq);
1525 nvme_sg_unmap(&req->sg);
1526 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1527 }
1528 if (cq->tail != cq->head) {
1529 if (cq->irq_enabled && !pending) {
1530 n->cq_pending++;
1531 }
1532
1533 nvme_irq_assert(n, cq);
1534 }
1535 }
1536
1537 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1538 {
1539 assert(cq->cqid == req->sq->cqid);
1540 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1541 le32_to_cpu(req->cqe.result),
1542 le32_to_cpu(req->cqe.dw1),
1543 req->status);
1544
1545 if (req->status) {
1546 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1547 req->status, req->cmd.opcode);
1548 }
1549
1550 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1551 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1552
1553 qemu_bh_schedule(cq->bh);
1554 }
1555
1556 static void nvme_process_aers(void *opaque)
1557 {
1558 NvmeCtrl *n = opaque;
1559 NvmeAsyncEvent *event, *next;
1560
1561 trace_pci_nvme_process_aers(n->aer_queued);
1562
1563 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1564 NvmeRequest *req;
1565 NvmeAerResult *result;
1566
1567 /* can't post cqe if there is nothing to complete */
1568 if (!n->outstanding_aers) {
1569 trace_pci_nvme_no_outstanding_aers();
1570 break;
1571 }
1572
1573 /* ignore if masked (cqe posted, but event not cleared) */
1574 if (n->aer_mask & (1 << event->result.event_type)) {
1575 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1576 continue;
1577 }
1578
1579 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1580 n->aer_queued--;
1581
1582 n->aer_mask |= 1 << event->result.event_type;
1583 n->outstanding_aers--;
1584
1585 req = n->aer_reqs[n->outstanding_aers];
1586
1587 result = (NvmeAerResult *) &req->cqe.result;
1588 result->event_type = event->result.event_type;
1589 result->event_info = event->result.event_info;
1590 result->log_page = event->result.log_page;
1591 g_free(event);
1592
1593 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1594 result->log_page);
1595
1596 nvme_enqueue_req_completion(&n->admin_cq, req);
1597 }
1598 }
1599
1600 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1601 uint8_t event_info, uint8_t log_page)
1602 {
1603 NvmeAsyncEvent *event;
1604
1605 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1606
1607 if (n->aer_queued == n->params.aer_max_queued) {
1608 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1609 return;
1610 }
1611
1612 event = g_new(NvmeAsyncEvent, 1);
1613 event->result = (NvmeAerResult) {
1614 .event_type = event_type,
1615 .event_info = event_info,
1616 .log_page = log_page,
1617 };
1618
1619 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1620 n->aer_queued++;
1621
1622 nvme_process_aers(n);
1623 }
1624
1625 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1626 {
1627 uint8_t aer_info;
1628
1629 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1630 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1631 return;
1632 }
1633
1634 switch (event) {
1635 case NVME_SMART_SPARE:
1636 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1637 break;
1638 case NVME_SMART_TEMPERATURE:
1639 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1640 break;
1641 case NVME_SMART_RELIABILITY:
1642 case NVME_SMART_MEDIA_READ_ONLY:
1643 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1644 case NVME_SMART_PMR_UNRELIABLE:
1645 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1646 break;
1647 default:
1648 return;
1649 }
1650
1651 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1652 }
1653
1654 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1655 {
1656 n->aer_mask &= ~(1 << event_type);
1657 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1658 nvme_process_aers(n);
1659 }
1660 }
1661
1662 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1663 {
1664 uint8_t mdts = n->params.mdts;
1665
1666 if (mdts && len > n->page_size << mdts) {
1667 trace_pci_nvme_err_mdts(len);
1668 return NVME_INVALID_FIELD | NVME_DNR;
1669 }
1670
1671 return NVME_SUCCESS;
1672 }
1673
1674 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1675 uint32_t nlb)
1676 {
1677 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1678
1679 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1680 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1681 return NVME_LBA_RANGE | NVME_DNR;
1682 }
1683
1684 return NVME_SUCCESS;
1685 }
1686
1687 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1688 uint32_t nlb, int flags)
1689 {
1690 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1691
1692 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1693 int64_t offset = nvme_l2b(ns, slba);
1694 int ret;
1695
1696 /*
1697 * `pnum` holds the number of bytes after offset that shares the same
1698 * allocation status as the byte at offset. If `pnum` is different from
1699 * `bytes`, we should check the allocation status of the next range and
1700 * continue this until all bytes have been checked.
1701 */
1702 do {
1703 bytes -= pnum;
1704
1705 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1706 if (ret < 0) {
1707 return ret;
1708 }
1709
1710
1711 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1712 !!(ret & BDRV_BLOCK_ZERO));
1713
1714 if (!(ret & flags)) {
1715 return 1;
1716 }
1717
1718 offset += pnum;
1719 } while (pnum != bytes);
1720
1721 return 0;
1722 }
1723
1724 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1725 uint32_t nlb)
1726 {
1727 int ret;
1728 Error *err = NULL;
1729
1730 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1731 if (ret) {
1732 if (ret < 0) {
1733 error_setg_errno(&err, -ret, "unable to get block status");
1734 error_report_err(err);
1735
1736 return NVME_INTERNAL_DEV_ERROR;
1737 }
1738
1739 return NVME_DULB;
1740 }
1741
1742 return NVME_SUCCESS;
1743 }
1744
1745 static void nvme_aio_err(NvmeRequest *req, int ret)
1746 {
1747 uint16_t status = NVME_SUCCESS;
1748 Error *local_err = NULL;
1749
1750 switch (req->cmd.opcode) {
1751 case NVME_CMD_READ:
1752 status = NVME_UNRECOVERED_READ;
1753 break;
1754 case NVME_CMD_FLUSH:
1755 case NVME_CMD_WRITE:
1756 case NVME_CMD_WRITE_ZEROES:
1757 case NVME_CMD_ZONE_APPEND:
1758 case NVME_CMD_COPY:
1759 status = NVME_WRITE_FAULT;
1760 break;
1761 default:
1762 status = NVME_INTERNAL_DEV_ERROR;
1763 break;
1764 }
1765
1766 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1767
1768 error_setg_errno(&local_err, -ret, "aio failed");
1769 error_report_err(local_err);
1770
1771 /*
1772 * Set the command status code to the first encountered error but allow a
1773 * subsequent Internal Device Error to trump it.
1774 */
1775 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1776 return;
1777 }
1778
1779 req->status = status;
1780 }
1781
1782 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1783 {
1784 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1785 slba / ns->zone_size;
1786 }
1787
1788 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1789 {
1790 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1791
1792 if (zone_idx >= ns->num_zones) {
1793 return NULL;
1794 }
1795
1796 return &ns->zone_array[zone_idx];
1797 }
1798
1799 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1800 {
1801 uint64_t zslba = zone->d.zslba;
1802
1803 switch (nvme_get_zone_state(zone)) {
1804 case NVME_ZONE_STATE_EMPTY:
1805 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1806 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1807 case NVME_ZONE_STATE_CLOSED:
1808 return NVME_SUCCESS;
1809 case NVME_ZONE_STATE_FULL:
1810 trace_pci_nvme_err_zone_is_full(zslba);
1811 return NVME_ZONE_FULL;
1812 case NVME_ZONE_STATE_OFFLINE:
1813 trace_pci_nvme_err_zone_is_offline(zslba);
1814 return NVME_ZONE_OFFLINE;
1815 case NVME_ZONE_STATE_READ_ONLY:
1816 trace_pci_nvme_err_zone_is_read_only(zslba);
1817 return NVME_ZONE_READ_ONLY;
1818 default:
1819 assert(false);
1820 }
1821
1822 return NVME_INTERNAL_DEV_ERROR;
1823 }
1824
1825 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1826 uint64_t slba, uint32_t nlb)
1827 {
1828 uint64_t zcap = nvme_zone_wr_boundary(zone);
1829 uint16_t status;
1830
1831 status = nvme_check_zone_state_for_write(zone);
1832 if (status) {
1833 return status;
1834 }
1835
1836 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1837 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1838
1839 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1840 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1841 return NVME_ZONE_INVALID_WRITE;
1842 }
1843 } else {
1844 if (unlikely(slba != zone->w_ptr)) {
1845 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1846 zone->w_ptr);
1847 return NVME_ZONE_INVALID_WRITE;
1848 }
1849 }
1850
1851 if (unlikely((slba + nlb) > zcap)) {
1852 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1853 return NVME_ZONE_BOUNDARY_ERROR;
1854 }
1855
1856 return NVME_SUCCESS;
1857 }
1858
1859 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1860 {
1861 switch (nvme_get_zone_state(zone)) {
1862 case NVME_ZONE_STATE_EMPTY:
1863 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1864 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1865 case NVME_ZONE_STATE_FULL:
1866 case NVME_ZONE_STATE_CLOSED:
1867 case NVME_ZONE_STATE_READ_ONLY:
1868 return NVME_SUCCESS;
1869 case NVME_ZONE_STATE_OFFLINE:
1870 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1871 return NVME_ZONE_OFFLINE;
1872 default:
1873 assert(false);
1874 }
1875
1876 return NVME_INTERNAL_DEV_ERROR;
1877 }
1878
1879 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1880 uint32_t nlb)
1881 {
1882 NvmeZone *zone;
1883 uint64_t bndry, end;
1884 uint16_t status;
1885
1886 zone = nvme_get_zone_by_slba(ns, slba);
1887 assert(zone);
1888
1889 bndry = nvme_zone_rd_boundary(ns, zone);
1890 end = slba + nlb;
1891
1892 status = nvme_check_zone_state_for_read(zone);
1893 if (status) {
1894 ;
1895 } else if (unlikely(end > bndry)) {
1896 if (!ns->params.cross_zone_read) {
1897 status = NVME_ZONE_BOUNDARY_ERROR;
1898 } else {
1899 /*
1900 * Read across zone boundary - check that all subsequent
1901 * zones that are being read have an appropriate state.
1902 */
1903 do {
1904 zone++;
1905 status = nvme_check_zone_state_for_read(zone);
1906 if (status) {
1907 break;
1908 }
1909 } while (end > nvme_zone_rd_boundary(ns, zone));
1910 }
1911 }
1912
1913 return status;
1914 }
1915
1916 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1917 {
1918 switch (nvme_get_zone_state(zone)) {
1919 case NVME_ZONE_STATE_FULL:
1920 return NVME_SUCCESS;
1921
1922 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1923 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1924 nvme_aor_dec_open(ns);
1925 /* fallthrough */
1926 case NVME_ZONE_STATE_CLOSED:
1927 nvme_aor_dec_active(ns);
1928
1929 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1930 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1931 if (ns->params.numzrwa) {
1932 ns->zns.numzrwa++;
1933 }
1934 }
1935
1936 /* fallthrough */
1937 case NVME_ZONE_STATE_EMPTY:
1938 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1939 return NVME_SUCCESS;
1940
1941 default:
1942 return NVME_ZONE_INVAL_TRANSITION;
1943 }
1944 }
1945
1946 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1947 {
1948 switch (nvme_get_zone_state(zone)) {
1949 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1950 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1951 nvme_aor_dec_open(ns);
1952 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1953 /* fall through */
1954 case NVME_ZONE_STATE_CLOSED:
1955 return NVME_SUCCESS;
1956
1957 default:
1958 return NVME_ZONE_INVAL_TRANSITION;
1959 }
1960 }
1961
1962 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1963 {
1964 switch (nvme_get_zone_state(zone)) {
1965 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1966 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1967 nvme_aor_dec_open(ns);
1968 /* fallthrough */
1969 case NVME_ZONE_STATE_CLOSED:
1970 nvme_aor_dec_active(ns);
1971
1972 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1973 if (ns->params.numzrwa) {
1974 ns->zns.numzrwa++;
1975 }
1976 }
1977
1978 /* fallthrough */
1979 case NVME_ZONE_STATE_FULL:
1980 zone->w_ptr = zone->d.zslba;
1981 zone->d.wp = zone->w_ptr;
1982 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1983 /* fallthrough */
1984 case NVME_ZONE_STATE_EMPTY:
1985 return NVME_SUCCESS;
1986
1987 default:
1988 return NVME_ZONE_INVAL_TRANSITION;
1989 }
1990 }
1991
1992 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1993 {
1994 NvmeZone *zone;
1995
1996 if (ns->params.max_open_zones &&
1997 ns->nr_open_zones == ns->params.max_open_zones) {
1998 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1999 if (zone) {
2000 /*
2001 * Automatically close this implicitly open zone.
2002 */
2003 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
2004 nvme_zrm_close(ns, zone);
2005 }
2006 }
2007 }
2008
2009 enum {
2010 NVME_ZRM_AUTO = 1 << 0,
2011 NVME_ZRM_ZRWA = 1 << 1,
2012 };
2013
2014 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2015 NvmeZone *zone, int flags)
2016 {
2017 int act = 0;
2018 uint16_t status;
2019
2020 switch (nvme_get_zone_state(zone)) {
2021 case NVME_ZONE_STATE_EMPTY:
2022 act = 1;
2023
2024 /* fallthrough */
2025
2026 case NVME_ZONE_STATE_CLOSED:
2027 if (n->params.auto_transition_zones) {
2028 nvme_zrm_auto_transition_zone(ns);
2029 }
2030 status = nvme_zns_check_resources(ns, act, 1,
2031 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2032 if (status) {
2033 return status;
2034 }
2035
2036 if (act) {
2037 nvme_aor_inc_active(ns);
2038 }
2039
2040 nvme_aor_inc_open(ns);
2041
2042 if (flags & NVME_ZRM_AUTO) {
2043 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2044 return NVME_SUCCESS;
2045 }
2046
2047 /* fallthrough */
2048
2049 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2050 if (flags & NVME_ZRM_AUTO) {
2051 return NVME_SUCCESS;
2052 }
2053
2054 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2055
2056 /* fallthrough */
2057
2058 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2059 if (flags & NVME_ZRM_ZRWA) {
2060 ns->zns.numzrwa--;
2061
2062 zone->d.za |= NVME_ZA_ZRWA_VALID;
2063 }
2064
2065 return NVME_SUCCESS;
2066
2067 default:
2068 return NVME_ZONE_INVAL_TRANSITION;
2069 }
2070 }
2071
2072 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2073 NvmeZone *zone)
2074 {
2075 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2076 }
2077
2078 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2079 uint32_t nlb)
2080 {
2081 zone->d.wp += nlb;
2082
2083 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2084 nvme_zrm_finish(ns, zone);
2085 }
2086 }
2087
2088 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2089 uint32_t nlbc)
2090 {
2091 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2092
2093 nlbc = nzrwafgs * ns->zns.zrwafg;
2094
2095 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2096
2097 zone->w_ptr += nlbc;
2098
2099 nvme_advance_zone_wp(ns, zone, nlbc);
2100 }
2101
2102 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2103 {
2104 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2105 NvmeZone *zone;
2106 uint64_t slba;
2107 uint32_t nlb;
2108
2109 slba = le64_to_cpu(rw->slba);
2110 nlb = le16_to_cpu(rw->nlb) + 1;
2111 zone = nvme_get_zone_by_slba(ns, slba);
2112 assert(zone);
2113
2114 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2115 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2116 uint64_t elba = slba + nlb - 1;
2117
2118 if (elba > ezrwa) {
2119 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2120 }
2121
2122 return;
2123 }
2124
2125 nvme_advance_zone_wp(ns, zone, nlb);
2126 }
2127
2128 static inline bool nvme_is_write(NvmeRequest *req)
2129 {
2130 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2131
2132 return rw->opcode == NVME_CMD_WRITE ||
2133 rw->opcode == NVME_CMD_ZONE_APPEND ||
2134 rw->opcode == NVME_CMD_WRITE_ZEROES;
2135 }
2136
2137 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2138 {
2139 return qemu_get_aio_context();
2140 }
2141
2142 static void nvme_misc_cb(void *opaque, int ret)
2143 {
2144 NvmeRequest *req = opaque;
2145
2146 trace_pci_nvme_misc_cb(nvme_cid(req));
2147
2148 if (ret) {
2149 nvme_aio_err(req, ret);
2150 }
2151
2152 nvme_enqueue_req_completion(nvme_cq(req), req);
2153 }
2154
2155 void nvme_rw_complete_cb(void *opaque, int ret)
2156 {
2157 NvmeRequest *req = opaque;
2158 NvmeNamespace *ns = req->ns;
2159 BlockBackend *blk = ns->blkconf.blk;
2160 BlockAcctCookie *acct = &req->acct;
2161 BlockAcctStats *stats = blk_get_stats(blk);
2162
2163 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2164
2165 if (ret) {
2166 block_acct_failed(stats, acct);
2167 nvme_aio_err(req, ret);
2168 } else {
2169 block_acct_done(stats, acct);
2170 }
2171
2172 if (ns->params.zoned && nvme_is_write(req)) {
2173 nvme_finalize_zoned_write(ns, req);
2174 }
2175
2176 nvme_enqueue_req_completion(nvme_cq(req), req);
2177 }
2178
2179 static void nvme_rw_cb(void *opaque, int ret)
2180 {
2181 NvmeRequest *req = opaque;
2182 NvmeNamespace *ns = req->ns;
2183
2184 BlockBackend *blk = ns->blkconf.blk;
2185
2186 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2187
2188 if (ret) {
2189 goto out;
2190 }
2191
2192 if (ns->lbaf.ms) {
2193 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2194 uint64_t slba = le64_to_cpu(rw->slba);
2195 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2196 uint64_t offset = nvme_moff(ns, slba);
2197
2198 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2199 size_t mlen = nvme_m2b(ns, nlb);
2200
2201 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2202 BDRV_REQ_MAY_UNMAP,
2203 nvme_rw_complete_cb, req);
2204 return;
2205 }
2206
2207 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2208 uint16_t status;
2209
2210 nvme_sg_unmap(&req->sg);
2211 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2212 if (status) {
2213 ret = -EFAULT;
2214 goto out;
2215 }
2216
2217 if (req->cmd.opcode == NVME_CMD_READ) {
2218 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2219 }
2220
2221 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2222 }
2223 }
2224
2225 out:
2226 nvme_rw_complete_cb(req, ret);
2227 }
2228
2229 static void nvme_verify_cb(void *opaque, int ret)
2230 {
2231 NvmeBounceContext *ctx = opaque;
2232 NvmeRequest *req = ctx->req;
2233 NvmeNamespace *ns = req->ns;
2234 BlockBackend *blk = ns->blkconf.blk;
2235 BlockAcctCookie *acct = &req->acct;
2236 BlockAcctStats *stats = blk_get_stats(blk);
2237 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2238 uint64_t slba = le64_to_cpu(rw->slba);
2239 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2240 uint16_t apptag = le16_to_cpu(rw->apptag);
2241 uint16_t appmask = le16_to_cpu(rw->appmask);
2242 uint64_t reftag = le32_to_cpu(rw->reftag);
2243 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2244 uint16_t status;
2245
2246 reftag |= cdw3 << 32;
2247
2248 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2249
2250 if (ret) {
2251 block_acct_failed(stats, acct);
2252 nvme_aio_err(req, ret);
2253 goto out;
2254 }
2255
2256 block_acct_done(stats, acct);
2257
2258 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2259 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2260 ctx->mdata.iov.size, slba);
2261 if (status) {
2262 req->status = status;
2263 goto out;
2264 }
2265
2266 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2267 ctx->mdata.bounce, ctx->mdata.iov.size,
2268 prinfo, slba, apptag, appmask, &reftag);
2269 }
2270
2271 out:
2272 qemu_iovec_destroy(&ctx->data.iov);
2273 g_free(ctx->data.bounce);
2274
2275 qemu_iovec_destroy(&ctx->mdata.iov);
2276 g_free(ctx->mdata.bounce);
2277
2278 g_free(ctx);
2279
2280 nvme_enqueue_req_completion(nvme_cq(req), req);
2281 }
2282
2283
2284 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2285 {
2286 NvmeBounceContext *ctx = opaque;
2287 NvmeRequest *req = ctx->req;
2288 NvmeNamespace *ns = req->ns;
2289 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2290 uint64_t slba = le64_to_cpu(rw->slba);
2291 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2292 size_t mlen = nvme_m2b(ns, nlb);
2293 uint64_t offset = nvme_moff(ns, slba);
2294 BlockBackend *blk = ns->blkconf.blk;
2295
2296 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2297
2298 if (ret) {
2299 goto out;
2300 }
2301
2302 ctx->mdata.bounce = g_malloc(mlen);
2303
2304 qemu_iovec_reset(&ctx->mdata.iov);
2305 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2306
2307 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2308 nvme_verify_cb, ctx);
2309 return;
2310
2311 out:
2312 nvme_verify_cb(ctx, ret);
2313 }
2314
2315 struct nvme_compare_ctx {
2316 struct {
2317 QEMUIOVector iov;
2318 uint8_t *bounce;
2319 } data;
2320
2321 struct {
2322 QEMUIOVector iov;
2323 uint8_t *bounce;
2324 } mdata;
2325 };
2326
2327 static void nvme_compare_mdata_cb(void *opaque, int ret)
2328 {
2329 NvmeRequest *req = opaque;
2330 NvmeNamespace *ns = req->ns;
2331 NvmeCtrl *n = nvme_ctrl(req);
2332 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2333 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2334 uint16_t apptag = le16_to_cpu(rw->apptag);
2335 uint16_t appmask = le16_to_cpu(rw->appmask);
2336 uint64_t reftag = le32_to_cpu(rw->reftag);
2337 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2338 struct nvme_compare_ctx *ctx = req->opaque;
2339 g_autofree uint8_t *buf = NULL;
2340 BlockBackend *blk = ns->blkconf.blk;
2341 BlockAcctCookie *acct = &req->acct;
2342 BlockAcctStats *stats = blk_get_stats(blk);
2343 uint16_t status = NVME_SUCCESS;
2344
2345 reftag |= cdw3 << 32;
2346
2347 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2348
2349 if (ret) {
2350 block_acct_failed(stats, acct);
2351 nvme_aio_err(req, ret);
2352 goto out;
2353 }
2354
2355 buf = g_malloc(ctx->mdata.iov.size);
2356
2357 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2358 NVME_TX_DIRECTION_TO_DEVICE, req);
2359 if (status) {
2360 req->status = status;
2361 goto out;
2362 }
2363
2364 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2365 uint64_t slba = le64_to_cpu(rw->slba);
2366 uint8_t *bufp;
2367 uint8_t *mbufp = ctx->mdata.bounce;
2368 uint8_t *end = mbufp + ctx->mdata.iov.size;
2369 int16_t pil = 0;
2370
2371 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2372 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2373 slba, apptag, appmask, &reftag);
2374 if (status) {
2375 req->status = status;
2376 goto out;
2377 }
2378
2379 /*
2380 * When formatted with protection information, do not compare the DIF
2381 * tuple.
