]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvram/fw_cfg.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20191028' into staging
[mirror_qemu.git] / hw / nvram / fw_cfg.c
1 /*
2 * QEMU Firmware configuration device emulation
3 *
4 * Copyright (c) 2008 Gleb Natapov
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42
43 #define FW_CFG_FILE_SLOTS_DFLT 0x20
44
45 /* FW_CFG_VERSION bits */
46 #define FW_CFG_VERSION 0x01
47 #define FW_CFG_VERSION_DMA 0x02
48
49 /* FW_CFG_DMA_CONTROL bits */
50 #define FW_CFG_DMA_CTL_ERROR 0x01
51 #define FW_CFG_DMA_CTL_READ 0x02
52 #define FW_CFG_DMA_CTL_SKIP 0x04
53 #define FW_CFG_DMA_CTL_SELECT 0x08
54 #define FW_CFG_DMA_CTL_WRITE 0x10
55
56 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
57
58 struct FWCfgEntry {
59 uint32_t len;
60 bool allow_write;
61 uint8_t *data;
62 void *callback_opaque;
63 FWCfgCallback select_cb;
64 FWCfgWriteCallback write_cb;
65 };
66
67 /**
68 * key_name:
69 *
70 * @key: The uint16 selector key.
71 *
72 * Returns: The stringified name if the selector refers to a well-known
73 * numerically defined item, or NULL on key lookup failure.
74 */
75 static const char *key_name(uint16_t key)
76 {
77 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
78 [FW_CFG_SIGNATURE] = "signature",
79 [FW_CFG_ID] = "id",
80 [FW_CFG_UUID] = "uuid",
81 [FW_CFG_RAM_SIZE] = "ram_size",
82 [FW_CFG_NOGRAPHIC] = "nographic",
83 [FW_CFG_NB_CPUS] = "nb_cpus",
84 [FW_CFG_MACHINE_ID] = "machine_id",
85 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
86 [FW_CFG_KERNEL_SIZE] = "kernel_size",
87 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
88 [FW_CFG_INITRD_ADDR] = "initrd_addr",
89 [FW_CFG_INITRD_SIZE] = "initdr_size",
90 [FW_CFG_BOOT_DEVICE] = "boot_device",
91 [FW_CFG_NUMA] = "numa",
92 [FW_CFG_BOOT_MENU] = "boot_menu",
93 [FW_CFG_MAX_CPUS] = "max_cpus",
94 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
95 [FW_CFG_KERNEL_DATA] = "kernel_data",
96 [FW_CFG_INITRD_DATA] = "initrd_data",
97 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
98 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
99 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
100 [FW_CFG_SETUP_ADDR] = "setup_addr",
101 [FW_CFG_SETUP_SIZE] = "setup_size",
102 [FW_CFG_SETUP_DATA] = "setup_data",
103 [FW_CFG_FILE_DIR] = "file_dir",
104 };
105
106 if (key & FW_CFG_ARCH_LOCAL) {
107 return fw_cfg_arch_key_name(key);
108 }
109 if (key < FW_CFG_FILE_FIRST) {
110 return fw_cfg_wellknown_keys[key];
111 }
112
113 return NULL;
114 }
115
116 static inline const char *trace_key_name(uint16_t key)
117 {
118 const char *name = key_name(key);
119
120 return name ? name : "unknown";
121 }
122
123 #define JPG_FILE 0
124 #define BMP_FILE 1
125
126 static char *read_splashfile(char *filename, gsize *file_sizep,
127 int *file_typep)
128 {
129 GError *err = NULL;
130 gchar *content;
131 int file_type;
132 unsigned int filehead;
133 int bmp_bpp;
134
135 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
136 error_report("failed to read splash file '%s': %s",
137 filename, err->message);
138 g_error_free(err);
139 return NULL;
140 }
141
142 /* check file size */
143 if (*file_sizep < 30) {
144 goto error;
145 }
146
147 /* check magic ID */
148 filehead = lduw_le_p(content);
149 if (filehead == 0xd8ff) {
150 file_type = JPG_FILE;
151 } else if (filehead == 0x4d42) {
152 file_type = BMP_FILE;
153 } else {
154 goto error;
155 }
156
157 /* check BMP bpp */
158 if (file_type == BMP_FILE) {
159 bmp_bpp = lduw_le_p(&content[28]);
160 if (bmp_bpp != 24) {
161 goto error;
162 }
163 }
164
165 /* return values */
166 *file_typep = file_type;
167
168 return content;
169
170 error:
171 error_report("splash file '%s' format not recognized; must be JPEG "
172 "or 24 bit BMP", filename);
173 g_free(content);
174 return NULL;
175 }
176
177 static void fw_cfg_bootsplash(FWCfgState *s)
178 {
179 const char *boot_splash_filename = NULL;
180 const char *boot_splash_time = NULL;
181 char *filename, *file_data;
