]> git.proxmox.com Git - mirror_qemu.git/blob - hw/omap.c
Add OMAP Pulse-width Tone module.
[mirror_qemu.git] / hw / omap.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2007 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21 #include "vl.h"
22 #include "arm_pic.h"
23
24 /* Should signal the TCMI */
25 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
26 {
27 OMAP_8B_REG(addr);
28 return 0;
29 }
30
31 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
32 uint32_t value)
33 {
34 OMAP_8B_REG(addr);
35 }
36
37 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
38 {
39 OMAP_16B_REG(addr);
40 return 0;
41 }
42
43 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
44 uint32_t value)
45 {
46 OMAP_16B_REG(addr);
47 }
48
49 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
50 {
51 OMAP_32B_REG(addr);
52 return 0;
53 }
54
55 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
56 uint32_t value)
57 {
58 OMAP_32B_REG(addr);
59 }
60
61 /* Interrupt Handlers */
62 struct omap_intr_handler_s {
63 qemu_irq *pins;
64 qemu_irq *parent_pic;
65 target_phys_addr_t base;
66
67 /* state */
68 uint32_t irqs;
69 uint32_t mask;
70 uint32_t sens_edge;
71 uint32_t fiq;
72 int priority[32];
73 uint32_t new_irq_agr;
74 uint32_t new_fiq_agr;
75 int sir_irq;
76 int sir_fiq;
77 int stats[32];
78 };
79
80 static void omap_inth_update(struct omap_intr_handler_s *s)
81 {
82 uint32_t irq = s->irqs & ~s->mask & ~s->fiq;
83 uint32_t fiq = s->irqs & ~s->mask & s->fiq;
84
85 if (s->new_irq_agr || !irq) {
86 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_IRQ], irq);
87 if (irq)
88 s->new_irq_agr = 0;
89 }
90
91 if (s->new_fiq_agr || !irq) {
92 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_FIQ], fiq);
93 if (fiq)
94 s->new_fiq_agr = 0;
95 }
96 }
97
98 static void omap_inth_sir_update(struct omap_intr_handler_s *s)
99 {
100 int i, intr_irq, intr_fiq, p_irq, p_fiq, p, f;
101 uint32_t level = s->irqs & ~s->mask;
102
103 intr_irq = 0;
104 intr_fiq = 0;
105 p_irq = -1;
106 p_fiq = -1;
107 /* Find the interrupt line with the highest dynamic priority */
108 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) {
109 p = s->priority[i];
110 if (s->fiq & (1 << i)) {
111 if (p > p_fiq) {
112 p_fiq = p;
113 intr_fiq = i;
114 }
115 } else {
116 if (p > p_irq) {
117 p_irq = p;
118 intr_irq = i;
119 }
120 }
121
122 f = ffs(level >> 1);
123 }
124
125 s->sir_irq = intr_irq;
126 s->sir_fiq = intr_fiq;
127 }
128
129 #define INT_FALLING_EDGE 0
130 #define INT_LOW_LEVEL 1
131
132 static void omap_set_intr(void *opaque, int irq, int req)
133 {
134 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
135 uint32_t rise;
136
137 if (req) {
138 rise = ~ih->irqs & (1 << irq);
139 ih->irqs |= rise;
140 ih->stats[irq] += !!rise;
141 } else {
142 rise = ih->sens_edge & ih->irqs & (1 << irq);
143 ih->irqs &= ~rise;
144 }
145
146 if (rise & ~ih->mask) {
147 omap_inth_sir_update(ih);
148
149 omap_inth_update(ih);
150 }
151 }
152
153 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
154 {
155 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
156 int i, offset = addr - s->base;
157
158 switch (offset) {
159 case 0x00: /* ITR */
160 return s->irqs;
161
162 case 0x04: /* MIR */
163 return s->mask;
164
165 case 0x10: /* SIR_IRQ_CODE */
166 i = s->sir_irq;
167 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
168 s->irqs &= ~(1 << i);
169 omap_inth_sir_update(s);
170 omap_inth_update(s);
171 }
172 return i;
173
174 case 0x14: /* SIR_FIQ_CODE */
175 i = s->sir_fiq;
176 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
177 s->irqs &= ~(1 << i);
178 omap_inth_sir_update(s);
179 omap_inth_update(s);
180 }
181 return i;
182
183 case 0x18: /* CONTROL_REG */
184 return 0;
185
186 case 0x1c: /* ILR0 */
187 case 0x20: /* ILR1 */
188 case 0x24: /* ILR2 */
189 case 0x28: /* ILR3 */
190 case 0x2c: /* ILR4 */
191 case 0x30: /* ILR5 */
192 case 0x34: /* ILR6 */
193 case 0x38: /* ILR7 */
194 case 0x3c: /* ILR8 */
195 case 0x40: /* ILR9 */
196 case 0x44: /* ILR10 */
197 case 0x48: /* ILR11 */
198 case 0x4c: /* ILR12 */
199 case 0x50: /* ILR13 */
200 case 0x54: /* ILR14 */
201 case 0x58: /* ILR15 */
202 case 0x5c: /* ILR16 */
203 case 0x60: /* ILR17 */
204 case 0x64: /* ILR18 */
205 case 0x68: /* ILR19 */
206 case 0x6c: /* ILR20 */
207 case 0x70: /* ILR21 */
208 case 0x74: /* ILR22 */
209 case 0x78: /* ILR23 */
210 case 0x7c: /* ILR24 */
211 case 0x80: /* ILR25 */
212 case 0x84: /* ILR26 */
213 case 0x88: /* ILR27 */
214 case 0x8c: /* ILR28 */
215 case 0x90: /* ILR29 */
216 case 0x94: /* ILR30 */
217 case 0x98: /* ILR31 */
218 i = (offset - 0x1c) >> 2;
219 return (s->priority[i] << 2) |
220 (((s->sens_edge >> i) & 1) << 1) |
221 ((s->fiq >> i) & 1);
222
223 case 0x9c: /* ISR */
224 return 0x00000000;
225
226 default:
227 OMAP_BAD_REG(addr);
228 break;
229 }
230 return 0;
231 }
232
233 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
234 uint32_t value)
235 {
236 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
237 int i, offset = addr - s->base;
238
239 switch (offset) {
240 case 0x00: /* ITR */
241 s->irqs &= value;
242 omap_inth_sir_update(s);
243 omap_inth_update(s);
244 return;
245
246 case 0x04: /* MIR */
247 s->mask = value;
248 omap_inth_sir_update(s);
249 omap_inth_update(s);
250 return;
251
252 case 0x10: /* SIR_IRQ_CODE */
253 case 0x14: /* SIR_FIQ_CODE */
254 OMAP_RO_REG(addr);
255 break;
256
257 case 0x18: /* CONTROL_REG */
258 if (value & 2)
259 s->new_fiq_agr = ~0;
260 if (value & 1)
261 s->new_irq_agr = ~0;
262 omap_inth_update(s);
263 return;
264
265 case 0x1c: /* ILR0 */
266 case 0x20: /* ILR1 */
267 case 0x24: /* ILR2 */
268 case 0x28: /* ILR3 */
269 case 0x2c: /* ILR4 */
270 case 0x30: /* ILR5 */
271 case 0x34: /* ILR6 */
272 case 0x38: /* ILR7 */
273 case 0x3c: /* ILR8 */
274 case 0x40: /* ILR9 */
275 case 0x44: /* ILR10 */
276 case 0x48: /* ILR11 */
277 case 0x4c: /* ILR12 */
278 case 0x50: /* ILR13 */
279 case 0x54: /* ILR14 */
280 case 0x58: /* ILR15 */
281 case 0x5c: /* ILR16 */
282 case 0x60: /* ILR17 */
283 case 0x64: /* ILR18 */
284 case 0x68: /* ILR19 */
285 case 0x6c: /* ILR20 */
286 case 0x70: /* ILR21 */
287 case 0x74: /* ILR22 */
288 case 0x78: /* ILR23 */
289 case 0x7c: /* ILR24 */
290 case 0x80: /* ILR25 */
291 case 0x84: /* ILR26 */
292 case 0x88: /* ILR27 */
293 case 0x8c: /* ILR28 */
294 case 0x90: /* ILR29 */
295 case 0x94: /* ILR30 */
296 case 0x98: /* ILR31 */
297 i = (offset - 0x1c) >> 2;
298 s->priority[i] = (value >> 2) & 0x1f;
299 s->sens_edge &= ~(1 << i);
300 s->sens_edge |= ((value >> 1) & 1) << i;
301 s->fiq &= ~(1 << i);
302 s->fiq |= (value & 1) << i;
303 return;
304
305 case 0x9c: /* ISR */
306 for (i = 0; i < 32; i ++)
307 if (value & (1 << i)) {
308 omap_set_intr(s, i, 1);
309 return;
310 }
311 return;
312
313 default:
314 OMAP_BAD_REG(addr);
315 }
316 }
317
318 static CPUReadMemoryFunc *omap_inth_readfn[] = {
319 omap_badwidth_read32,
320 omap_badwidth_read32,
321 omap_inth_read,
322 };
323
324 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
325 omap_inth_write,
326 omap_inth_write,
327 omap_inth_write,
328 };
329
330 static void omap_inth_reset(struct omap_intr_handler_s *s)
331 {
332 s->irqs = 0x00000000;
333 s->mask = 0xffffffff;
334 s->sens_edge = 0x00000000;
335 s->fiq = 0x00000000;
336 memset(s->priority, 0, sizeof(s->priority));
337 s->new_irq_agr = ~0;
338 s->new_fiq_agr = ~0;
339 s->sir_irq = 0;
340 s->sir_fiq = 0;
341
342 omap_inth_update(s);
343 }
344
345 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
346 unsigned long size, qemu_irq parent[2], omap_clk clk)
347 {
348 int iomemtype;
349 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
350 qemu_mallocz(sizeof(struct omap_intr_handler_s));
351
352 s->parent_pic = parent;
353 s->base = base;
354 s->pins = qemu_allocate_irqs(omap_set_intr, s, 32);
355 omap_inth_reset(s);
356
357 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
358 omap_inth_writefn, s);
359 cpu_register_physical_memory(s->base, size, iomemtype);
360
361 return s;
362 }
363
364 /* OMAP1 DMA module */
365 typedef enum {
366 constant = 0,
367 post_incremented,
368 single_index,
369 double_index,
370 } omap_dma_addressing_t;
371
372 struct omap_dma_channel_s {
373 int burst[2];
374 int pack[2];
375 enum omap_dma_port port[2];
376 target_phys_addr_t addr[2];
377 omap_dma_addressing_t mode[2];
378 int data_type;
379 int end_prog;
380 int repeat;
381 int auto_init;
382 int priority;
383 int fs;
384 int sync;
385 int running;
386 int interrupts;
387 int status;
388 int signalled;
389 int post_sync;
390 int transfer;
391 uint16_t elements;
392 uint16_t frames;
393 uint16_t frame_index;
394 uint16_t element_index;
395 uint16_t cpc;
396
397 struct omap_dma_reg_set_s {
398 target_phys_addr_t src, dest;
399 int frame;
400 int element;
401 int frame_delta[2];
402 int elem_delta[2];
403 int frames;
404 int elements;
405 } active_set;
406 };
407
408 struct omap_dma_s {
409 qemu_irq *ih;
410 QEMUTimer *tm;
411 struct omap_mpu_state_s *mpu;
412 target_phys_addr_t base;
413 omap_clk clk;
414 int64_t delay;
415 uint32_t drq;
416
417 uint16_t gcr;
418 int run_count;
419
420 int chans;
421 struct omap_dma_channel_s ch[16];
422 struct omap_dma_lcd_channel_s lcd_ch;
423 };
424
425 static void omap_dma_interrupts_update(struct omap_dma_s *s)
426 {
427 /* First three interrupts are shared between two channels each. */
428 qemu_set_irq(s->ih[OMAP_INT_DMA_CH0_6],
429 (s->ch[0].status | s->ch[6].status) & 0x3f);
430 qemu_set_irq(s->ih[OMAP_INT_DMA_CH1_7],
431 (s->ch[1].status | s->ch[7].status) & 0x3f);
432 qemu_set_irq(s->ih[OMAP_INT_DMA_CH2_8],
433 (s->ch[2].status | s->ch[8].status) & 0x3f);
434 qemu_set_irq(s->ih[OMAP_INT_DMA_CH3],
435 (s->ch[3].status) & 0x3f);
436 qemu_set_irq(s->ih[OMAP_INT_DMA_CH4],
437 (s->ch[4].status) & 0x3f);
438 qemu_set_irq(s->ih[OMAP_INT_DMA_CH5],
439 (s->ch[5].status) & 0x3f);
440 }
441
442 static void omap_dma_channel_load(struct omap_dma_s *s, int ch)
443 {
444 struct omap_dma_reg_set_s *a = &s->ch[ch].active_set;
445 int i;
446
447 /*
448 * TODO: verify address ranges and alignment
449 * TODO: port endianness
450 */
451
452 a->src = s->ch[ch].addr[0];
453 a->dest = s->ch[ch].addr[1];
454 a->frames = s->ch[ch].frames;
455 a->elements = s->ch[ch].elements;
456 a->frame = 0;
457 a->element = 0;
458
459 if (unlikely(!s->ch[ch].elements || !s->ch[ch].frames)) {
460 printf("%s: bad DMA request\n", __FUNCTION__);
461 return;
462 }
463
464 for (i = 0; i < 2; i ++)
465 switch (s->ch[ch].mode[i]) {
466 case constant:
467 a->elem_delta[i] = 0;
468 a->frame_delta[i] = 0;
469 break;
470 case post_incremented:
471 a->elem_delta[i] = s->ch[ch].data_type;
472 a->frame_delta[i] = 0;
473 break;
474 case single_index:
475 a->elem_delta[i] = s->ch[ch].data_type +
476 s->ch[ch].element_index - 1;
477 if (s->ch[ch].element_index > 0x7fff)
478 a->elem_delta[i] -= 0x10000;
479 a->frame_delta[i] = 0;
480 break;
481 case double_index:
482 a->elem_delta[i] = s->ch[ch].data_type +
483 s->ch[ch].element_index - 1;
484 if (s->ch[ch].element_index > 0x7fff)
485 a->elem_delta[i] -= 0x10000;
486 a->frame_delta[i] = s->ch[ch].frame_index -
487 s->ch[ch].element_index;
488 if (s->ch[ch].frame_index > 0x7fff)
489 a->frame_delta[i] -= 0x10000;
490 break;
491 default:
492 break;
493 }
494 }
495
496 static inline void omap_dma_request_run(struct omap_dma_s *s,
497 int channel, int request)
498 {
499 next_channel:
500 if (request > 0)
501 for (; channel < 9; channel ++)
502 if (s->ch[channel].sync == request && s->ch[channel].running)
503 break;
504 if (channel >= 9)
505 return;
506
507 if (s->ch[channel].transfer) {
508 if (request > 0) {
509 s->ch[channel ++].post_sync = request;
510 goto next_channel;
511 }
512 s->ch[channel].status |= 0x02; /* Synchronisation drop */
513 omap_dma_interrupts_update(s);
514 return;
515 }
516
517 if (!s->ch[channel].signalled)
518 s->run_count ++;
519 s->ch[channel].signalled = 1;
520
521 if (request > 0)
522 s->ch[channel].status |= 0x40; /* External request */
523
524 if (s->delay && !qemu_timer_pending(s->tm))
525 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
526
527 if (request > 0) {
528 channel ++;
529 goto next_channel;
530 }
531 }
532