2382 */
2383 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2384 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2385 }
2386
2387 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2388 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2389 req->status = NVME_CMP_FAILURE | NVME_DNR;
2390 goto out;
2391 }
2392 }
2393
2394 goto out;
2395 }
2396
2397 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2398 req->status = NVME_CMP_FAILURE | NVME_DNR;
2399 goto out;
2400 }
2401
2402 block_acct_done(stats, acct);
2403
2404 out:
2405 qemu_iovec_destroy(&ctx->data.iov);
2406 g_free(ctx->data.bounce);
2407
2408 qemu_iovec_destroy(&ctx->mdata.iov);
2409 g_free(ctx->mdata.bounce);
2410
2411 g_free(ctx);
2412
2413 nvme_enqueue_req_completion(nvme_cq(req), req);
2414 }
2415
2416 static void nvme_compare_data_cb(void *opaque, int ret)
2417 {
2418 NvmeRequest *req = opaque;
2419 NvmeCtrl *n = nvme_ctrl(req);
2420 NvmeNamespace *ns = req->ns;
2421 BlockBackend *blk = ns->blkconf.blk;
2422 BlockAcctCookie *acct = &req->acct;
2423 BlockAcctStats *stats = blk_get_stats(blk);
2424
2425 struct nvme_compare_ctx *ctx = req->opaque;
2426 g_autofree uint8_t *buf = NULL;
2427 uint16_t status;
2428
2429 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2430
2431 if (ret) {
2432 block_acct_failed(stats, acct);
2433 nvme_aio_err(req, ret);
2434 goto out;
2435 }
2436
2437 buf = g_malloc(ctx->data.iov.size);
2438
2439 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2440 NVME_TX_DIRECTION_TO_DEVICE, req);
2441 if (status) {
2442 req->status = status;
2443 goto out;
2444 }
2445
2446 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2447 req->status = NVME_CMP_FAILURE | NVME_DNR;
2448 goto out;
2449 }
2450
2451 if (ns->lbaf.ms) {
2452 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2453 uint64_t slba = le64_to_cpu(rw->slba);
2454 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2455 size_t mlen = nvme_m2b(ns, nlb);
2456 uint64_t offset = nvme_moff(ns, slba);
2457
2458 ctx->mdata.bounce = g_malloc(mlen);
2459
2460 qemu_iovec_init(&ctx->mdata.iov, 1);
2461 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2462
2463 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2464 nvme_compare_mdata_cb, req);
2465 return;
2466 }
2467
2468 block_acct_done(stats, acct);
2469
2470 out:
2471 qemu_iovec_destroy(&ctx->data.iov);
2472 g_free(ctx->data.bounce);
2473 g_free(ctx);
2474
2475 nvme_enqueue_req_completion(nvme_cq(req), req);
2476 }
2477
2478 typedef struct NvmeDSMAIOCB {
2479 BlockAIOCB common;
2480 BlockAIOCB *aiocb;
2481 NvmeRequest *req;
2482 int ret;
2483
2484 NvmeDsmRange *range;
2485 unsigned int nr;
2486 unsigned int idx;
2487 } NvmeDSMAIOCB;
2488
2489 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2490 {
2491 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2492
2493 /* break nvme_dsm_cb loop */
2494 iocb->idx = iocb->nr;
2495 iocb->ret = -ECANCELED;
2496
2497 if (iocb->aiocb) {
2498 blk_aio_cancel_async(iocb->aiocb);
2499 iocb->aiocb = NULL;
2500 } else {
2501 /*
2502 * We only reach this if nvme_dsm_cancel() has already been called or
2503 * the command ran to completion.
2504 */
2505 assert(iocb->idx == iocb->nr);
2506 }
2507 }
2508
2509 static const AIOCBInfo nvme_dsm_aiocb_info = {
2510 .aiocb_size = sizeof(NvmeDSMAIOCB),
2511 .cancel_async = nvme_dsm_cancel,
2512 };
2513
2514 static void nvme_dsm_cb(void *opaque, int ret);
2515
2516 static void nvme_dsm_md_cb(void *opaque, int ret)
2517 {
2518 NvmeDSMAIOCB *iocb = opaque;
2519 NvmeRequest *req = iocb->req;
2520 NvmeNamespace *ns = req->ns;
2521 NvmeDsmRange *range;
2522 uint64_t slba;
2523 uint32_t nlb;
2524
2525 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2526 goto done;
2527 }
2528
2529 range = &iocb->range[iocb->idx - 1];
2530 slba = le64_to_cpu(range->slba);
2531 nlb = le32_to_cpu(range->nlb);
2532
2533 /*
2534 * Check that all block were discarded (zeroed); otherwise we do not zero
2535 * the metadata.
2536 */
2537
2538 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2539 if (ret) {
2540 if (ret < 0) {
2541 goto done;
2542 }
2543
2544 nvme_dsm_cb(iocb, 0);
2545 return;
2546 }
2547
2548 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2549 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2550 nvme_dsm_cb, iocb);
2551 return;
2552
2553 done:
2554 nvme_dsm_cb(iocb, ret);
2555 }
2556
2557 static void nvme_dsm_cb(void *opaque, int ret)
2558 {
2559 NvmeDSMAIOCB *iocb = opaque;
2560 NvmeRequest *req = iocb->req;
2561 NvmeCtrl *n = nvme_ctrl(req);
2562 NvmeNamespace *ns = req->ns;
2563 NvmeDsmRange *range;
2564 uint64_t slba;
2565 uint32_t nlb;
2566
2567 if (iocb->ret < 0) {
2568 goto done;
2569 } else if (ret < 0) {
2570 iocb->ret = ret;
2571 goto done;
2572 }
2573
2574 next:
2575 if (iocb->idx == iocb->nr) {
2576 goto done;
2577 }
2578
2579 range = &iocb->range[iocb->idx++];
2580 slba = le64_to_cpu(range->slba);
2581 nlb = le32_to_cpu(range->nlb);
2582
2583 trace_pci_nvme_dsm_deallocate(slba, nlb);
2584
2585 if (nlb > n->dmrsl) {
2586 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2587 goto next;
2588 }
2589
2590 if (nvme_check_bounds(ns, slba, nlb)) {
2591 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2592 ns->id_ns.nsze);
2593 goto next;
2594 }
2595
2596 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2597 nvme_l2b(ns, nlb),
2598 nvme_dsm_md_cb, iocb);
2599 return;
2600
2601 done:
2602 iocb->aiocb = NULL;
2603 iocb->common.cb(iocb->common.opaque, iocb->ret);
2604 qemu_aio_unref(iocb);
2605 }
2606
2607 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2608 {
2609 NvmeNamespace *ns = req->ns;
2610 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2611 uint32_t attr = le32_to_cpu(dsm->attributes);
2612 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2613 uint16_t status = NVME_SUCCESS;
2614
2615 trace_pci_nvme_dsm(nr, attr);
2616
2617 if (attr & NVME_DSMGMT_AD) {
2618 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2619 nvme_misc_cb, req);
2620
2621 iocb->req = req;
2622 iocb->ret = 0;
2623 iocb->range = g_new(NvmeDsmRange, nr);
2624 iocb->nr = nr;
2625 iocb->idx = 0;
2626
2627 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2628 req);
2629 if (status) {
2630 g_free(iocb->range);
2631 qemu_aio_unref(iocb);
2632
2633 return status;
2634 }
2635
2636 req->aiocb = &iocb->common;
2637 nvme_dsm_cb(iocb, 0);
2638
2639 return NVME_NO_COMPLETE;
2640 }
2641
2642 return status;
2643 }
2644
2645 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2646 {
2647 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2648 NvmeNamespace *ns = req->ns;
2649 BlockBackend *blk = ns->blkconf.blk;
2650 uint64_t slba = le64_to_cpu(rw->slba);
2651 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2652 size_t len = nvme_l2b(ns, nlb);
2653 int64_t offset = nvme_l2b(ns, slba);
2654 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2655 uint32_t reftag = le32_to_cpu(rw->reftag);
2656 NvmeBounceContext *ctx = NULL;
2657 uint16_t status;
2658
2659 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2660
2661 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2662 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2663 if (status) {
2664 return status;
2665 }
2666
2667 if (prinfo & NVME_PRINFO_PRACT) {
2668 return NVME_INVALID_PROT_INFO | NVME_DNR;
2669 }
2670 }
2671
2672 if (len > n->page_size << n->params.vsl) {
2673 return NVME_INVALID_FIELD | NVME_DNR;
2674 }
2675
2676 status = nvme_check_bounds(ns, slba, nlb);
2677 if (status) {
2678 return status;
2679 }
2680
2681 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2682 status = nvme_check_dulbe(ns, slba, nlb);
2683 if (status) {
2684 return status;
2685 }
2686 }
2687
2688 ctx = g_new0(NvmeBounceContext, 1);
2689 ctx->req = req;
2690
2691 ctx->data.bounce = g_malloc(len);
2692
2693 qemu_iovec_init(&ctx->data.iov, 1);
2694 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2695
2696 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2697 BLOCK_ACCT_READ);
2698
2699 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2700 nvme_verify_mdata_in_cb, ctx);
2701 return NVME_NO_COMPLETE;
2702 }
2703
2704 typedef struct NvmeCopyAIOCB {
2705 BlockAIOCB common;
2706 BlockAIOCB *aiocb;
2707 NvmeRequest *req;
2708 int ret;
2709
2710 void *ranges;
2711 unsigned int format;
2712 int nr;
2713 int idx;
2714
2715 uint8_t *bounce;
2716 QEMUIOVector iov;
2717 struct {
2718 BlockAcctCookie read;
2719 BlockAcctCookie write;
2720 } acct;
2721
2722 uint64_t reftag;
2723 uint64_t slba;
2724
2725 NvmeZone *zone;
2726 } NvmeCopyAIOCB;
2727
2728 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2729 {
2730 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2731
2732 iocb->ret = -ECANCELED;
2733
2734 if (iocb->aiocb) {
2735 blk_aio_cancel_async(iocb->aiocb);
2736 iocb->aiocb = NULL;
2737 }
2738 }
2739
2740 static const AIOCBInfo nvme_copy_aiocb_info = {
2741 .aiocb_size = sizeof(NvmeCopyAIOCB),
2742 .cancel_async = nvme_copy_cancel,
2743 };
2744
2745 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2746 {
2747 NvmeRequest *req = iocb->req;
2748 NvmeNamespace *ns = req->ns;
2749 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2750
2751 if (iocb->idx != iocb->nr) {
2752 req->cqe.result = cpu_to_le32(iocb->idx);
2753 }
2754
2755 qemu_iovec_destroy(&iocb->iov);
2756 g_free(iocb->bounce);
2757
2758 if (iocb->ret < 0) {
2759 block_acct_failed(stats, &iocb->acct.read);
2760 block_acct_failed(stats, &iocb->acct.write);
2761 } else {
2762 block_acct_done(stats, &iocb->acct.read);
2763 block_acct_done(stats, &iocb->acct.write);
2764 }
2765
2766 iocb->common.cb(iocb->common.opaque, iocb->ret);
2767 qemu_aio_unref(iocb);
2768 }
2769
2770 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2771
2772 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2773 uint64_t *slba, uint32_t *nlb,
2774 uint16_t *apptag,
2775 uint16_t *appmask,
2776 uint64_t *reftag)
2777 {
2778 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2779
2780 if (slba) {
2781 *slba = le64_to_cpu(_ranges[idx].slba);
2782 }
2783
2784 if (nlb) {
2785 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2786 }
2787
2788 if (apptag) {
2789 *apptag = le16_to_cpu(_ranges[idx].apptag);
2790 }
2791
2792 if (appmask) {
2793 *appmask = le16_to_cpu(_ranges[idx].appmask);
2794 }
2795
2796 if (reftag) {
2797 *reftag = le32_to_cpu(_ranges[idx].reftag);
2798 }
2799 }
2800
2801 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2802 uint64_t *slba, uint32_t *nlb,
2803 uint16_t *apptag,
2804 uint16_t *appmask,
2805 uint64_t *reftag)
2806 {
2807 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2808
2809 if (slba) {
2810 *slba = le64_to_cpu(_ranges[idx].slba);
2811 }
2812
2813 if (nlb) {
2814 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2815 }
2816
2817 if (apptag) {
2818 *apptag = le16_to_cpu(_ranges[idx].apptag);
2819 }
2820
2821 if (appmask) {
2822 *appmask = le16_to_cpu(_ranges[idx].appmask);
2823 }
2824
2825 if (reftag) {
2826 *reftag = 0;
2827
2828 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2829 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2830 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2831 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2832 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2833 *reftag |= (uint64_t)_ranges[idx].sr[9];
2834 }
2835 }
2836
2837 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2838 uint64_t *slba, uint32_t *nlb,
2839 uint16_t *apptag, uint16_t *appmask,
2840 uint64_t *reftag)
2841 {
2842 switch (format) {
2843 case NVME_COPY_FORMAT_0:
2844 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2845 appmask, reftag);
2846 break;
2847
2848 case NVME_COPY_FORMAT_1:
2849 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2850 appmask, reftag);
2851 break;
2852
2853 default:
2854 abort();
2855 }
2856 }
2857
2858 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
2859 NvmeCopyAIOCB *iocb, uint16_t nr)
2860 {
2861 uint32_t copy_len = 0;
2862
2863 for (int idx = 0; idx < nr; idx++) {
2864 uint32_t nlb;
2865 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
2866 &nlb, NULL, NULL, NULL);
2867 copy_len += nlb + 1;
2868 }
2869
2870 if (copy_len > ns->id_ns.mcl) {
2871 return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2872 }
2873
2874 return NVME_SUCCESS;
2875 }
2876
2877 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2878 {
2879 NvmeCopyAIOCB *iocb = opaque;
2880 NvmeRequest *req = iocb->req;
2881 NvmeNamespace *ns = req->ns;
2882 uint32_t nlb;
2883
2884 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2885 &nlb, NULL, NULL, NULL);
2886
2887 if (ret < 0) {
2888 iocb->ret = ret;
2889 goto out;
2890 } else if (iocb->ret < 0) {
2891 goto out;
2892 }
2893
2894 if (ns->params.zoned) {
2895 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2896 }
2897
2898 iocb->idx++;
2899 iocb->slba += nlb;
2900 out:
2901 nvme_do_copy(iocb);
2902 }
2903
2904 static void nvme_copy_out_cb(void *opaque, int ret)
2905 {
2906 NvmeCopyAIOCB *iocb = opaque;
2907 NvmeRequest *req = iocb->req;
2908 NvmeNamespace *ns = req->ns;
2909 uint32_t nlb;
2910 size_t mlen;
2911 uint8_t *mbounce;
2912
2913 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2914 goto out;
2915 }
2916
2917 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2918 &nlb, NULL, NULL, NULL);
2919
2920 mlen = nvme_m2b(ns, nlb);
2921 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2922
2923 qemu_iovec_reset(&iocb->iov);
2924 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2925
2926 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2927 &iocb->iov, 0, nvme_copy_out_completed_cb,
2928 iocb);
2929
2930 return;
2931
2932 out:
2933 nvme_copy_out_completed_cb(iocb, ret);
2934 }
2935
2936 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2937 {
2938 NvmeCopyAIOCB *iocb = opaque;
2939 NvmeRequest *req = iocb->req;
2940 NvmeNamespace *ns = req->ns;
2941 uint32_t nlb;
2942 uint64_t slba;
2943 uint16_t apptag, appmask;
2944 uint64_t reftag;
2945 size_t len;
2946 uint16_t status;
2947
2948 if (ret < 0) {
2949 iocb->ret = ret;
2950 goto out;
2951 } else if (iocb->ret < 0) {
2952 goto out;
2953 }
2954
2955 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2956 &nlb, &apptag, &appmask, &reftag);
2957 len = nvme_l2b(ns, nlb);
2958
2959 trace_pci_nvme_copy_out(iocb->slba, nlb);
2960
2961 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2962 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2963
2964 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2965 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2966
2967 size_t mlen = nvme_m2b(ns, nlb);
2968 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2969
2970 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2971 if (status) {
2972 goto invalid;
2973 }
2974 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2975 slba, apptag, appmask, &reftag);
2976 if (status) {
2977 goto invalid;
2978 }
2979
2980 apptag = le16_to_cpu(copy->apptag);
2981 appmask = le16_to_cpu(copy->appmask);
2982
2983 if (prinfow & NVME_PRINFO_PRACT) {
2984 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2985 if (status) {
2986 goto invalid;
2987 }
2988
2989 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2990 apptag, &iocb->reftag);
2991 } else {
2992 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2993 prinfow, iocb->slba, apptag, appmask,
2994 &iocb->reftag);
2995 if (status) {
2996 goto invalid;
2997 }
2998 }
2999 }
3000
3001 status = nvme_check_bounds(ns, iocb->slba, nlb);
3002 if (status) {
3003 goto invalid;
3004 }
3005
3006 if (ns->params.zoned) {
3007 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
3008 if (status) {
3009 goto invalid;
3010 }
3011
3012 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
3013 iocb->zone->w_ptr += nlb;
3014 }
3015 }
3016
3017 qemu_iovec_reset(&iocb->iov);
3018 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3019
3020 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
3021 &iocb->iov, 0, nvme_copy_out_cb, iocb);
3022
3023 return;
3024
3025 invalid:
3026 req->status = status;
3027 iocb->ret = -1;
3028 out:
3029 nvme_do_copy(iocb);
3030 }
3031
3032 static void nvme_copy_in_cb(void *opaque, int ret)
3033 {
3034 NvmeCopyAIOCB *iocb = opaque;
3035 NvmeRequest *req = iocb->req;
3036 NvmeNamespace *ns = req->ns;
3037 uint64_t slba;
3038 uint32_t nlb;
3039
3040 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3041 goto out;
3042 }
3043
3044 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3045 &nlb, NULL, NULL, NULL);
3046
3047 qemu_iovec_reset(&iocb->iov);
3048 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3049 nvme_m2b(ns, nlb));
3050
3051 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3052 &iocb->iov, 0, nvme_copy_in_completed_cb,
3053 iocb);
3054 return;
3055
3056 out:
3057 nvme_copy_in_completed_cb(iocb, ret);
3058 }
3059
3060 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3061 {
3062 NvmeRequest *req = iocb->req;
3063 NvmeNamespace *ns = req->ns;
3064 uint64_t slba;
3065 uint32_t nlb;
3066 size_t len;
3067 uint16_t status;
3068
3069 if (iocb->ret < 0) {
3070 goto done;
3071 }
3072
3073 if (iocb->idx == iocb->nr) {
3074 goto done;
3075 }
3076
3077 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3078 &nlb, NULL, NULL, NULL);
3079 len = nvme_l2b(ns, nlb);
3080
3081 trace_pci_nvme_copy_source_range(slba, nlb);
3082
3083 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3084 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3085 goto invalid;
3086 }
3087
3088 status = nvme_check_bounds(ns, slba, nlb);
3089 if (status) {
3090 goto invalid;
3091 }
3092
3093 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3094 status = nvme_check_dulbe(ns, slba, nlb);
3095 if (status) {
3096 goto invalid;
3097 }
3098 }
3099
3100 if (ns->params.zoned) {
3101 status = nvme_check_zone_read(ns, slba, nlb);
3102 if (status) {
3103 goto invalid;
3104 }
3105 }
3106
3107 qemu_iovec_reset(&iocb->iov);
3108 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3109
3110 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3111 &iocb->iov, 0, nvme_copy_in_cb, iocb);
3112 return;
3113
3114 invalid:
3115 req->status = status;
3116 iocb->ret = -1;
3117 done:
3118 nvme_copy_done(iocb);
3119 }
3120
3121 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3122 {
3123 NvmeNamespace *ns = req->ns;
3124 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3125 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3126 nvme_misc_cb, req);
3127 uint16_t nr = copy->nr + 1;
3128 uint8_t format = copy->control[0] & 0xf;
3129 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3130 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3131 size_t len = sizeof(NvmeCopySourceRangeFormat0);
3132
3133 uint16_t status;
3134
3135 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3136
3137 iocb->ranges = NULL;
3138 iocb->zone = NULL;
3139
3140 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3141 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3142 status = NVME_INVALID_FIELD | NVME_DNR;
3143 goto invalid;
3144 }
3145
3146 if (!(n->id_ctrl.ocfs & (1 << format))) {
3147 trace_pci_nvme_err_copy_invalid_format(format);
3148 status = NVME_INVALID_FIELD | NVME_DNR;
3149 goto invalid;
3150 }
3151
3152 if (nr > ns->id_ns.msrc + 1) {
3153 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3154 goto invalid;
3155 }
3156
3157 if ((ns->pif == 0x0 && format != 0x0) ||
3158 (ns->pif != 0x0 && format != 0x1)) {
3159 status = NVME_INVALID_FORMAT | NVME_DNR;
3160 goto invalid;
3161 }
3162
3163 if (ns->pif) {
3164 len = sizeof(NvmeCopySourceRangeFormat1);
3165 }
3166
3167 iocb->format = format;
3168 iocb->ranges = g_malloc_n(nr, len);
3169 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3170 if (status) {
3171 goto invalid;
3172 }
3173
3174 iocb->slba = le64_to_cpu(copy->sdlba);
3175
3176 if (ns->params.zoned) {
3177 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3178 if (!iocb->zone) {
3179 status = NVME_LBA_RANGE | NVME_DNR;
3180 goto invalid;
3181 }
3182
3183 status = nvme_zrm_auto(n, ns, iocb->zone);
3184 if (status) {
3185 goto invalid;
3186 }
3187 }
3188
3189 status = nvme_check_copy_mcl(ns, iocb, nr);
3190 if (status) {
3191 goto invalid;
3192 }
3193
3194 iocb->req = req;
3195 iocb->ret = 0;
3196 iocb->nr = nr;
3197 iocb->idx = 0;
3198 iocb->reftag = le32_to_cpu(copy->reftag);
3199 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3200 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3201 ns->lbasz + ns->lbaf.ms);
3202
3203 qemu_iovec_init(&iocb->iov, 1);
3204
3205 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3206 BLOCK_ACCT_READ);
3207 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3208 BLOCK_ACCT_WRITE);
3209
3210 req->aiocb = &iocb->common;
3211 nvme_do_copy(iocb);
3212
3213 return NVME_NO_COMPLETE;
3214
3215 invalid:
3216 g_free(iocb->ranges);
3217 qemu_aio_unref(iocb);
3218 return status;
3219 }
3220
3221 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3222 {
3223 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3224 NvmeNamespace *ns = req->ns;
3225 BlockBackend *blk = ns->blkconf.blk;
3226 uint64_t slba = le64_to_cpu(rw->slba);
3227 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3228 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3229 size_t data_len = nvme_l2b(ns, nlb);
3230 size_t len = data_len;
3231 int64_t offset = nvme_l2b(ns, slba);
3232 struct nvme_compare_ctx *ctx = NULL;
3233 uint16_t status;
3234
3235 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3236
3237 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3238 return NVME_INVALID_PROT_INFO | NVME_DNR;
3239 }
3240
3241 if (nvme_ns_ext(ns)) {
3242 len += nvme_m2b(ns, nlb);
3243 }
3244
3245 status = nvme_check_mdts(n, len);
3246 if (status) {
3247 return status;
3248 }
3249
3250 status = nvme_check_bounds(ns, slba, nlb);
3251 if (status) {
3252 return status;
3253 }
3254
3255 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3256 status = nvme_check_dulbe(ns, slba, nlb);
3257 if (status) {
3258 return status;
3259 }
3260 }
3261
3262 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3263 if (status) {
3264 return status;
3265 }
3266
3267 ctx = g_new(struct nvme_compare_ctx, 1);
3268 ctx->data.bounce = g_malloc(data_len);
3269
3270 req->opaque = ctx;
3271
3272 qemu_iovec_init(&ctx->data.iov, 1);
3273 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3274
3275 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3276 BLOCK_ACCT_READ);
3277 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3278 nvme_compare_data_cb, req);
3279
3280 return NVME_NO_COMPLETE;
3281 }
3282
3283 typedef struct NvmeFlushAIOCB {
3284 BlockAIOCB common;
3285 BlockAIOCB *aiocb;
3286 NvmeRequest *req;
3287 int ret;
3288
3289 NvmeNamespace *ns;
3290 uint32_t nsid;
3291 bool broadcast;
3292 } NvmeFlushAIOCB;
3293
3294 static void nvme_flush_cancel(BlockAIOCB *acb)
3295 {
3296 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3297
3298 iocb->ret = -ECANCELED;
3299
3300 if (iocb->aiocb) {
3301 blk_aio_cancel_async(iocb->aiocb);
3302 iocb->aiocb = NULL;
3303 }
3304 }
3305
3306 static const AIOCBInfo nvme_flush_aiocb_info = {
3307 .aiocb_size = sizeof(NvmeFlushAIOCB),
3308 .cancel_async = nvme_flush_cancel,
3309 .get_aio_context = nvme_get_aio_context,
3310 };
3311
3312 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3313
3314 static void nvme_flush_ns_cb(void *opaque, int ret)
3315 {
3316 NvmeFlushAIOCB *iocb = opaque;
3317 NvmeNamespace *ns = iocb->ns;
3318
3319 if (ret < 0) {
3320 iocb->ret = ret;
3321 goto out;
3322 } else if (iocb->ret < 0) {
3323 goto out;
3324 }
3325
3326 if (ns) {
3327 trace_pci_nvme_flush_ns(iocb->nsid);
3328
3329 iocb->ns = NULL;
3330 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3331 return;
3332 }
3333
3334 out:
3335 nvme_do_flush(iocb);
3336 }
3337
3338 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3339 {
3340 NvmeRequest *req = iocb->req;
3341 NvmeCtrl *n = nvme_ctrl(req);
3342 int i;
3343
3344 if (iocb->ret < 0) {
3345 goto done;
3346 }
3347
3348 if (iocb->broadcast) {
3349 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3350 iocb->ns = nvme_ns(n, i);
3351 if (iocb->ns) {
3352 iocb->nsid = i;
3353 break;
3354 }
3355 }
3356 }
3357
3358 if (!iocb->ns) {
3359 goto done;
3360 }
3361
3362 nvme_flush_ns_cb(iocb, 0);
3363 return;
3364
3365 done:
3366 iocb->common.cb(iocb->common.opaque, iocb->ret);
3367 qemu_aio_unref(iocb);
3368 }
3369
3370 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3371 {
3372 NvmeFlushAIOCB *iocb;
3373 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3374 uint16_t status;
3375
3376 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3377
3378 iocb->req = req;
3379 iocb->ret = 0;
3380 iocb->ns = NULL;
3381 iocb->nsid = 0;
3382 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3383
3384 if (!iocb->broadcast) {
3385 if (!nvme_nsid_valid(n, nsid)) {
3386 status = NVME_INVALID_NSID | NVME_DNR;
3387 goto out;
3388 }
3389
3390 iocb->ns = nvme_ns(n, nsid);
3391 if (!iocb->ns) {
3392 status = NVME_INVALID_FIELD | NVME_DNR;
3393 goto out;
3394 }
3395
3396 iocb->nsid = nsid;
3397 }
3398
3399 req->aiocb = &iocb->common;
3400 nvme_do_flush(iocb);
3401
3402 return NVME_NO_COMPLETE;
3403
3404 out:
3405 qemu_aio_unref(iocb);
3406
3407 return status;
3408 }
3409
3410 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3411 {
3412 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3413 NvmeNamespace *ns = req->ns;
3414 uint64_t slba = le64_to_cpu(rw->slba);
3415 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3416 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3417 uint64_t data_size = nvme_l2b(ns, nlb);
3418 uint64_t mapped_size = data_size;
3419 uint64_t data_offset;
3420 BlockBackend *blk = ns->blkconf.blk;
3421 uint16_t status;
3422
3423 if (nvme_ns_ext(ns)) {
3424 mapped_size += nvme_m2b(ns, nlb);
3425
3426 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3427 bool pract = prinfo & NVME_PRINFO_PRACT;
3428
3429 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3430 mapped_size = data_size;
3431 }
3432 }
3433 }
3434
3435 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3436
3437 status = nvme_check_mdts(n, mapped_size);
3438 if (status) {
3439 goto invalid;
3440 }
3441
3442 status = nvme_check_bounds(ns, slba, nlb);
3443 if (status) {
3444 goto invalid;
3445 }
3446
3447 if (ns->params.zoned) {
3448 status = nvme_check_zone_read(ns, slba, nlb);