182 gsize file_size;
183 int file_type;
184
185 /* get user configuration */
186 QemuOptsList *plist = qemu_find_opts("boot-opts");
187 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
188 boot_splash_filename = qemu_opt_get(opts, "splash");
189 boot_splash_time = qemu_opt_get(opts, "splash-time");
190
191 /* insert splash time if user configurated */
192 if (boot_splash_time) {
193 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
194 uint16_t bst_le16;
195
196 /* validate the input */
197 if (bst_val < 0 || bst_val > 0xffff) {
198 error_report("splash-time is invalid,"
199 "it should be a value between 0 and 65535");
200 exit(1);
201 }
202 /* use little endian format */
203 bst_le16 = cpu_to_le16(bst_val);
204 fw_cfg_add_file(s, "etc/boot-menu-wait",
205 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
206 }
207
208 /* insert splash file if user configurated */
209 if (boot_splash_filename) {
210 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
211 if (filename == NULL) {
212 error_report("failed to find file '%s'", boot_splash_filename);
213 return;
214 }
215
216 /* loading file data */
217 file_data = read_splashfile(filename, &file_size, &file_type);
218 if (file_data == NULL) {
219 g_free(filename);
220 return;
221 }
222 g_free(boot_splash_filedata);
223 boot_splash_filedata = (uint8_t *)file_data;
224
225 /* insert data */
226 if (file_type == JPG_FILE) {
227 fw_cfg_add_file(s, "bootsplash.jpg",
228 boot_splash_filedata, file_size);
229 } else {
230 fw_cfg_add_file(s, "bootsplash.bmp",
231 boot_splash_filedata, file_size);
232 }
233 g_free(filename);
234 }
235 }
236
237 static void fw_cfg_reboot(FWCfgState *s)
238 {
239 const char *reboot_timeout = NULL;
240 int64_t rt_val = -1;
241 uint32_t rt_le32;
242
243 /* get user configuration */
244 QemuOptsList *plist = qemu_find_opts("boot-opts");
245 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
246 reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
247
248 if (reboot_timeout) {
249 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
250 /* validate the input */
251 if (rt_val < 0 || rt_val > 0xffff) {
252 error_report("reboot timeout is invalid,"
253 "it should be a value between 0 and 65535");
254 exit(1);
255 }
256 }
257
258 rt_le32 = cpu_to_le32(rt_val);
259 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
260 }
261
262 static void fw_cfg_write(FWCfgState *s, uint8_t value)
263 {
264 /* nothing, write support removed in QEMU v2.4+ */
265 }
266
267 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
268 {
269 return s->file_slots;
270 }
271
272 /* Note: this function returns an exclusive limit. */
273 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
274 {
275 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
276 }
277
278 static int fw_cfg_select(FWCfgState *s, uint16_t key)
279 {
280 int arch, ret;
281 FWCfgEntry *e;
282
283 s->cur_offset = 0;
284 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
285 s->cur_entry = FW_CFG_INVALID;
286 ret = 0;
287 } else {
288 s->cur_entry = key;
289 ret = 1;
290 /* entry successfully selected, now run callback if present */
291 arch = !!(key & FW_CFG_ARCH_LOCAL);
292 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
293 if (e->select_cb) {
294 e->select_cb(e->callback_opaque);
295 }
296 }
297
298 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
299 return ret;
300 }
301
302 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
303 {
304 FWCfgState *s = opaque;
305 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
306 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
307 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
308 uint64_t value = 0;
309
310 assert(size > 0 && size <= sizeof(value));
311 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
312 /* The least significant 'size' bytes of the return value are
313 * expected to contain a string preserving portion of the item
314 * data, padded with zeros on the right in case we run out early.