533 static inline void omap_dma_request_stop(struct omap_dma_s *s, int channel)
534 {
535 if (s->ch[channel].signalled)
536 s->run_count --;
537 s->ch[channel].signalled = 0;
538
539 if (!s->run_count)
540 qemu_del_timer(s->tm);
541 }
542
543 static void omap_dma_channel_run(struct omap_dma_s *s)
544 {
545 int ch;
546 uint16_t status;
547 uint8_t value[4];
548 struct omap_dma_port_if_s *src_p, *dest_p;
549 struct omap_dma_reg_set_s *a;
550
551 for (ch = 0; ch < 9; ch ++) {
552 a = &s->ch[ch].active_set;
553
554 src_p = &s->mpu->port[s->ch[ch].port[0]];
555 dest_p = &s->mpu->port[s->ch[ch].port[1]];
556 if (s->ch[ch].signalled && (!src_p->addr_valid(s->mpu, a->src) ||
557 !dest_p->addr_valid(s->mpu, a->dest))) {
558 #if 0
559 /* Bus time-out */
560 if (s->ch[ch].interrupts & 0x01)
561 s->ch[ch].status |= 0x01;
562 omap_dma_request_stop(s, ch);
563 continue;
564 #endif
565 printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, ch);
566 }
567
568 status = s->ch[ch].status;
569 while (status == s->ch[ch].status && s->ch[ch].signalled) {
570 /* Transfer a single element */
571 s->ch[ch].transfer = 1;
572 cpu_physical_memory_read(a->src, value, s->ch[ch].data_type);
573 cpu_physical_memory_write(a->dest, value, s->ch[ch].data_type);
574 s->ch[ch].transfer = 0;
575
576 a->src += a->elem_delta[0];
577 a->dest += a->elem_delta[1];
578 a->element ++;
579
580 /* Check interrupt conditions */
581 if (a->element == a->elements) {
582 a->element = 0;
583 a->src += a->frame_delta[0];
584 a->dest += a->frame_delta[1];
585 a->frame ++;
586
587 if (a->frame == a->frames) {
588 if (!s->ch[ch].repeat || !s->ch[ch].auto_init)
589 s->ch[ch].running = 0;
590
591 if (s->ch[ch].auto_init &&
592 (s->ch[ch].repeat ||
593 s->ch[ch].end_prog))
594 omap_dma_channel_load(s, ch);
595
596 if (s->ch[ch].interrupts & 0x20)
597 s->ch[ch].status |= 0x20;
598
599 if (!s->ch[ch].sync)
600 omap_dma_request_stop(s, ch);
601 }
602
603 if (s->ch[ch].interrupts & 0x08)
604 s->ch[ch].status |= 0x08;
605
606 if (s->ch[ch].sync && s->ch[ch].fs &&
607 !(s->drq & (1 << s->ch[ch].sync))) {
608 s->ch[ch].status &= ~0x40;
609 omap_dma_request_stop(s, ch);
610 }
611 }
612
613 if (a->element == 1 && a->frame == a->frames - 1)
614 if (s->ch[ch].interrupts & 0x10)
615 s->ch[ch].status |= 0x10;
616
617 if (a->element == (a->elements >> 1))
618 if (s->ch[ch].interrupts & 0x04)
619 s->ch[ch].status |= 0x04;
620
621 if (s->ch[ch].sync && !s->ch[ch].fs &&
622 !(s->drq & (1 << s->ch[ch].sync))) {
623 s->ch[ch].status &= ~0x40;
624 omap_dma_request_stop(s, ch);
625 }
626
627 /*
628 * Process requests made while the element was
629 * being transferred.
630 */
631 if (s->ch[ch].post_sync) {
632 omap_dma_request_run(s, 0, s->ch[ch].post_sync);
633 s->ch[ch].post_sync = 0;
634 }
635
636 #if 0
637 break;
638 #endif
639 }
640
641 s->ch[ch].cpc = a->dest & 0x0000ffff;
642 }
643
644 omap_dma_interrupts_update(s);
645 if (s->run_count && s->delay)
646 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
647 }
648
649 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
650 int ch, int reg, uint16_t *value) {
651 switch (reg) {
652 case 0x00: /* SYS_DMA_CSDP_CH0 */
653 *value = (s->ch[ch].burst[1] << 14) |
654 (s->ch[ch].pack[1] << 13) |
655 (s->ch[ch].port[1] << 9) |
656 (s->ch[ch].burst[0] << 7) |
657 (s->ch[ch].pack[0] << 6) |
658 (s->ch[ch].port[0] << 2) |
659 (s->ch[ch].data_type >> 1);
660 break;
661
662 case 0x02: /* SYS_DMA_CCR_CH0 */
663 *value = (s->ch[ch].mode[1] << 14) |
664 (s->ch[ch].mode[0] << 12) |
665 (s->ch[ch].end_prog << 11) |
666 (s->ch[ch].repeat << 9) |
667 (s->ch[ch].auto_init << 8) |
668 (s->ch[ch].running << 7) |
669 (s->ch[ch].priority << 6) |
670 (s->ch[ch].fs << 5) | s->ch[ch].sync;
671 break;
672
673 case 0x04: /* SYS_DMA_CICR_CH0 */
674 *value = s->ch[ch].interrupts;
675 break;
676
677 case 0x06: /* SYS_DMA_CSR_CH0 */
678 /* FIXME: shared CSR for channels sharing the interrupts */
679 *value = s->ch[ch].status;
680 s->ch[ch].status &= 0x40;
681 omap_dma_interrupts_update(s);
682 break;
683
684 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
685 *value = s->ch[ch].addr[0] & 0x0000ffff;
686 break;
687
688 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
689 *value = s->ch[ch].addr[0] >> 16;
690 break;
691
692 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
693 *value = s->ch[ch].addr[1] & 0x0000ffff;
694 break;
695
696 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
697 *value = s->ch[ch].addr[1] >> 16;
698 break;
699
700 case 0x10: /* SYS_DMA_CEN_CH0 */
701 *value = s->ch[ch].elements;
702 break;
703
704 case 0x12: /* SYS_DMA_CFN_CH0 */
705 *value = s->ch[ch].frames;
706 break;
707
708 case 0x14: /* SYS_DMA_CFI_CH0 */
709 *value = s->ch[ch].frame_index;
710 break;
711
712 case 0x16: /* SYS_DMA_CEI_CH0 */
713 *value = s->ch[ch].element_index;
714 break;
715
716 case 0x18: /* SYS_DMA_CPC_CH0 */
717 *value = s->ch[ch].cpc;
718 break;
719
720 default:
721 return 1;
722 }
723 return 0;
724 }
725
726 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
727 int ch, int reg, uint16_t value) {
728 switch (reg) {
729 case 0x00: /* SYS_DMA_CSDP_CH0 */
730 s->ch[ch].burst[1] = (value & 0xc000) >> 14;
731 s->ch[ch].pack[1] = (value & 0x2000) >> 13;
732 s->ch[ch].port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
733 s->ch[ch].burst[0] = (value & 0x0180) >> 7;
734 s->ch[ch].pack[0] = (value & 0x0040) >> 6;
735 s->ch[ch].port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
736 s->ch[ch].data_type = (1 << (value & 3));
737 if (s->ch[ch].port[0] >= omap_dma_port_last)
738 printf("%s: invalid DMA port %i\n", __FUNCTION__,
739 s->ch[ch].port[0]);
740 if (s->ch[ch].port[1] >= omap_dma_port_last)
741 printf("%s: invalid DMA port %i\n", __FUNCTION__,
742 s->ch[ch].port[1]);
743 if ((value & 3) == 3)
744 printf("%s: bad data_type for DMA channel %i\n", __FUNCTION__, ch);
745 break;
746
747 case 0x02: /* SYS_DMA_CCR_CH0 */
748 s->ch[ch].mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
749 s->ch[ch].mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
750 s->ch[ch].end_prog = (value & 0x0800) >> 11;
751 s->ch[ch].repeat = (value & 0x0200) >> 9;
752 s->ch[ch].auto_init = (value & 0x0100) >> 8;
753 s->ch[ch].priority = (value & 0x0040) >> 6;
754 s->ch[ch].fs = (value & 0x0020) >> 5;
755 s->ch[ch].sync = value & 0x001f;
756 if (value & 0x0080) {
757 if (s->ch[ch].running) {
758 if (!s->ch[ch].signalled &&
759 s->ch[ch].auto_init && s->ch[ch].end_prog)
760 omap_dma_channel_load(s, ch);
761 } else {
762 s->ch[ch].running = 1;
763 omap_dma_channel_load(s, ch);
764 }
765 if (!s->ch[ch].sync || (s->drq & (1 << s->ch[ch].sync)))
766 omap_dma_request_run(s, ch, 0);
767 } else {
768 s->ch[ch].running = 0;
769 omap_dma_request_stop(s, ch);
770 }
771 break;
772
773 case 0x04: /* SYS_DMA_CICR_CH0 */
774 s->ch[ch].interrupts = value & 0x003f;
775 break;
776
777 case 0x06: /* SYS_DMA_CSR_CH0 */
778 return 1;
779
780 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
781 s->ch[ch].addr[0] &= 0xffff0000;
782 s->ch[ch].addr[0] |= value;
783 break;
784
785 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
786 s->ch[ch].addr[0] &= 0x0000ffff;
787 s->ch[ch].addr[0] |= value << 16;
788 break;
789
790 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
791 s->ch[ch].addr[1] &= 0xffff0000;
792 s->ch[ch].addr[1] |= value;
793 break;
794
795 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
796 s->ch[ch].addr[1] &= 0x0000ffff;
797 s->ch[ch].addr[1] |= value << 16;
798 break;
799
800 case 0x10: /* SYS_DMA_CEN_CH0 */
801 s->ch[ch].elements = value & 0xffff;
802 break;
803
804 case 0x12: /* SYS_DMA_CFN_CH0 */
805 s->ch[ch].frames = value & 0xffff;
806 break;
807
808 case 0x14: /* SYS_DMA_CFI_CH0 */
809 s->ch[ch].frame_index = value & 0xffff;
810 break;
811
812 case 0x16: /* SYS_DMA_CEI_CH0 */
813 s->ch[ch].element_index = value & 0xffff;
814 break;
815
816 case 0x18: /* SYS_DMA_CPC_CH0 */
817 return 1;
818
819 default:
820 OMAP_BAD_REG((unsigned long) reg);
821 }
822 return 0;
823 }
824
825 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
826 {
827 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
828 int i, reg, ch, offset = addr - s->base;
829 uint16_t ret;
830
831 switch (offset) {
832 case 0x000 ... 0x2fe:
833 reg = offset & 0x3f;
834 ch = (offset >> 6) & 0x0f;
835 if (omap_dma_ch_reg_read(s, ch, reg, &ret))
836 break;
837 return ret;
838
839 case 0x300: /* SYS_DMA_LCD_CTRL */
840 i = s->lcd_ch.condition;
841 s->lcd_ch.condition = 0;
842 qemu_irq_lower(s->lcd_ch.irq);
843 return ((s->lcd_ch.src == imif) << 6) | (i << 3) |
844 (s->lcd_ch.interrupts << 1) | s->lcd_ch.dual;
845
846 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
847 return s->lcd_ch.src_f1_top & 0xffff;
848
849 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
850 return s->lcd_ch.src_f1_top >> 16;
851
852 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
853 return s->lcd_ch.src_f1_bottom & 0xffff;
854
855 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
856 return s->lcd_ch.src_f1_bottom >> 16;
857
858 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
859 return s->lcd_ch.src_f2_top & 0xffff;
860
861 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
862 return s->lcd_ch.src_f2_top >> 16;
863
864 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
865 return s->lcd_ch.src_f2_bottom & 0xffff;
866
867 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
868 return s->lcd_ch.src_f2_bottom >> 16;
869
870 case 0x400: /* SYS_DMA_GCR */
871 return s->gcr;
872 }
873
874 OMAP_BAD_REG(addr);
875 return 0;
876 }
877
878 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
879 uint32_t value)
880 {
881 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
882 int reg, ch, offset = addr - s->base;
883
884 switch (offset) {
885 case 0x000 ... 0x2fe:
886 reg = offset & 0x3f;
887 ch = (offset >> 6) & 0x0f;
888 if (omap_dma_ch_reg_write(s, ch, reg, value))
889 OMAP_RO_REG(addr);
890 break;
891
892 case 0x300: /* SYS_DMA_LCD_CTRL */
893 s->lcd_ch.src = (value & 0x40) ? imif : emiff;
894 s->lcd_ch.condition = 0;
895 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
896 s->lcd_ch.interrupts = (value >> 1) & 1;
897 s->lcd_ch.dual = value & 1;
898 break;
899
900 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
901 s->lcd_ch.src_f1_top &= 0xffff0000;
902 s->lcd_ch.src_f1_top |= 0x0000ffff & value;
903 break;
904
905 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
906 s->lcd_ch.src_f1_top &= 0x0000ffff;
907 s->lcd_ch.src_f1_top |= value << 16;
908 break;
909
910 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
911 s->lcd_ch.src_f1_bottom &= 0xffff0000;
912 s->lcd_ch.src_f1_bottom |= 0x0000ffff & value;
913 break;
914
915 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
916 s->lcd_ch.src_f1_bottom &= 0x0000ffff;
917 s->lcd_ch.src_f1_bottom |= value << 16;
918 break;
919
920 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
921 s->lcd_ch.src_f2_top &= 0xffff0000;
922 s->lcd_ch.src_f2_top |= 0x0000ffff & value;
923 break;
924
925 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
926 s->lcd_ch.src_f2_top &= 0x0000ffff;
927 s->lcd_ch.src_f2_top |= value << 16;
928 break;
929
930 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
931 s->lcd_ch.src_f2_bottom &= 0xffff0000;
932 s->lcd_ch.src_f2_bottom |= 0x0000ffff & value;
933 break;
934
935 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
936 s->lcd_ch.src_f2_bottom &= 0x0000ffff;
937 s->lcd_ch.src_f2_bottom |= value << 16;
938 break;
939
940 case 0x400: /* SYS_DMA_GCR */
941 s->gcr = value & 0x000c;
942 break;
943
944 default:
945 OMAP_BAD_REG(addr);
946 }
947 }
948
949 static CPUReadMemoryFunc *omap_dma_readfn[] = {
950 omap_badwidth_read16,
951 omap_dma_read,
952 omap_badwidth_read16,
953 };
954
955 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
956 omap_badwidth_write16,
957 omap_dma_write,
958 omap_badwidth_write16,
959 };
960
961 static void omap_dma_request(void *opaque, int drq, int req)
962 {
963 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
964 /* The request pins are level triggered. */
965 if (req) {
966 if (~s->drq & (1 << drq)) {
967 s->drq |= 1 << drq;