3449 if (status) {
3450 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3451 goto invalid;
3452 }
3453 }
3454
3455 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3456 status = nvme_check_dulbe(ns, slba, nlb);
3457 if (status) {
3458 goto invalid;
3459 }
3460 }
3461
3462 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3463 return nvme_dif_rw(n, req);
3464 }
3465
3466 status = nvme_map_data(n, nlb, req);
3467 if (status) {
3468 goto invalid;
3469 }
3470
3471 data_offset = nvme_l2b(ns, slba);
3472
3473 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3474 BLOCK_ACCT_READ);
3475 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3476 return NVME_NO_COMPLETE;
3477
3478 invalid:
3479 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3480 return status | NVME_DNR;
3481 }
3482
3483 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3484 uint32_t nlb)
3485 {
3486 NvmeNamespace *ns = req->ns;
3487 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3488 uint64_t data_size = nvme_l2b(ns, nlb);
3489 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3490 uint8_t dtype = (dw12 >> 20) & 0xf;
3491 uint16_t pid = le16_to_cpu(rw->dspec);
3492 uint16_t ph, rg, ruhid;
3493 NvmeReclaimUnit *ru;
3494
3495 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3496 !nvme_parse_pid(ns, pid, &ph, &rg)) {
3497 ph = 0;
3498 rg = 0;
3499 }
3500
3501 ruhid = ns->fdp.phs[ph];
3502 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3503
3504 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3505 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3506
3507 while (nlb) {
3508 if (nlb < ru->ruamw) {
3509 ru->ruamw -= nlb;
3510 break;
3511 }
3512
3513 nlb -= ru->ruamw;
3514 nvme_update_ruh(n, ns, pid);
3515 }
3516 }
3517
3518 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3519 bool wrz)
3520 {
3521 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3522 NvmeNamespace *ns = req->ns;
3523 uint64_t slba = le64_to_cpu(rw->slba);
3524 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3525 uint16_t ctrl = le16_to_cpu(rw->control);
3526 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3527 uint64_t data_size = nvme_l2b(ns, nlb);
3528 uint64_t mapped_size = data_size;
3529 uint64_t data_offset;
3530 NvmeZone *zone;
3531 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3532 BlockBackend *blk = ns->blkconf.blk;
3533 uint16_t status;
3534
3535 if (nvme_ns_ext(ns)) {
3536 mapped_size += nvme_m2b(ns, nlb);
3537
3538 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3539 bool pract = prinfo & NVME_PRINFO_PRACT;
3540
3541 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3542 mapped_size -= nvme_m2b(ns, nlb);
3543 }
3544 }
3545 }
3546
3547 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3548 nvme_nsid(ns), nlb, mapped_size, slba);
3549
3550 if (!wrz) {
3551 status = nvme_check_mdts(n, mapped_size);
3552 if (status) {
3553 goto invalid;
3554 }
3555 }
3556
3557 status = nvme_check_bounds(ns, slba, nlb);
3558 if (status) {
3559 goto invalid;
3560 }
3561
3562 if (ns->params.zoned) {
3563 zone = nvme_get_zone_by_slba(ns, slba);
3564 assert(zone);
3565
3566 if (append) {
3567 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3568
3569 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3570 return NVME_INVALID_ZONE_OP | NVME_DNR;
3571 }
3572
3573 if (unlikely(slba != zone->d.zslba)) {
3574 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3575 status = NVME_INVALID_FIELD;
3576 goto invalid;
3577 }
3578
3579 if (n->params.zasl &&
3580 data_size > (uint64_t)n->page_size << n->params.zasl) {
3581 trace_pci_nvme_err_zasl(data_size);
3582 return NVME_INVALID_FIELD | NVME_DNR;
3583 }
3584
3585 slba = zone->w_ptr;
3586 rw->slba = cpu_to_le64(slba);
3587 res->slba = cpu_to_le64(slba);
3588
3589 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3590 case NVME_ID_NS_DPS_TYPE_1:
3591 if (!piremap) {
3592 return NVME_INVALID_PROT_INFO | NVME_DNR;
3593 }
3594
3595 /* fallthrough */
3596
3597 case NVME_ID_NS_DPS_TYPE_2:
3598 if (piremap) {
3599 uint32_t reftag = le32_to_cpu(rw->reftag);
3600 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3601 }
3602
3603 break;
3604
3605 case NVME_ID_NS_DPS_TYPE_3:
3606 if (piremap) {
3607 return NVME_INVALID_PROT_INFO | NVME_DNR;
3608 }
3609
3610 break;
3611 }
3612 }
3613
3614 status = nvme_check_zone_write(ns, zone, slba, nlb);
3615 if (status) {
3616 goto invalid;
3617 }
3618
3619 status = nvme_zrm_auto(n, ns, zone);
3620 if (status) {
3621 goto invalid;
3622 }
3623
3624 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3625 zone->w_ptr += nlb;
3626 }
3627 } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3628 nvme_do_write_fdp(n, req, slba, nlb);
3629 }
3630
3631 data_offset = nvme_l2b(ns, slba);
3632
3633 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3634 return nvme_dif_rw(n, req);
3635 }
3636
3637 if (!wrz) {
3638 status = nvme_map_data(n, nlb, req);
3639 if (status) {
3640 goto invalid;
3641 }
3642
3643 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3644 BLOCK_ACCT_WRITE);
3645 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3646 } else {
3647 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3648 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3649 req);
3650 }
3651
3652 return NVME_NO_COMPLETE;
3653
3654 invalid:
3655 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3656 return status | NVME_DNR;
3657 }
3658
3659 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3660 {
3661 return nvme_do_write(n, req, false, false);
3662 }
3663
3664 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3665 {
3666 return nvme_do_write(n, req, false, true);
3667 }
3668
3669 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3670 {
3671 return nvme_do_write(n, req, true, false);
3672 }
3673
3674 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3675 uint64_t *slba, uint32_t *zone_idx)
3676 {
3677 uint32_t dw10 = le32_to_cpu(c->cdw10);
3678 uint32_t dw11 = le32_to_cpu(c->cdw11);
3679
3680 if (!ns->params.zoned) {
3681 trace_pci_nvme_err_invalid_opc(c->opcode);
3682 return NVME_INVALID_OPCODE | NVME_DNR;
3683 }
3684
3685 *slba = ((uint64_t)dw11) << 32 | dw10;
3686 if (unlikely(*slba >= ns->id_ns.nsze)) {
3687 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3688 *slba = 0;
3689 return NVME_LBA_RANGE | NVME_DNR;
3690 }
3691
3692 *zone_idx = nvme_zone_idx(ns, *slba);
3693 assert(*zone_idx < ns->num_zones);
3694
3695 return NVME_SUCCESS;
3696 }
3697
3698 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3699 NvmeRequest *);
3700
3701 enum NvmeZoneProcessingMask {
3702 NVME_PROC_CURRENT_ZONE = 0,
3703 NVME_PROC_OPENED_ZONES = 1 << 0,
3704 NVME_PROC_CLOSED_ZONES = 1 << 1,
3705 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3706 NVME_PROC_FULL_ZONES = 1 << 3,
3707 };
3708
3709 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3710 NvmeZoneState state, NvmeRequest *req)
3711 {
3712 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3713 int flags = 0;
3714
3715 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3716 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3717
3718 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3719 return NVME_INVALID_ZONE_OP | NVME_DNR;
3720 }
3721
3722 if (zone->w_ptr % ns->zns.zrwafg) {
3723 return NVME_NOZRWA | NVME_DNR;
3724 }
3725
3726 flags = NVME_ZRM_ZRWA;
3727 }
3728
3729 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3730 }
3731
3732 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3733 NvmeZoneState state, NvmeRequest *req)
3734 {
3735 return nvme_zrm_close(ns, zone);
3736 }
3737
3738 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3739 NvmeZoneState state, NvmeRequest *req)
3740 {
3741 return nvme_zrm_finish(ns, zone);
3742 }
3743
3744 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3745 NvmeZoneState state, NvmeRequest *req)
3746 {
3747 switch (state) {
3748 case NVME_ZONE_STATE_READ_ONLY:
3749 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3750 /* fall through */
3751 case NVME_ZONE_STATE_OFFLINE:
3752 return NVME_SUCCESS;
3753 default:
3754 return NVME_ZONE_INVAL_TRANSITION;
3755 }
3756 }
3757
3758 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3759 {
3760 uint16_t status;
3761 uint8_t state = nvme_get_zone_state(zone);
3762
3763 if (state == NVME_ZONE_STATE_EMPTY) {
3764 status = nvme_aor_check(ns, 1, 0);
3765 if (status) {
3766 return status;
3767 }
3768 nvme_aor_inc_active(ns);
3769 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3770 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3771 return NVME_SUCCESS;
3772 }
3773
3774 return NVME_ZONE_INVAL_TRANSITION;
3775 }
3776
3777 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3778 enum NvmeZoneProcessingMask proc_mask,
3779 op_handler_t op_hndlr, NvmeRequest *req)
3780 {
3781 uint16_t status = NVME_SUCCESS;
3782 NvmeZoneState zs = nvme_get_zone_state(zone);
3783 bool proc_zone;
3784
3785 switch (zs) {
3786 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3787 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3788 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3789 break;
3790 case NVME_ZONE_STATE_CLOSED:
3791 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3792 break;
3793 case NVME_ZONE_STATE_READ_ONLY:
3794 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3795 break;
3796 case NVME_ZONE_STATE_FULL:
3797 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3798 break;
3799 default:
3800 proc_zone = false;
3801 }
3802
3803 if (proc_zone) {
3804 status = op_hndlr(ns, zone, zs, req);
3805 }
3806
3807 return status;
3808 }
3809
3810 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3811 enum NvmeZoneProcessingMask proc_mask,
3812 op_handler_t op_hndlr, NvmeRequest *req)
3813 {
3814 NvmeZone *next;
3815 uint16_t status = NVME_SUCCESS;
3816 int i;
3817
3818 if (!proc_mask) {
3819 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3820 } else {
3821 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3822 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3823 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3824 req);
3825 if (status && status != NVME_NO_COMPLETE) {
3826 goto out;
3827 }
3828 }
3829 }
3830 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3831 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3832 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3833 req);
3834 if (status && status != NVME_NO_COMPLETE) {
3835 goto out;
3836 }
3837 }
3838
3839 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3840 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3841 req);
3842 if (status && status != NVME_NO_COMPLETE) {
3843 goto out;
3844 }
3845 }
3846 }
3847 if (proc_mask & NVME_PROC_FULL_ZONES) {
3848 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3849 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3850 req);
3851 if (status && status != NVME_NO_COMPLETE) {
3852 goto out;
3853 }
3854 }
3855 }
3856
3857 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3858 for (i = 0; i < ns->num_zones; i++, zone++) {
3859 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3860 req);
3861 if (status && status != NVME_NO_COMPLETE) {
3862 goto out;
3863 }
3864 }
3865 }
3866 }
3867
3868 out:
3869 return status;
3870 }
3871
3872 typedef struct NvmeZoneResetAIOCB {
3873 BlockAIOCB common;
3874 BlockAIOCB *aiocb;
3875 NvmeRequest *req;
3876 int ret;
3877
3878 bool all;
3879 int idx;
3880 NvmeZone *zone;
3881 } NvmeZoneResetAIOCB;
3882
3883 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3884 {
3885 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3886 NvmeRequest *req = iocb->req;
3887 NvmeNamespace *ns = req->ns;
3888
3889 iocb->idx = ns->num_zones;
3890
3891 iocb->ret = -ECANCELED;
3892
3893 if (iocb->aiocb) {
3894 blk_aio_cancel_async(iocb->aiocb);
3895 iocb->aiocb = NULL;
3896 }
3897 }
3898
3899 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3900 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3901 .cancel_async = nvme_zone_reset_cancel,
3902 };
3903
3904 static void nvme_zone_reset_cb(void *opaque, int ret);
3905
3906 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3907 {
3908 NvmeZoneResetAIOCB *iocb = opaque;
3909 NvmeRequest *req = iocb->req;
3910 NvmeNamespace *ns = req->ns;
3911 int64_t moff;
3912 int count;
3913
3914 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3915 goto out;
3916 }
3917
3918 moff = nvme_moff(ns, iocb->zone->d.zslba);
3919 count = nvme_m2b(ns, ns->zone_size);
3920
3921 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3922 BDRV_REQ_MAY_UNMAP,
3923 nvme_zone_reset_cb, iocb);
3924 return;
3925
3926 out:
3927 nvme_zone_reset_cb(iocb, ret);
3928 }
3929
3930 static void nvme_zone_reset_cb(void *opaque, int ret)
3931 {
3932 NvmeZoneResetAIOCB *iocb = opaque;
3933 NvmeRequest *req = iocb->req;
3934 NvmeNamespace *ns = req->ns;
3935
3936 if (iocb->ret < 0) {
3937 goto done;
3938 } else if (ret < 0) {
3939 iocb->ret = ret;
3940 goto done;
3941 }
3942
3943 if (iocb->zone) {
3944 nvme_zrm_reset(ns, iocb->zone);
3945
3946 if (!iocb->all) {
3947 goto done;
3948 }
3949 }
3950
3951 while (iocb->idx < ns->num_zones) {
3952 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3953
3954 switch (nvme_get_zone_state(zone)) {
3955 case NVME_ZONE_STATE_EMPTY:
3956 if (!iocb->all) {
3957 goto done;
3958 }
3959
3960 continue;
3961
3962 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3963 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3964 case NVME_ZONE_STATE_CLOSED:
3965 case NVME_ZONE_STATE_FULL:
3966 iocb->zone = zone;
3967 break;
3968
3969 default:
3970 continue;
3971 }
3972
3973 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3974
3975 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3976 nvme_l2b(ns, zone->d.zslba),
3977 nvme_l2b(ns, ns->zone_size),
3978 BDRV_REQ_MAY_UNMAP,
3979 nvme_zone_reset_epilogue_cb,
3980 iocb);
3981 return;
3982 }
3983
3984 done:
3985 iocb->aiocb = NULL;
3986
3987 iocb->common.cb(iocb->common.opaque, iocb->ret);
3988 qemu_aio_unref(iocb);
3989 }
3990
3991 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3992 uint64_t elba, NvmeRequest *req)
3993 {
3994 NvmeNamespace *ns = req->ns;
3995 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3996 uint64_t wp = zone->d.wp;
3997 uint32_t nlb = elba - wp + 1;
3998 uint16_t status;
3999
4000
4001 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
4002 return NVME_INVALID_ZONE_OP | NVME_DNR;
4003 }
4004
4005 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
4006 return NVME_INVALID_FIELD | NVME_DNR;
4007 }
4008
4009 if (elba < wp || elba > wp + ns->zns.zrwas) {
4010 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
4011 }
4012
4013 if (nlb % ns->zns.zrwafg) {
4014 return NVME_INVALID_FIELD | NVME_DNR;
4015 }
4016
4017 status = nvme_zrm_auto(n, ns, zone);
4018 if (status) {
4019 return status;
4020 }
4021
4022 zone->w_ptr += nlb;
4023
4024 nvme_advance_zone_wp(ns, zone, nlb);
4025
4026 return NVME_SUCCESS;
4027 }
4028
4029 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4030 {
4031 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4032 NvmeNamespace *ns = req->ns;
4033 NvmeZone *zone;
4034 NvmeZoneResetAIOCB *iocb;
4035 uint8_t *zd_ext;
4036 uint64_t slba = 0;
4037 uint32_t zone_idx = 0;
4038 uint16_t status;
4039 uint8_t action = cmd->zsa;
4040 bool all;
4041 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4042
4043 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4044
4045 req->status = NVME_SUCCESS;
4046
4047 if (!all) {
4048 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4049 if (status) {
4050 return status;
4051 }
4052 }
4053
4054 zone = &ns->zone_array[zone_idx];
4055 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4056 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4057 return NVME_INVALID_FIELD | NVME_DNR;
4058 }
4059
4060 switch (action) {
4061
4062 case NVME_ZONE_ACTION_OPEN:
4063 if (all) {
4064 proc_mask = NVME_PROC_CLOSED_ZONES;
4065 }
4066 trace_pci_nvme_open_zone(slba, zone_idx, all);
4067 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4068 break;
4069
4070 case NVME_ZONE_ACTION_CLOSE:
4071 if (all) {
4072 proc_mask = NVME_PROC_OPENED_ZONES;
4073 }
4074 trace_pci_nvme_close_zone(slba, zone_idx, all);
4075 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4076 break;
4077
4078 case NVME_ZONE_ACTION_FINISH:
4079 if (all) {
4080 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4081 }
4082 trace_pci_nvme_finish_zone(slba, zone_idx, all);
4083 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4084 break;
4085
4086 case NVME_ZONE_ACTION_RESET:
4087 trace_pci_nvme_reset_zone(slba, zone_idx, all);
4088
4089 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4090 nvme_misc_cb, req);
4091
4092 iocb->req = req;
4093 iocb->ret = 0;
4094 iocb->all = all;
4095 iocb->idx = zone_idx;
4096 iocb->zone = NULL;
4097
4098 req->aiocb = &iocb->common;
4099 nvme_zone_reset_cb(iocb, 0);
4100
4101 return NVME_NO_COMPLETE;
4102
4103 case NVME_ZONE_ACTION_OFFLINE:
4104 if (all) {
4105 proc_mask = NVME_PROC_READ_ONLY_ZONES;
4106 }
4107 trace_pci_nvme_offline_zone(slba, zone_idx, all);
4108 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4109 break;
4110
4111 case NVME_ZONE_ACTION_SET_ZD_EXT:
4112 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4113 if (all || !ns->params.zd_extension_size) {
4114 return NVME_INVALID_FIELD | NVME_DNR;
4115 }
4116 zd_ext = nvme_get_zd_extension(ns, zone_idx);
4117 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4118 if (status) {
4119 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4120 return status;
4121 }
4122
4123 status = nvme_set_zd_ext(ns, zone);
4124 if (status == NVME_SUCCESS) {
4125 trace_pci_nvme_zd_extension_set(zone_idx);
4126 return status;
4127 }
4128 break;
4129
4130 case NVME_ZONE_ACTION_ZRWA_FLUSH:
4131 if (all) {
4132 return NVME_INVALID_FIELD | NVME_DNR;
4133 }
4134
4135 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4136
4137 default:
4138 trace_pci_nvme_err_invalid_mgmt_action(action);
4139 status = NVME_INVALID_FIELD;
4140 }
4141
4142 if (status == NVME_ZONE_INVAL_TRANSITION) {
4143 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4144 zone->d.za);
4145 }
4146 if (status) {
4147 status |= NVME_DNR;
4148 }
4149
4150 return status;
4151 }
4152
4153 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4154 {
4155 NvmeZoneState zs = nvme_get_zone_state(zl);
4156
4157 switch (zafs) {
4158 case NVME_ZONE_REPORT_ALL:
4159 return true;
4160 case NVME_ZONE_REPORT_EMPTY:
4161 return zs == NVME_ZONE_STATE_EMPTY;
4162 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4163 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4164 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4165 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4166 case NVME_ZONE_REPORT_CLOSED:
4167 return zs == NVME_ZONE_STATE_CLOSED;
4168 case NVME_ZONE_REPORT_FULL:
4169 return zs == NVME_ZONE_STATE_FULL;
4170 case NVME_ZONE_REPORT_READ_ONLY:
4171 return zs == NVME_ZONE_STATE_READ_ONLY;
4172 case NVME_ZONE_REPORT_OFFLINE:
4173 return zs == NVME_ZONE_STATE_OFFLINE;
4174 default:
4175 return false;
4176 }
4177 }
4178
4179 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4180 {
4181 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4182 NvmeNamespace *ns = req->ns;
4183 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4184 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4185 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4186 uint32_t zone_idx, zra, zrasf, partial;
4187 uint64_t max_zones, nr_zones = 0;
4188 uint16_t status;
4189 uint64_t slba;
4190 NvmeZoneDescr *z;
4191 NvmeZone *zone;
4192 NvmeZoneReportHeader *header;
4193 void *buf, *buf_p;
4194 size_t zone_entry_sz;
4195 int i;
4196
4197 req->status = NVME_SUCCESS;
4198
4199 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4200 if (status) {
4201 return status;
4202 }
4203
4204 zra = dw13 & 0xff;
4205 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4206 return NVME_INVALID_FIELD | NVME_DNR;
4207 }
4208 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4209 return NVME_INVALID_FIELD | NVME_DNR;
4210 }
4211
4212 zrasf = (dw13 >> 8) & 0xff;
4213 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4214 return NVME_INVALID_FIELD | NVME_DNR;
4215 }
4216
4217 if (data_size < sizeof(NvmeZoneReportHeader)) {
4218 return NVME_INVALID_FIELD | NVME_DNR;
4219 }
4220
4221 status = nvme_check_mdts(n, data_size);
4222 if (status) {
4223 return status;
4224 }
4225
4226 partial = (dw13 >> 16) & 0x01;
4227
4228 zone_entry_sz = sizeof(NvmeZoneDescr);
4229 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4230 zone_entry_sz += ns->params.zd_extension_size;
4231 }
4232
4233 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4234 buf = g_malloc0(data_size);
4235
4236 zone = &ns->zone_array[zone_idx];
4237 for (i = zone_idx; i < ns->num_zones; i++) {
4238 if (partial && nr_zones >= max_zones) {
4239 break;
4240 }
4241 if (nvme_zone_matches_filter(zrasf, zone++)) {
4242 nr_zones++;
4243 }
4244 }
4245 header = buf;
4246 header->nr_zones = cpu_to_le64(nr_zones);
4247
4248 buf_p = buf + sizeof(NvmeZoneReportHeader);
4249 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4250 zone = &ns->zone_array[zone_idx];
4251 if (nvme_zone_matches_filter(zrasf, zone)) {
4252 z = buf_p;
4253 buf_p += sizeof(NvmeZoneDescr);
4254
4255 z->zt = zone->d.zt;
4256 z->zs = zone->d.zs;
4257 z->zcap = cpu_to_le64(zone->d.zcap);
4258 z->zslba = cpu_to_le64(zone->d.zslba);
4259 z->za = zone->d.za;
4260
4261 if (nvme_wp_is_valid(zone)) {
4262 z->wp = cpu_to_le64(zone->d.wp);
4263 } else {
4264 z->wp = cpu_to_le64(~0ULL);
4265 }
4266
4267 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4268 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4269 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4270 ns->params.zd_extension_size);
4271 }
4272 buf_p += ns->params.zd_extension_size;
4273 }
4274
4275 max_zones--;
4276 }
4277 }
4278
4279 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4280
4281 g_free(buf);
4282
4283 return status;
4284 }
4285
4286 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4287 size_t len)
4288 {
4289 NvmeNamespace *ns = req->ns;
4290 NvmeEnduranceGroup *endgrp;
4291 NvmeRuhStatus *hdr;
4292 NvmeRuhStatusDescr *ruhsd;
4293 unsigned int nruhsd;
4294 uint16_t rg, ph, *ruhid;
4295 size_t trans_len;
4296 g_autofree uint8_t *buf = NULL;
4297
4298 if (!n->subsys) {
4299 return NVME_INVALID_FIELD | NVME_DNR;
4300 }
4301
4302 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4303 return NVME_INVALID_NSID | NVME_DNR;
4304 }
4305
4306 if (!n->subsys->endgrp.fdp.enabled) {
4307 return NVME_FDP_DISABLED | NVME_DNR;
4308 }
4309
4310 endgrp = ns->endgrp;
4311
4312 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4313 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4314 buf = g_malloc(trans_len);
4315
4316 trans_len = MIN(trans_len, len);
4317
4318 hdr = (NvmeRuhStatus *)buf;
4319 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4320
4321 hdr->nruhsd = cpu_to_le16(nruhsd);
4322
4323 ruhid = ns->fdp.phs;
4324
4325 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4326 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4327
4328 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4329 uint16_t pid = nvme_make_pid(ns, rg, ph);
4330
4331 ruhsd->pid = cpu_to_le16(pid);
4332 ruhsd->ruhid = *ruhid;
4333 ruhsd->earutr = 0;
4334 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4335 }
4336 }
4337
4338 return nvme_c2h(n, buf, trans_len, req);
4339 }
4340
4341 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4342 {
4343 NvmeCmd *cmd = &req->cmd;
4344 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4345 uint32_t numd = le32_to_cpu(cmd->cdw11);
4346 uint8_t mo = (cdw10 & 0xff);
4347 size_t len = (numd + 1) << 2;
4348
4349 switch (mo) {
4350 case NVME_IOMR_MO_NOP:
4351 return 0;
4352 case NVME_IOMR_MO_RUH_STATUS:
4353 return nvme_io_mgmt_recv_ruhs(n, req, len);
4354 default:
4355 return NVME_INVALID_FIELD | NVME_DNR;
4356 };
4357 }
4358
4359 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4360 {
4361 NvmeCmd *cmd = &req->cmd;
4362 NvmeNamespace *ns = req->ns;
4363 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4364 uint16_t ret = NVME_SUCCESS;
4365 uint32_t npid = (cdw10 >> 1) + 1;
4366 unsigned int i = 0;
4367 g_autofree uint16_t *pids = NULL;
4368 uint32_t maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4369
4370 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4371 return NVME_INVALID_FIELD | NVME_DNR;
4372 }
4373
4374 pids = g_new(uint16_t, npid);
4375
4376 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4377 if (ret) {
4378 return ret;
4379 }
4380
4381 for (; i < npid; i++) {
4382 if (!nvme_update_ruh(n, ns, pids[i])) {
4383 return NVME_INVALID_FIELD | NVME_DNR;
4384 }
4385 }
4386
4387 return ret;
4388 }
4389
4390 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4391 {
4392 NvmeCmd *cmd = &req->cmd;
4393 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4394 uint8_t mo = (cdw10 & 0xff);
4395
4396 switch (mo) {
4397 case NVME_IOMS_MO_NOP:
4398 return 0;
4399 case NVME_IOMS_MO_RUH_UPDATE:
4400 return nvme_io_mgmt_send_ruh_update(n, req);
4401 default:
4402 return NVME_INVALID_FIELD | NVME_DNR;
4403 };
4404 }
4405
4406 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4407 {
4408 NvmeNamespace *ns;
4409 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4410
4411 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4412 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4413
4414 if (!nvme_nsid_valid(n, nsid)) {
4415 return NVME_INVALID_NSID | NVME_DNR;
4416 }
4417
4418 /*
4419 * In the base NVM command set, Flush may apply to all namespaces
4420 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4421 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4422 *
4423 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4424 * opcode with a specific command since we cannot determine a unique I/O
4425 * command set. Opcode 0h could have any other meaning than something
4426 * equivalent to flushing and say it DOES have completely different
4427 * semantics in some other command set - does an NSID of FFFFFFFFh then
4428 * mean "for all namespaces, apply whatever command set specific command
4429 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4430 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4431 * to be FFFFFFFFh"?