315 * In technical terms, we're composing the host-endian representation
316 * of the big endian interpretation of the fw_cfg string.
317 */
318 do {
319 value = (value << 8) | e->data[s->cur_offset++];
320 } while (--size && s->cur_offset < e->len);
321 /* If size is still not zero, we *did* run out early, so continue
322 * left-shifting, to add the appropriate number of padding zeros
323 * on the right.
324 */
325 value <<= 8 * size;
326 }
327
328 trace_fw_cfg_read(s, value);
329 return value;
330 }
331
332 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
333 uint64_t value, unsigned size)
334 {
335 FWCfgState *s = opaque;
336 unsigned i = size;
337
338 do {
339 fw_cfg_write(s, value >> (8 * --i));
340 } while (i);
341 }
342
343 static void fw_cfg_dma_transfer(FWCfgState *s)
344 {
345 dma_addr_t len;
346 FWCfgDmaAccess dma;
347 int arch;
348 FWCfgEntry *e;
349 int read = 0, write = 0;
350 dma_addr_t dma_addr;
351
352 /* Reset the address before the next access */
353 dma_addr = s->dma_addr;
354 s->dma_addr = 0;
355
356 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
357 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
358 FW_CFG_DMA_CTL_ERROR);
359 return;
360 }
361
362 dma.address = be64_to_cpu(dma.address);
363 dma.length = be32_to_cpu(dma.length);
364 dma.control = be32_to_cpu(dma.control);
365
366 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
367 fw_cfg_select(s, dma.control >> 16);
368 }
369
370 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
371 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
372 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
373
374 if (dma.control & FW_CFG_DMA_CTL_READ) {
375 read = 1;
376 write = 0;
377 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
378 read = 0;
379 write = 1;
380 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
381 read = 0;
382 write = 0;
383 } else {
384 dma.length = 0;
385 }
386
387 dma.control = 0;
388
389 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
390 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
391 s->cur_offset >= e->len) {
392 len = dma.length;
393
394 /* If the access is not a read access, it will be a skip access,
395 * tested before.
396 */
397 if (read) {
398 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
399 dma.control |= FW_CFG_DMA_CTL_ERROR;
400 }
401 }
402 if (write) {
403 dma.control |= FW_CFG_DMA_CTL_ERROR;
404 }
405 } else {
406 if (dma.length <= (e->len - s->cur_offset)) {
407 len = dma.length;
408 } else {
409 len = (e->len - s->cur_offset);
410 }
411
412 /* If the access is not a read access, it will be a skip access,
413 * tested before.
414 */
415 if (read) {
416 if (dma_memory_write(s->dma_as, dma.address,
417 &e->data[s->cur_offset], len)) {
418 dma.control |= FW_CFG_DMA_CTL_ERROR;
419 }
420 }
421 if (write) {
422 if (!e->allow_write ||
423 len != dma.length ||
424 dma_memory_read(s->dma_as, dma.address,
425 &e->data[s->cur_offset], len)) {
426 dma.control |= FW_CFG_DMA_CTL_ERROR;
427 } else if (e->write_cb) {
428 e->write_cb(e->callback_opaque, s->cur_offset, len);
429 }
430 }
431
432 s->cur_offset += len;
433 }
434
435 dma.address += len;
436 dma.length -= len;
437
438 }
439
440 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
441 dma.control);
442
443 trace_fw_cfg_read(s, 0);
444 }
445
446 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
447 unsigned size)
448 {
449 /* Return a signature value (and handle various read sizes) */
450 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
451 }
452
453 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
454 uint64_t value, unsigned size)
455 {
456 FWCfgState *s = opaque;
457
458 if (size == 4) {
459 if (addr == 0) {
460 /* FWCfgDmaAccess high address */
461 s->dma_addr = value << 32;
462 } else if (addr == 4) {
463 /* FWCfgDmaAccess low address */
464 s->dma_addr |= value;
465 fw_cfg_dma_transfer(s);
466 }
467 } else if (size == 8 && addr == 0) {
468 s->dma_addr = value;
469 fw_cfg_dma_transfer(s);
470 }
471 }
472
473 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
474 unsigned size, bool is_write,
475 MemTxAttrs attrs)
476 {
477 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
478 (size == 8 && addr == 0));