968 omap_dma_request_run(s, 0, drq);
969 }
970 } else
971 s->drq &= ~(1 << drq);
972 }
973
974 static void omap_dma_clk_update(void *opaque, int line, int on)
975 {
976 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
977
978 if (on) {
979 s->delay = ticks_per_sec >> 5;
980 if (s->run_count)
981 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
982 } else {
983 s->delay = 0;
984 qemu_del_timer(s->tm);
985 }
986 }
987
988 static void omap_dma_reset(struct omap_dma_s *s)
989 {
990 int i;
991
992 qemu_del_timer(s->tm);
993 s->gcr = 0x0004;
994 s->drq = 0x00000000;
995 s->run_count = 0;
996 s->lcd_ch.src = emiff;
997 s->lcd_ch.condition = 0;
998 s->lcd_ch.interrupts = 0;
999 s->lcd_ch.dual = 0;
1000 memset(s->ch, 0, sizeof(s->ch));
1001 for (i = 0; i < s->chans; i ++)
1002 s->ch[i].interrupts = 0x0003;
1003 }
1004
1005 struct omap_dma_s *omap_dma_init(target_phys_addr_t base,
1006 qemu_irq pic[], struct omap_mpu_state_s *mpu, omap_clk clk)
1007 {
1008 int iomemtype;
1009 struct omap_dma_s *s = (struct omap_dma_s *)
1010 qemu_mallocz(sizeof(struct omap_dma_s));
1011
1012 s->ih = pic;
1013 s->base = base;
1014 s->chans = 9;
1015 s->mpu = mpu;
1016 s->clk = clk;
1017 s->lcd_ch.irq = pic[OMAP_INT_DMA_LCD];
1018 s->lcd_ch.mpu = mpu;
1019 s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s);
1020 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1021 mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1022 omap_dma_reset(s);
1023 omap_dma_clk_update(s, 0, 1);
1024
1025 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1026 omap_dma_writefn, s);
1027 cpu_register_physical_memory(s->base, 0x800, iomemtype);
1028
1029 return s;
1030 }
1031
1032 /* DMA ports */
1033 int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
1034 target_phys_addr_t addr)
1035 {
1036 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
1037 }
1038
1039 int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
1040 target_phys_addr_t addr)
1041 {
1042 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
1043 }
1044
1045 int omap_validate_imif_addr(struct omap_mpu_state_s *s,
1046 target_phys_addr_t addr)
1047 {
1048 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
1049 }
1050
1051 int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
1052 target_phys_addr_t addr)
1053 {
1054 return addr >= 0xfffb0000 && addr < 0xffff0000;
1055 }
1056
1057 int omap_validate_local_addr(struct omap_mpu_state_s *s,
1058 target_phys_addr_t addr)
1059 {
1060 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
1061 }
1062
1063 int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
1064 target_phys_addr_t addr)
1065 {
1066 return addr >= 0xe1010000 && addr < 0xe1020004;
1067 }
1068
1069 /* MPU OS timers */
1070 struct omap_mpu_timer_s {
1071 qemu_irq irq;
1072 omap_clk clk;
1073 target_phys_addr_t base;
1074 uint32_t val;
1075 int64_t time;
1076 QEMUTimer *timer;
1077 int64_t rate;
1078 int it_ena;
1079
1080 int enable;
1081 int ptv;
1082 int ar;
1083 int st;
1084 uint32_t reset_val;
1085 };
1086
1087 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
1088 {
1089 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
1090
1091 if (timer->st && timer->enable && timer->rate)
1092 return timer->val - muldiv64(distance >> (timer->ptv + 1),
1093 timer->rate, ticks_per_sec);
1094 else
1095 return timer->val;
1096 }
1097
1098 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
1099 {
1100 timer->val = omap_timer_read(timer);
1101 timer->time = qemu_get_clock(vm_clock);
1102 }
1103
1104 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
1105 {
1106 int64_t expires;
1107
1108 if (timer->enable && timer->st && timer->rate) {
1109 timer->val = timer->reset_val; /* Should skip this on clk enable */
1110 expires = timer->time + muldiv64(timer->val << (timer->ptv + 1),
1111 ticks_per_sec, timer->rate);
1112 qemu_mod_timer(timer->timer, expires);
1113 } else
1114 qemu_del_timer(timer->timer);
1115 }
1116
1117 static void omap_timer_tick(void *opaque)
1118 {
1119 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1120 omap_timer_sync(timer);
1121
1122 if (!timer->ar) {
1123 timer->val = 0;
1124 timer->st = 0;
1125 }
1126
1127 if (timer->it_ena)
1128 qemu_irq_raise(timer->irq);
1129 omap_timer_update(timer);
1130 }
1131
1132 static void omap_timer_clk_update(void *opaque, int line, int on)
1133 {
1134 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1135
1136 omap_timer_sync(timer);
1137 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
1138 omap_timer_update(timer);
1139 }
1140
1141 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
1142 {
1143 omap_clk_adduser(timer->clk,
1144 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
1145 timer->rate = omap_clk_getrate(timer->clk);
1146 }
1147
1148 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
1149 {
1150 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1151 int offset = addr - s->base;
1152
1153 switch (offset) {
1154 case 0x00: /* CNTL_TIMER */
1155 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
1156
1157 case 0x04: /* LOAD_TIM */
1158 break;
1159
1160 case 0x08: /* READ_TIM */
1161 return omap_timer_read(s);
1162 }
1163
1164 OMAP_BAD_REG(addr);
1165 return 0;
1166 }
1167
1168 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
1169 uint32_t value)
1170 {
1171 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1172 int offset = addr - s->base;
1173
1174 switch (offset) {
1175 case 0x00: /* CNTL_TIMER */
1176 omap_timer_sync(s);
1177 s->enable = (value >> 5) & 1;
1178 s->ptv = (value >> 2) & 7;
1179 s->ar = (value >> 1) & 1;
1180 s->st = value & 1;
1181 omap_timer_update(s);
1182 return;
1183
1184 case 0x04: /* LOAD_TIM */
1185 s->reset_val = value;
1186 return;
1187
1188 case 0x08: /* READ_TIM */
1189 OMAP_RO_REG(addr);
1190 break;
1191
1192 default:
1193 OMAP_BAD_REG(addr);
1194 }
1195 }
1196
1197 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
1198 omap_badwidth_read32,
1199 omap_badwidth_read32,
1200 omap_mpu_timer_read,
1201 };
1202
1203 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
1204 omap_badwidth_write32,
1205 omap_badwidth_write32,
1206 omap_mpu_timer_write,
1207 };
1208
1209 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
1210 {
1211 qemu_del_timer(s->timer);
1212 s->enable = 0;
1213 s->reset_val = 31337;
1214 s->val = 0;
1215 s->ptv = 0;
1216 s->ar = 0;
1217 s->st = 0;
1218 s->it_ena = 1;
1219 }
1220
1221 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
1222 qemu_irq irq, omap_clk clk)
1223 {
1224 int iomemtype;
1225 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
1226 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
1227
1228 s->irq = irq;
1229 s->clk = clk;
1230 s->base = base;
1231 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
1232 omap_mpu_timer_reset(s);
1233 omap_timer_clk_setup(s);
1234
1235 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
1236 omap_mpu_timer_writefn, s);
1237 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1238
1239 return s;
1240 }
1241
1242 /* Watchdog timer */
1243 struct omap_watchdog_timer_s {
1244 struct omap_mpu_timer_s timer;
1245 uint8_t last_wr;
1246 int mode;
1247 int free;
1248 int reset;
1249 };
1250
1251 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
1252 {
1253 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1254 int offset = addr - s->timer.base;
1255
1256 switch (offset) {
1257 case 0x00: /* CNTL_TIMER */
1258 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
1259 (s->timer.st << 7) | (s->free << 1);
1260
1261 case 0x04: /* READ_TIMER */
1262 return omap_timer_read(&s->timer);
1263
1264 case 0x08: /* TIMER_MODE */
1265 return s->mode << 15;
1266 }
1267
1268 OMAP_BAD_REG(addr);
1269 return 0;
1270 }
1271
1272 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
1273 uint32_t value)
1274 {
1275 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1276 int offset = addr - s->timer.base;
1277
1278 switch (offset) {
1279 case 0x00: /* CNTL_TIMER */
1280 omap_timer_sync(&s->timer);
1281 s->timer.ptv = (value >> 9) & 7;
1282 s->timer.ar = (value >> 8) & 1;
1283 s->timer.st = (value >> 7) & 1;
1284 s->free = (value >> 1) & 1;
1285 omap_timer_update(&s->timer);
1286 break;
1287
1288 case 0x04: /* LOAD_TIMER */
1289 s->timer.reset_val = value & 0xffff;
1290 break;
1291
1292 case 0x08: /* TIMER_MODE */
1293 if (!s->mode && ((value >> 15) & 1))
1294 omap_clk_get(s->timer.clk);
1295 s->mode |= (value >> 15) & 1;
1296 if (s->last_wr == 0xf5) {
1297 if ((value & 0xff) == 0xa0) {
1298 s->mode = 0;
1299 omap_clk_put(s->timer.clk);
1300 } else {
1301 /* XXX: on T|E hardware somehow this has no effect,
1302 * on Zire 71 it works as specified. */
1303 s->reset = 1;
1304 qemu_system_reset_request();
1305 }
1306 }
1307 s->last_wr = value & 0xff;
1308 break;
1309
1310 default:
1311 OMAP_BAD_REG(addr);
1312 }
1313 }
1314
1315 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
1316 omap_badwidth_read16,
1317 omap_wd_timer_read,
1318 omap_badwidth_read16,
1319 };
1320
1321 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
1322 omap_badwidth_write16,
1323 omap_wd_timer_write,
1324 omap_badwidth_write16,
1325 };
1326
1327 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
1328 {
1329 qemu_del_timer(s->timer.timer);
1330 if (!s->mode)
1331 omap_clk_get(s->timer.clk);
1332 s->mode = 1;
1333 s->free = 1;
1334 s->reset = 0;
1335 s->timer.enable = 1;
1336 s->timer.it_ena = 1;
1337 s->timer.reset_val = 0xffff;
1338 s->timer.val = 0;
1339 s->timer.st = 0;
1340 s->timer.ptv = 0;
1341 s->timer.ar = 0;
1342 omap_timer_update(&s->timer);
1343 }
1344
1345 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
1346 qemu_irq irq, omap_clk clk)
1347 {
1348 int iomemtype;
1349 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
1350 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
1351
1352 s->timer.irq = irq;
1353 s->timer.clk = clk;
1354 s->timer.base = base;
1355 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1356 omap_wd_timer_reset(s);
1357 omap_timer_clk_setup(&s->timer);
1358
1359 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
1360 omap_wd_timer_writefn, s);
1361 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
1362
1363 return s;
1364 }
1365
1366 /* 32-kHz timer */
1367 struct omap_32khz_timer_s {
1368 struct omap_mpu_timer_s timer;
1369 };
1370
1371 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
1372 {
1373 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1374 int offset = addr - s->timer.base;
1375
1376 switch (offset) {
1377 case 0x00: /* TVR */
1378 return s->timer.reset_val;
1379
1380 case 0x04: /* TCR */
1381 return omap_timer_read(&s->timer);
1382
1383 case 0x08: /* CR */
1384 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
1385
1386 default:
1387 break;
1388 }
1389 OMAP_BAD_REG(addr);
1390 return 0;
1391 }
1392
1393 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1394 uint32_t value)
1395 {
1396 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1397 int offset = addr - s->timer.base;
1398
1399 switch (offset) {
1400 case 0x00: /* TVR */
1401 s->timer.reset_val = value & 0x00ffffff;
1402 break;
1403
1404 case 0x04: /* TCR */
1405 OMAP_RO_REG(addr);
1406 break;
1407
1408 case 0x08: /* CR */
1409 s->timer.ar = (value >> 3) & 1;
1410 s->timer.it_ena = (value >> 2) & 1;
1411 if (s->timer.st != (value & 1) || (value & 2)) {
1412 omap_timer_sync(&s->timer);
1413 s->timer.enable = value & 1;
1414 s->timer.st = value & 1;
1415 omap_timer_update(&s->timer);
1416 }
1417 break;
1418
1419 default:
1420 OMAP_BAD_REG(addr);
1421 }
1422 }
1423
1424 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1425 omap_badwidth_read32,
1426 omap_badwidth_read32,
1427 omap_os_timer_read,
1428 };
1429
1430 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1431 omap_badwidth_write32,
1432 omap_badwidth_write32,
1433 omap_os_timer_write,
1434 };
1435
1436 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1437 {
1438 qemu_del_timer(s->timer.timer);
1439 s->timer.enable = 0;
1440 s->timer.it_ena = 0;
1441 s->timer.reset_val = 0x00ffffff;
1442 s->timer.val = 0;
1443 s->timer.st = 0;
1444 s->timer.ptv = 0;
1445 s->timer.ar = 1;
1446 }
1447