4432 *
4433 * Anyway (and luckily), for now, we do not care about this since the
4434 * device only supports namespace types that includes the NVM Flush command
4435 * (NVM and Zoned), so always do an NVM Flush.
4436 */
4437 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4438 return nvme_flush(n, req);
4439 }
4440
4441 ns = nvme_ns(n, nsid);
4442 if (unlikely(!ns)) {
4443 return NVME_INVALID_FIELD | NVME_DNR;
4444 }
4445
4446 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4447 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4448 return NVME_INVALID_OPCODE | NVME_DNR;
4449 }
4450
4451 if (ns->status) {
4452 return ns->status;
4453 }
4454
4455 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4456 return NVME_INVALID_FIELD;
4457 }
4458
4459 req->ns = ns;
4460
4461 switch (req->cmd.opcode) {
4462 case NVME_CMD_WRITE_ZEROES:
4463 return nvme_write_zeroes(n, req);
4464 case NVME_CMD_ZONE_APPEND:
4465 return nvme_zone_append(n, req);
4466 case NVME_CMD_WRITE:
4467 return nvme_write(n, req);
4468 case NVME_CMD_READ:
4469 return nvme_read(n, req);
4470 case NVME_CMD_COMPARE:
4471 return nvme_compare(n, req);
4472 case NVME_CMD_DSM:
4473 return nvme_dsm(n, req);
4474 case NVME_CMD_VERIFY:
4475 return nvme_verify(n, req);
4476 case NVME_CMD_COPY:
4477 return nvme_copy(n, req);
4478 case NVME_CMD_ZONE_MGMT_SEND:
4479 return nvme_zone_mgmt_send(n, req);
4480 case NVME_CMD_ZONE_MGMT_RECV:
4481 return nvme_zone_mgmt_recv(n, req);
4482 case NVME_CMD_IO_MGMT_RECV:
4483 return nvme_io_mgmt_recv(n, req);
4484 case NVME_CMD_IO_MGMT_SEND:
4485 return nvme_io_mgmt_send(n, req);
4486 default:
4487 assert(false);
4488 }
4489
4490 return NVME_INVALID_OPCODE | NVME_DNR;
4491 }
4492
4493 static void nvme_cq_notifier(EventNotifier *e)
4494 {
4495 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4496 NvmeCtrl *n = cq->ctrl;
4497
4498 if (!event_notifier_test_and_clear(e)) {
4499 return;
4500 }
4501
4502 nvme_update_cq_head(cq);
4503
4504 if (cq->tail == cq->head) {
4505 if (cq->irq_enabled) {
4506 n->cq_pending--;
4507 }
4508
4509 nvme_irq_deassert(n, cq);
4510 }
4511
4512 qemu_bh_schedule(cq->bh);
4513 }
4514
4515 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4516 {
4517 NvmeCtrl *n = cq->ctrl;
4518 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4519 int ret;
4520
4521 ret = event_notifier_init(&cq->notifier, 0);
4522 if (ret < 0) {
4523 return ret;
4524 }
4525
4526 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4527 memory_region_add_eventfd(&n->iomem,
4528 0x1000 + offset, 4, false, 0, &cq->notifier);
4529
4530 return 0;
4531 }
4532
4533 static void nvme_sq_notifier(EventNotifier *e)
4534 {
4535 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4536
4537 if (!event_notifier_test_and_clear(e)) {
4538 return;
4539 }
4540
4541 nvme_process_sq(sq);
4542 }
4543
4544 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4545 {
4546 NvmeCtrl *n = sq->ctrl;
4547 uint16_t offset = sq->sqid << 3;
4548 int ret;
4549
4550 ret = event_notifier_init(&sq->notifier, 0);
4551 if (ret < 0) {
4552 return ret;
4553 }
4554
4555 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4556 memory_region_add_eventfd(&n->iomem,
4557 0x1000 + offset, 4, false, 0, &sq->notifier);
4558
4559 return 0;
4560 }
4561
4562 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4563 {
4564 uint16_t offset = sq->sqid << 3;
4565
4566 n->sq[sq->sqid] = NULL;
4567 qemu_bh_delete(sq->bh);
4568 if (sq->ioeventfd_enabled) {
4569 memory_region_del_eventfd(&n->iomem,
4570 0x1000 + offset, 4, false, 0, &sq->notifier);
4571 event_notifier_set_handler(&sq->notifier, NULL);
4572 event_notifier_cleanup(&sq->notifier);
4573 }
4574 g_free(sq->io_req);
4575 if (sq->sqid) {
4576 g_free(sq);
4577 }
4578 }
4579
4580 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4581 {
4582 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4583 NvmeRequest *r, *next;
4584 NvmeSQueue *sq;
4585 NvmeCQueue *cq;
4586 uint16_t qid = le16_to_cpu(c->qid);
4587
4588 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4589 trace_pci_nvme_err_invalid_del_sq(qid);
4590 return NVME_INVALID_QID | NVME_DNR;
4591 }
4592
4593 trace_pci_nvme_del_sq(qid);
4594
4595 sq = n->sq[qid];
4596 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4597 r = QTAILQ_FIRST(&sq->out_req_list);
4598 assert(r->aiocb);
4599 blk_aio_cancel(r->aiocb);
4600 }
4601
4602 assert(QTAILQ_EMPTY(&sq->out_req_list));
4603
4604 if (!nvme_check_cqid(n, sq->cqid)) {
4605 cq = n->cq[sq->cqid];
4606 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4607
4608 nvme_post_cqes(cq);
4609 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4610 if (r->sq == sq) {
4611 QTAILQ_REMOVE(&cq->req_list, r, entry);
4612 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4613 }
4614 }
4615 }
4616
4617 nvme_free_sq(sq, n);
4618 return NVME_SUCCESS;
4619 }
4620
4621 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4622 uint16_t sqid, uint16_t cqid, uint16_t size)
4623 {
4624 int i;
4625 NvmeCQueue *cq;
4626
4627 sq->ctrl = n;
4628 sq->dma_addr = dma_addr;
4629 sq->sqid = sqid;
4630 sq->size = size;
4631 sq->cqid = cqid;
4632 sq->head = sq->tail = 0;
4633 sq->io_req = g_new0(NvmeRequest, sq->size);
4634
4635 QTAILQ_INIT(&sq->req_list);
4636 QTAILQ_INIT(&sq->out_req_list);
4637 for (i = 0; i < sq->size; i++) {
4638 sq->io_req[i].sq = sq;
4639 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4640 }
4641
4642 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
4643 &DEVICE(sq->ctrl)->mem_reentrancy_guard);
4644
4645 if (n->dbbuf_enabled) {
4646 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4647 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4648
4649 if (n->params.ioeventfd && sq->sqid != 0) {
4650 if (!nvme_init_sq_ioeventfd(sq)) {
4651 sq->ioeventfd_enabled = true;
4652 }
4653 }
4654 }
4655
4656 assert(n->cq[cqid]);
4657 cq = n->cq[cqid];
4658 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4659 n->sq[sqid] = sq;
4660 }
4661
4662 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4663 {
4664 NvmeSQueue *sq;
4665 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4666
4667 uint16_t cqid = le16_to_cpu(c->cqid);
4668 uint16_t sqid = le16_to_cpu(c->sqid);
4669 uint16_t qsize = le16_to_cpu(c->qsize);
4670 uint16_t qflags = le16_to_cpu(c->sq_flags);
4671 uint64_t prp1 = le64_to_cpu(c->prp1);
4672
4673 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4674
4675 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4676 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4677 return NVME_INVALID_CQID | NVME_DNR;
4678 }
4679 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4680 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4681 return NVME_INVALID_QID | NVME_DNR;
4682 }
4683 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4684 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4685 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4686 }
4687 if (unlikely(prp1 & (n->page_size - 1))) {
4688 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4689 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4690 }
4691 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4692 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4693 return NVME_INVALID_FIELD | NVME_DNR;
4694 }
4695 sq = g_malloc0(sizeof(*sq));
4696 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4697 return NVME_SUCCESS;
4698 }
4699
4700 struct nvme_stats {
4701 uint64_t units_read;
4702 uint64_t units_written;
4703 uint64_t read_commands;
4704 uint64_t write_commands;
4705 };
4706
4707 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4708 {
4709 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4710
4711 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4712 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4713 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4714 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4715 }
4716
4717 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4718 uint64_t off, NvmeRequest *req)
4719 {
4720 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4721 struct nvme_stats stats = { 0 };
4722 NvmeSmartLog smart = { 0 };
4723 uint32_t trans_len;
4724 NvmeNamespace *ns;
4725 time_t current_ms;
4726 uint64_t u_read, u_written;
4727
4728 if (off >= sizeof(smart)) {
4729 return NVME_INVALID_FIELD | NVME_DNR;
4730 }
4731
4732 if (nsid != 0xffffffff) {
4733 ns = nvme_ns(n, nsid);
4734 if (!ns) {
4735 return NVME_INVALID_NSID | NVME_DNR;
4736 }
4737 nvme_set_blk_stats(ns, &stats);
4738 } else {
4739 int i;
4740
4741 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4742 ns = nvme_ns(n, i);
4743 if (!ns) {
4744 continue;
4745 }
4746 nvme_set_blk_stats(ns, &stats);
4747 }
4748 }
4749
4750 trans_len = MIN(sizeof(smart) - off, buf_len);
4751 smart.critical_warning = n->smart_critical_warning;
4752
4753 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4754 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4755
4756 smart.data_units_read[0] = cpu_to_le64(u_read);
4757 smart.data_units_written[0] = cpu_to_le64(u_written);
4758 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4759 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4760
4761 smart.temperature = cpu_to_le16(n->temperature);
4762
4763 if ((n->temperature >= n->features.temp_thresh_hi) ||
4764 (n->temperature <= n->features.temp_thresh_low)) {
4765 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4766 }
4767
4768 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4769 smart.power_on_hours[0] =
4770 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4771
4772 if (!rae) {
4773 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4774 }
4775
4776 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4777 }
4778
4779 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4780 uint64_t off, NvmeRequest *req)
4781 {
4782 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4783 uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4784 struct nvme_stats stats = {};
4785 NvmeEndGrpLog info = {};
4786 int i;
4787
4788 if (!n->subsys || endgrpid != 0x1) {
4789 return NVME_INVALID_FIELD | NVME_DNR;
4790 }
4791
4792 if (off >= sizeof(info)) {
4793 return NVME_INVALID_FIELD | NVME_DNR;
4794 }
4795
4796 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4797 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4798 if (!ns) {
4799 continue;
4800 }
4801
4802 nvme_set_blk_stats(ns, &stats);
4803 }
4804
4805 info.data_units_read[0] =
4806 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4807 info.data_units_written[0] =
4808 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4809 info.media_units_written[0] =
4810 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4811
4812 info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4813 info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4814
4815 buf_len = MIN(sizeof(info) - off, buf_len);
4816
4817 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4818 }
4819
4820
4821 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4822 NvmeRequest *req)
4823 {
4824 uint32_t trans_len;
4825 NvmeFwSlotInfoLog fw_log = {
4826 .afi = 0x1,
4827 };
4828
4829 if (off >= sizeof(fw_log)) {
4830 return NVME_INVALID_FIELD | NVME_DNR;
4831 }
4832
4833 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4834 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4835
4836 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4837 }
4838
4839 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4840 uint64_t off, NvmeRequest *req)
4841 {
4842 uint32_t trans_len;
4843 NvmeErrorLog errlog;
4844
4845 if (off >= sizeof(errlog)) {
4846 return NVME_INVALID_FIELD | NVME_DNR;
4847 }
4848
4849 if (!rae) {
4850 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4851 }
4852
4853 memset(&errlog, 0x0, sizeof(errlog));
4854 trans_len = MIN(sizeof(errlog) - off, buf_len);
4855
4856 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4857 }
4858
4859 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4860 uint64_t off, NvmeRequest *req)
4861 {
4862 uint32_t nslist[1024];
4863 uint32_t trans_len;
4864 int i = 0;
4865 uint32_t nsid;
4866
4867 if (off >= sizeof(nslist)) {
4868 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4869 return NVME_INVALID_FIELD | NVME_DNR;
4870 }
4871
4872 memset(nslist, 0x0, sizeof(nslist));
4873 trans_len = MIN(sizeof(nslist) - off, buf_len);
4874
4875 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4876 NVME_CHANGED_NSID_SIZE) {
4877 /*
4878 * If more than 1024 namespaces, the first entry in the log page should
4879 * be set to FFFFFFFFh and the others to 0 as spec.
4880 */
4881 if (i == ARRAY_SIZE(nslist)) {
4882 memset(nslist, 0x0, sizeof(nslist));
4883 nslist[0] = 0xffffffff;
4884 break;
4885 }
4886
4887 nslist[i++] = nsid;
4888 clear_bit(nsid, n->changed_nsids);
4889 }
4890
4891 /*
4892 * Remove all the remaining list entries in case returns directly due to
4893 * more than 1024 namespaces.