479 }
480
481 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
482 unsigned size, bool is_write,
483 MemTxAttrs attrs)
484 {
485 return addr == 0;
486 }
487
488 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
489 {
490 return 0;
491 }
492
493 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
494 uint64_t value, unsigned size)
495 {
496 fw_cfg_select(opaque, (uint16_t)value);
497 }
498
499 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
500 unsigned size, bool is_write,
501 MemTxAttrs attrs)
502 {
503 return is_write && size == 2;
504 }
505
506 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
507 uint64_t value, unsigned size)
508 {
509 switch (size) {
510 case 1:
511 fw_cfg_write(opaque, (uint8_t)value);
512 break;
513 case 2:
514 fw_cfg_select(opaque, (uint16_t)value);
515 break;
516 }
517 }
518
519 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
520 unsigned size, bool is_write,
521 MemTxAttrs attrs)
522 {
523 return (size == 1) || (is_write && size == 2);
524 }
525
526 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
527 .read = fw_cfg_ctl_mem_read,
528 .write = fw_cfg_ctl_mem_write,
529 .endianness = DEVICE_BIG_ENDIAN,
530 .valid.accepts = fw_cfg_ctl_mem_valid,
531 };
532
533 static const MemoryRegionOps fw_cfg_data_mem_ops = {
534 .read = fw_cfg_data_read,
535 .write = fw_cfg_data_mem_write,
536 .endianness = DEVICE_BIG_ENDIAN,
537 .valid = {
538 .min_access_size = 1,
539 .max_access_size = 1,
540 .accepts = fw_cfg_data_mem_valid,
541 },
542 };
543
544 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
545 .read = fw_cfg_data_read,
546 .write = fw_cfg_comb_write,
547 .endianness = DEVICE_LITTLE_ENDIAN,
548 .valid.accepts = fw_cfg_comb_valid,
549 };
550
551 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
552 .read = fw_cfg_dma_mem_read,
553 .write = fw_cfg_dma_mem_write,
554 .endianness = DEVICE_BIG_ENDIAN,
555 .valid.accepts = fw_cfg_dma_mem_valid,
556 .valid.max_access_size = 8,
557 .impl.max_access_size = 8,
558 };
559
560 static void fw_cfg_reset(DeviceState *d)
561 {
562 FWCfgState *s = FW_CFG(d);
563
564 /* we never register a read callback for FW_CFG_SIGNATURE */
565 fw_cfg_select(s, FW_CFG_SIGNATURE);
566 }
567
568 /* Save restore 32 bit int as uint16_t
569 This is a Big hack, but it is how the old state did it.
570 Or we broke compatibility in the state, or we can't use struct tm
571 */
572
573 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
574 const VMStateField *field)
575 {
576 uint32_t *v = pv;
577 *v = qemu_get_be16(f);
578 return 0;
579 }
580
581 static int put_unused(QEMUFile *f, void *pv, size_t size,
582 const VMStateField *field, QJSON *vmdesc)
583 {
584 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
585 fprintf(stderr, "This functions shouldn't be called.\n");
586
587 return 0;
588 }
589
590 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
591 .name = "int32_as_uint16",
592 .get = get_uint32_as_uint16,
593 .put = put_unused,
594 };
595
596 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
597 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
598
599
600 static bool is_version_1(void *opaque, int version_id)
601 {
602 return version_id == 1;
603 }
604
605 bool fw_cfg_dma_enabled(void *opaque)
606 {
607 FWCfgState *s = opaque;
608
609 return s->dma_enabled;
610 }
611
612 static const VMStateDescription vmstate_fw_cfg_dma = {
613 .name = "fw_cfg/dma",
614 .needed = fw_cfg_dma_enabled,
615 .fields = (VMStateField[]) {
616 VMSTATE_UINT64(dma_addr, FWCfgState),
617 VMSTATE_END_OF_LIST()
618 },
619 };
620
621 static const VMStateDescription vmstate_fw_cfg = {
622 .name = "fw_cfg",
623 .version_id = 2,
624 .minimum_version_id = 1,
625 .fields = (VMStateField[]) {
626 VMSTATE_UINT16(cur_entry, FWCfgState),
627 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
628 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
629 VMSTATE_END_OF_LIST()
630 },
631 .subsections = (const VMStateDescription*[]) {
632 &vmstate_fw_cfg_dma,
633 NULL,
634 }
635 };
636
637 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
638 FWCfgCallback select_cb,
639 FWCfgWriteCallback write_cb,
640 void *callback_opaque,
641 void *data, size_t len,
642 bool read_only)
643 {