1448 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1449 qemu_irq irq, omap_clk clk)
1450 {
1451 int iomemtype;
1452 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1453 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1454
1455 s->timer.irq = irq;
1456 s->timer.clk = clk;
1457 s->timer.base = base;
1458 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1459 omap_os_timer_reset(s);
1460 omap_timer_clk_setup(&s->timer);
1461
1462 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1463 omap_os_timer_writefn, s);
1464 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1465
1466 return s;
1467 }
1468
1469 /* Ultra Low-Power Device Module */
1470 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1471 {
1472 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1473 int offset = addr - s->ulpd_pm_base;
1474 uint16_t ret;
1475
1476 switch (offset) {
1477 case 0x14: /* IT_STATUS */
1478 ret = s->ulpd_pm_regs[offset >> 2];
1479 s->ulpd_pm_regs[offset >> 2] = 0;
1480 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1481 return ret;
1482
1483 case 0x18: /* Reserved */
1484 case 0x1c: /* Reserved */
1485 case 0x20: /* Reserved */
1486 case 0x28: /* Reserved */
1487 case 0x2c: /* Reserved */
1488 OMAP_BAD_REG(addr);
1489 case 0x00: /* COUNTER_32_LSB */
1490 case 0x04: /* COUNTER_32_MSB */
1491 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1492 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1493 case 0x10: /* GAUGING_CTRL */
1494 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1495 case 0x30: /* CLOCK_CTRL */
1496 case 0x34: /* SOFT_REQ */
1497 case 0x38: /* COUNTER_32_FIQ */
1498 case 0x3c: /* DPLL_CTRL */
1499 case 0x40: /* STATUS_REQ */
1500 /* XXX: check clk::usecount state for every clock */
1501 case 0x48: /* LOCL_TIME */
1502 case 0x4c: /* APLL_CTRL */
1503 case 0x50: /* POWER_CTRL */
1504 return s->ulpd_pm_regs[offset >> 2];
1505 }
1506
1507 OMAP_BAD_REG(addr);
1508 return 0;
1509 }
1510
1511 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1512 uint16_t diff, uint16_t value)
1513 {
1514 if (diff & (1 << 4)) /* USB_MCLK_EN */
1515 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1516 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1517 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1518 }
1519
1520 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1521 uint16_t diff, uint16_t value)
1522 {
1523 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1524 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1525 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1526 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1527 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1528 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1529 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1530 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1531 }
1532
1533 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1534 uint32_t value)
1535 {
1536 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1537 int offset = addr - s->ulpd_pm_base;
1538 int64_t now, ticks;
1539 int div, mult;
1540 static const int bypass_div[4] = { 1, 2, 4, 4 };
1541 uint16_t diff;
1542
1543 switch (offset) {
1544 case 0x00: /* COUNTER_32_LSB */
1545 case 0x04: /* COUNTER_32_MSB */
1546 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1547 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1548 case 0x14: /* IT_STATUS */
1549 case 0x40: /* STATUS_REQ */
1550 OMAP_RO_REG(addr);
1551 break;
1552
1553 case 0x10: /* GAUGING_CTRL */
1554 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1555 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1556 now = qemu_get_clock(vm_clock);
1557
1558 if (value & 1)
1559 s->ulpd_gauge_start = now;
1560 else {
1561 now -= s->ulpd_gauge_start;
1562
1563 /* 32-kHz ticks */
1564 ticks = muldiv64(now, 32768, ticks_per_sec);
1565 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1566 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1567 if (ticks >> 32) /* OVERFLOW_32K */
1568 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1569
1570 /* High frequency ticks */
1571 ticks = muldiv64(now, 12000000, ticks_per_sec);
1572 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1573 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1574 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1575 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1576
1577 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1578 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1579 }
1580 }
1581 s->ulpd_pm_regs[offset >> 2] = value;
1582 break;
1583
1584 case 0x18: /* Reserved */
1585 case 0x1c: /* Reserved */
1586 case 0x20: /* Reserved */
1587 case 0x28: /* Reserved */
1588 case 0x2c: /* Reserved */
1589 OMAP_BAD_REG(addr);
1590 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1591 case 0x38: /* COUNTER_32_FIQ */
1592 case 0x48: /* LOCL_TIME */
1593 case 0x50: /* POWER_CTRL */
1594 s->ulpd_pm_regs[offset >> 2] = value;
1595 break;
1596
1597 case 0x30: /* CLOCK_CTRL */
1598 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1599 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1600 omap_ulpd_clk_update(s, diff, value);
1601 break;
1602
1603 case 0x34: /* SOFT_REQ */
1604 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1605 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1606 omap_ulpd_req_update(s, diff, value);
1607 break;
1608
1609 case 0x3c: /* DPLL_CTRL */
1610 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1611 * omitted altogether, probably a typo. */
1612 /* This register has identical semantics with DPLL(1:3) control
1613 * registers, see omap_dpll_write() */
1614 diff = s->ulpd_pm_regs[offset >> 2] & value;
1615 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1616 if (diff & (0x3ff << 2)) {
1617 if (value & (1 << 4)) { /* PLL_ENABLE */
1618 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1619 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1620 } else {
1621 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1622 mult = 1;
1623 }
1624 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1625 }
1626
1627 /* Enter the desired mode. */
1628 s->ulpd_pm_regs[offset >> 2] =
1629 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1630 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1631
1632 /* Act as if the lock is restored. */
1633 s->ulpd_pm_regs[offset >> 2] |= 2;
1634 break;
1635
1636 case 0x4c: /* APLL_CTRL */
1637 diff = s->ulpd_pm_regs[offset >> 2] & value;
1638 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1639 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1640 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1641 (value & (1 << 0)) ? "apll" : "dpll4"));
1642 break;
1643
1644 default:
1645 OMAP_BAD_REG(addr);
1646 }
1647 }
1648
1649 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1650 omap_badwidth_read16,
1651 omap_ulpd_pm_read,
1652 omap_badwidth_read16,
1653 };
1654
1655 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1656 omap_badwidth_write16,
1657 omap_ulpd_pm_write,
1658 omap_badwidth_write16,
1659 };
1660
1661 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1662 {
1663 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1664 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1665 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1666 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1667 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1668 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1669 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1670 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1671 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1672 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1673 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1674 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1675 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1676 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1677 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1678 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1679 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1680 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1681 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1682 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1683 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1684 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1685 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1686 }
1687
1688 static void omap_ulpd_pm_init(target_phys_addr_t base,
1689 struct omap_mpu_state_s *mpu)
1690 {
1691 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1692 omap_ulpd_pm_writefn, mpu);
1693
1694 mpu->ulpd_pm_base = base;
1695 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1696 omap_ulpd_pm_reset(mpu);
1697 }
1698
1699 /* OMAP Pin Configuration */
1700 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1701 {
1702 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1703 int offset = addr - s->pin_cfg_base;
1704
1705 switch (offset) {
1706 case 0x00: /* FUNC_MUX_CTRL_0 */
1707 case 0x04: /* FUNC_MUX_CTRL_1 */
1708 case 0x08: /* FUNC_MUX_CTRL_2 */
1709 return s->func_mux_ctrl[offset >> 2];
1710
1711 case 0x0c: /* COMP_MODE_CTRL_0 */
1712 return s->comp_mode_ctrl[0];
1713
1714 case 0x10: /* FUNC_MUX_CTRL_3 */
1715 case 0x14: /* FUNC_MUX_CTRL_4 */
1716 case 0x18: /* FUNC_MUX_CTRL_5 */
1717 case 0x1c: /* FUNC_MUX_CTRL_6 */
1718 case 0x20: /* FUNC_MUX_CTRL_7 */
1719 case 0x24: /* FUNC_MUX_CTRL_8 */
1720 case 0x28: /* FUNC_MUX_CTRL_9 */
1721 case 0x2c: /* FUNC_MUX_CTRL_A */
1722 case 0x30: /* FUNC_MUX_CTRL_B */
1723 case 0x34: /* FUNC_MUX_CTRL_C */
1724 case 0x38: /* FUNC_MUX_CTRL_D */
1725 return s->func_mux_ctrl[(offset >> 2) - 1];
1726
1727 case 0x40: /* PULL_DWN_CTRL_0 */
1728 case 0x44: /* PULL_DWN_CTRL_1 */
1729 case 0x48: /* PULL_DWN_CTRL_2 */
1730 case 0x4c: /* PULL_DWN_CTRL_3 */
1731 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1732
1733 case 0x50: /* GATE_INH_CTRL_0 */
1734 return s->gate_inh_ctrl[0];
1735
1736 case 0x60: /* VOLTAGE_CTRL_0 */
1737 return s->voltage_ctrl[0];
1738
1739 case 0x70: /* TEST_DBG_CTRL_0 */
1740 return s->test_dbg_ctrl[0];
1741
1742 case 0x80: /* MOD_CONF_CTRL_0 */
1743 return s->mod_conf_ctrl[0];
1744 }
1745
1746 OMAP_BAD_REG(addr);
1747 return 0;
1748 }
1749
1750 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1751 uint32_t diff, uint32_t value)
1752 {
1753 if (s->compat1509) {
1754 if (diff & (1 << 9)) /* BLUETOOTH */
1755 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1756 (~value >> 9) & 1);
1757 if (diff & (1 << 7)) /* USB.CLKO */
1758 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1759 (value >> 7) & 1);
1760 }
1761 }
1762
1763 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1764 uint32_t diff, uint32_t value)
1765 {
1766 if (s->compat1509) {
1767 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1768 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1769 (value >> 31) & 1);
1770 if (diff & (1 << 1)) /* CLK32K */
1771 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1772 (~value >> 1) & 1);
1773 }
1774 }
1775
1776 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1777 uint32_t diff, uint32_t value)
1778 {
1779 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1780 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1781 omap_findclk(s, ((value >> 31) & 1) ?
1782 "ck_48m" : "armper_ck"));
1783 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1784 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1785 omap_findclk(s, ((value >> 30) & 1) ?
1786 "ck_48m" : "armper_ck"));
1787 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1788 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1789 omap_findclk(s, ((value >> 29) & 1) ?
1790 "ck_48m" : "armper_ck"));
1791 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1792 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1793 omap_findclk(s, ((value >> 23) & 1) ?
1794 "ck_48m" : "armper_ck"));
1795 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1796 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1797 omap_findclk(s, ((value >> 12) & 1) ?