4894 */
4895 if (nslist[0] == 0xffffffff) {
4896 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4897 }
4898
4899 if (!rae) {
4900 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4901 }
4902
4903 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4904 }
4905
4906 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4907 uint64_t off, NvmeRequest *req)
4908 {
4909 NvmeEffectsLog log = {};
4910 const uint32_t *src_iocs = NULL;
4911 uint32_t trans_len;
4912
4913 if (off >= sizeof(log)) {
4914 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4915 return NVME_INVALID_FIELD | NVME_DNR;
4916 }
4917
4918 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4919 case NVME_CC_CSS_NVM:
4920 src_iocs = nvme_cse_iocs_nvm;
4921 /* fall through */
4922 case NVME_CC_CSS_ADMIN_ONLY:
4923 break;
4924 case NVME_CC_CSS_CSI:
4925 switch (csi) {
4926 case NVME_CSI_NVM:
4927 src_iocs = nvme_cse_iocs_nvm;
4928 break;
4929 case NVME_CSI_ZONED:
4930 src_iocs = nvme_cse_iocs_zoned;
4931 break;
4932 }
4933 }
4934
4935 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4936
4937 if (src_iocs) {
4938 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4939 }
4940
4941 trans_len = MIN(sizeof(log) - off, buf_len);
4942
4943 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4944 }
4945
4946 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4947 {
4948 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4949 + vss;
4950 return ROUND_UP(entry_siz, 8);
4951 }
4952
4953 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4954 uint64_t off, NvmeRequest *req)
4955 {
4956 uint32_t log_size, trans_len;
4957 g_autofree uint8_t *buf = NULL;
4958 NvmeFdpDescrHdr *hdr;
4959 NvmeRuhDescr *ruhd;
4960 NvmeEnduranceGroup *endgrp;
4961 NvmeFdpConfsHdr *log;
4962 size_t nruh, fdp_descr_size;
4963 int i;
4964
4965 if (endgrpid != 1 || !n->subsys) {
4966 return NVME_INVALID_FIELD | NVME_DNR;
4967 }
4968
4969 endgrp = &n->subsys->endgrp;
4970
4971 if (endgrp->fdp.enabled) {
4972 nruh = endgrp->fdp.nruh;
4973 } else {
4974 nruh = 1;
4975 }
4976
4977 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4978 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4979
4980 if (off >= log_size) {
4981 return NVME_INVALID_FIELD | NVME_DNR;
4982 }
4983
4984 trans_len = MIN(log_size - off, buf_len);
4985
4986 buf = g_malloc0(log_size);
4987 log = (NvmeFdpConfsHdr *)buf;
4988 hdr = (NvmeFdpDescrHdr *)(log + 1);
4989 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4990
4991 log->num_confs = cpu_to_le16(0);
4992 log->size = cpu_to_le32(log_size);
4993
4994 hdr->descr_size = cpu_to_le16(fdp_descr_size);
4995 if (endgrp->fdp.enabled) {
4996 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4997 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
4998 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
4999 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5000 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5001 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
5002 hdr->runs = cpu_to_le64(endgrp->fdp.runs);
5003
5004 for (i = 0; i < nruh; i++) {
5005 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5006 ruhd++;
5007 }
5008 } else {
5009 /* 1 bit for RUH in PIF -> 2 RUHs max. */
5010 hdr->nrg = cpu_to_le16(1);
5011 hdr->nruh = cpu_to_le16(1);
5012 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5013 hdr->nnss = cpu_to_le32(1);
5014 hdr->runs = cpu_to_le64(96 * MiB);
5015
5016 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5017 }
5018
5019 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5020 }
5021
5022 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
5023 uint32_t dw10, uint32_t dw12,
5024 uint32_t buf_len, uint64_t off,
5025 NvmeRequest *req)
5026 {
5027 NvmeRuHandle *ruh;
5028 NvmeRuhuLog *hdr;
5029 NvmeRuhuDescr *ruhud;
5030 NvmeEnduranceGroup *endgrp;
5031 g_autofree uint8_t *buf = NULL;
5032 uint32_t log_size, trans_len;
5033 uint16_t i;
5034
5035 if (endgrpid != 1 || !n->subsys) {
5036 return NVME_INVALID_FIELD | NVME_DNR;
5037 }
5038
5039 endgrp = &n->subsys->endgrp;
5040
5041 if (!endgrp->fdp.enabled) {
5042 return NVME_FDP_DISABLED | NVME_DNR;
5043 }
5044
5045 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5046
5047 if (off >= log_size) {
5048 return NVME_INVALID_FIELD | NVME_DNR;
5049 }
5050
5051 trans_len = MIN(log_size - off, buf_len);
5052
5053 buf = g_malloc0(log_size);
5054 hdr = (NvmeRuhuLog *)buf;
5055 ruhud = (NvmeRuhuDescr *)(hdr + 1);
5056
5057 ruh = endgrp->fdp.ruhs;
5058 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5059
5060 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5061 ruhud->ruha = ruh->ruha;
5062 }
5063
5064 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5065 }
5066
5067 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5068 uint64_t off, NvmeRequest *req)
5069 {
5070 NvmeEnduranceGroup *endgrp;
5071 NvmeFdpStatsLog log = {};
5072 uint32_t trans_len;
5073
5074 if (off >= sizeof(NvmeFdpStatsLog)) {
5075 return NVME_INVALID_FIELD | NVME_DNR;
5076 }
5077
5078 if (endgrpid != 1 || !n->subsys) {
5079 return NVME_INVALID_FIELD | NVME_DNR;
5080 }
5081
5082 if (!n->subsys->endgrp.fdp.enabled) {
5083 return NVME_FDP_DISABLED | NVME_DNR;
5084 }
5085
5086 endgrp = &n->subsys->endgrp;
5087
5088 trans_len = MIN(sizeof(log) - off, buf_len);
5089
5090 /* spec value is 128 bit, we only use 64 bit */
5091 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5092 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5093 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5094
5095 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5096 }
5097
5098 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5099 uint32_t buf_len, uint64_t off,
5100 NvmeRequest *req)
5101 {
5102 NvmeEnduranceGroup *endgrp;
5103 NvmeCmd *cmd = &req->cmd;
5104 bool host_events = (cmd->cdw10 >> 8) & 0x1;
5105 uint32_t log_size, trans_len;
5106 NvmeFdpEventBuffer *ebuf;
5107 g_autofree NvmeFdpEventsLog *elog = NULL;
5108 NvmeFdpEvent *event;
5109
5110 if (endgrpid != 1 || !n->subsys) {
5111 return NVME_INVALID_FIELD | NVME_DNR;
5112 }
5113
5114 endgrp = &n->subsys->endgrp;
5115
5116 if (!endgrp->fdp.enabled) {
5117 return NVME_FDP_DISABLED | NVME_DNR;
5118 }
5119
5120 if (host_events) {
5121 ebuf = &endgrp->fdp.host_events;
5122 } else {
5123 ebuf = &endgrp->fdp.ctrl_events;
5124 }
5125
5126 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5127 trans_len = MIN(log_size - off, buf_len);
5128 elog = g_malloc0(log_size);
5129 elog->num_events = cpu_to_le32(ebuf->nelems);
5130 event = (NvmeFdpEvent *)(elog + 1);
5131
5132 if (ebuf->nelems && ebuf->start == ebuf->next) {
5133 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5134 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5135 memcpy(event, &ebuf->events[ebuf->start],
5136 sizeof(NvmeFdpEvent) * nelems);
5137 memcpy(event + nelems, ebuf->events,
5138 sizeof(NvmeFdpEvent) * ebuf->next);
5139 } else if (ebuf->start < ebuf->next) {
5140 memcpy(event, &ebuf->events[ebuf->start],
5141 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5142 }
5143
5144 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5145 }
5146
5147 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5148 {
5149 NvmeCmd *cmd = &req->cmd;
5150
5151 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5152 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5153 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5154 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5155 uint8_t lid = dw10 & 0xff;
5156 uint8_t lsp = (dw10 >> 8) & 0xf;
5157 uint8_t rae = (dw10 >> 15) & 0x1;
5158 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
5159 uint32_t numdl, numdu, lspi;
5160 uint64_t off, lpol, lpou;
5161 size_t len;
5162 uint16_t status;
5163
5164 numdl = (dw10 >> 16);
5165 numdu = (dw11 & 0xffff);
5166 lspi = (dw11 >> 16);
5167 lpol = dw12;
5168 lpou = dw13;
5169
5170 len = (((numdu << 16) | numdl) + 1) << 2;
5171 off = (lpou << 32ULL) | lpol;
5172
5173 if (off & 0x3) {
5174 return NVME_INVALID_FIELD | NVME_DNR;
5175 }
5176
5177 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5178
5179 status = nvme_check_mdts(n, len);
5180 if (status) {
5181 return status;
5182 }
5183
5184 switch (lid) {
5185 case NVME_LOG_ERROR_INFO:
5186 return nvme_error_info(n, rae, len, off, req);
5187 case NVME_LOG_SMART_INFO:
5188 return nvme_smart_info(n, rae, len, off, req);
5189 case NVME_LOG_FW_SLOT_INFO:
5190 return nvme_fw_log_info(n, len, off, req);
5191 case NVME_LOG_CHANGED_NSLIST:
5192 return nvme_changed_nslist(n, rae, len, off, req);
5193 case NVME_LOG_CMD_EFFECTS:
5194 return nvme_cmd_effects(n, csi, len, off, req);
5195 case NVME_LOG_ENDGRP:
5196 return nvme_endgrp_info(n, rae, len, off, req);
5197 case NVME_LOG_FDP_CONFS:
5198 return nvme_fdp_confs(n, lspi, len, off, req);
5199 case NVME_LOG_FDP_RUH_USAGE:
5200 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5201 case NVME_LOG_FDP_STATS:
5202 return nvme_fdp_stats(n, lspi, len, off, req);
5203 case NVME_LOG_FDP_EVENTS:
5204 return nvme_fdp_events(n, lspi, len, off, req);
5205 default:
5206 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5207 return NVME_INVALID_FIELD | NVME_DNR;
5208 }
5209 }
5210
5211 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5212 {
5213 PCIDevice *pci = PCI_DEVICE(n);
5214 uint16_t offset = (cq->cqid << 3) + (1 << 2);
5215
5216 n->cq[cq->cqid] = NULL;
5217 qemu_bh_delete(cq->bh);
5218 if (cq->ioeventfd_enabled) {
5219 memory_region_del_eventfd(&n->iomem,
5220 0x1000 + offset, 4, false, 0, &cq->notifier);
5221 event_notifier_set_handler(&cq->notifier, NULL);
5222 event_notifier_cleanup(&cq->notifier);
5223 }
5224 if (msix_enabled(pci)) {
5225 msix_vector_unuse(pci, cq->vector);
5226 }
5227 if (cq->cqid) {
5228 g_free(cq);
5229 }
5230 }
5231
5232 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5233 {
5234 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5235 NvmeCQueue *cq;
5236 uint16_t qid = le16_to_cpu(c->qid);
5237
5238 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5239 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5240 return NVME_INVALID_CQID | NVME_DNR;
5241 }
5242
5243 cq = n->cq[qid];
5244 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5245 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5246 return NVME_INVALID_QUEUE_DEL;
5247 }
5248
5249 if (cq->irq_enabled && cq->tail != cq->head) {
5250 n->cq_pending--;
5251 }
5252
5253 nvme_irq_deassert(n, cq);
5254 trace_pci_nvme_del_cq(qid);
5255 nvme_free_cq(cq, n);
5256 return NVME_SUCCESS;
5257 }
5258
5259 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5260 uint16_t cqid, uint16_t vector, uint16_t size,
5261 uint16_t irq_enabled)
5262 {
5263 PCIDevice *pci = PCI_DEVICE(n);
5264
5265 if (msix_enabled(pci)) {
5266 msix_vector_use(pci, vector);
5267 }
5268 cq->ctrl = n;
5269 cq->cqid = cqid;
5270 cq->size = size;
5271 cq->dma_addr = dma_addr;
5272 cq->phase = 1;
5273 cq->irq_enabled = irq_enabled;
5274 cq->vector = vector;
5275 cq->head = cq->tail = 0;
5276 QTAILQ_INIT(&cq->req_list);
5277 QTAILQ_INIT(&cq->sq_list);
5278 if (n->dbbuf_enabled) {
5279 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5280 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5281
5282 if (n->params.ioeventfd && cqid != 0) {
5283 if (!nvme_init_cq_ioeventfd(cq)) {
5284 cq->ioeventfd_enabled = true;
5285 }
5286 }
5287 }
5288 n->cq[cqid] = cq;
5289 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
5290 &DEVICE(cq->ctrl)->mem_reentrancy_guard);
5291 }
5292
5293 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5294 {
5295 NvmeCQueue *cq;
5296 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5297 uint16_t cqid = le16_to_cpu(c->cqid);
5298 uint16_t vector = le16_to_cpu(c->irq_vector);
5299 uint16_t qsize = le16_to_cpu(c->qsize);
5300 uint16_t qflags = le16_to_cpu(c->cq_flags);
5301 uint64_t prp1 = le64_to_cpu(c->prp1);
5302
5303 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5304 NVME_CQ_FLAGS_IEN(qflags) != 0);
5305
5306 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5307 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5308 return NVME_INVALID_QID | NVME_DNR;
5309 }
5310 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5311 trace_pci_nvme_err_invalid_create_cq_size(qsize);
5312 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5313 }
5314 if (unlikely(prp1 & (n->page_size - 1))) {
5315 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5316 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5317 }
5318 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5319 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5320 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5321 }
5322 if (unlikely(vector >= n->conf_msix_qsize)) {
5323 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5324 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5325 }
5326 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5327 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5328 return NVME_INVALID_FIELD | NVME_DNR;
5329 }
5330
5331 cq = g_malloc0(sizeof(*cq));
5332 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5333 NVME_CQ_FLAGS_IEN(qflags));
5334
5335 /*
5336 * It is only required to set qs_created when creating a completion queue;
5337 * creating a submission queue without a matching completion queue will
5338 * fail.
5339 */
5340 n->qs_created = true;
5341 return NVME_SUCCESS;
5342 }
5343
5344 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5345 {
5346 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5347
5348 return nvme_c2h(n, id, sizeof(id), req);
5349 }
5350
5351 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5352 {
5353 trace_pci_nvme_identify_ctrl();
5354
5355 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5356 }
5357
5358 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5359 {
5360 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5361 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5362 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5363
5364 trace_pci_nvme_identify_ctrl_csi(c->csi);
5365
5366 switch (c->csi) {
5367 case NVME_CSI_NVM:
5368 id_nvm->vsl = n->params.vsl;
5369 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5370 break;
5371
5372 case NVME_CSI_ZONED:
5373 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5374 break;
5375
5376 default:
5377 return NVME_INVALID_FIELD | NVME_DNR;
5378 }
5379
5380 return nvme_c2h(n, id, sizeof(id), req);
5381 }
5382
5383 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5384 {
5385 NvmeNamespace *ns;
5386 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5387 uint32_t nsid = le32_to_cpu(c->nsid);
5388
5389 trace_pci_nvme_identify_ns(nsid);
5390
5391 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5392 return NVME_INVALID_NSID | NVME_DNR;
5393 }
5394
5395 ns = nvme_ns(n, nsid);
5396 if (unlikely(!ns)) {
5397 if (!active) {
5398 ns = nvme_subsys_ns(n->subsys, nsid);
5399 if (!ns) {
5400 return nvme_rpt_empty_id_struct(n, req);
5401 }
5402 } else {
5403 return nvme_rpt_empty_id_struct(n, req);
5404 }
5405 }
5406
5407 if (active || ns->csi == NVME_CSI_NVM) {
5408 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5409 }
5410
5411 return NVME_INVALID_CMD_SET | NVME_DNR;
5412 }
5413
5414 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5415 bool attached)
5416 {
5417 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5418 uint32_t nsid = le32_to_cpu(c->nsid);
5419 uint16_t min_id = le16_to_cpu(c->ctrlid);
5420 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5421 uint16_t *ids = &list[1];
5422 NvmeNamespace *ns;
5423 NvmeCtrl *ctrl;
5424 int cntlid, nr_ids = 0;
5425
5426 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5427
5428 if (!n->subsys) {
5429 return NVME_INVALID_FIELD | NVME_DNR;
5430 }
5431
5432 if (attached) {
5433 if (nsid == NVME_NSID_BROADCAST) {
5434 return NVME_INVALID_FIELD | NVME_DNR;
5435 }
5436
5437 ns = nvme_subsys_ns(n->subsys, nsid);
5438 if (!ns) {
5439 return NVME_INVALID_FIELD | NVME_DNR;
5440 }
5441 }
5442
5443 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5444 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5445 if (!ctrl) {
5446 continue;
5447 }
5448
5449 if (attached && !nvme_ns(ctrl, nsid)) {
5450 continue;
5451 }
5452
5453 ids[nr_ids++] = cntlid;
5454 }
5455
5456 list[0] = nr_ids;
5457
5458 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5459 }
5460
5461 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5462 {
5463 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5464
5465 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5466 sizeof(NvmePriCtrlCap), req);
5467 }
5468
5469 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5470 {
5471 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5472 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5473 uint16_t min_id = le16_to_cpu(c->ctrlid);
5474 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5475 NvmeSecCtrlList list = {0};
5476 uint8_t i;
5477
5478 for (i = 0; i < num_sec_ctrl; i++) {
5479 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5480 list.numcntl = num_sec_ctrl - i;
5481 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5482 list.numcntl * sizeof(NvmeSecCtrlEntry));
5483 break;
5484 }
5485 }
5486
5487 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5488
5489 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5490 }
5491
5492 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5493 bool active)
5494 {
5495 NvmeNamespace *ns;
5496 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5497 uint32_t nsid = le32_to_cpu(c->nsid);
5498
5499 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5500
5501 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5502 return NVME_INVALID_NSID | NVME_DNR;
5503 }
5504
5505 ns = nvme_ns(n, nsid);
5506 if (unlikely(!ns)) {
5507 if (!active) {
5508 ns = nvme_subsys_ns(n->subsys, nsid);
5509 if (!ns) {
5510 return nvme_rpt_empty_id_struct(n, req);
5511 }
5512 } else {
5513 return nvme_rpt_empty_id_struct(n, req);
5514 }
5515 }
5516
5517 if (c->csi == NVME_CSI_NVM) {
5518 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5519 req);
5520 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5521 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5522 req);
5523 }
5524
5525 return NVME_INVALID_FIELD | NVME_DNR;
5526 }
5527
5528 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5529 bool active)
5530 {
5531 NvmeNamespace *ns;
5532 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5533 uint32_t min_nsid = le32_to_cpu(c->nsid);
5534 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5535 static const int data_len = sizeof(list);
5536 uint32_t *list_ptr = (uint32_t *)list;
5537 int i, j = 0;
5538
5539 trace_pci_nvme_identify_nslist(min_nsid);
5540
5541 /*
5542 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5543 * since the Active Namespace ID List should return namespaces with ids
5544 * *higher* than the NSID specified in the command. This is also specified
5545 * in the spec (NVM Express v1.3d, Section 5.15.4).
5546 */
5547 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5548 return NVME_INVALID_NSID | NVME_DNR;
5549 }
5550
5551 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5552 ns = nvme_ns(n, i);
5553 if (!ns) {
5554 if (!active) {
5555 ns = nvme_subsys_ns(n->subsys, i);
5556 if (!ns) {
5557 continue;
5558 }
5559 } else {
5560 continue;
5561 }
5562 }
5563 if (ns->params.nsid <= min_nsid) {
5564 continue;
5565 }
5566 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5567 if (j == data_len / sizeof(uint32_t)) {
5568 break;
5569 }
5570 }
5571
5572 return nvme_c2h(n, list, data_len, req);
5573 }
5574
5575 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5576 bool active)
5577 {
5578 NvmeNamespace *ns;
5579 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5580 uint32_t min_nsid = le32_to_cpu(c->nsid);
5581 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5582 static const int data_len = sizeof(list);
5583 uint32_t *list_ptr = (uint32_t *)list;
5584 int i, j = 0;
5585
5586 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5587
5588 /*
5589 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5590 */
5591 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5592 return NVME_INVALID_NSID | NVME_DNR;
5593 }
5594
5595 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5596 return NVME_INVALID_FIELD | NVME_DNR;
5597 }
5598
5599 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5600 ns = nvme_ns(n, i);
5601 if (!ns) {
5602 if (!active) {
5603 ns = nvme_subsys_ns(n->subsys, i);
5604 if (!ns) {
5605 continue;
5606 }
5607 } else {
5608 continue;
5609 }
5610 }
5611 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5612 continue;
5613 }
5614 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5615 if (j == data_len / sizeof(uint32_t)) {
5616 break;
5617 }
5618 }
5619
5620 return nvme_c2h(n, list, data_len, req);
5621 }
5622
5623 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5624 {
5625 NvmeNamespace *ns;
5626 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5627 uint32_t nsid = le32_to_cpu(c->nsid);
5628 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5629 uint8_t *pos = list;
5630 struct {
5631 NvmeIdNsDescr hdr;
5632 uint8_t v[NVME_NIDL_UUID];
5633 } QEMU_PACKED uuid = {};
5634 struct {
5635 NvmeIdNsDescr hdr;
5636 uint64_t v;
5637 } QEMU_PACKED eui64 = {};
5638 struct {
5639 NvmeIdNsDescr hdr;
5640 uint8_t v;
5641 } QEMU_PACKED csi = {};
5642
5643 trace_pci_nvme_identify_ns_descr_list(nsid);
5644
5645 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5646 return NVME_INVALID_NSID | NVME_DNR;
5647 }
5648
5649 ns = nvme_ns(n, nsid);
5650 if (unlikely(!ns)) {
5651 return NVME_INVALID_FIELD | NVME_DNR;
5652 }
5653
5654 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5655 uuid.hdr.nidt = NVME_NIDT_UUID;
5656 uuid.hdr.nidl = NVME_NIDL_UUID;
5657 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5658 memcpy(pos, &uuid, sizeof(uuid));
5659 pos += sizeof(uuid);
5660 }
5661
5662 if (ns->params.eui64) {
5663 eui64.hdr.nidt = NVME_NIDT_EUI64;
5664 eui64.hdr.nidl = NVME_NIDL_EUI64;
5665 eui64.v = cpu_to_be64(ns->params.eui64);
5666 memcpy(pos, &eui64, sizeof(eui64));
5667 pos += sizeof(eui64);
5668 }
5669
5670 csi.hdr.nidt = NVME_NIDT_CSI;
5671 csi.hdr.nidl = NVME_NIDL_CSI;
5672 csi.v = ns->csi;
5673 memcpy(pos, &csi, sizeof(csi));
5674 pos += sizeof(csi);
5675
5676 return nvme_c2h(n, list, sizeof(list), req);
5677 }
5678
5679 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5680 {
5681 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5682 static const int data_len = sizeof(list);
5683
5684 trace_pci_nvme_identify_cmd_set();
5685
5686 NVME_SET_CSI(*list, NVME_CSI_NVM);
5687 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5688
5689 return nvme_c2h(n, list, data_len, req);
5690 }
5691
5692 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5693 {
5694 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5695
5696 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5697 c->csi);
5698
5699 switch (c->cns) {
5700 case NVME_ID_CNS_NS:
5701 return nvme_identify_ns(n, req, true);
5702 case NVME_ID_CNS_NS_PRESENT:
5703 return nvme_identify_ns(n, req, false);
5704 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5705 return nvme_identify_ctrl_list(n, req, true);
5706 case NVME_ID_CNS_CTRL_LIST:
5707 return nvme_identify_ctrl_list(n, req, false);
5708 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5709 return nvme_identify_pri_ctrl_cap(n, req);
5710 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5711 return nvme_identify_sec_ctrl_list(n, req);
5712 case NVME_ID_CNS_CS_NS:
5713 return nvme_identify_ns_csi(n, req, true);
5714 case NVME_ID_CNS_CS_NS_PRESENT:
5715 return nvme_identify_ns_csi(n, req, false);
5716 case NVME_ID_CNS_CTRL:
5717 return nvme_identify_ctrl(n, req);
5718 case NVME_ID_CNS_CS_CTRL:
5719 return nvme_identify_ctrl_csi(n, req);
5720 case NVME_ID_CNS_NS_ACTIVE_LIST:
5721 return nvme_identify_nslist(n, req, true);
5722 case NVME_ID_CNS_NS_PRESENT_LIST:
5723 return nvme_identify_nslist(n, req, false);
5724 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5725 return nvme_identify_nslist_csi(n, req, true);
5726 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5727 return nvme_identify_nslist_csi(n, req, false);
5728 case NVME_ID_CNS_NS_DESCR_LIST:
5729 return nvme_identify_ns_descr_list(n, req);
5730 case NVME_ID_CNS_IO_COMMAND_SET:
5731 return nvme_identify_cmd_set(n, req);
5732 default:
5733 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5734 return NVME_INVALID_FIELD | NVME_DNR;
5735 }
5736 }
5737
5738 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5739 {
5740 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5741
5742 req->cqe.result = 1;
5743 if (nvme_check_sqid(n, sqid)) {
5744 return NVME_INVALID_FIELD | NVME_DNR;
5745 }
5746
5747 return NVME_SUCCESS;
5748 }
5749
5750 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5751 {
5752 trace_pci_nvme_setfeat_timestamp(ts);
5753
5754 n->host_timestamp = le64_to_cpu(ts);
5755 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5756 }
5757
5758 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5759 {
5760 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5761 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5762
5763 union nvme_timestamp {
5764 struct {
5765 uint64_t timestamp:48;
5766 uint64_t sync:1;
5767 uint64_t origin:3;
5768 uint64_t rsvd1:12;
5769 };
5770 uint64_t all;
5771 };
5772
5773 union nvme_timestamp ts;
5774 ts.all = 0;
5775 ts.timestamp = n->host_timestamp + elapsed_time;
5776
5777 /* If the host timestamp is non-zero, set the timestamp origin */
5778 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5779
5780 trace_pci_nvme_getfeat_timestamp(ts.all);
5781
5782 return cpu_to_le64(ts.all);
5783 }
5784
5785 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5786 {
5787 uint64_t timestamp = nvme_get_timestamp(n);
5788
5789 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5790 }
5791
5792 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5793 uint32_t *result)
5794 {
5795 *result = 0;
5796
5797 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5798 return NVME_INVALID_FIELD | NVME_DNR;
5799 }
5800
5801 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5802 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5803
5804 return NVME_SUCCESS;
5805 }
5806
5807 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5808 NvmeRequest *req, uint32_t *result)
5809 {
5810 NvmeCmd *cmd = &req->cmd;
5811 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5812 uint16_t ph = cdw11 & 0xffff;
5813 uint8_t noet = (cdw11 >> 16) & 0xff;
5814 uint16_t ruhid, ret;
5815 uint32_t nentries = 0;
5816 uint8_t s_events_ndx = 0;
5817 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5818 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5819 NvmeRuHandle *ruh;
5820 NvmeFdpEventDescr *s_event;
5821
5822 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5823 return NVME_FDP_DISABLED | NVME_DNR;
5824 }
5825
5826 if (!nvme_ph_valid(ns, ph)) {
5827 return NVME_INVALID_FIELD | NVME_DNR;
5828 }
5829
5830 ruhid = ns->fdp.phs[ph];
5831 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5832
5833 assert(ruh);
5834
5835 if (unlikely(noet == 0)) {
5836 return NVME_INVALID_FIELD | NVME_DNR;
5837 }
5838
5839 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5840 uint8_t shift = nvme_fdp_evf_shifts[event_type];
5841 if (!shift && event_type) {
5842 /*
5843 * only first entry (event_type == 0) has a shift value of 0
5844 * other entries are simply unpopulated.
5845 */
5846 continue;
5847 }
5848
5849 nentries++;
5850
5851 s_event = &s_events[s_events_ndx];
5852 s_event->evt = event_type;
5853 s_event->evta = (ruh->event_filter >> shift) & 0x1;
5854
5855 /* break if all `noet` entries are filled */
5856 if ((++s_events_ndx) == noet) {
5857 break;
5858 }
5859 }
5860
5861 ret = nvme_c2h(n, s_events, s_events_siz, req);
5862 if (ret) {
5863 return ret;
5864 }
5865
5866 *result = nentries;
5867 return NVME_SUCCESS;
5868 }
5869
5870 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5871 {
5872 NvmeCmd *cmd = &req->cmd;
5873 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5874 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5875 uint32_t nsid = le32_to_cpu(cmd->nsid);
5876 uint32_t result;
5877 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5878 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5879 uint16_t iv;
5880 NvmeNamespace *ns;
5881 int i;
5882 uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5883
5884 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5885 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5886 };
5887
5888 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5889
5890 if (!nvme_feature_support[fid]) {
5891 return NVME_INVALID_FIELD | NVME_DNR;
5892 }
5893
5894 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5895 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5896 /*
5897 * The Reservation Notification Mask and Reservation Persistence
5898 * features require a status code of Invalid Field in Command when
5899 * NSID is FFFFFFFFh. Since the device does not support those
5900 * features we can always return Invalid Namespace or Format as we
5901 * should do for all other features.
5902 */
5903 return NVME_INVALID_NSID | NVME_DNR;
5904 }
5905
5906 if (!nvme_ns(n, nsid)) {
5907 return NVME_INVALID_FIELD | NVME_DNR;
5908 }
5909 }
5910
5911 switch (sel) {
5912 case NVME_GETFEAT_SELECT_CURRENT:
5913 break;
5914 case NVME_GETFEAT_SELECT_SAVED:
5915 /* no features are saveable by the controller; fallthrough */
5916 case NVME_GETFEAT_SELECT_DEFAULT:
5917 goto defaults;
5918 case NVME_GETFEAT_SELECT_CAP:
5919 result = nvme_feature_cap[fid];
5920 goto out;
5921 }
5922
5923 switch (fid) {
5924 case NVME_TEMPERATURE_THRESHOLD:
5925 result = 0;
5926
5927 /*
5928 * The controller only implements the Composite Temperature sensor, so
5929 * return 0 for all other sensors.