644 int arch = !!(key & FW_CFG_ARCH_LOCAL);
645
646 key &= FW_CFG_ENTRY_MASK;
647
648 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
649 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
650
651 s->entries[arch][key].data = data;
652 s->entries[arch][key].len = (uint32_t)len;
653 s->entries[arch][key].select_cb = select_cb;
654 s->entries[arch][key].write_cb = write_cb;
655 s->entries[arch][key].callback_opaque = callback_opaque;
656 s->entries[arch][key].allow_write = !read_only;
657 }
658
659 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
660 void *data, size_t len)
661 {
662 void *ptr;
663 int arch = !!(key & FW_CFG_ARCH_LOCAL);
664
665 key &= FW_CFG_ENTRY_MASK;
666
667 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
668
669 /* return the old data to the function caller, avoid memory leak */
670 ptr = s->entries[arch][key].data;
671 s->entries[arch][key].data = data;
672 s->entries[arch][key].len = len;
673 s->entries[arch][key].callback_opaque = NULL;
674 s->entries[arch][key].allow_write = false;
675
676 return ptr;
677 }
678
679 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
680 {
681 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
682 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
683 }
684
685 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
686 {
687 size_t sz = strlen(value) + 1;
688
689 trace_fw_cfg_add_string(key, trace_key_name(key), value);
690 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
691 }
692
693 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
694 {
695 size_t sz = strlen(value) + 1;
696 char *old;
697
698 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
699 g_free(old);
700 }
701
702 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
703 {
704 uint16_t *copy;
705
706 copy = g_malloc(sizeof(value));
707 *copy = cpu_to_le16(value);
708 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
709 fw_cfg_add_bytes(s, key, copy, sizeof(value));
710 }
711
712 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
713 {
714 uint16_t *copy, *old;
715
716 copy = g_malloc(sizeof(value));
717 *copy = cpu_to_le16(value);
718 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
719 g_free(old);
720 }
721
722 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
723 {
724 uint32_t *copy;
725
726 copy = g_malloc(sizeof(value));
727 *copy = cpu_to_le32(value);
728 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
729 fw_cfg_add_bytes(s, key, copy, sizeof(value));
730 }
731
732 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
733 {
734 uint32_t *copy, *old;
735
736 copy = g_malloc(sizeof(value));
737 *copy = cpu_to_le32(value);
738 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
739 g_free(old);
740 }
741
742 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
743 {
744 uint64_t *copy;
745
746 copy = g_malloc(sizeof(value));
747 *copy = cpu_to_le64(value);
748 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
749 fw_cfg_add_bytes(s, key, copy, sizeof(value));
750 }
751
752 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
753 {
754 uint64_t *copy, *old;
755
756 copy = g_malloc(sizeof(value));
757 *copy = cpu_to_le64(value);
758 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
759 g_free(old);
760 }
761
762 void fw_cfg_set_order_override(FWCfgState *s, int order)
763 {
764 assert(s->fw_cfg_order_override == 0);
765 s->fw_cfg_order_override = order;
766 }
767
768 void fw_cfg_reset_order_override(FWCfgState *s)
769 {
770 assert(s->fw_cfg_order_override != 0);
771 s->fw_cfg_order_override = 0;
772 }
773
774 /*
775 * This is the legacy order list. For legacy systems, files are in
776 * the fw_cfg in the order defined below, by the "order" value. Note
777 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
778 * specific area, but there may be more than one and they occur in the
779 * order that the user specifies them on the command line. Those are
780 * handled in a special manner, using the order override above.
781 *
782 * For non-legacy, the files are sorted by filename to avoid this kind
783 * of complexity in the future.
784 *
785 * This is only for x86, other arches don't implement versioning so
786 * they won't set legacy mode.