1798 "ck_48m" : "armper_ck"));
1799 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1800 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1801 }
1802
1803 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1804 uint32_t value)
1805 {
1806 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1807 int offset = addr - s->pin_cfg_base;
1808 uint32_t diff;
1809
1810 switch (offset) {
1811 case 0x00: /* FUNC_MUX_CTRL_0 */
1812 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1813 s->func_mux_ctrl[offset >> 2] = value;
1814 omap_pin_funcmux0_update(s, diff, value);
1815 return;
1816
1817 case 0x04: /* FUNC_MUX_CTRL_1 */
1818 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1819 s->func_mux_ctrl[offset >> 2] = value;
1820 omap_pin_funcmux1_update(s, diff, value);
1821 return;
1822
1823 case 0x08: /* FUNC_MUX_CTRL_2 */
1824 s->func_mux_ctrl[offset >> 2] = value;
1825 return;
1826
1827 case 0x0c: /* COMP_MODE_CTRL_0 */
1828 s->comp_mode_ctrl[0] = value;
1829 s->compat1509 = (value != 0x0000eaef);
1830 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1831 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1832 return;
1833
1834 case 0x10: /* FUNC_MUX_CTRL_3 */
1835 case 0x14: /* FUNC_MUX_CTRL_4 */
1836 case 0x18: /* FUNC_MUX_CTRL_5 */
1837 case 0x1c: /* FUNC_MUX_CTRL_6 */
1838 case 0x20: /* FUNC_MUX_CTRL_7 */
1839 case 0x24: /* FUNC_MUX_CTRL_8 */
1840 case 0x28: /* FUNC_MUX_CTRL_9 */
1841 case 0x2c: /* FUNC_MUX_CTRL_A */
1842 case 0x30: /* FUNC_MUX_CTRL_B */
1843 case 0x34: /* FUNC_MUX_CTRL_C */
1844 case 0x38: /* FUNC_MUX_CTRL_D */
1845 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1846 return;
1847
1848 case 0x40: /* PULL_DWN_CTRL_0 */
1849 case 0x44: /* PULL_DWN_CTRL_1 */
1850 case 0x48: /* PULL_DWN_CTRL_2 */
1851 case 0x4c: /* PULL_DWN_CTRL_3 */
1852 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1853 return;
1854
1855 case 0x50: /* GATE_INH_CTRL_0 */
1856 s->gate_inh_ctrl[0] = value;
1857 return;
1858
1859 case 0x60: /* VOLTAGE_CTRL_0 */
1860 s->voltage_ctrl[0] = value;
1861 return;
1862
1863 case 0x70: /* TEST_DBG_CTRL_0 */
1864 s->test_dbg_ctrl[0] = value;
1865 return;
1866
1867 case 0x80: /* MOD_CONF_CTRL_0 */
1868 diff = s->mod_conf_ctrl[0] ^ value;
1869 s->mod_conf_ctrl[0] = value;
1870 omap_pin_modconf1_update(s, diff, value);
1871 return;
1872
1873 default:
1874 OMAP_BAD_REG(addr);
1875 }
1876 }
1877
1878 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1879 omap_badwidth_read32,
1880 omap_badwidth_read32,
1881 omap_pin_cfg_read,
1882 };
1883
1884 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1885 omap_badwidth_write32,
1886 omap_badwidth_write32,
1887 omap_pin_cfg_write,
1888 };
1889
1890 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1891 {
1892 /* Start in Compatibility Mode. */
1893 mpu->compat1509 = 1;
1894 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1895 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1896 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1897 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1898 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1899 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1900 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1901 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1902 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1903 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1904 }
1905
1906 static void omap_pin_cfg_init(target_phys_addr_t base,
1907 struct omap_mpu_state_s *mpu)
1908 {
1909 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1910 omap_pin_cfg_writefn, mpu);
1911
1912 mpu->pin_cfg_base = base;
1913 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1914 omap_pin_cfg_reset(mpu);
1915 }
1916
1917 /* Device Identification, Die Identification */
1918 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1919 {
1920 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1921
1922 switch (addr) {
1923 case 0xfffe1800: /* DIE_ID_LSB */
1924 return 0xc9581f0e;
1925 case 0xfffe1804: /* DIE_ID_MSB */
1926 return 0xa8858bfa;
1927
1928 case 0xfffe2000: /* PRODUCT_ID_LSB */
1929 return 0x00aaaafc;
1930 case 0xfffe2004: /* PRODUCT_ID_MSB */
1931 return 0xcafeb574;
1932
1933 case 0xfffed400: /* JTAG_ID_LSB */
1934 switch (s->mpu_model) {
1935 case omap310:
1936 return 0x03310315;
1937 case omap1510:
1938 return 0x03310115;
1939 }
1940 break;
1941
1942 case 0xfffed404: /* JTAG_ID_MSB */
1943 switch (s->mpu_model) {
1944 case omap310:
1945 return 0xfb57402f;
1946 case omap1510:
1947 return 0xfb47002f;
1948 }
1949 break;
1950 }
1951
1952 OMAP_BAD_REG(addr);
1953 return 0;
1954 }
1955
1956 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1957 uint32_t value)
1958 {
1959 OMAP_BAD_REG(addr);
1960 }
1961
1962 static CPUReadMemoryFunc *omap_id_readfn[] = {
1963 omap_badwidth_read32,
1964 omap_badwidth_read32,
1965 omap_id_read,
1966 };
1967
1968 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1969 omap_badwidth_write32,
1970 omap_badwidth_write32,
1971 omap_id_write,
1972 };
1973
1974 static void omap_id_init(struct omap_mpu_state_s *mpu)
1975 {
1976 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1977 omap_id_writefn, mpu);
1978 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1979 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1980 if (!cpu_is_omap15xx(mpu))
1981 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1982 }
1983
1984 /* MPUI Control (Dummy) */
1985 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1986 {
1987 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1988 int offset = addr - s->mpui_base;
1989
1990 switch (offset) {
1991 case 0x00: /* CTRL */
1992 return s->mpui_ctrl;
1993 case 0x04: /* DEBUG_ADDR */
1994 return 0x01ffffff;
1995 case 0x08: /* DEBUG_DATA */
1996 return 0xffffffff;
1997 case 0x0c: /* DEBUG_FLAG */
1998 return 0x00000800;
1999 case 0x10: /* STATUS */
2000 return 0x00000000;
2001
2002 /* Not in OMAP310 */
2003 case 0x14: /* DSP_STATUS */
2004 case 0x18: /* DSP_BOOT_CONFIG */
2005 return 0x00000000;
2006 case 0x1c: /* DSP_MPUI_CONFIG */
2007 return 0x0000ffff;
2008 }
2009
2010 OMAP_BAD_REG(addr);
2011 return 0;
2012 }
2013
2014 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
2015 uint32_t value)
2016 {
2017 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2018 int offset = addr - s->mpui_base;
2019
2020 switch (offset) {
2021 case 0x00: /* CTRL */
2022 s->mpui_ctrl = value & 0x007fffff;
2023 break;
2024
2025 case 0x04: /* DEBUG_ADDR */
2026 case 0x08: /* DEBUG_DATA */
2027 case 0x0c: /* DEBUG_FLAG */
2028 case 0x10: /* STATUS */
2029 /* Not in OMAP310 */
2030 case 0x14: /* DSP_STATUS */
2031 OMAP_RO_REG(addr);
2032 case 0x18: /* DSP_BOOT_CONFIG */
2033 case 0x1c: /* DSP_MPUI_CONFIG */
2034 break;
2035
2036 default:
2037 OMAP_BAD_REG(addr);
2038 }
2039 }
2040
2041 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
2042 omap_badwidth_read32,
2043 omap_badwidth_read32,
2044 omap_mpui_read,
2045 };
2046
2047 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
2048 omap_badwidth_write32,
2049 omap_badwidth_write32,
2050 omap_mpui_write,
2051 };
2052
2053 static void omap_mpui_reset(struct omap_mpu_state_s *s)
2054 {
2055 s->mpui_ctrl = 0x0003ff1b;
2056 }
2057
2058 static void omap_mpui_init(target_phys_addr_t base,
2059 struct omap_mpu_state_s *mpu)
2060 {
2061 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
2062 omap_mpui_writefn, mpu);
2063
2064 mpu->mpui_base = base;
2065 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
2066
2067 omap_mpui_reset(mpu);
2068 }
2069
2070 /* TIPB Bridges */
2071 struct omap_tipb_bridge_s {
2072 target_phys_addr_t base;
2073 qemu_irq abort;
2074
2075 int width_intr;
2076 uint16_t control;
2077 uint16_t alloc;
2078 uint16_t buffer;
2079 uint16_t enh_control;
2080 };
2081
2082 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
2083 {
2084 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2085 int offset = addr - s->base;
2086
2087 switch (offset) {
2088 case 0x00: /* TIPB_CNTL */
2089 return s->control;
2090 case 0x04: /* TIPB_BUS_ALLOC */
2091 return s->alloc;
2092 case 0x08: /* MPU_TIPB_CNTL */
2093 return s->buffer;
2094 case 0x0c: /* ENHANCED_TIPB_CNTL */
2095 return s->enh_control;
2096 case 0x10: /* ADDRESS_DBG */
2097 case 0x14: /* DATA_DEBUG_LOW */
2098 case 0x18: /* DATA_DEBUG_HIGH */
2099 return 0xffff;
2100 case 0x1c: /* DEBUG_CNTR_SIG */
2101 return 0x00f8;
2102 }
2103
2104 OMAP_BAD_REG(addr);
2105 return 0;
2106 }
2107
2108 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
2109 uint32_t value)
2110 {
2111 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2112 int offset = addr - s->base;
2113
2114 switch (offset) {
2115 case 0x00: /* TIPB_CNTL */
2116 s->control = value & 0xffff;
2117 break;
2118
2119 case 0x04: /* TIPB_BUS_ALLOC */
2120 s->alloc = value & 0x003f;
2121 break;
2122
2123 case 0x08: /* MPU_TIPB_CNTL */
2124 s->buffer = value & 0x0003;
2125 break;
2126
2127 case 0x0c: /* ENHANCED_TIPB_CNTL */
2128 s->width_intr = !(value & 2);
2129 s->enh_control = value & 0x000f;
2130 break;
2131
2132 case 0x10: /* ADDRESS_DBG */
2133 case 0x14: /* DATA_DEBUG_LOW */
2134 case 0x18: /* DATA_DEBUG_HIGH */
2135 case 0x1c: /* DEBUG_CNTR_SIG */
2136 OMAP_RO_REG(addr);
2137 break;
2138
2139 default:
2140 OMAP_BAD_REG(addr);
2141 }
2142 }
2143
2144 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
2145 omap_badwidth_read16,
2146 omap_tipb_bridge_read,
2147 omap_tipb_bridge_read,
2148 };
2149
2150 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
2151 omap_badwidth_write16,
2152 omap_tipb_bridge_write,
2153 omap_tipb_bridge_write,
2154 };
2155
2156 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
2157 {
2158 s->control = 0xffff;
2159 s->alloc = 0x0009;
2160 s->buffer = 0x0000;
2161 s->enh_control = 0x000f;
2162 }
2163
2164 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
2165 qemu_irq abort_irq, omap_clk clk)
2166 {
2167 int iomemtype;
2168 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
2169 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
2170
2171 s->abort = abort_irq;
2172 s->base = base;
2173 omap_tipb_bridge_reset(s);
2174
2175 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
2176 omap_tipb_bridge_writefn, s);
2177 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2178
2179 return s;
2180 }
2181
2182 /* Dummy Traffic Controller's Memory Interface */
2183 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
2184 {
2185 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2186 int offset = addr - s->tcmi_base;
2187 uint32_t ret;
2188
2189 switch (offset) {
2190 case 0xfffecc00: /* IMIF_PRIO */
2191 case 0xfffecc04: /* EMIFS_PRIO */
2192 case 0xfffecc08: /* EMIFF_PRIO */
2193 case 0xfffecc0c: /* EMIFS_CONFIG */
2194 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2195 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2196 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2197 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2198 case 0xfffecc24: /* EMIFF_MRS */
2199 case 0xfffecc28: /* TIMEOUT1 */
2200 case 0xfffecc2c: /* TIMEOUT2 */
2201 case 0xfffecc30: /* TIMEOUT3 */
2202 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2203 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2204 return s->tcmi_regs[offset >> 2];
2205
2206 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2207 ret = s->tcmi_regs[offset >> 2];
2208 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
2209 /* XXX: We can try using the VGA_DIRTY flag for this */
2210 return ret;
2211 }
2212
2213 OMAP_BAD_REG(addr);
2214 return 0;
2215 }
2216
2217 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
2218 uint32_t value)
2219 {
2220 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2221 int offset = addr - s->tcmi_base;
2222
2223 switch (offset) {
2224 case 0xfffecc00: /* IMIF_PRIO */
2225 case 0xfffecc04: /* EMIFS_PRIO */
2226 case 0xfffecc08: /* EMIFF_PRIO */
2227 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2228 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2229 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2230 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2231 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2232 case 0xfffecc24: /* EMIFF_MRS */
2233 case 0xfffecc28: /* TIMEOUT1 */
2234 case 0xfffecc2c: /* TIMEOUT2 */
2235 case 0xfffecc30: /* TIMEOUT3 */
2236 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2237 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2238 s->tcmi_regs[offset >> 2] = value;
2239 break;
2240 case 0xfffecc0c: /* EMIFS_CONFIG */
2241 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
2242 break;
2243
2244 default:
2245 OMAP_BAD_REG(addr);
2246 }
2247 }
2248
2249 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
2250 omap_badwidth_read32,
2251 omap_badwidth_read32,
2252 omap_tcmi_read,
2253 };
2254
2255 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
2256 omap_badwidth_write32,
2257 omap_badwidth_write32,
2258 omap_tcmi_write,
2259 };
2260
2261 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
2262 {
2263 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
2264 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
2265 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
2266 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
2267 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