5930 */
5931 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5932 goto out;
5933 }
5934
5935 switch (NVME_TEMP_THSEL(dw11)) {
5936 case NVME_TEMP_THSEL_OVER:
5937 result = n->features.temp_thresh_hi;
5938 goto out;
5939 case NVME_TEMP_THSEL_UNDER:
5940 result = n->features.temp_thresh_low;
5941 goto out;
5942 }
5943
5944 return NVME_INVALID_FIELD | NVME_DNR;
5945 case NVME_ERROR_RECOVERY:
5946 if (!nvme_nsid_valid(n, nsid)) {
5947 return NVME_INVALID_NSID | NVME_DNR;
5948 }
5949
5950 ns = nvme_ns(n, nsid);
5951 if (unlikely(!ns)) {
5952 return NVME_INVALID_FIELD | NVME_DNR;
5953 }
5954
5955 result = ns->features.err_rec;
5956 goto out;
5957 case NVME_VOLATILE_WRITE_CACHE:
5958 result = 0;
5959 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5960 ns = nvme_ns(n, i);
5961 if (!ns) {
5962 continue;
5963 }
5964
5965 result = blk_enable_write_cache(ns->blkconf.blk);
5966 if (result) {
5967 break;
5968 }
5969 }
5970 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5971 goto out;
5972 case NVME_ASYNCHRONOUS_EVENT_CONF:
5973 result = n->features.async_config;
5974 goto out;
5975 case NVME_TIMESTAMP:
5976 return nvme_get_feature_timestamp(n, req);
5977 case NVME_HOST_BEHAVIOR_SUPPORT:
5978 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5979 sizeof(n->features.hbs), req);
5980 case NVME_FDP_MODE:
5981 endgrpid = dw11 & 0xff;
5982
5983 if (endgrpid != 0x1) {
5984 return NVME_INVALID_FIELD | NVME_DNR;
5985 }
5986
5987 ret = nvme_get_feature_fdp(n, endgrpid, &result);
5988 if (ret) {
5989 return ret;
5990 }
5991 goto out;
5992 case NVME_FDP_EVENTS:
5993 if (!nvme_nsid_valid(n, nsid)) {
5994 return NVME_INVALID_NSID | NVME_DNR;
5995 }
5996
5997 ns = nvme_ns(n, nsid);
5998 if (unlikely(!ns)) {
5999 return NVME_INVALID_FIELD | NVME_DNR;
6000 }
6001
6002 ret = nvme_get_feature_fdp_events(n, ns, req, &result);
6003 if (ret) {
6004 return ret;
6005 }
6006 goto out;
6007 default:
6008 break;
6009 }
6010
6011 defaults:
6012 switch (fid) {
6013 case NVME_TEMPERATURE_THRESHOLD:
6014 result = 0;
6015
6016 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6017 break;
6018 }
6019
6020 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
6021 result = NVME_TEMPERATURE_WARNING;
6022 }
6023
6024 break;
6025 case NVME_NUMBER_OF_QUEUES:
6026 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
6027 trace_pci_nvme_getfeat_numq(result);
6028 break;
6029 case NVME_INTERRUPT_VECTOR_CONF:
6030 iv = dw11 & 0xffff;
6031 if (iv >= n->conf_ioqpairs + 1) {
6032 return NVME_INVALID_FIELD | NVME_DNR;
6033 }
6034
6035 result = iv;
6036 if (iv == n->admin_cq.vector) {
6037 result |= NVME_INTVC_NOCOALESCING;
6038 }
6039 break;
6040 case NVME_FDP_MODE:
6041 endgrpid = dw11 & 0xff;
6042
6043 if (endgrpid != 0x1) {
6044 return NVME_INVALID_FIELD | NVME_DNR;
6045 }
6046
6047 ret = nvme_get_feature_fdp(n, endgrpid, &result);
6048 if (ret) {
6049 return ret;
6050 }
6051 goto out;
6052
6053 break;
6054 default:
6055 result = nvme_feature_default[fid];
6056 break;
6057 }
6058
6059 out:
6060 req->cqe.result = cpu_to_le32(result);
6061 return ret;
6062 }
6063
6064 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6065 {
6066 uint16_t ret;
6067 uint64_t timestamp;
6068
6069 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6070 if (ret) {
6071 return ret;
6072 }
6073
6074 nvme_set_timestamp(n, timestamp);
6075
6076 return NVME_SUCCESS;
6077 }
6078
6079 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6080 NvmeRequest *req)
6081 {
6082 NvmeCmd *cmd = &req->cmd;
6083 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6084 uint16_t ph = cdw11 & 0xffff;
6085 uint8_t noet = (cdw11 >> 16) & 0xff;
6086 uint16_t ret, ruhid;
6087 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6088 uint8_t event_mask = 0;
6089 unsigned int i;
6090 g_autofree uint8_t *events = g_malloc0(noet);
6091 NvmeRuHandle *ruh = NULL;
6092
6093 assert(ns);
6094
6095 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6096 return NVME_FDP_DISABLED | NVME_DNR;
6097 }
6098
6099 if (!nvme_ph_valid(ns, ph)) {
6100 return NVME_INVALID_FIELD | NVME_DNR;
6101 }
6102
6103 ruhid = ns->fdp.phs[ph];
6104 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6105
6106 ret = nvme_h2c(n, events, noet, req);
6107 if (ret) {
6108 return ret;
6109 }
6110
6111 for (i = 0; i < noet; i++) {
6112 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6113 }
6114
6115 if (enable) {
6116 ruh->event_filter |= event_mask;
6117 } else {
6118 ruh->event_filter = ruh->event_filter & ~event_mask;
6119 }
6120
6121 return NVME_SUCCESS;
6122 }
6123
6124 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6125 {
6126 NvmeNamespace *ns = NULL;
6127
6128 NvmeCmd *cmd = &req->cmd;
6129 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6130 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6131 uint32_t nsid = le32_to_cpu(cmd->nsid);
6132 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6133 uint8_t save = NVME_SETFEAT_SAVE(dw10);
6134 uint16_t status;
6135 int i;
6136
6137 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6138
6139 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6140 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6141 }
6142
6143 if (!nvme_feature_support[fid]) {
6144 return NVME_INVALID_FIELD | NVME_DNR;
6145 }
6146
6147 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6148 if (nsid != NVME_NSID_BROADCAST) {
6149 if (!nvme_nsid_valid(n, nsid)) {
6150 return NVME_INVALID_NSID | NVME_DNR;
6151 }
6152
6153 ns = nvme_ns(n, nsid);
6154 if (unlikely(!ns)) {
6155 return NVME_INVALID_FIELD | NVME_DNR;
6156 }
6157 }
6158 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6159 if (!nvme_nsid_valid(n, nsid)) {
6160 return NVME_INVALID_NSID | NVME_DNR;
6161 }
6162
6163 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6164 }
6165
6166 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6167 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6168 }
6169
6170 switch (fid) {
6171 case NVME_TEMPERATURE_THRESHOLD:
6172 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6173 break;
6174 }
6175
6176 switch (NVME_TEMP_THSEL(dw11)) {
6177 case NVME_TEMP_THSEL_OVER:
6178 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6179 break;
6180 case NVME_TEMP_THSEL_UNDER:
6181 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6182 break;
6183 default:
6184 return NVME_INVALID_FIELD | NVME_DNR;
6185 }
6186
6187 if ((n->temperature >= n->features.temp_thresh_hi) ||
6188 (n->temperature <= n->features.temp_thresh_low)) {
6189 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6190 }
6191
6192 break;
6193 case NVME_ERROR_RECOVERY:
6194 if (nsid == NVME_NSID_BROADCAST) {
6195 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6196 ns = nvme_ns(n, i);
6197
6198 if (!ns) {
6199 continue;
6200 }
6201
6202 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6203 ns->features.err_rec = dw11;
6204 }
6205 }
6206
6207 break;
6208 }
6209
6210 assert(ns);
6211 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6212 ns->features.err_rec = dw11;
6213 }
6214 break;
6215 case NVME_VOLATILE_WRITE_CACHE:
6216 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6217 ns = nvme_ns(n, i);
6218 if (!ns) {
6219 continue;
6220 }
6221
6222 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6223 blk_flush(ns->blkconf.blk);
6224 }
6225
6226 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6227 }
6228
6229 break;
6230
6231 case NVME_NUMBER_OF_QUEUES:
6232 if (n->qs_created) {
6233 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6234 }
6235
6236 /*
6237 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6238 * and NSQR.
6239 */
6240 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6241 return NVME_INVALID_FIELD | NVME_DNR;
6242 }
6243
6244 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6245 ((dw11 >> 16) & 0xffff) + 1,
6246 n->conf_ioqpairs,
6247 n->conf_ioqpairs);
6248 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6249 ((n->conf_ioqpairs - 1) << 16));
6250 break;
6251 case NVME_ASYNCHRONOUS_EVENT_CONF:
6252 n->features.async_config = dw11;
6253 break;
6254 case NVME_TIMESTAMP:
6255 return nvme_set_feature_timestamp(n, req);
6256 case NVME_HOST_BEHAVIOR_SUPPORT:
6257 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6258 sizeof(n->features.hbs), req);
6259 if (status) {
6260 return status;
6261 }
6262
6263 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6264 ns = nvme_ns(n, i);
6265
6266 if (!ns) {
6267 continue;
6268 }
6269
6270 ns->id_ns.nlbaf = ns->nlbaf - 1;
6271 if (!n->features.hbs.lbafee) {
6272 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6273 }
6274 }
6275
6276 return status;
6277 case NVME_COMMAND_SET_PROFILE:
6278 if (dw11 & 0x1ff) {
6279 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6280 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6281 }
6282 break;
6283 case NVME_FDP_MODE:
6284 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6285 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6286 case NVME_FDP_EVENTS:
6287 return nvme_set_feature_fdp_events(n, ns, req);
6288 default:
6289 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6290 }
6291 return NVME_SUCCESS;
6292 }
6293
6294 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6295 {
6296 trace_pci_nvme_aer(nvme_cid(req));
6297
6298 if (n->outstanding_aers > n->params.aerl) {
6299 trace_pci_nvme_aer_aerl_exceeded();
6300 return NVME_AER_LIMIT_EXCEEDED;
6301 }
6302
6303 n->aer_reqs[n->outstanding_aers] = req;
6304 n->outstanding_aers++;
6305
6306 if (!QTAILQ_EMPTY(&n->aer_queue)) {
6307 nvme_process_aers(n);
6308 }
6309
6310 return NVME_NO_COMPLETE;
6311 }
6312
6313 static void nvme_update_dmrsl(NvmeCtrl *n)
6314 {
6315 int nsid;
6316
6317 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6318 NvmeNamespace *ns = nvme_ns(n, nsid);
6319 if (!ns) {
6320 continue;
6321 }
6322
6323 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6324 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6325 }
6326 }
6327
6328 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6329 {
6330 uint32_t cc = ldl_le_p(&n->bar.cc);
6331
6332 ns->iocs = nvme_cse_iocs_none;
6333 switch (ns->csi) {
6334 case NVME_CSI_NVM:
6335 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6336 ns->iocs = nvme_cse_iocs_nvm;
6337 }
6338 break;
6339 case NVME_CSI_ZONED:
6340 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6341 ns->iocs = nvme_cse_iocs_zoned;
6342 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6343 ns->iocs = nvme_cse_iocs_nvm;
6344 }
6345 break;
6346 }
6347 }
6348
6349 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6350 {
6351 NvmeNamespace *ns;
6352 NvmeCtrl *ctrl;
6353 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6354 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6355 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6356 uint8_t sel = dw10 & 0xf;
6357 uint16_t *nr_ids = &list[0];
6358 uint16_t *ids = &list[1];
6359 uint16_t ret;
6360 int i;
6361
6362 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6363
6364 if (!nvme_nsid_valid(n, nsid)) {
6365 return NVME_INVALID_NSID | NVME_DNR;
6366 }
6367
6368 ns = nvme_subsys_ns(n->subsys, nsid);
6369 if (!ns) {
6370 return NVME_INVALID_FIELD | NVME_DNR;
6371 }
6372
6373 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6374 if (ret) {
6375 return ret;
6376 }
6377
6378 if (!*nr_ids) {
6379 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6380 }
6381
6382 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6383 for (i = 0; i < *nr_ids; i++) {
6384 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6385 if (!ctrl) {
6386 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6387 }
6388
6389 switch (sel) {
6390 case NVME_NS_ATTACHMENT_ATTACH:
6391 if (nvme_ns(ctrl, nsid)) {
6392 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6393 }
6394
6395 if (ns->attached && !ns->params.shared) {
6396 return NVME_NS_PRIVATE | NVME_DNR;
6397 }
6398
6399 nvme_attach_ns(ctrl, ns);
6400 nvme_select_iocs_ns(ctrl, ns);
6401
6402 break;
6403
6404 case NVME_NS_ATTACHMENT_DETACH:
6405 if (!nvme_ns(ctrl, nsid)) {
6406 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6407 }
6408
6409 ctrl->namespaces[nsid] = NULL;
6410 ns->attached--;
6411
6412 nvme_update_dmrsl(ctrl);
6413
6414 break;
6415
6416 default:
6417 return NVME_INVALID_FIELD | NVME_DNR;
6418 }
6419
6420 /*
6421 * Add namespace id to the changed namespace id list for event clearing
6422 * via Get Log Page command.
6423 */
6424 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6425 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6426 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6427 NVME_LOG_CHANGED_NSLIST);
6428 }
6429 }
6430
6431 return NVME_SUCCESS;
6432 }
6433
6434 typedef struct NvmeFormatAIOCB {
6435 BlockAIOCB common;
6436 BlockAIOCB *aiocb;
6437 NvmeRequest *req;
6438 int ret;
6439
6440 NvmeNamespace *ns;
6441 uint32_t nsid;
6442 bool broadcast;
6443 int64_t offset;
6444
6445 uint8_t lbaf;
6446 uint8_t mset;
6447 uint8_t pi;
6448 uint8_t pil;
6449 } NvmeFormatAIOCB;
6450
6451 static void nvme_format_cancel(BlockAIOCB *aiocb)
6452 {
6453 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6454
6455 iocb->ret = -ECANCELED;
6456
6457 if (iocb->aiocb) {
6458 blk_aio_cancel_async(iocb->aiocb);
6459 iocb->aiocb = NULL;
6460 }
6461 }
6462
6463 static const AIOCBInfo nvme_format_aiocb_info = {
6464 .aiocb_size = sizeof(NvmeFormatAIOCB),
6465 .cancel_async = nvme_format_cancel,
6466 .get_aio_context = nvme_get_aio_context,
6467 };
6468
6469 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6470 uint8_t pi, uint8_t pil)
6471 {
6472 uint8_t lbafl = lbaf & 0xf;
6473 uint8_t lbafu = lbaf >> 4;
6474
6475 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6476
6477 ns->id_ns.dps = (pil << 3) | pi;
6478 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6479
6480 nvme_ns_init_format(ns);
6481 }
6482
6483 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6484
6485 static void nvme_format_ns_cb(void *opaque, int ret)
6486 {
6487 NvmeFormatAIOCB *iocb = opaque;
6488 NvmeNamespace *ns = iocb->ns;
6489 int bytes;
6490
6491 if (iocb->ret < 0) {
6492 goto done;
6493 } else if (ret < 0) {
6494 iocb->ret = ret;
6495 goto done;
6496 }
6497
6498 assert(ns);
6499
6500 if (iocb->offset < ns->size) {
6501 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6502
6503 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6504 bytes, BDRV_REQ_MAY_UNMAP,
6505 nvme_format_ns_cb, iocb);
6506
6507 iocb->offset += bytes;
6508 return;
6509 }
6510
6511 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6512 ns->status = 0x0;
6513 iocb->ns = NULL;
6514 iocb->offset = 0;
6515
6516 done:
6517 nvme_do_format(iocb);
6518 }
6519
6520 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6521 {
6522 if (ns->params.zoned) {
6523 return NVME_INVALID_FORMAT | NVME_DNR;
6524 }
6525
6526 if (lbaf > ns->id_ns.nlbaf) {
6527 return NVME_INVALID_FORMAT | NVME_DNR;
6528 }
6529
6530 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6531 return NVME_INVALID_FORMAT | NVME_DNR;
6532 }
6533
6534 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6535 return NVME_INVALID_FIELD | NVME_DNR;
6536 }
6537
6538 return NVME_SUCCESS;
6539 }
6540
6541 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6542 {
6543 NvmeRequest *req = iocb->req;
6544 NvmeCtrl *n = nvme_ctrl(req);
6545 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6546 uint8_t lbaf = dw10 & 0xf;
6547 uint8_t pi = (dw10 >> 5) & 0x7;
6548 uint16_t status;
6549 int i;
6550
6551 if (iocb->ret < 0) {
6552 goto done;
6553 }
6554
6555 if (iocb->broadcast) {
6556 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6557 iocb->ns = nvme_ns(n, i);
6558 if (iocb->ns) {
6559 iocb->nsid = i;
6560 break;
6561 }
6562 }
6563 }
6564
6565 if (!iocb->ns) {
6566 goto done;
6567 }
6568
6569 status = nvme_format_check(iocb->ns, lbaf, pi);
6570 if (status) {
6571 req->status = status;
6572 goto done;
6573 }
6574
6575 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6576 nvme_format_ns_cb(iocb, 0);
6577 return;
6578
6579 done:
6580 iocb->common.cb(iocb->common.opaque, iocb->ret);
6581 qemu_aio_unref(iocb);
6582 }
6583
6584 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6585 {
6586 NvmeFormatAIOCB *iocb;
6587 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6588 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6589 uint8_t lbaf = dw10 & 0xf;
6590 uint8_t mset = (dw10 >> 4) & 0x1;
6591 uint8_t pi = (dw10 >> 5) & 0x7;
6592 uint8_t pil = (dw10 >> 8) & 0x1;
6593 uint8_t lbafu = (dw10 >> 12) & 0x3;
6594 uint16_t status;
6595
6596 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6597
6598 iocb->req = req;
6599 iocb->ret = 0;
6600 iocb->ns = NULL;
6601 iocb->nsid = 0;
6602 iocb->lbaf = lbaf;
6603 iocb->mset = mset;
6604 iocb->pi = pi;
6605 iocb->pil = pil;
6606 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6607 iocb->offset = 0;
6608
6609 if (n->features.hbs.lbafee) {
6610 iocb->lbaf |= lbafu << 4;
6611 }
6612
6613 if (!iocb->broadcast) {
6614 if (!nvme_nsid_valid(n, nsid)) {
6615 status = NVME_INVALID_NSID | NVME_DNR;
6616 goto out;
6617 }
6618
6619 iocb->ns = nvme_ns(n, nsid);
6620 if (!iocb->ns) {
6621 status = NVME_INVALID_FIELD | NVME_DNR;
6622 goto out;
6623 }
6624 }
6625
6626 req->aiocb = &iocb->common;
6627 nvme_do_format(iocb);
6628
6629 return NVME_NO_COMPLETE;
6630
6631 out:
6632 qemu_aio_unref(iocb);
6633
6634 return status;
6635 }
6636
6637 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6638 int *num_prim, int *num_sec)
6639 {
6640 *num_total = le32_to_cpu(rt ?
6641 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6642 *num_prim = le16_to_cpu(rt ?
6643 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6644 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6645 }
6646
6647 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6648 uint16_t cntlid, uint8_t rt,
6649 int nr)
6650 {
6651 int num_total, num_prim, num_sec;
6652
6653 if (cntlid != n->cntlid) {
6654 return NVME_INVALID_CTRL_ID | NVME_DNR;
6655 }
6656
6657 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6658
6659 if (nr > num_total) {
6660 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6661 }
6662
6663 if (nr > num_total - num_sec) {
6664 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6665 }
6666
6667 if (rt) {
6668 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6669 } else {
6670 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6671 }
6672
6673 req->cqe.result = cpu_to_le32(nr);
6674 return req->status;
6675 }
6676
6677 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6678 uint8_t rt, int nr)
6679 {
6680 int prev_nr, prev_total;
6681
6682 if (rt) {
6683 prev_nr = le16_to_cpu(sctrl->nvi);
6684 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6685 sctrl->nvi = cpu_to_le16(nr);
6686 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6687 } else {
6688 prev_nr = le16_to_cpu(sctrl->nvq);
6689 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6690 sctrl->nvq = cpu_to_le16(nr);
6691 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6692 }
6693 }
6694
6695 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6696 uint16_t cntlid, uint8_t rt, int nr)
6697 {
6698 int num_total, num_prim, num_sec, num_free, diff, limit;
6699 NvmeSecCtrlEntry *sctrl;
6700
6701 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6702 if (!sctrl) {
6703 return NVME_INVALID_CTRL_ID | NVME_DNR;
6704 }
6705
6706 if (sctrl->scs) {
6707 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6708 }
6709
6710 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6711 if (nr > limit) {
6712 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6713 }
6714
6715 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6716 num_free = num_total - num_prim - num_sec;
6717 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6718
6719 if (diff > num_free) {
6720 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6721 }
6722
6723 nvme_update_virt_res(n, sctrl, rt, nr);
6724 req->cqe.result = cpu_to_le32(nr);
6725
6726 return req->status;
6727 }
6728
6729 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6730 {
6731 PCIDevice *pci = PCI_DEVICE(n);
6732 NvmeCtrl *sn = NULL;
6733 NvmeSecCtrlEntry *sctrl;
6734 int vf_index;
6735
6736 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6737 if (!sctrl) {
6738 return NVME_INVALID_CTRL_ID | NVME_DNR;
6739 }
6740
6741 if (!pci_is_vf(pci)) {
6742 vf_index = le16_to_cpu(sctrl->vfn) - 1;
6743 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6744 }
6745
6746 if (online) {
6747 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6748 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6749 }
6750
6751 if (!sctrl->scs) {
6752 sctrl->scs = 0x1;
6753 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6754 }
6755 } else {
6756 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6757 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6758
6759 if (sctrl->scs) {
6760 sctrl->scs = 0x0;
6761 if (sn) {
6762 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6763 }
6764 }
6765 }
6766
6767 return NVME_SUCCESS;
6768 }
6769
6770 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6771 {
6772 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6773 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6774 uint8_t act = dw10 & 0xf;
6775 uint8_t rt = (dw10 >> 8) & 0x7;
6776 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6777 int nr = dw11 & 0xffff;
6778
6779 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6780
6781 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6782 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6783 }
6784
6785 switch (act) {
6786 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6787 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6788 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6789 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6790 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6791 return nvme_virt_set_state(n, cntlid, true);
6792 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6793 return nvme_virt_set_state(n, cntlid, false);
6794 default:
6795 return NVME_INVALID_FIELD | NVME_DNR;
6796 }
6797 }
6798
6799 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6800 {
6801 PCIDevice *pci = PCI_DEVICE(n);
6802 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6803 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6804 int i;
6805
6806 /* Address should be page aligned */
6807 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6808 return NVME_INVALID_FIELD | NVME_DNR;
6809 }
6810
6811 /* Save shadow buffer base addr for use during queue creation */
6812 n->dbbuf_dbs = dbs_addr;
6813 n->dbbuf_eis = eis_addr;
6814 n->dbbuf_enabled = true;
6815
6816 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6817 NvmeSQueue *sq = n->sq[i];
6818 NvmeCQueue *cq = n->cq[i];
6819
6820 if (sq) {
6821 /*
6822 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6823 * nvme_process_db() uses this hard-coded way to calculate
6824 * doorbell offsets. Be consistent with that here.