787 */
788 static struct {
789 const char *name;
790 int order;
791 } fw_cfg_order[] = {
792 { "etc/boot-menu-wait", 10 },
793 { "bootsplash.jpg", 11 },
794 { "bootsplash.bmp", 12 },
795 { "etc/boot-fail-wait", 15 },
796 { "etc/smbios/smbios-tables", 20 },
797 { "etc/smbios/smbios-anchor", 30 },
798 { "etc/e820", 40 },
799 { "etc/reserved-memory-end", 50 },
800 { "genroms/kvmvapic.bin", 55 },
801 { "genroms/linuxboot.bin", 60 },
802 { }, /* VGA ROMs from pc_vga_init come here, 70. */
803 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
804 { "etc/system-states", 90 },
805 { }, /* User ROMs come here, 100. */
806 { }, /* Device FW comes here, 110. */
807 { "etc/extra-pci-roots", 120 },
808 { "etc/acpi/tables", 130 },
809 { "etc/table-loader", 140 },
810 { "etc/tpm/log", 150 },
811 { "etc/acpi/rsdp", 160 },
812 { "bootorder", 170 },
813
814 #define FW_CFG_ORDER_OVERRIDE_LAST 200
815 };
816
817 static int get_fw_cfg_order(FWCfgState *s, const char *name)
818 {
819 int i;
820
821 if (s->fw_cfg_order_override > 0) {
822 return s->fw_cfg_order_override;
823 }
824
825 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
826 if (fw_cfg_order[i].name == NULL) {
827 continue;
828 }
829
830 if (strcmp(name, fw_cfg_order[i].name) == 0) {
831 return fw_cfg_order[i].order;
832 }
833 }
834
835 /* Stick unknown stuff at the end. */
836 warn_report("Unknown firmware file in legacy mode: %s", name);
837 return FW_CFG_ORDER_OVERRIDE_LAST;
838 }
839
840 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
841 FWCfgCallback select_cb,
842 FWCfgWriteCallback write_cb,
843 void *callback_opaque,
844 void *data, size_t len, bool read_only)
845 {
846 int i, index, count;
847 size_t dsize;
848 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
849 int order = 0;
850
851 if (!s->files) {
852 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
853 s->files = g_malloc0(dsize);
854 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
855 }
856
857 count = be32_to_cpu(s->files->count);
858 assert(count < fw_cfg_file_slots(s));
859
860 /* Find the insertion point. */
861 if (mc->legacy_fw_cfg_order) {
862 /*
863 * Sort by order. For files with the same order, we keep them
864 * in the sequence in which they were added.
865 */
866 order = get_fw_cfg_order(s, filename);
867 for (index = count;
868 index > 0 && order < s->entry_order[index - 1];
869 index--);
870 } else {
871 /* Sort by file name. */
872 for (index = count;
873 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
874 index--);
875 }
876
877 /*
878 * Move all the entries from the index point and after down one
879 * to create a slot for the new entry. Because calculations are
880 * being done with the index, make it so that "i" is the current
881 * index and "i - 1" is the one being copied from, thus the
882 * unusual start and end in the for statement.
883 */
884 for (i = count; i > index; i--) {
885 s->files->f[i] = s->files->f[i - 1];
886 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
887 s->entries[0][FW_CFG_FILE_FIRST + i] =
888 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
889 s->entry_order[i] = s->entry_order[i - 1];
890 }
891
892 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
893 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
894
895 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
896 for (i = 0; i <= count; i++) {
897 if (i != index &&
898 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
899 error_report("duplicate fw_cfg file name: %s",
900 s->files->f[index].name);
901 exit(1);
902 }
903 }
904
905 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
906 select_cb, write_cb,
907 callback_opaque, data, len,
908 read_only);
909
910 s->files->f[index].size = cpu_to_be32(len);
911 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
912 s->entry_order[index] = order;
913 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
914
915 s->files->count = cpu_to_be32(count+1);
916 }
917
918 void fw_cfg_add_file(FWCfgState *s, const char *filename,
919 void *data, size_t len)
920 {
921 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
922 }
923
924 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
925 void *data, size_t len)
926 {
927 int i, index;
928 void *ptr = NULL;
929
930 assert(s->files);
931
932 index = be32_to_cpu(s->files->count);
933
934 for (i = 0; i < index; i++) {
935 if (strcmp(filename, s->files->f[i].name) == 0) {