2268 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
2269 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
2270 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
2271 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
2272 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
2273 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
2274 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
2275 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
2276 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
2277 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
2278 }
2279
2280 static void omap_tcmi_init(target_phys_addr_t base,
2281 struct omap_mpu_state_s *mpu)
2282 {
2283 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
2284 omap_tcmi_writefn, mpu);
2285
2286 mpu->tcmi_base = base;
2287 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
2288 omap_tcmi_reset(mpu);
2289 }
2290
2291 /* Digital phase-locked loops control */
2292 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
2293 {
2294 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2295 int offset = addr - s->base;
2296
2297 if (offset == 0x00) /* CTL_REG */
2298 return s->mode;
2299
2300 OMAP_BAD_REG(addr);
2301 return 0;
2302 }
2303
2304 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
2305 uint32_t value)
2306 {
2307 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2308 uint16_t diff;
2309 int offset = addr - s->base;
2310 static const int bypass_div[4] = { 1, 2, 4, 4 };
2311 int div, mult;
2312
2313 if (offset == 0x00) { /* CTL_REG */
2314 /* See omap_ulpd_pm_write() too */
2315 diff = s->mode & value;
2316 s->mode = value & 0x2fff;
2317 if (diff & (0x3ff << 2)) {
2318 if (value & (1 << 4)) { /* PLL_ENABLE */
2319 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
2320 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
2321 } else {
2322 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
2323 mult = 1;
2324 }
2325 omap_clk_setrate(s->dpll, div, mult);
2326 }
2327
2328 /* Enter the desired mode. */
2329 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
2330
2331 /* Act as if the lock is restored. */
2332 s->mode |= 2;
2333 } else {
2334 OMAP_BAD_REG(addr);
2335 }
2336 }
2337
2338 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
2339 omap_badwidth_read16,
2340 omap_dpll_read,
2341 omap_badwidth_read16,
2342 };
2343
2344 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
2345 omap_badwidth_write16,
2346 omap_dpll_write,
2347 omap_badwidth_write16,
2348 };
2349
2350 static void omap_dpll_reset(struct dpll_ctl_s *s)
2351 {
2352 s->mode = 0x2002;
2353 omap_clk_setrate(s->dpll, 1, 1);
2354 }
2355
2356 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
2357 omap_clk clk)
2358 {
2359 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
2360 omap_dpll_writefn, s);
2361
2362 s->base = base;
2363 s->dpll = clk;
2364 omap_dpll_reset(s);
2365
2366 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2367 }
2368
2369 /* UARTs */
2370 struct omap_uart_s {
2371 SerialState *serial; /* TODO */
2372 };
2373
2374 static void omap_uart_reset(struct omap_uart_s *s)
2375 {
2376 }
2377
2378 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2379 qemu_irq irq, omap_clk clk, CharDriverState *chr)
2380 {
2381 struct omap_uart_s *s = (struct omap_uart_s *)
2382 qemu_mallocz(sizeof(struct omap_uart_s));
2383 if (chr)
2384 s->serial = serial_mm_init(base, 2, irq, chr, 1);
2385 return s;
2386 }
2387
2388 /* MPU Clock/Reset/Power Mode Control */
2389 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2390 {
2391 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2392 int offset = addr - s->clkm.mpu_base;
2393
2394 switch (offset) {
2395 case 0x00: /* ARM_CKCTL */
2396 return s->clkm.arm_ckctl;
2397
2398 case 0x04: /* ARM_IDLECT1 */
2399 return s->clkm.arm_idlect1;
2400
2401 case 0x08: /* ARM_IDLECT2 */
2402 return s->clkm.arm_idlect2;
2403
2404 case 0x0c: /* ARM_EWUPCT */
2405 return s->clkm.arm_ewupct;
2406
2407 case 0x10: /* ARM_RSTCT1 */
2408 return s->clkm.arm_rstct1;
2409
2410 case 0x14: /* ARM_RSTCT2 */
2411 return s->clkm.arm_rstct2;
2412
2413 case 0x18: /* ARM_SYSST */
2414 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start;
2415
2416 case 0x1c: /* ARM_CKOUT1 */
2417 return s->clkm.arm_ckout1;
2418
2419 case 0x20: /* ARM_CKOUT2 */
2420 break;
2421 }
2422
2423 OMAP_BAD_REG(addr);
2424 return 0;
2425 }
2426
2427 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2428 uint16_t diff, uint16_t value)
2429 {
2430 omap_clk clk;
2431
2432 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2433 if (value & (1 << 14))
2434 /* Reserved */;
2435 else {
2436 clk = omap_findclk(s, "arminth_ck");
2437 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2438 }
2439 }
2440 if (diff & (1 << 12)) { /* ARM_TIMXO */
2441 clk = omap_findclk(s, "armtim_ck");
2442 if (value & (1 << 12))
2443 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2444 else
2445 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2446 }
2447 /* XXX: en_dspck */
2448 if (diff & (3 << 10)) { /* DSPMMUDIV */
2449 clk = omap_findclk(s, "dspmmu_ck");
2450 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2451 }
2452 if (diff & (3 << 8)) { /* TCDIV */
2453 clk = omap_findclk(s, "tc_ck");
2454 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2455 }
2456 if (diff & (3 << 6)) { /* DSPDIV */
2457 clk = omap_findclk(s, "dsp_ck");
2458 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2459 }
2460 if (diff & (3 << 4)) { /* ARMDIV */
2461 clk = omap_findclk(s, "arm_ck");
2462 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2463 }
2464 if (diff & (3 << 2)) { /* LCDDIV */
2465 clk = omap_findclk(s, "lcd_ck");
2466 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2467 }
2468 if (diff & (3 << 0)) { /* PERDIV */
2469 clk = omap_findclk(s, "armper_ck");
2470 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2471 }
2472 }
2473
2474 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2475 uint16_t diff, uint16_t value)
2476 {
2477 omap_clk clk;
2478
2479 if (value & (1 << 11)) /* SETARM_IDLE */
2480 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2481 if (!(value & (1 << 10))) /* WKUP_MODE */
2482 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2483
2484 #define SET_CANIDLE(clock, bit) \
2485 if (diff & (1 << bit)) { \
2486 clk = omap_findclk(s, clock); \
2487 omap_clk_canidle(clk, (value >> bit) & 1); \
2488 }
2489 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2490 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2491 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2492 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2493 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2494 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2495 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2496 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2497 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2498 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2499 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2500 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2501 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2502 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2503 }
2504
2505 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2506 uint16_t diff, uint16_t value)
2507 {
2508 omap_clk clk;
2509
2510 #define SET_ONOFF(clock, bit) \
2511 if (diff & (1 << bit)) { \
2512 clk = omap_findclk(s, clock); \
2513 omap_clk_onoff(clk, (value >> bit) & 1); \
2514 }
2515 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2516 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2517 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2518 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2519 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2520 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2521 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2522 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2523 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2524 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2525 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2526 }
2527
2528 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2529 uint16_t diff, uint16_t value)
2530 {
2531 omap_clk clk;
2532
2533 if (diff & (3 << 4)) { /* TCLKOUT */
2534 clk = omap_findclk(s, "tclk_out");
2535 switch ((value >> 4) & 3) {
2536 case 1:
2537 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2538 omap_clk_onoff(clk, 1);
2539 break;
2540 case 2:
2541 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2542 omap_clk_onoff(clk, 1);
2543 break;
2544 default:
2545 omap_clk_onoff(clk, 0);
2546 }
2547 }
2548 if (diff & (3 << 2)) { /* DCLKOUT */
2549 clk = omap_findclk(s, "dclk_out");
2550 switch ((value >> 2) & 3) {
2551 case 0:
2552 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2553 break;
2554 case 1:
2555 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2556 break;
2557 case 2:
2558 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2559 break;
2560 case 3:
2561 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2562 break;
2563 }
2564 }
2565 if (diff & (3 << 0)) { /* ACLKOUT */
2566 clk = omap_findclk(s, "aclk_out");
2567 switch ((value >> 0) & 3) {
2568 case 1:
2569 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2570 omap_clk_onoff(clk, 1);
2571 break;
2572 case 2:
2573 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2574 omap_clk_onoff(clk, 1);
2575 break;
2576 case 3:
2577 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2578 omap_clk_onoff(clk, 1);
2579 break;
2580 default:
2581 omap_clk_onoff(clk, 0);
2582 }
2583 }
2584 }
2585
2586 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2587 uint32_t value)
2588 {
2589 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2590 int offset = addr - s->clkm.mpu_base;
2591 uint16_t diff;
2592 omap_clk clk;
2593 static const char *clkschemename[8] = {
2594 "fully synchronous", "fully asynchronous", "synchronous scalable",
2595 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2596 };
2597
2598 switch (offset) {
2599 case 0x00: /* ARM_CKCTL */
2600 diff = s->clkm.arm_ckctl ^ value;
2601 s->clkm.arm_ckctl = value & 0x7fff;
2602 omap_clkm_ckctl_update(s, diff, value);
2603 return;
2604
2605 case 0x04: /* ARM_IDLECT1 */
2606 diff = s->clkm.arm_idlect1 ^ value;
2607 s->clkm.arm_idlect1 = value & 0x0fff;
2608 omap_clkm_idlect1_update(s, diff, value);
2609 return;
2610
2611 case 0x08: /* ARM_IDLECT2 */
2612 diff = s->clkm.arm_idlect2 ^ value;
2613 s->clkm.arm_idlect2 = value & 0x07ff;
2614 omap_clkm_idlect2_update(s, diff, value);
2615 return;
2616
2617 case 0x0c: /* ARM_EWUPCT */
2618 diff = s->clkm.arm_ewupct ^ value;
2619 s->clkm.arm_ewupct = value & 0x003f;
2620 return;
2621
2622 case 0x10: /* ARM_RSTCT1 */
2623 diff = s->clkm.arm_rstct1 ^ value;
2624 s->clkm.arm_rstct1 = value & 0x0007;
2625 if (value & 9) {
2626 qemu_system_reset_request();
2627 s->clkm.cold_start = 0xa;
2628 }
2629 if (diff & ~value & 4) { /* DSP_RST */
2630 omap_mpui_reset(s);
2631 omap_tipb_bridge_reset(s->private_tipb);
2632 omap_tipb_bridge_reset(s->public_tipb);
2633 }
2634 if (diff & 2) { /* DSP_EN */
2635 clk = omap_findclk(s, "dsp_ck");
2636 omap_clk_canidle(clk, (~value >> 1) & 1);
2637 }
2638 return;
2639
2640 case 0x14: /* ARM_RSTCT2 */
2641 s->clkm.arm_rstct2 = value & 0x0001;
2642 return;
2643
2644 case 0x18: /* ARM_SYSST */
2645 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2646 s->clkm.clocking_scheme = (value >> 11) & 7;
2647 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2648 clkschemename[s->clkm.clocking_scheme]);
2649 }
2650 s->clkm.cold_start &= value & 0x3f;
2651 return;
2652
2653 case 0x1c: /* ARM_CKOUT1 */
2654 diff = s->clkm.arm_ckout1 ^ value;
2655 s->clkm.arm_ckout1 = value & 0x003f;
2656 omap_clkm_ckout1_update(s, diff, value);
2657 return;
2658
2659 case 0x20: /* ARM_CKOUT2 */
2660 default:
2661 OMAP_BAD_REG(addr);
2662 }
2663 }
2664
2665 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2666 omap_badwidth_read16,
2667 omap_clkm_read,
2668 omap_badwidth_read16,
2669 };
2670
2671 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2672 omap_badwidth_write16,
2673 omap_clkm_write,
2674 omap_badwidth_write16,
2675 };
2676
2677 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2678 {
2679 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2680 int offset = addr - s->clkm.dsp_base;
2681
2682 switch (offset) {
2683 case 0x04: /* DSP_IDLECT1 */
2684 return s->clkm.dsp_idlect1;
2685
2686 case 0x08: /* DSP_IDLECT2 */
2687 return s->clkm.dsp_idlect2;
2688
2689 case 0x14: /* DSP_RSTCT2 */
2690 return s->clkm.dsp_rstct2;
2691
2692 case 0x18: /* DSP_SYSST */
2693 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start |
2694 (s->env->halted << 6); /* Quite useless... */
2695 }
2696
2697 OMAP_BAD_REG(addr);
2698 return 0;
2699 }
2700
2701 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2702 uint16_t diff, uint16_t value)
2703 {
2704 omap_clk clk;
2705
2706 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2707 }
2708
2709 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2710 uint16_t diff, uint16_t value)
2711 {
2712 omap_clk clk;
2713
2714 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2715 }
2716