6825 */
6826 sq->db_addr = dbs_addr + (i << 3);
6827 sq->ei_addr = eis_addr + (i << 3);
6828 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6829
6830 if (n->params.ioeventfd && sq->sqid != 0) {
6831 if (!nvme_init_sq_ioeventfd(sq)) {
6832 sq->ioeventfd_enabled = true;
6833 }
6834 }
6835 }
6836
6837 if (cq) {
6838 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6839 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6840 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6841 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6842
6843 if (n->params.ioeventfd && cq->cqid != 0) {
6844 if (!nvme_init_cq_ioeventfd(cq)) {
6845 cq->ioeventfd_enabled = true;
6846 }
6847 }
6848 }
6849 }
6850
6851 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6852
6853 return NVME_SUCCESS;
6854 }
6855
6856 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6857 {
6858 return NVME_INVALID_FIELD | NVME_DNR;
6859 }
6860
6861 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6862 {
6863 NvmeNamespace *ns;
6864 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6865 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6866 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6867 uint8_t doper, dtype;
6868 uint32_t numd, trans_len;
6869 NvmeDirectiveIdentify id = {
6870 .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6871 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6872 };
6873
6874 numd = dw10 + 1;
6875 doper = dw11 & 0xff;
6876 dtype = (dw11 >> 8) & 0xff;
6877
6878 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6879
6880 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6881 doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6882 return NVME_INVALID_FIELD | NVME_DNR;
6883 }
6884
6885 ns = nvme_ns(n, nsid);
6886 if (!ns) {
6887 return NVME_INVALID_FIELD | NVME_DNR;
6888 }
6889
6890 switch (dtype) {
6891 case NVME_DIRECTIVE_IDENTIFY:
6892 switch (doper) {
6893 case NVME_DIRECTIVE_RETURN_PARAMS:
6894 if (ns->endgrp->fdp.enabled) {
6895 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6896 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6897 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6898 }
6899
6900 return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6901
6902 default:
6903 return NVME_INVALID_FIELD | NVME_DNR;
6904 }
6905
6906 default:
6907 return NVME_INVALID_FIELD;
6908 }
6909 }
6910
6911 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6912 {
6913 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6914 nvme_adm_opc_str(req->cmd.opcode));
6915
6916 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6917 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6918 return NVME_INVALID_OPCODE | NVME_DNR;
6919 }
6920
6921 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6922 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6923 return NVME_INVALID_FIELD | NVME_DNR;
6924 }
6925
6926 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6927 return NVME_INVALID_FIELD;
6928 }
6929
6930 switch (req->cmd.opcode) {
6931 case NVME_ADM_CMD_DELETE_SQ:
6932 return nvme_del_sq(n, req);
6933 case NVME_ADM_CMD_CREATE_SQ:
6934 return nvme_create_sq(n, req);
6935 case NVME_ADM_CMD_GET_LOG_PAGE:
6936 return nvme_get_log(n, req);
6937 case NVME_ADM_CMD_DELETE_CQ:
6938 return nvme_del_cq(n, req);
6939 case NVME_ADM_CMD_CREATE_CQ:
6940 return nvme_create_cq(n, req);
6941 case NVME_ADM_CMD_IDENTIFY:
6942 return nvme_identify(n, req);
6943 case NVME_ADM_CMD_ABORT:
6944 return nvme_abort(n, req);
6945 case NVME_ADM_CMD_SET_FEATURES:
6946 return nvme_set_feature(n, req);
6947 case NVME_ADM_CMD_GET_FEATURES:
6948 return nvme_get_feature(n, req);
6949 case NVME_ADM_CMD_ASYNC_EV_REQ:
6950 return nvme_aer(n, req);
6951 case NVME_ADM_CMD_NS_ATTACHMENT:
6952 return nvme_ns_attachment(n, req);
6953 case NVME_ADM_CMD_VIRT_MNGMT:
6954 return nvme_virt_mngmt(n, req);
6955 case NVME_ADM_CMD_DBBUF_CONFIG:
6956 return nvme_dbbuf_config(n, req);
6957 case NVME_ADM_CMD_FORMAT_NVM:
6958 return nvme_format(n, req);
6959 case NVME_ADM_CMD_DIRECTIVE_SEND:
6960 return nvme_directive_send(n, req);
6961 case NVME_ADM_CMD_DIRECTIVE_RECV:
6962 return nvme_directive_receive(n, req);
6963 default:
6964 assert(false);
6965 }
6966
6967 return NVME_INVALID_OPCODE | NVME_DNR;
6968 }
6969
6970 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6971 {
6972 uint32_t v = cpu_to_le32(sq->tail);
6973
6974 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6975
6976 pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v));
6977 }
6978
6979 static void nvme_update_sq_tail(NvmeSQueue *sq)
6980 {
6981 uint32_t v;
6982
6983 pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v));
6984
6985 sq->tail = le32_to_cpu(v);
6986
6987 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6988 }
6989
6990 static void nvme_process_sq(void *opaque)
6991 {
6992 NvmeSQueue *sq = opaque;
6993 NvmeCtrl *n = sq->ctrl;
6994 NvmeCQueue *cq = n->cq[sq->cqid];
6995
6996 uint16_t status;
6997 hwaddr addr;
6998 NvmeCmd cmd;
6999 NvmeRequest *req;
7000
7001 if (n->dbbuf_enabled) {
7002 nvme_update_sq_tail(sq);
7003 }
7004
7005 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
7006 addr = sq->dma_addr + sq->head * n->sqe_size;
7007 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
7008 trace_pci_nvme_err_addr_read(addr);
7009 trace_pci_nvme_err_cfs();
7010 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7011 break;
7012 }
7013 nvme_inc_sq_head(sq);
7014
7015 req = QTAILQ_FIRST(&sq->req_list);
7016 QTAILQ_REMOVE(&sq->req_list, req, entry);
7017 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
7018 nvme_req_clear(req);
7019 req->cqe.cid = cmd.cid;
7020 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
7021
7022 status = sq->sqid ? nvme_io_cmd(n, req) :
7023 nvme_admin_cmd(n, req);
7024 if (status != NVME_NO_COMPLETE) {
7025 req->status = status;
7026 nvme_enqueue_req_completion(cq, req);
7027 }
7028
7029 if (n->dbbuf_enabled) {
7030 nvme_update_sq_eventidx(sq);
7031 nvme_update_sq_tail(sq);
7032 }
7033 }
7034 }
7035
7036 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7037 {
7038 uint8_t *config;
7039
7040 if (!msix_present(pci_dev)) {
7041 return;
7042 }
7043
7044 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7045
7046 config = pci_dev->config + pci_dev->msix_cap;
7047 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7048 table_size - 1);
7049 }
7050
7051 static void nvme_activate_virt_res(NvmeCtrl *n)
7052 {
7053 PCIDevice *pci_dev = PCI_DEVICE(n);
7054 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7055 NvmeSecCtrlEntry *sctrl;
7056
7057 /* -1 to account for the admin queue */
7058 if (pci_is_vf(pci_dev)) {
7059 sctrl = nvme_sctrl(n);
7060 cap->vqprt = sctrl->nvq;
7061 cap->viprt = sctrl->nvi;
7062 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7063 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7064 } else {
7065 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7066 cap->virfap = n->next_pri_ctrl_cap.virfap;
7067 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7068 le16_to_cpu(cap->vqrfap) - 1;
7069 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7070 le16_to_cpu(cap->virfap);
7071 }
7072 }
7073
7074 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7075 {
7076 PCIDevice *pci_dev = PCI_DEVICE(n);
7077 NvmeSecCtrlEntry *sctrl;
7078 NvmeNamespace *ns;
7079 int i;
7080
7081 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7082 ns = nvme_ns(n, i);
7083 if (!ns) {
7084 continue;
7085 }
7086
7087 nvme_ns_drain(ns);
7088 }
7089
7090 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7091 if (n->sq[i] != NULL) {
7092 nvme_free_sq(n->sq[i], n);
7093 }
7094 }
7095 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7096 if (n->cq[i] != NULL) {
7097 nvme_free_cq(n->cq[i], n);
7098 }
7099 }
7100
7101 while (!QTAILQ_EMPTY(&n->aer_queue)) {
7102 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7103 QTAILQ_REMOVE(&n->aer_queue, event, entry);
7104 g_free(event);
7105 }
7106
7107 if (n->params.sriov_max_vfs) {
7108 if (!pci_is_vf(pci_dev)) {
7109 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7110 sctrl = &n->sec_ctrl_list.sec[i];
7111 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7112 }
7113
7114 if (rst != NVME_RESET_CONTROLLER) {
7115 pcie_sriov_pf_disable_vfs(pci_dev);
7116 }
7117 }
7118
7119 if (rst != NVME_RESET_CONTROLLER) {
7120 nvme_activate_virt_res(n);
7121 }
7122 }
7123
7124 n->aer_queued = 0;
7125 n->aer_mask = 0;
7126 n->outstanding_aers = 0;
7127 n->qs_created = false;
7128
7129 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7130
7131 if (pci_is_vf(pci_dev)) {
7132 sctrl = nvme_sctrl(n);
7133
7134 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7135 } else {
7136 stl_le_p(&n->bar.csts, 0);
7137 }
7138
7139 stl_le_p(&n->bar.intms, 0);
7140 stl_le_p(&n->bar.intmc, 0);
7141 stl_le_p(&n->bar.cc, 0);
7142
7143 n->dbbuf_dbs = 0;
7144 n->dbbuf_eis = 0;
7145 n->dbbuf_enabled = false;
7146 }
7147
7148 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7149 {
7150 NvmeNamespace *ns;
7151 int i;
7152
7153 if (n->pmr.dev) {
7154 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7155 }
7156
7157 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7158 ns = nvme_ns(n, i);
7159 if (!ns) {
7160 continue;
7161 }
7162
7163 nvme_ns_shutdown(ns);
7164 }
7165 }
7166
7167 static void nvme_select_iocs(NvmeCtrl *n)
7168 {
7169 NvmeNamespace *ns;
7170 int i;
7171
7172 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7173 ns = nvme_ns(n, i);
7174 if (!ns) {
7175 continue;
7176 }
7177
7178 nvme_select_iocs_ns(n, ns);
7179 }
7180 }
7181
7182 static int nvme_start_ctrl(NvmeCtrl *n)
7183 {
7184 uint64_t cap = ldq_le_p(&n->bar.cap);
7185 uint32_t cc = ldl_le_p(&n->bar.cc);
7186 uint32_t aqa = ldl_le_p(&n->bar.aqa);
7187 uint64_t asq = ldq_le_p(&n->bar.asq);
7188 uint64_t acq = ldq_le_p(&n->bar.acq);
7189 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7190 uint32_t page_size = 1 << page_bits;
7191 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7192
7193 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7194 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7195 le16_to_cpu(sctrl->nvq));
7196 return -1;
7197 }
7198 if (unlikely(n->cq[0])) {
7199 trace_pci_nvme_err_startfail_cq();
7200 return -1;
7201 }
7202 if (unlikely(n->sq[0])) {
7203 trace_pci_nvme_err_startfail_sq();
7204 return -1;
7205 }
7206 if (unlikely(asq & (page_size - 1))) {
7207 trace_pci_nvme_err_startfail_asq_misaligned(asq);
7208 return -1;
7209 }
7210 if (unlikely(acq & (page_size - 1))) {
7211 trace_pci_nvme_err_startfail_acq_misaligned(acq);
7212 return -1;
7213 }
7214 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7215 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7216 return -1;
7217 }
7218 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7219 trace_pci_nvme_err_startfail_page_too_small(
7220 NVME_CC_MPS(cc),
7221 NVME_CAP_MPSMIN(cap));
7222 return -1;
7223 }
7224 if (unlikely(NVME_CC_MPS(cc) >
7225 NVME_CAP_MPSMAX(cap))) {
7226 trace_pci_nvme_err_startfail_page_too_large(
7227 NVME_CC_MPS(cc),
7228 NVME_CAP_MPSMAX(cap));
7229 return -1;
7230 }
7231 if (unlikely(NVME_CC_IOCQES(cc) <
7232 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
7233 trace_pci_nvme_err_startfail_cqent_too_small(
7234 NVME_CC_IOCQES(cc),
7235 NVME_CTRL_CQES_MIN(cap));
7236 return -1;
7237 }
7238 if (unlikely(NVME_CC_IOCQES(cc) >
7239 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
7240 trace_pci_nvme_err_startfail_cqent_too_large(
7241 NVME_CC_IOCQES(cc),
7242 NVME_CTRL_CQES_MAX(cap));
7243 return -1;
7244 }
7245 if (unlikely(NVME_CC_IOSQES(cc) <
7246 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
7247 trace_pci_nvme_err_startfail_sqent_too_small(
7248 NVME_CC_IOSQES(cc),
7249 NVME_CTRL_SQES_MIN(cap));
7250 return -1;
7251 }
7252 if (unlikely(NVME_CC_IOSQES(cc) >
7253 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
7254 trace_pci_nvme_err_startfail_sqent_too_large(
7255 NVME_CC_IOSQES(cc),
7256 NVME_CTRL_SQES_MAX(cap));
7257 return -1;
7258 }
7259 if (unlikely(!NVME_AQA_ASQS(aqa))) {
7260 trace_pci_nvme_err_startfail_asqent_sz_zero();
7261 return -1;
7262 }
7263 if (unlikely(!NVME_AQA_ACQS(aqa))) {
7264 trace_pci_nvme_err_startfail_acqent_sz_zero();
7265 return -1;
7266 }
7267
7268 n->page_bits = page_bits;
7269 n->page_size = page_size;
7270 n->max_prp_ents = n->page_size / sizeof(uint64_t);
7271 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
7272 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
7273 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7274 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7275
7276 nvme_set_timestamp(n, 0ULL);
7277
7278 nvme_select_iocs(n);
7279
7280 return 0;
7281 }
7282
7283 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7284 {
7285 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7286 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7287
7288 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7289 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7290 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7291 stl_le_p(&n->bar.cmbloc, cmbloc);
7292
7293 NVME_CMBSZ_SET_SQS(cmbsz, 1);
7294 NVME_CMBSZ_SET_CQS(cmbsz, 0);
7295 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7296 NVME_CMBSZ_SET_RDS(cmbsz, 1);
7297 NVME_CMBSZ_SET_WDS(cmbsz, 1);
7298 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7299 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7300 stl_le_p(&n->bar.cmbsz, cmbsz);
7301 }
7302
7303 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7304 unsigned size)
7305 {
7306 PCIDevice *pci = PCI_DEVICE(n);
7307 uint64_t cap = ldq_le_p(&n->bar.cap);
7308 uint32_t cc = ldl_le_p(&n->bar.cc);
7309 uint32_t intms = ldl_le_p(&n->bar.intms);
7310 uint32_t csts = ldl_le_p(&n->bar.csts);
7311 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7312
7313 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7314 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7315 "MMIO write not 32-bit aligned,"
7316 " offset=0x%"PRIx64"", offset);
7317 /* should be ignored, fall through for now */
7318 }
7319
7320 if (unlikely(size < sizeof(uint32_t))) {
7321 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7322 "MMIO write smaller than 32-bits,"
7323 " offset=0x%"PRIx64", size=%u",
7324 offset, size);
7325 /* should be ignored, fall through for now */
7326 }
7327
7328 switch (offset) {
7329 case NVME_REG_INTMS:
7330 if (unlikely(msix_enabled(pci))) {
7331 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7332 "undefined access to interrupt mask set"
7333 " when MSI-X is enabled");
7334 /* should be ignored, fall through for now */
7335 }
7336 intms |= data;
7337 stl_le_p(&n->bar.intms, intms);
7338 n->bar.intmc = n->bar.intms;
7339 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7340 nvme_irq_check(n);
7341 break;
7342 case NVME_REG_INTMC:
7343 if (unlikely(msix_enabled(pci))) {
7344 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7345 "undefined access to interrupt mask clr"
7346 " when MSI-X is enabled");
7347 /* should be ignored, fall through for now */
7348 }
7349 intms &= ~data;
7350 stl_le_p(&n->bar.intms, intms);
7351 n->bar.intmc = n->bar.intms;
7352 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7353 nvme_irq_check(n);
7354 break;
7355 case NVME_REG_CC:
7356 stl_le_p(&n->bar.cc, data);
7357
7358 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7359
7360 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7361 trace_pci_nvme_mmio_shutdown_set();
7362 nvme_ctrl_shutdown(n);
7363 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7364 csts |= NVME_CSTS_SHST_COMPLETE;
7365 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7366 trace_pci_nvme_mmio_shutdown_cleared();
7367 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7368 }
7369
7370 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7371 if (unlikely(nvme_start_ctrl(n))) {
7372 trace_pci_nvme_err_startfail();
7373 csts = NVME_CSTS_FAILED;
7374 } else {
7375 trace_pci_nvme_mmio_start_success();
7376 csts = NVME_CSTS_READY;
7377 }
7378 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7379 trace_pci_nvme_mmio_stopped();
7380 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7381
7382 break;
7383 }
7384
7385 stl_le_p(&n->bar.csts, csts);
7386
7387 break;
7388 case NVME_REG_CSTS:
7389 if (data & (1 << 4)) {
7390 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7391 "attempted to W1C CSTS.NSSRO"
7392 " but CAP.NSSRS is zero (not supported)");
7393 } else if (data != 0) {
7394 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7395 "attempted to set a read only bit"
7396 " of controller status");
7397 }
7398 break;
7399 case NVME_REG_NSSR:
7400 if (data == 0x4e564d65) {
7401 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7402 } else {
7403 /* The spec says that writes of other values have no effect */
7404 return;
7405 }
7406 break;
7407 case NVME_REG_AQA:
7408 stl_le_p(&n->bar.aqa, data);
7409 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7410 break;
7411 case NVME_REG_ASQ:
7412 stn_le_p(&n->bar.asq, size, data);
7413 trace_pci_nvme_mmio_asqaddr(data);
7414 break;
7415 case NVME_REG_ASQ + 4:
7416 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7417 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7418 break;
7419 case NVME_REG_ACQ:
7420 trace_pci_nvme_mmio_acqaddr(data);
7421 stn_le_p(&n->bar.acq, size, data);
7422 break;
7423 case NVME_REG_ACQ + 4:
7424 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7425 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7426 break;
7427 case NVME_REG_CMBLOC:
7428 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7429 "invalid write to reserved CMBLOC"
7430 " when CMBSZ is zero, ignored");
7431 return;
7432 case NVME_REG_CMBSZ:
7433 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7434 "invalid write to read only CMBSZ, ignored");
7435 return;
7436 case NVME_REG_CMBMSC:
7437 if (!NVME_CAP_CMBS(cap)) {
7438 return;
7439 }
7440
7441 stn_le_p(&n->bar.cmbmsc, size, data);
7442 n->cmb.cmse = false;
7443
7444 if (NVME_CMBMSC_CRE(data)) {
7445 nvme_cmb_enable_regs(n);
7446
7447 if (NVME_CMBMSC_CMSE(data)) {
7448 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7449 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7450 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7451 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7452 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7453 stl_le_p(&n->bar.cmbsts, cmbsts);
7454 return;
7455 }
7456
7457 n->cmb.cba = cba;
7458 n->cmb.cmse = true;
7459 }
7460 } else {
7461 n->bar.cmbsz = 0;
7462 n->bar.cmbloc = 0;
7463 }
7464
7465 return;
7466 case NVME_REG_CMBMSC + 4:
7467 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7468 return;
7469
7470 case NVME_REG_PMRCAP:
7471 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7472 "invalid write to PMRCAP register, ignored");
7473 return;
7474 case NVME_REG_PMRCTL:
7475 if (!NVME_CAP_PMRS(cap)) {
7476 return;
7477 }
7478
7479 stl_le_p(&n->bar.pmrctl, data);
7480 if (NVME_PMRCTL_EN(data)) {
7481 memory_region_set_enabled(&n->pmr.dev->mr, true);
7482 pmrsts = 0;
7483 } else {
7484 memory_region_set_enabled(&n->pmr.dev->mr, false);
7485 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7486 n->pmr.cmse = false;
7487 }
7488 stl_le_p(&n->bar.pmrsts, pmrsts);
7489 return;
7490 case NVME_REG_PMRSTS:
7491 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7492 "invalid write to PMRSTS register, ignored");
7493 return;
7494 case NVME_REG_PMREBS:
7495 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7496 "invalid write to PMREBS register, ignored");
7497 return;
7498 case NVME_REG_PMRSWTP:
7499 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7500 "invalid write to PMRSWTP register, ignored");
7501 return;
7502 case NVME_REG_PMRMSCL:
7503 if (!NVME_CAP_PMRS(cap)) {
7504 return;
7505 }
7506
7507 stl_le_p(&n->bar.pmrmscl, data);
7508 n->pmr.cmse = false;
7509
7510 if (NVME_PMRMSCL_CMSE(data)) {
7511 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7512 hwaddr cba = pmrmscu << 32 |
7513 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7514 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7515 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7516 stl_le_p(&n->bar.pmrsts, pmrsts);
7517 return;
7518 }
7519
7520 n->pmr.cmse = true;
7521 n->pmr.cba = cba;
7522 }
7523
7524 return;
7525 case NVME_REG_PMRMSCU:
7526 if (!NVME_CAP_PMRS(cap)) {
7527 return;
7528 }
7529
7530 stl_le_p(&n->bar.pmrmscu, data);
7531 return;
7532 default:
7533 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7534 "invalid MMIO write,"
7535 " offset=0x%"PRIx64", data=%"PRIx64"",
7536 offset, data);
7537 break;
7538 }
7539 }
7540
7541 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7542 {
7543 NvmeCtrl *n = (NvmeCtrl *)opaque;
7544 uint8_t *ptr = (uint8_t *)&n->bar;
7545
7546 trace_pci_nvme_mmio_read(addr, size);
7547
7548 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7549 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7550 "MMIO read not 32-bit aligned,"
7551 " offset=0x%"PRIx64"", addr);
7552 /* should RAZ, fall through for now */
7553 } else if (unlikely(size < sizeof(uint32_t))) {
7554 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7555 "MMIO read smaller than 32-bits,"
7556 " offset=0x%"PRIx64"", addr);
7557 /* should RAZ, fall through for now */
7558 }
7559
7560 if (addr > sizeof(n->bar) - size) {
7561 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7562 "MMIO read beyond last register,"
7563 " offset=0x%"PRIx64", returning 0", addr);
7564
7565 return 0;
7566 }
7567
7568 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7569 addr != NVME_REG_CSTS) {
7570 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7571 return 0;
7572 }
7573
7574 /*
7575 * When PMRWBM bit 1 is set then read from
7576 * from PMRSTS should ensure prior writes
7577 * made it to persistent media
7578 */
7579 if (addr == NVME_REG_PMRSTS &&
7580 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7581 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7582 }
7583
7584 return ldn_le_p(ptr + addr, size);
7585 }
7586
7587 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7588 {
7589 PCIDevice *pci = PCI_DEVICE(n);
7590 uint32_t qid;
7591
7592 if (unlikely(addr & ((1 << 2) - 1))) {
7593 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7594 "doorbell write not 32-bit aligned,"
7595 " offset=0x%"PRIx64", ignoring", addr);
7596 return;
7597 }
7598
7599 if (((addr - 0x1000) >> 2) & 1) {
7600 /* Completion queue doorbell write */
7601
7602 uint16_t new_head = val & 0xffff;
7603 int start_sqs;
7604 NvmeCQueue *cq;
7605
7606 qid = (addr - (0x1000 + (1 << 2))) >> 3;
7607 if (unlikely(nvme_check_cqid(n, qid))) {
7608 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7609 "completion queue doorbell write"
7610 " for nonexistent queue,"
7611 " sqid=%"PRIu32", ignoring", qid);
7612
7613 /*
7614 * NVM Express v1.3d, Section 4.1 state: "If host software writes
7615 * an invalid value to the Submission Queue Tail Doorbell or
7616 * Completion Queue Head Doorbell regiter and an Asynchronous Event
7617 * Request command is outstanding, then an asynchronous event is
7618 * posted to the Admin Completion Queue with a status code of
7619 * Invalid Doorbell Write Value."
7620 *
7621 * Also note that the spec includes the "Invalid Doorbell Register"
7622 * status code, but nowhere does it specify when to use it.
7623 * However, it seems reasonable to use it here in a similar
7624 * fashion.
7625 */
7626 if (n->outstanding_aers) {
7627 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7628 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7629 NVME_LOG_ERROR_INFO);
7630 }
7631
7632 return;
7633 }
7634
7635 cq = n->cq[qid];
7636 if (unlikely(new_head >= cq->size)) {
7637 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7638 "completion queue doorbell write value"
7639 " beyond queue size, sqid=%"PRIu32","
7640 " new_head=%"PRIu16", ignoring",
7641 qid, new_head);
7642
7643 if (n->outstanding_aers) {
7644 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7645 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7646 NVME_LOG_ERROR_INFO);
7647 }
7648
7649 return;
7650 }
7651
7652 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7653
7654 start_sqs = nvme_cq_full(cq) ? 1 : 0;
7655 cq->head = new_head;
7656 if (!qid && n->dbbuf_enabled) {
7657 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
7658 }
7659 if (start_sqs) {
7660 NvmeSQueue *sq;
7661 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7662 qemu_bh_schedule(sq->bh);
7663 }
7664 qemu_bh_schedule(cq->bh);
7665 }
7666
7667 if (cq->tail == cq->head) {
7668 if (cq->irq_enabled) {
7669 n->cq_pending--;
7670 }
7671
7672 nvme_irq_deassert(n, cq);
7673 }
7674 } else {
7675 /* Submission queue doorbell write */
7676
7677 uint16_t new_tail = val & 0xffff;
7678 NvmeSQueue *sq;
7679
7680 qid = (addr - 0x1000) >> 3;
7681 if (unlikely(nvme_check_sqid(n, qid))) {
7682 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7683 "submission queue doorbell write"
7684 " for nonexistent queue,"
7685 " sqid=%"PRIu32", ignoring", qid);
7686
7687 if (n->outstanding_aers) {
7688 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7689 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7690 NVME_LOG_ERROR_INFO);
7691 }
7692
7693 return;
7694 }
7695
7696 sq = n->sq[qid];
7697 if (unlikely(new_tail >= sq->size)) {
7698 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7699 "submission queue doorbell write value"
7700 " beyond queue size, sqid=%"PRIu32","
7701 " new_tail=%"PRIu16", ignoring",
7702 qid, new_tail);
7703
7704 if (n->outstanding_aers) {
7705 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7706 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7707 NVME_LOG_ERROR_INFO);
7708 }
7709
7710 return;
7711 }
7712
7713 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7714
7715 sq->tail = new_tail;
7716 if (!qid && n->dbbuf_enabled) {
7717 /*
7718 * The spec states "the host shall also update the controller's
7719 * corresponding doorbell property to match the value of that entry
7720 * in the Shadow Doorbell buffer."