936 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
937 data, len);
938 s->files->f[i].size = cpu_to_be32(len);
939 return ptr;
940 }
941 }
942
943 assert(index < fw_cfg_file_slots(s));
944
945 /* add new one */
946 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
947 return NULL;
948 }
949
950 static void fw_cfg_machine_reset(void *opaque)
951 {
952 void *ptr;
953 size_t len;
954 FWCfgState *s = opaque;
955 char *bootindex = get_boot_devices_list(&len);
956
957 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
958 g_free(ptr);
959 }
960
961 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
962 {
963 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
964 qemu_register_reset(fw_cfg_machine_reset, s);
965 }
966
967
968
969 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
970 {
971 FWCfgState *s = FW_CFG(dev);
972 MachineState *machine = MACHINE(qdev_get_machine());
973 uint32_t version = FW_CFG_VERSION;
974
975 if (!fw_cfg_find()) {
976 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
977 return;
978 }
979
980 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
981 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
982 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
983 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
984 fw_cfg_bootsplash(s);
985 fw_cfg_reboot(s);
986
987 if (s->dma_enabled) {
988 version |= FW_CFG_VERSION_DMA;
989 }
990
991 fw_cfg_add_i32(s, FW_CFG_ID, version);
992
993 s->machine_ready.notify = fw_cfg_machine_ready;
994 qemu_add_machine_init_done_notifier(&s->machine_ready);
995 }
996
997 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
998 AddressSpace *dma_as)
999 {
1000 DeviceState *dev;
1001 SysBusDevice *sbd;
1002 FWCfgIoState *ios;
1003 FWCfgState *s;
1004 bool dma_requested = dma_iobase && dma_as;
1005
1006 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
1007 if (!dma_requested) {
1008 qdev_prop_set_bit(dev, "dma_enabled", false);
1009 }
1010
1011 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1012 OBJECT(dev), NULL);
1013 qdev_init_nofail(dev);
1014
1015 sbd = SYS_BUS_DEVICE(dev);
1016 ios = FW_CFG_IO(dev);
1017 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1018
1019 s = FW_CFG(dev);
1020
1021 if (s->dma_enabled) {
1022 /* 64 bits for the address field */
1023 s->dma_as = dma_as;
1024 s->dma_addr = 0;
1025 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1026 }
1027
1028 return s;
1029 }
1030
1031 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1032 {
1033 return fw_cfg_init_io_dma(iobase, 0, NULL);
1034 }
1035
1036 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1037 hwaddr data_addr, uint32_t data_width,
1038 hwaddr dma_addr, AddressSpace *dma_as)
1039 {
1040 DeviceState *dev;
1041 SysBusDevice *sbd;
1042 FWCfgState *s;
1043 bool dma_requested = dma_addr && dma_as;
1044
1045 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1046 qdev_prop_set_uint32(dev, "data_width", data_width);
1047 if (!dma_requested) {
1048 qdev_prop_set_bit(dev, "dma_enabled", false);
1049 }
1050
1051 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1052 OBJECT(dev), NULL);
1053 qdev_init_nofail(dev);
1054
1055 sbd = SYS_BUS_DEVICE(dev);
1056 sysbus_mmio_map(sbd, 0, ctl_addr);
1057 sysbus_mmio_map(sbd, 1, data_addr);
1058
1059 s = FW_CFG(dev);
1060
1061 if (s->dma_enabled) {
1062 s->dma_as = dma_as;
1063 s->dma_addr = 0;
1064 sysbus_mmio_map(sbd, 2, dma_addr);
1065 }
1066
1067 return s;
1068 }
1069
1070 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1071 {
1072 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1073 fw_cfg_data_mem_ops.valid.max_access_size,
1074 0, NULL);
1075 }
1076
1077
1078 FWCfgState *fw_cfg_find(void)
1079 {
1080 /* Returns NULL unless there is exactly one fw_cfg device */
1081 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1082 }
1083
1084
1085 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1086 {
1087 DeviceClass *dc = DEVICE_CLASS(klass);
1088
1089 dc->reset = fw_cfg_reset;
1090 dc->vmsd = &vmstate_fw_cfg;
1091 }
1092
1093 static const TypeInfo fw_cfg_info = {
1094 .name = TYPE_FW_CFG,
1095 .parent = TYPE_SYS_BUS_DEVICE,
1096 .abstract = true,
1097 .instance_size = sizeof(FWCfgState),
1098 .class_init = fw_cfg_class_init,
1099 };
1100
1101 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1102 {
1103 uint16_t file_slots_max;
1104