2717 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2718 uint32_t value)
2719 {
2720 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2721 int offset = addr - s->clkm.dsp_base;
2722 uint16_t diff;
2723
2724 switch (offset) {
2725 case 0x04: /* DSP_IDLECT1 */
2726 diff = s->clkm.dsp_idlect1 ^ value;
2727 s->clkm.dsp_idlect1 = value & 0x01f7;
2728 omap_clkdsp_idlect1_update(s, diff, value);
2729 break;
2730
2731 case 0x08: /* DSP_IDLECT2 */
2732 s->clkm.dsp_idlect2 = value & 0x0037;
2733 diff = s->clkm.dsp_idlect1 ^ value;
2734 omap_clkdsp_idlect2_update(s, diff, value);
2735 break;
2736
2737 case 0x14: /* DSP_RSTCT2 */
2738 s->clkm.dsp_rstct2 = value & 0x0001;
2739 break;
2740
2741 case 0x18: /* DSP_SYSST */
2742 s->clkm.cold_start &= value & 0x3f;
2743 break;
2744
2745 default:
2746 OMAP_BAD_REG(addr);
2747 }
2748 }
2749
2750 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2751 omap_badwidth_read16,
2752 omap_clkdsp_read,
2753 omap_badwidth_read16,
2754 };
2755
2756 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2757 omap_badwidth_write16,
2758 omap_clkdsp_write,
2759 omap_badwidth_write16,
2760 };
2761
2762 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2763 {
2764 if (s->wdt && s->wdt->reset)
2765 s->clkm.cold_start = 0x6;
2766 s->clkm.clocking_scheme = 0;
2767 omap_clkm_ckctl_update(s, ~0, 0x3000);
2768 s->clkm.arm_ckctl = 0x3000;
2769 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 & 0x0400, 0x0400);
2770 s->clkm.arm_idlect1 = 0x0400;
2771 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 & 0x0100, 0x0100);
2772 s->clkm.arm_idlect2 = 0x0100;
2773 s->clkm.arm_ewupct = 0x003f;
2774 s->clkm.arm_rstct1 = 0x0000;
2775 s->clkm.arm_rstct2 = 0x0000;
2776 s->clkm.arm_ckout1 = 0x0015;
2777 s->clkm.dpll1_mode = 0x2002;
2778 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2779 s->clkm.dsp_idlect1 = 0x0040;
2780 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2781 s->clkm.dsp_idlect2 = 0x0000;
2782 s->clkm.dsp_rstct2 = 0x0000;
2783 }
2784
2785 static void omap_clkm_init(target_phys_addr_t mpu_base,
2786 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2787 {
2788 int iomemtype[2] = {
2789 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2790 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2791 };
2792
2793 s->clkm.mpu_base = mpu_base;
2794 s->clkm.dsp_base = dsp_base;
2795 s->clkm.cold_start = 0x3a;
2796 omap_clkm_reset(s);
2797
2798 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2799 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2800 }
2801
2802 /* MPU I/O */
2803 struct omap_mpuio_s {
2804 target_phys_addr_t base;
2805 qemu_irq irq;
2806 qemu_irq kbd_irq;
2807 qemu_irq *in;
2808 qemu_irq handler[16];
2809 qemu_irq wakeup;
2810
2811 uint16_t inputs;
2812 uint16_t outputs;
2813 uint16_t dir;
2814 uint16_t edge;
2815 uint16_t mask;
2816 uint16_t ints;
2817
2818 uint16_t debounce;
2819 uint16_t latch;
2820 uint8_t event;
2821
2822 uint8_t buttons[5];
2823 uint8_t row_latch;
2824 uint8_t cols;
2825 int kbd_mask;
2826 int clk;
2827 };
2828
2829 static void omap_mpuio_set(void *opaque, int line, int level)
2830 {
2831 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2832 uint16_t prev = s->inputs;
2833
2834 if (level)
2835 s->inputs |= 1 << line;
2836 else
2837 s->inputs &= ~(1 << line);
2838
2839 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2840 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2841 s->ints |= 1 << line;
2842 qemu_irq_raise(s->irq);
2843 /* TODO: wakeup */
2844 }
2845 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2846 (s->event >> 1) == line) /* PIN_SELECT */
2847 s->latch = s->inputs;
2848 }
2849 }
2850
2851 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2852 {
2853 int i;
2854 uint8_t *row, rows = 0, cols = ~s->cols;
2855
2856 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2857 if (*row & cols)
2858 rows |= i;
2859
2860 qemu_set_irq(s->kbd_irq, rows && ~s->kbd_mask && s->clk);
2861 s->row_latch = rows ^ 0x1f;
2862 }
2863
2864 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2865 {
2866 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2867 int offset = addr - s->base;
2868 uint16_t ret;
2869
2870 switch (offset) {
2871 case 0x00: /* INPUT_LATCH */
2872 return s->inputs;
2873
2874 case 0x04: /* OUTPUT_REG */
2875 return s->outputs;
2876
2877 case 0x08: /* IO_CNTL */
2878 return s->dir;
2879
2880 case 0x10: /* KBR_LATCH */
2881 return s->row_latch;
2882
2883 case 0x14: /* KBC_REG */
2884 return s->cols;
2885
2886 case 0x18: /* GPIO_EVENT_MODE_REG */
2887 return s->event;
2888
2889 case 0x1c: /* GPIO_INT_EDGE_REG */
2890 return s->edge;
2891
2892 case 0x20: /* KBD_INT */
2893 return (s->row_latch != 0x1f) && !s->kbd_mask;
2894
2895 case 0x24: /* GPIO_INT */
2896 ret = s->ints;
2897 s->ints &= s->mask;
2898 if (ret)
2899 qemu_irq_lower(s->irq);
2900 return ret;
2901
2902 case 0x28: /* KBD_MASKIT */
2903 return s->kbd_mask;
2904
2905 case 0x2c: /* GPIO_MASKIT */
2906 return s->mask;
2907
2908 case 0x30: /* GPIO_DEBOUNCING_REG */
2909 return s->debounce;
2910
2911 case 0x34: /* GPIO_LATCH_REG */
2912 return s->latch;
2913 }
2914
2915 OMAP_BAD_REG(addr);
2916 return 0;
2917 }
2918
2919 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2920 uint32_t value)
2921 {
2922 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2923 int offset = addr - s->base;
2924 uint16_t diff;
2925 int ln;
2926
2927 switch (offset) {
2928 case 0x04: /* OUTPUT_REG */
2929 diff = s->outputs ^ (value & ~s->dir);
2930 s->outputs = value;
2931 value &= ~s->dir;
2932 while ((ln = ffs(diff))) {
2933 ln --;
2934 if (s->handler[ln])
2935 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2936 diff &= ~(1 << ln);
2937 }
2938 break;
2939
2940 case 0x08: /* IO_CNTL */
2941 diff = s->outputs & (s->dir ^ value);
2942 s->dir = value;
2943
2944 value = s->outputs & ~s->dir;
2945 while ((ln = ffs(diff))) {
2946 ln --;
2947 if (s->handler[ln])
2948 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2949 diff &= ~(1 << ln);
2950 }
2951 break;
2952
2953 case 0x14: /* KBC_REG */
2954 s->cols = value;
2955 omap_mpuio_kbd_update(s);
2956 break;
2957
2958 case 0x18: /* GPIO_EVENT_MODE_REG */
2959 s->event = value & 0x1f;
2960 break;
2961
2962 case 0x1c: /* GPIO_INT_EDGE_REG */
2963 s->edge = value;
2964 break;
2965
2966 case 0x28: /* KBD_MASKIT */
2967 s->kbd_mask = value & 1;
2968 omap_mpuio_kbd_update(s);
2969 break;
2970
2971 case 0x2c: /* GPIO_MASKIT */
2972 s->mask = value;
2973 break;
2974
2975 case 0x30: /* GPIO_DEBOUNCING_REG */
2976 s->debounce = value & 0x1ff;
2977 break;
2978
2979 case 0x00: /* INPUT_LATCH */
2980 case 0x10: /* KBR_LATCH */
2981 case 0x20: /* KBD_INT */
2982 case 0x24: /* GPIO_INT */
2983 case 0x34: /* GPIO_LATCH_REG */
2984 OMAP_RO_REG(addr);
2985 return;
2986
2987 default:
2988 OMAP_BAD_REG(addr);
2989 return;
2990 }
2991 }
2992
2993 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2994 omap_badwidth_read16,
2995 omap_mpuio_read,
2996 omap_badwidth_read16,
2997 };
2998
2999 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
3000 omap_badwidth_write16,
3001 omap_mpuio_write,
3002 omap_badwidth_write16,
3003 };
3004
3005 void omap_mpuio_reset(struct omap_mpuio_s *s)
3006 {
3007 s->inputs = 0;
3008 s->outputs = 0;
3009 s->dir = ~0;
3010 s->event = 0;
3011 s->edge = 0;
3012 s->kbd_mask = 0;
3013 s->mask = 0;
3014 s->debounce = 0;
3015 s->latch = 0;
3016 s->ints = 0;
3017 s->row_latch = 0x1f;
3018 s->clk = 1;
3019 }
3020
3021 static void omap_mpuio_onoff(void *opaque, int line, int on)
3022 {
3023 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
3024
3025 s->clk = on;
3026 if (on)
3027 omap_mpuio_kbd_update(s);
3028 }
3029
3030 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
3031 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
3032 omap_clk clk)
3033 {
3034 int iomemtype;
3035 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
3036 qemu_mallocz(sizeof(struct omap_mpuio_s));
3037
3038 s->base = base;
3039 s->irq = gpio_int;
3040 s->kbd_irq = kbd_int;
3041 s->wakeup = wakeup;
3042 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
3043 omap_mpuio_reset(s);
3044
3045 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
3046 omap_mpuio_writefn, s);
3047 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3048
3049 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
3050
3051 return s;
3052 }
3053
3054 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
3055 {
3056 return s->in;
3057 }
3058
3059 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
3060 {
3061 if (line >= 16 || line < 0)
3062 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3063 s->handler[line] = handler;
3064 }
3065
3066 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
3067 {
3068 if (row >= 5 || row < 0)
3069 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
3070 __FUNCTION__, col, row);
3071
3072 if (down)
3073 s->buttons[row] |= 1 << col;
3074 else
3075 s->buttons[row] &= ~(1 << col);
3076
3077 omap_mpuio_kbd_update(s);
3078 }
3079
3080 /* General-Purpose I/O */
3081 struct omap_gpio_s {
3082 target_phys_addr_t base;
3083 qemu_irq irq;
3084 qemu_irq *in;
3085 qemu_irq handler[16];
3086
3087 uint16_t inputs;
3088 uint16_t outputs;
3089 uint16_t dir;
3090 uint16_t edge;
3091 uint16_t mask;
3092 uint16_t ints;
3093 };
3094
3095 static void omap_gpio_set(void *opaque, int line, int level)
3096 {
3097 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3098 uint16_t prev = s->inputs;
3099
3100 if (level)
3101 s->inputs |= 1 << line;
3102 else
3103 s->inputs &= ~(1 << line);
3104
3105 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
3106 (1 << line) & s->dir & ~s->mask) {
3107 s->ints |= 1 << line;
3108 qemu_irq_raise(s->irq);
3109 }
3110 }
3111
3112 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
3113 {
3114 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3115 int offset = addr - s->base;
3116
3117 switch (offset) {
3118 case 0x00: /* DATA_INPUT */
3119 return s->inputs;
3120
3121 case 0x04: /* DATA_OUTPUT */
3122 return s->outputs;
3123
3124 case 0x08: /* DIRECTION_CONTROL */
3125 return s->dir;
3126
3127 case 0x0c: /* INTERRUPT_CONTROL */
3128 return s->edge;
3129
3130 case 0x10: /* INTERRUPT_MASK */
3131 return s->mask;
3132
3133 case 0x14: /* INTERRUPT_STATUS */
3134 return s->ints;
3135 }
3136
3137 OMAP_BAD_REG(addr);
3138 return 0;
3139 }
3140
3141 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
3142 uint32_t value)
3143 {
3144 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3145 int offset = addr - s->base;
3146 uint16_t diff;
3147 int ln;
3148
3149 switch (offset) {
3150 case 0x00: /* DATA_INPUT */
3151 OMAP_RO_REG(addr);
3152 return;
3153
3154 case 0x04: /* DATA_OUTPUT */
3155 diff = (s->outputs ^ value) & ~s->dir;
3156 s->outputs = value;
3157 while ((ln = ffs(diff))) {
3158 ln --;
3159 if (s->handler[ln])
3160 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3161 diff &= ~(1 << ln);
3162 }
3163 break;
3164
3165 case 0x08: /* DIRECTION_CONTROL */
3166 diff = s->outputs & (s->dir ^ value);
3167 s->dir = value;
3168
3169 value = s->outputs & ~s->dir;
3170 while ((ln = ffs(diff))) {
3171 ln --;
3172 if (s->handler[ln])
3173 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3174 diff &= ~(1 << ln);
3175 }
3176 break;
3177
3178 case 0x0c: /* INTERRUPT_CONTROL */
3179 s->edge = value;
3180 break;
3181
3182 case 0x10: /* INTERRUPT_MASK */
3183 s->mask = value;
3184 break;
3185
3186 case 0x14: /* INTERRUPT_STATUS */
3187 s->ints &= ~value;
3188 if (!s->ints)
3189 qemu_irq_lower(s->irq);
3190 break;
3191
3192 default:
3193 OMAP_BAD_REG(addr);
3194 return;
3195 }
3196 }
3197
3198 /* *Some* sources say the memory region is 32-bit. */
3199 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
3200 omap_badwidth_read16,
3201 omap_gpio_read,
3202 omap_badwidth_read16,
3203 };
3204
3205 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
3206 omap_badwidth_write16,
3207 omap_gpio_write,
3208 omap_badwidth_write16,
3209 };
3210
3211 void omap_gpio_reset(struct omap_gpio_s *s)
3212 {
3213 s->inputs = 0;
3214 s->outputs = ~0;
3215 s->dir = ~0;
3216 s->edge = ~0;
3217 s->mask = ~0;
3218 s->ints = 0;
3219 }
3220
3221 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
3222 qemu_irq irq, omap_clk clk)
3223 {
3224 int iomemtype;
3225 struct omap_gpio_s *s = (struct omap_gpio_s *)
3226 qemu_mallocz(sizeof(struct omap_gpio_s));
3227
3228 s->base = base;
3229 s->irq = irq;
3230 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
3231 omap_gpio_reset(s);
3232
3233 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
3234 omap_gpio_writefn, s);
3235 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
3236
3237 return s;
3238 }
3239
3240 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
3241 {
3242 return s->in;
3243 }
3244
3245 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3246 {
3247 if (line >= 16 || line < 0)
3248 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3249 s->handler[line] = handler;
3250 }
3251
3252 /* MicroWire Interface */
3253 struct omap_uwire_s {
3254 target_phys_addr_t base;
3255 qemu_irq txirq;
3256 qemu_irq rxirq;
3257 qemu_irq txdrq;
3258
3259 uint16_t txbuf;
3260 uint16_t rxbuf;
3261 uint16_t control;
3262 uint16_t setup[5];
3263
3264 struct uwire_slave_s *chip[4];
3265 };
3266