7721 *
7722 * Since this context is currently a VM trap, we can safely enforce
7723 * the requirement from the device side in case the host is
7724 * misbehaving.
7725 *
7726 * Note, we shouldn't have to do this, but various drivers
7727 * including ones that run on Linux, are not updating Admin Queues,
7728 * so we can't trust reading it for an appropriate sq tail.
7729 */
7730 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
7731 }
7732
7733 qemu_bh_schedule(sq->bh);
7734 }
7735 }
7736
7737 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7738 unsigned size)
7739 {
7740 NvmeCtrl *n = (NvmeCtrl *)opaque;
7741
7742 trace_pci_nvme_mmio_write(addr, data, size);
7743
7744 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7745 addr != NVME_REG_CSTS) {
7746 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7747 return;
7748 }
7749
7750 if (addr < sizeof(n->bar)) {
7751 nvme_write_bar(n, addr, data, size);
7752 } else {
7753 nvme_process_db(n, addr, data);
7754 }
7755 }
7756
7757 static const MemoryRegionOps nvme_mmio_ops = {
7758 .read = nvme_mmio_read,
7759 .write = nvme_mmio_write,
7760 .endianness = DEVICE_LITTLE_ENDIAN,
7761 .impl = {
7762 .min_access_size = 2,
7763 .max_access_size = 8,
7764 },
7765 };
7766
7767 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7768 unsigned size)
7769 {
7770 NvmeCtrl *n = (NvmeCtrl *)opaque;
7771 stn_le_p(&n->cmb.buf[addr], size, data);
7772 }
7773
7774 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7775 {
7776 NvmeCtrl *n = (NvmeCtrl *)opaque;
7777 return ldn_le_p(&n->cmb.buf[addr], size);
7778 }
7779
7780 static const MemoryRegionOps nvme_cmb_ops = {
7781 .read = nvme_cmb_read,
7782 .write = nvme_cmb_write,
7783 .endianness = DEVICE_LITTLE_ENDIAN,
7784 .impl = {
7785 .min_access_size = 1,
7786 .max_access_size = 8,
7787 },
7788 };
7789
7790 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7791 {
7792 NvmeParams *params = &n->params;
7793
7794 if (params->num_queues) {
7795 warn_report("num_queues is deprecated; please use max_ioqpairs "
7796 "instead");
7797
7798 params->max_ioqpairs = params->num_queues - 1;
7799 }
7800
7801 if (n->namespace.blkconf.blk && n->subsys) {
7802 error_setg(errp, "subsystem support is unavailable with legacy "
7803 "namespace ('drive' property)");
7804 return false;
7805 }
7806
7807 if (params->max_ioqpairs < 1 ||
7808 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7809 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7810 NVME_MAX_IOQPAIRS);
7811 return false;
7812 }
7813
7814 if (params->msix_qsize < 1 ||
7815 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7816 error_setg(errp, "msix_qsize must be between 1 and %d",
7817 PCI_MSIX_FLAGS_QSIZE + 1);
7818 return false;
7819 }
7820
7821 if (!params->serial) {
7822 error_setg(errp, "serial property not set");
7823 return false;
7824 }
7825
7826 if (n->pmr.dev) {
7827 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7828 error_setg(errp, "can't use already busy memdev: %s",
7829 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7830 return false;
7831 }
7832
7833 if (!is_power_of_2(n->pmr.dev->size)) {
7834 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7835 return false;
7836 }
7837
7838 host_memory_backend_set_mapped(n->pmr.dev, true);
7839 }
7840
7841 if (n->params.zasl > n->params.mdts) {
7842 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7843 "than or equal to mdts (Maximum Data Transfer Size)");
7844 return false;
7845 }
7846
7847 if (!n->params.vsl) {
7848 error_setg(errp, "vsl must be non-zero");
7849 return false;
7850 }
7851
7852 if (params->sriov_max_vfs) {
7853 if (!n->subsys) {
7854 error_setg(errp, "subsystem is required for the use of SR-IOV");
7855 return false;
7856 }
7857
7858 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7859 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7860 NVME_MAX_VFS);
7861 return false;
7862 }
7863
7864 if (params->cmb_size_mb) {
7865 error_setg(errp, "CMB is not supported with SR-IOV");
7866 return false;
7867 }
7868
7869 if (n->pmr.dev) {
7870 error_setg(errp, "PMR is not supported with SR-IOV");
7871 return false;
7872 }
7873
7874 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7875 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7876 " must be set for the use of SR-IOV");
7877 return false;
7878 }
7879
7880 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7881 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7882 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7883 return false;
7884 }
7885
7886 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7887 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7888 " greater than or equal to 2");
7889 return false;
7890 }
7891
7892 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7893 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7894 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7895 return false;
7896 }
7897
7898 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7899 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7900 " greater than or equal to 1");
7901 return false;
7902 }
7903
7904 if (params->sriov_max_vi_per_vf &&
7905 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7906 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7907 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7908 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7909 return false;
7910 }
7911
7912 if (params->sriov_max_vq_per_vf &&
7913 (params->sriov_max_vq_per_vf < 2 ||
7914 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7915 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7916 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7917 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7918 return false;
7919 }
7920 }
7921
7922 return true;
7923 }
7924
7925 static void nvme_init_state(NvmeCtrl *n)
7926 {
7927 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7928 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7929 NvmeSecCtrlEntry *sctrl;
7930 PCIDevice *pci = PCI_DEVICE(n);
7931 uint8_t max_vfs;
7932 int i;
7933
7934 if (pci_is_vf(pci)) {
7935 sctrl = nvme_sctrl(n);
7936 max_vfs = 0;
7937 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7938 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7939 } else {
7940 max_vfs = n->params.sriov_max_vfs;
7941 n->conf_ioqpairs = n->params.max_ioqpairs;
7942 n->conf_msix_qsize = n->params.msix_qsize;
7943 }
7944
7945 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7946 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7947 n->temperature = NVME_TEMPERATURE;
7948 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7949 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7950 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7951 QTAILQ_INIT(&n->aer_queue);
7952
7953 list->numcntl = cpu_to_le16(max_vfs);
7954 for (i = 0; i < max_vfs; i++) {
7955 sctrl = &list->sec[i];
7956 sctrl->pcid = cpu_to_le16(n->cntlid);
7957 sctrl->vfn = cpu_to_le16(i + 1);
7958 }
7959
7960 cap->cntlid = cpu_to_le16(n->cntlid);
7961 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7962
7963 if (pci_is_vf(pci)) {
7964 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7965 } else {
7966 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7967 n->params.sriov_vq_flexible);
7968 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7969 cap->vqrfap = cap->vqfrt;
7970 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7971 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7972 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7973 cap->vqfrt / MAX(max_vfs, 1);
7974 }
7975
7976 if (pci_is_vf(pci)) {
7977 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7978 } else {
7979 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7980 n->params.sriov_vi_flexible);
7981 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7982 cap->virfap = cap->vifrt;
7983 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7984 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7985 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7986 cap->vifrt / MAX(max_vfs, 1);
7987 }
7988 }
7989
7990 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7991 {
7992 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7993 uint64_t cap = ldq_le_p(&n->bar.cap);
7994
7995 n->cmb.buf = g_malloc0(cmb_size);
7996 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7997 "nvme-cmb", cmb_size);
7998 pci_register_bar(pci_dev, NVME_CMB_BIR,
7999 PCI_BASE_ADDRESS_SPACE_MEMORY |
8000 PCI_BASE_ADDRESS_MEM_TYPE_64 |
8001 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
8002
8003 NVME_CAP_SET_CMBS(cap, 1);
8004 stq_le_p(&n->bar.cap, cap);
8005
8006 if (n->params.legacy_cmb) {
8007 nvme_cmb_enable_regs(n);
8008 n->cmb.cmse = true;
8009 }
8010 }
8011
8012 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
8013 {
8014 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
8015
8016 NVME_PMRCAP_SET_RDS(pmrcap, 1);
8017 NVME_PMRCAP_SET_WDS(pmrcap, 1);
8018 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
8019 /* Turn on bit 1 support */
8020 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
8021 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
8022 stl_le_p(&n->bar.pmrcap, pmrcap);
8023
8024 pci_register_bar(pci_dev, NVME_PMR_BIR,
8025 PCI_BASE_ADDRESS_SPACE_MEMORY |
8026 PCI_BASE_ADDRESS_MEM_TYPE_64 |
8027 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
8028
8029 memory_region_set_enabled(&n->pmr.dev->mr, false);
8030 }
8031
8032 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
8033 unsigned *msix_table_offset,
8034 unsigned *msix_pba_offset)
8035 {
8036 uint64_t bar_size, msix_table_size, msix_pba_size;
8037
8038 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8039 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8040
8041 if (msix_table_offset) {
8042 *msix_table_offset = bar_size;
8043 }
8044
8045 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8046 bar_size += msix_table_size;
8047 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8048
8049 if (msix_pba_offset) {
8050 *msix_pba_offset = bar_size;
8051 }
8052
8053 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8054 bar_size += msix_pba_size;
8055
8056 bar_size = pow2ceil(bar_size);
8057 return bar_size;
8058 }
8059
8060 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8061 {
8062 uint16_t vf_dev_id = n->params.use_intel_id ?
8063 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8064 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8065 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8066 le16_to_cpu(cap->vifrsm),
8067 NULL, NULL);
8068
8069 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8070 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8071 NVME_VF_OFFSET, NVME_VF_STRIDE);
8072
8073 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8074 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8075 }
8076
8077 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8078 {
8079 Error *err = NULL;
8080 int ret;
8081
8082 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8083 PCI_PM_SIZEOF, &err);
8084 if (err) {
8085 error_report_err(err);
8086 return ret;
8087 }
8088
8089 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8090 PCI_PM_CAP_VER_1_2);
8091 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8092 PCI_PM_CTRL_NO_SOFT_RESET);
8093 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8094 PCI_PM_CTRL_STATE_MASK);
8095
8096 return 0;
8097 }
8098
8099 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8100 {
8101 ERRP_GUARD();
8102 uint8_t *pci_conf = pci_dev->config;
8103 uint64_t bar_size;
8104 unsigned msix_table_offset, msix_pba_offset;
8105 int ret;
8106
8107 pci_conf[PCI_INTERRUPT_PIN] = 1;
8108 pci_config_set_prog_interface(pci_conf, 0x2);
8109
8110 if (n->params.use_intel_id) {
8111 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8112 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8113 } else {
8114 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8115 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8116 }
8117
8118 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8119 nvme_add_pm_capability(pci_dev, 0x60);
8120 pcie_endpoint_cap_init(pci_dev, 0x80);
8121 pcie_cap_flr_init(pci_dev);
8122 if (n->params.sriov_max_vfs) {
8123 pcie_ari_init(pci_dev, 0x100, 1);
8124 }
8125
8126 /* add one to max_ioqpairs to account for the admin queue pair */
8127 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8128 &msix_table_offset, &msix_pba_offset);
8129
8130 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8131 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8132 msix_table_offset);
8133 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8134
8135 if (pci_is_vf(pci_dev)) {
8136 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8137 } else {
8138 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8139 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8140 }
8141 ret = msix_init(pci_dev, n->params.msix_qsize,
8142 &n->bar0, 0, msix_table_offset,
8143 &n->bar0, 0, msix_pba_offset, 0, errp);
8144 if (ret == -ENOTSUP) {
8145 /* report that msix is not supported, but do not error out */
8146 warn_report_err(*errp);
8147 *errp = NULL;
8148 } else if (ret < 0) {
8149 /* propagate error to caller */
8150 return false;
8151 }
8152
8153 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8154
8155 if (n->params.cmb_size_mb) {
8156 nvme_init_cmb(n, pci_dev);
8157 }
8158
8159 if (n->pmr.dev) {
8160 nvme_init_pmr(n, pci_dev);
8161 }
8162
8163 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8164 nvme_init_sriov(n, pci_dev, 0x120);
8165 }
8166
8167 return true;
8168 }
8169
8170 static void nvme_init_subnqn(NvmeCtrl *n)
8171 {
8172 NvmeSubsystem *subsys = n->subsys;
8173 NvmeIdCtrl *id = &n->id_ctrl;
8174
8175 if (!subsys) {
8176 snprintf((char *)id->subnqn, sizeof(id->subnqn),
8177 "nqn.2019-08.org.qemu:%s", n->params.serial);
8178 } else {
8179 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8180 }
8181 }
8182
8183 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8184 {
8185 NvmeIdCtrl *id = &n->id_ctrl;
8186 uint8_t *pci_conf = pci_dev->config;
8187 uint64_t cap = ldq_le_p(&n->bar.cap);
8188 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8189 uint32_t ctratt;
8190
8191 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8192 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8193 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8194 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8195 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8196
8197 id->cntlid = cpu_to_le16(n->cntlid);
8198
8199 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8200 ctratt = NVME_CTRATT_ELBAS;
8201
8202 id->rab = 6;
8203
8204 if (n->params.use_intel_id) {
8205 id->ieee[0] = 0xb3;
8206 id->ieee[1] = 0x02;
8207 id->ieee[2] = 0x00;
8208 } else {
8209 id->ieee[0] = 0x00;
8210 id->ieee[1] = 0x54;
8211 id->ieee[2] = 0x52;
8212 }
8213
8214 id->mdts = n->params.mdts;
8215 id->ver = cpu_to_le32(NVME_SPEC_VER);
8216 id->oacs =
8217 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8218 NVME_OACS_DIRECTIVES);
8219 id->cntrltype = 0x1;
8220
8221 /*
8222 * Because the controller always completes the Abort command immediately,
8223 * there can never be more than one concurrently executing Abort command,
8224 * so this value is never used for anything. Note that there can easily be
8225 * many Abort commands in the queues, but they are not considered
8226 * "executing" until processed by nvme_abort.
8227 *
8228 * The specification recommends a value of 3 for Abort Command Limit (four
8229 * concurrently outstanding Abort commands), so lets use that though it is
8230 * inconsequential.
8231 */
8232 id->acl = 3;
8233 id->aerl = n->params.aerl;
8234 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8235 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8236
8237 /* recommended default value (~70 C) */
8238 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8239 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8240
8241 id->sqes = (0x6 << 4) | 0x6;
8242 id->cqes = (0x4 << 4) | 0x4;
8243 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8244 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8245 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8246 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8247
8248 /*
8249 * NOTE: If this device ever supports a command set that does NOT use 0x0
8250 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8251 * should probably be removed.
8252 *
8253 * See comment in nvme_io_cmd.
8254 */
8255 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8256
8257 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8258 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8259
8260 nvme_init_subnqn(n);
8261
8262 id->psd[0].mp = cpu_to_le16(0x9c4);
8263 id->psd[0].enlat = cpu_to_le32(0x10);
8264 id->psd[0].exlat = cpu_to_le32(0x4);
8265
8266 if (n->subsys) {
8267 id->cmic |= NVME_CMIC_MULTI_CTRL;
8268 ctratt |= NVME_CTRATT_ENDGRPS;
8269
8270 id->endgidmax = cpu_to_le16(0x1);
8271
8272 if (n->subsys->endgrp.fdp.enabled) {
8273 ctratt |= NVME_CTRATT_FDPS;
8274 }
8275 }
8276
8277 id->ctratt = cpu_to_le32(ctratt);
8278
8279 NVME_CAP_SET_MQES(cap, 0x7ff);
8280 NVME_CAP_SET_CQR(cap, 1);
8281 NVME_CAP_SET_TO(cap, 0xf);
8282 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8283 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8284 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8285 NVME_CAP_SET_MPSMAX(cap, 4);
8286 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8287 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8288 stq_le_p(&n->bar.cap, cap);
8289
8290 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8291 n->bar.intmc = n->bar.intms = 0;
8292
8293 if (pci_is_vf(pci_dev) && !sctrl->scs) {
8294 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8295 }
8296 }
8297
8298 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8299 {
8300 int cntlid;
8301
8302 if (!n->subsys) {
8303 return 0;
8304 }
8305
8306 cntlid = nvme_subsys_register_ctrl(n, errp);
8307 if (cntlid < 0) {
8308 return -1;
8309 }
8310
8311 n->cntlid = cntlid;
8312
8313 return 0;
8314 }
8315
8316 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8317 {
8318 uint32_t nsid = ns->params.nsid;
8319 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8320
8321 n->namespaces[nsid] = ns;
8322 ns->attached++;
8323
8324 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8325 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8326 }
8327
8328 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8329 {
8330 NvmeCtrl *n = NVME(pci_dev);
8331 DeviceState *dev = DEVICE(pci_dev);
8332 NvmeNamespace *ns;
8333 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8334
8335 if (pci_is_vf(pci_dev)) {
8336 /*
8337 * VFs derive settings from the parent. PF's lifespan exceeds
8338 * that of VF's, so it's safe to share params.serial.
8339 */
8340 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8341 n->subsys = pn->subsys;
8342 }
8343
8344 if (!nvme_check_params(n, errp)) {
8345 return;
8346 }
8347
8348 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8349
8350 if (nvme_init_subsys(n, errp)) {
8351 return;
8352 }
8353 nvme_init_state(n);
8354 if (!nvme_init_pci(n, pci_dev, errp)) {
8355 return;
8356 }
8357 nvme_init_ctrl(n, pci_dev);
8358
8359 /* setup a namespace if the controller drive property was given */
8360 if (n->namespace.blkconf.blk) {
8361 ns = &n->namespace;
8362 ns->params.nsid = 1;
8363
8364 if (nvme_ns_setup(ns, errp)) {
8365 return;
8366 }
8367
8368 nvme_attach_ns(n, ns);
8369 }
8370 }
8371
8372 static void nvme_exit(PCIDevice *pci_dev)
8373 {
8374 NvmeCtrl *n = NVME(pci_dev);
8375 NvmeNamespace *ns;
8376 int i;
8377
8378 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8379
8380 if (n->subsys) {
8381 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8382 ns = nvme_ns(n, i);
8383 if (ns) {
8384 ns->attached--;
8385 }
8386 }
8387
8388 nvme_subsys_unregister_ctrl(n->subsys, n);
8389 }
8390
8391 g_free(n->cq);
8392 g_free(n->sq);
8393 g_free(n->aer_reqs);
8394
8395 if (n->params.cmb_size_mb) {
8396 g_free(n->cmb.buf);
8397 }
8398
8399 if (n->pmr.dev) {
8400 host_memory_backend_set_mapped(n->pmr.dev, false);
8401 }
8402
8403 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8404 pcie_sriov_pf_exit(pci_dev);
8405 }
8406
8407 msix_uninit(pci_dev, &n->bar0, &n->bar0);
8408 memory_region_del_subregion(&n->bar0, &n->iomem);
8409 }
8410
8411 static Property nvme_props[] = {
8412 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8413 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8414 HostMemoryBackend *),
8415 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8416 NvmeSubsystem *),
8417 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8418 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8419 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8420 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8421 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8422 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8423 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8424 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8425 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8426 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8427 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8428 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8429 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8430 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8431 params.auto_transition_zones, true),
8432 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8433 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8434 params.sriov_vq_flexible, 0),
8435 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8436 params.sriov_vi_flexible, 0),
8437 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8438 params.sriov_max_vi_per_vf, 0),
8439 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8440 params.sriov_max_vq_per_vf, 0),
8441 DEFINE_PROP_END_OF_LIST(),
8442 };
8443
8444 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8445 void *opaque, Error **errp)
8446 {
8447 NvmeCtrl *n = NVME(obj);
8448 uint8_t value = n->smart_critical_warning;
8449
8450 visit_type_uint8(v, name, &value, errp);
8451 }
8452
8453 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8454 void *opaque, Error **errp)
8455 {
8456 NvmeCtrl *n = NVME(obj);
8457 uint8_t value, old_value, cap = 0, index, event;
8458
8459 if (!visit_type_uint8(v, name, &value, errp)) {
8460 return;
8461 }
8462
8463 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8464 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8465 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8466 cap |= NVME_SMART_PMR_UNRELIABLE;
8467 }
8468
8469 if ((value & cap) != value) {
8470 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8471 value & ~cap);
8472 return;
8473 }
8474
8475 old_value = n->smart_critical_warning;
8476 n->smart_critical_warning = value;
8477
8478 /* only inject new bits of smart critical warning */
8479 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8480 event = 1 << index;
8481 if (value & ~old_value & event)
8482 nvme_smart_event(n, event);
8483 }
8484 }
8485
8486 static void nvme_pci_reset(DeviceState *qdev)
8487 {
8488 PCIDevice *pci_dev = PCI_DEVICE(qdev);
8489 NvmeCtrl *n = NVME(pci_dev);
8490
8491 trace_pci_nvme_pci_reset();
8492 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8493 }
8494
8495 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8496 uint32_t val, int len)
8497 {
8498 NvmeCtrl *n = NVME(dev);
8499 NvmeSecCtrlEntry *sctrl;
8500 uint16_t sriov_cap = dev->exp.sriov_cap;
8501 uint32_t off = address - sriov_cap;
8502 int i, num_vfs;
8503
8504 if (!sriov_cap) {
8505 return;
8506 }
8507
8508 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8509 if (!(val & PCI_SRIOV_CTRL_VFE)) {
8510 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8511 for (i = 0; i < num_vfs; i++) {
8512 sctrl = &n->sec_ctrl_list.sec[i];
8513 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8514 }
8515 }
8516 }
8517 }
8518
8519 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8520 uint32_t val, int len)
8521 {
8522 nvme_sriov_pre_write_ctrl(dev, address, val, len);
8523 pci_default_write_config(dev, address, val, len);
8524 pcie_cap_flr_write_config(dev, address, val, len);
8525 }
8526
8527 static const VMStateDescription nvme_vmstate = {
8528 .name = "nvme",
8529 .unmigratable = 1,
8530 };
8531
8532 static void nvme_class_init(ObjectClass *oc, void *data)
8533 {
8534 DeviceClass *dc = DEVICE_CLASS(oc);
8535 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8536
8537 pc->realize = nvme_realize;
8538 pc->config_write = nvme_pci_write_config;
8539 pc->exit = nvme_exit;
8540 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8541 pc->revision = 2;
8542
8543 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8544 dc->desc = "Non-Volatile Memory Express";
8545 device_class_set_props(dc, nvme_props);
8546 dc->vmsd = &nvme_vmstate;
8547 dc->reset = nvme_pci_reset;
8548 }
8549
8550 static void nvme_instance_init(Object *obj)
8551 {
8552 NvmeCtrl *n = NVME(obj);
8553
8554 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8555 "bootindex", "/namespace@1,0",
8556 DEVICE(obj));
8557
8558 object_property_add(obj, "smart_critical_warning", "uint8",
8559 nvme_get_smart_warning,
8560 nvme_set_smart_warning, NULL, NULL);
8561 }
8562
8563 static const TypeInfo nvme_info = {
8564 .name = TYPE_NVME,
8565 .parent = TYPE_PCI_DEVICE,
8566 .instance_size = sizeof(NvmeCtrl),
8567 .instance_init = nvme_instance_init,
8568 .class_init = nvme_class_init,
8569 .interfaces = (InterfaceInfo[]) {
8570 { INTERFACE_PCIE_DEVICE },
8571 { }
8572 },
8573 };
8574
8575 static const TypeInfo nvme_bus_info = {
8576 .name = TYPE_NVME_BUS,
8577 .parent = TYPE_BUS,
8578 .instance_size = sizeof(NvmeBus),
8579 };
8580
8581 static void nvme_register_types(void)
8582 {
8583 type_register_static(&nvme_info);
8584 type_register_static(&nvme_bus_info);
8585 }
8586
8587 type_init(nvme_register_types)