1105 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1106 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1107 FW_CFG_FILE_SLOTS_MIN);
1108 return;
1109 }
1110
1111 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1112 * that we permit. The actual (exclusive) value coming from the
1113 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1114 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1115 if (fw_cfg_file_slots(s) > file_slots_max) {
1116 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1117 file_slots_max);
1118 return;
1119 }
1120
1121 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1122 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1123 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1124 }
1125
1126 static Property fw_cfg_io_properties[] = {
1127 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1128 true),
1129 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1130 FW_CFG_FILE_SLOTS_DFLT),
1131 DEFINE_PROP_END_OF_LIST(),
1132 };
1133
1134 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1135 {
1136 FWCfgIoState *s = FW_CFG_IO(dev);
1137 Error *local_err = NULL;
1138
1139 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1140 if (local_err) {
1141 error_propagate(errp, local_err);
1142 return;
1143 }
1144
1145 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1146 * with half of the 16-bit control register. Hence, the total size
1147 * of the i/o region used is FW_CFG_CTL_SIZE */
1148 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1149 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1150
1151 if (FW_CFG(s)->dma_enabled) {
1152 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1153 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1154 sizeof(dma_addr_t));
1155 }
1156
1157 fw_cfg_common_realize(dev, errp);
1158 }
1159
1160 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1161 {
1162 DeviceClass *dc = DEVICE_CLASS(klass);
1163
1164 dc->realize = fw_cfg_io_realize;
1165 dc->props = fw_cfg_io_properties;
1166 }
1167
1168 static const TypeInfo fw_cfg_io_info = {
1169 .name = TYPE_FW_CFG_IO,
1170 .parent = TYPE_FW_CFG,
1171 .instance_size = sizeof(FWCfgIoState),
1172 .class_init = fw_cfg_io_class_init,
1173 };
1174
1175
1176 static Property fw_cfg_mem_properties[] = {
1177 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1178 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1179 true),
1180 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1181 FW_CFG_FILE_SLOTS_DFLT),
1182 DEFINE_PROP_END_OF_LIST(),
1183 };
1184
1185 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1186 {
1187 FWCfgMemState *s = FW_CFG_MEM(dev);
1188 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1189 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1190 Error *local_err = NULL;
1191
1192 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1193 if (local_err) {
1194 error_propagate(errp, local_err);
1195 return;
1196 }
1197
1198 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1199 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1200 sysbus_init_mmio(sbd, &s->ctl_iomem);
1201
1202 if (s->data_width > data_ops->valid.max_access_size) {
1203 s->wide_data_ops = *data_ops;
1204
1205 s->wide_data_ops.valid.max_access_size = s->data_width;
1206 s->wide_data_ops.impl.max_access_size = s->data_width;
1207 data_ops = &s->wide_data_ops;
1208 }
1209 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1210 "fwcfg.data", data_ops->valid.max_access_size);
1211 sysbus_init_mmio(sbd, &s->data_iomem);
1212
1213 if (FW_CFG(s)->dma_enabled) {
1214 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1215 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1216 sizeof(dma_addr_t));
1217 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1218 }
1219
1220 fw_cfg_common_realize(dev, errp);
1221 }
1222
1223 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1224 {
1225 DeviceClass *dc = DEVICE_CLASS(klass);
1226
1227 dc->realize = fw_cfg_mem_realize;
1228 dc->props = fw_cfg_mem_properties;
1229 }
1230
1231 static const TypeInfo fw_cfg_mem_info = {
1232 .name = TYPE_FW_CFG_MEM,
1233 .parent = TYPE_FW_CFG,
1234 .instance_size = sizeof(FWCfgMemState),
1235 .class_init = fw_cfg_mem_class_init,
1236 };
1237
1238
1239 static void fw_cfg_register_types(void)
1240 {
1241 type_register_static(&fw_cfg_info);
1242 type_register_static(&fw_cfg_io_info);
1243 type_register_static(&fw_cfg_mem_info);
1244 }
1245
1246 type_init(fw_cfg_register_types)