3267 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3268 {
3269 int chipselect = (s->control >> 10) & 3; /* INDEX */
3270 struct uwire_slave_s *slave = s->chip[chipselect];
3271
3272 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3273 if (s->control & (1 << 12)) /* CS_CMD */
3274 if (slave && slave->send)
3275 slave->send(slave->opaque,
3276 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3277 s->control &= ~(1 << 14); /* CSRB */
3278 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3279 * a DRQ. When is the level IRQ supposed to be reset? */
3280 }
3281
3282 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3283 if (s->control & (1 << 12)) /* CS_CMD */
3284 if (slave && slave->receive)
3285 s->rxbuf = slave->receive(slave->opaque);
3286 s->control |= 1 << 15; /* RDRB */
3287 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3288 * a DRQ. When is the level IRQ supposed to be reset? */
3289 }
3290 }
3291
3292 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3293 {
3294 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3295 int offset = addr - s->base;
3296
3297 switch (offset) {
3298 case 0x00: /* RDR */
3299 s->control &= ~(1 << 15); /* RDRB */
3300 return s->rxbuf;
3301
3302 case 0x04: /* CSR */
3303 return s->control;
3304
3305 case 0x08: /* SR1 */
3306 return s->setup[0];
3307 case 0x0c: /* SR2 */
3308 return s->setup[1];
3309 case 0x10: /* SR3 */
3310 return s->setup[2];
3311 case 0x14: /* SR4 */
3312 return s->setup[3];
3313 case 0x18: /* SR5 */
3314 return s->setup[4];
3315 }
3316
3317 OMAP_BAD_REG(addr);
3318 return 0;
3319 }
3320
3321 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3322 uint32_t value)
3323 {
3324 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3325 int offset = addr - s->base;
3326
3327 switch (offset) {
3328 case 0x00: /* TDR */
3329 s->txbuf = value; /* TD */
3330 s->control |= 1 << 14; /* CSRB */
3331 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3332 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3333 (s->control & (1 << 12)))) /* CS_CMD */
3334 omap_uwire_transfer_start(s);
3335 break;
3336
3337 case 0x04: /* CSR */
3338 s->control = value & 0x1fff;
3339 if (value & (1 << 13)) /* START */
3340 omap_uwire_transfer_start(s);
3341 break;
3342
3343 case 0x08: /* SR1 */
3344 s->setup[0] = value & 0x003f;
3345 break;
3346
3347 case 0x0c: /* SR2 */
3348 s->setup[1] = value & 0x0fc0;
3349 break;
3350
3351 case 0x10: /* SR3 */
3352 s->setup[2] = value & 0x0003;
3353 break;
3354
3355 case 0x14: /* SR4 */
3356 s->setup[3] = value & 0x0001;
3357 break;
3358
3359 case 0x18: /* SR5 */
3360 s->setup[4] = value & 0x000f;
3361 break;
3362
3363 default:
3364 OMAP_BAD_REG(addr);
3365 return;
3366 }
3367 }
3368
3369 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3370 omap_badwidth_read16,
3371 omap_uwire_read,
3372 omap_badwidth_read16,
3373 };
3374
3375 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3376 omap_badwidth_write16,
3377 omap_uwire_write,
3378 omap_badwidth_write16,
3379 };
3380
3381 void omap_uwire_reset(struct omap_uwire_s *s)
3382 {
3383 s->control = 0;
3384 s->setup[0] = 0;
3385 s->setup[1] = 0;
3386 s->setup[2] = 0;
3387 s->setup[3] = 0;
3388 s->setup[4] = 0;
3389 }
3390
3391 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3392 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3393 {
3394 int iomemtype;
3395 struct omap_uwire_s *s = (struct omap_uwire_s *)
3396 qemu_mallocz(sizeof(struct omap_uwire_s));
3397
3398 s->base = base;
3399 s->txirq = irq[0];
3400 s->rxirq = irq[1];
3401 s->txdrq = dma;
3402 omap_uwire_reset(s);
3403
3404 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3405 omap_uwire_writefn, s);
3406 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3407
3408 return s;
3409 }
3410
3411 void omap_uwire_attach(struct omap_uwire_s *s,
3412 struct uwire_slave_s *slave, int chipselect)
3413 {
3414 if (chipselect < 0 || chipselect > 3)
3415 cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__,
3416 chipselect);
3417
3418 s->chip[chipselect] = slave;
3419 }
3420
3421 /* Pseudonoise Pulse-Width Light Modulator */
3422 void omap_pwl_update(struct omap_mpu_state_s *s)
3423 {
3424 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3425
3426 if (output != s->pwl.output) {
3427 s->pwl.output = output;
3428 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3429 }
3430 }
3431
3432 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3433 {
3434 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3435 int offset = addr - s->pwl.base;
3436
3437 switch (offset) {
3438 case 0x00: /* PWL_LEVEL */
3439 return s->pwl.level;
3440 case 0x04: /* PWL_CTRL */
3441 return s->pwl.enable;
3442 }
3443 OMAP_BAD_REG(addr);
3444 return 0;
3445 }
3446
3447 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3448 uint32_t value)
3449 {
3450 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3451 int offset = addr - s->pwl.base;
3452
3453 switch (offset) {
3454 case 0x00: /* PWL_LEVEL */
3455 s->pwl.level = value;
3456 omap_pwl_update(s);
3457 break;
3458 case 0x04: /* PWL_CTRL */
3459 s->pwl.enable = value & 1;
3460 omap_pwl_update(s);
3461 break;
3462 default:
3463 OMAP_BAD_REG(addr);
3464 return;
3465 }
3466 }
3467
3468 static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3469 omap_badwidth_read8,
3470 omap_badwidth_read8,
3471 omap_pwl_read,
3472 };
3473
3474 static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3475 omap_badwidth_write8,
3476 omap_badwidth_write8,
3477 omap_pwl_write,
3478 };
3479
3480 void omap_pwl_reset(struct omap_mpu_state_s *s)
3481 {
3482 s->pwl.output = 0;
3483 s->pwl.level = 0;
3484 s->pwl.enable = 0;
3485 s->pwl.clk = 1;
3486 omap_pwl_update(s);
3487 }
3488
3489 static void omap_pwl_clk_update(void *opaque, int line, int on)
3490 {
3491 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3492
3493 s->pwl.clk = on;
3494 omap_pwl_update(s);
3495 }
3496
3497 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3498 omap_clk clk)
3499 {
3500 int iomemtype;
3501
3502 s->pwl.base = base;
3503 omap_pwl_reset(s);
3504
3505 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3506 omap_pwl_writefn, s);
3507 cpu_register_physical_memory(s->pwl.base, 0x800, iomemtype);
3508
3509 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3510 }
3511
3512 /* Pulse-Width Tone module */
3513 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3514 {
3515 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3516 int offset = addr - s->pwt.base;
3517
3518 switch (offset) {
3519 case 0x00: /* FRC */
3520 return s->pwt.frc;
3521 case 0x04: /* VCR */
3522 return s->pwt.vrc;
3523 case 0x08: /* GCR */
3524 return s->pwt.gcr;
3525 }
3526 OMAP_BAD_REG(addr);
3527 return 0;
3528 }
3529
3530 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3531 uint32_t value)
3532 {
3533 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3534 int offset = addr - s->pwt.base;
3535
3536 switch (offset) {
3537 case 0x00: /* FRC */
3538 s->pwt.frc = value & 0x3f;
3539 break;
3540 case 0x04: /* VRC */
3541 if ((value ^ s->pwt.vrc) & 1) {
3542 if (value & 1)
3543 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3544 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3545 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3546 /* Pre-multiplexer divider */
3547 ((s->pwt.gcr & 2) ? 1 : 154) /
3548 /* Octave multiplexer */
3549 (2 << (value & 3)) *
3550 /* 101/107 divider */
3551 ((value & (1 << 2)) ? 101 : 107) *
3552 /* 49/55 divider */
3553 ((value & (1 << 3)) ? 49 : 55) *
3554 /* 50/63 divider */
3555 ((value & (1 << 4)) ? 50 : 63) *
3556 /* 80/127 divider */
3557 ((value & (1 << 5)) ? 80 : 127) /
3558 (107 * 55 * 63 * 127)));
3559 else
3560 printf("%s: silence!\n", __FUNCTION__);
3561 }
3562 s->pwt.vrc = value & 0x7f;
3563 break;
3564 case 0x08: /* GCR */
3565 s->pwt.gcr = value & 3;
3566 break;
3567 default:
3568 OMAP_BAD_REG(addr);
3569 return;
3570 }
3571 }
3572
3573 static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3574 omap_badwidth_read8,
3575 omap_badwidth_read8,
3576 omap_pwt_read,
3577 };
3578
3579 static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3580 omap_badwidth_write8,
3581 omap_badwidth_write8,
3582 omap_pwt_write,
3583 };
3584
3585 void omap_pwt_reset(struct omap_mpu_state_s *s)
3586 {
3587 s->pwt.frc = 0;
3588 s->pwt.vrc = 0;
3589 s->pwt.gcr = 0;
3590 }
3591
3592 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3593 omap_clk clk)
3594 {
3595 int iomemtype;
3596
3597 s->pwt.base = base;
3598 s->pwt.clk = clk;
3599 omap_pwt_reset(s);
3600
3601 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3602 omap_pwt_writefn, s);
3603 cpu_register_physical_memory(s->pwt.base, 0x800, iomemtype);
3604 }
3605
3606 /* General chip reset */
3607 static void omap_mpu_reset(void *opaque)
3608 {
3609 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3610
3611 omap_clkm_reset(mpu);
3612 omap_inth_reset(mpu->ih[0]);
3613 omap_inth_reset(mpu->ih[1]);
3614 omap_dma_reset(mpu->dma);
3615 omap_mpu_timer_reset(mpu->timer[0]);
3616 omap_mpu_timer_reset(mpu->timer[1]);
3617 omap_mpu_timer_reset(mpu->timer[2]);
3618 omap_wd_timer_reset(mpu->wdt);
3619 omap_os_timer_reset(mpu->os_timer);
3620 omap_lcdc_reset(mpu->lcd);
3621 omap_ulpd_pm_reset(mpu);
3622 omap_pin_cfg_reset(mpu);
3623 omap_mpui_reset(mpu);
3624 omap_tipb_bridge_reset(mpu->private_tipb);
3625 omap_tipb_bridge_reset(mpu->public_tipb);
3626 omap_dpll_reset(&mpu->dpll[0]);
3627 omap_dpll_reset(&mpu->dpll[1]);
3628 omap_dpll_reset(&mpu->dpll[2]);
3629 omap_uart_reset(mpu->uart[0]);
3630 omap_uart_reset(mpu->uart[1]);
3631 omap_uart_reset(mpu->uart[2]);
3632 omap_mmc_reset(mpu->mmc);
3633 omap_mpuio_reset(mpu->mpuio);
3634 omap_gpio_reset(mpu->gpio);
3635 omap_uwire_reset(mpu->microwire);
3636 omap_pwl_reset(mpu);
3637 cpu_reset(mpu->env);
3638 }
3639
3640 static void omap_mpu_wakeup(void *opaque, int irq, int req)
3641 {
3642 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3643
3644 if (mpu->env->halted)
3645 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3646 }
3647
3648 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3649 DisplayState *ds, const char *core)
3650 {
3651 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3652 qemu_mallocz(sizeof(struct omap_mpu_state_s));
3653 ram_addr_t imif_base, emiff_base;
3654
3655 /* Core */
3656 s->mpu_model = omap310;
3657 s->env = cpu_init();
3658 s->sdram_size = sdram_size;
3659 s->sram_size = OMAP15XX_SRAM_SIZE;
3660
3661 cpu_arm_set_model(s->env, core ?: "ti925t");
3662
3663 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3664
3665 /* Clocks */
3666 omap_clk_init(s);
3667
3668 /* Memory-mapped stuff */
3669 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3670 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
3671 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3672 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
3673
3674 omap_clkm_init(0xfffece00, 0xe1008000, s);
3675
3676 s->ih[0] = omap_inth_init(0xfffecb00, 0x100,
3677 arm_pic_init_cpu(s->env),
3678 omap_findclk(s, "arminth_ck"));
3679 s->ih[1] = omap_inth_init(0xfffe0000, 0x800,
3680 &s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ],
3681 omap_findclk(s, "arminth_ck"));
3682 s->irq[0] = s->ih[0]->pins;
3683 s->irq[1] = s->ih[1]->pins;
3684
3685 s->dma = omap_dma_init(0xfffed800, s->irq[0], s,
3686 omap_findclk(s, "dma_ck"));
3687 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3688 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3689 s->port[imif ].addr_valid = omap_validate_imif_addr;
3690 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3691 s->port[local ].addr_valid = omap_validate_local_addr;
3692 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3693
3694 s->timer[0] = omap_mpu_timer_init(0xfffec500,
3695 s->irq[0][OMAP_INT_TIMER1],
3696 omap_findclk(s, "mputim_ck"));
3697 s->timer[1] = omap_mpu_timer_init(0xfffec600,
3698 s->irq[0][OMAP_INT_TIMER2],
3699 omap_findclk(s, "mputim_ck"));
3700 s->timer[2] = omap_mpu_timer_init(0xfffec700,
3701 s->irq[0][OMAP_INT_TIMER3],
3702 omap_findclk(s, "mputim_ck"));
3703
3704 s->wdt = omap_wd_timer_init(0xfffec800,
3705 s->irq[0][OMAP_INT_WD_TIMER],
3706 omap_findclk(s, "armwdt_ck"));
3707
3708 s->os_timer = omap_os_timer_init(0xfffb9000,
3709 s->irq[1][OMAP_INT_OS_TIMER],
3710 omap_findclk(s, "clk32-kHz"));
3711
3712 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3713 &s->dma->lcd_ch, ds, imif_base, emiff_base,
3714 omap_findclk(s, "lcd_ck"));
3715
3716 omap_ulpd_pm_init(0xfffe0800, s);
3717 omap_pin_cfg_init(0xfffe1000, s);
3718 omap_id_init(s);
3719
3720 omap_mpui_init(0xfffec900, s);
3721
3722 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3723 s->irq[0][OMAP_INT_BRIDGE_PRIV],
3724 omap_findclk(s, "tipb_ck"));
3725 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3726 s->irq[0][OMAP_INT_BRIDGE_PUB],
3727 omap_findclk(s, "tipb_ck"));
3728
3729 omap_tcmi_init(0xfffecc00, s);
3730
3731 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3732 omap_findclk(s, "uart1_ck"),
3733 serial_hds[0]);
3734 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3735 omap_findclk(s, "uart2_ck"),
3736 serial_hds[0] ? serial_hds[1] : 0);
3737 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
3738 omap_findclk(s, "uart3_ck"),
3739 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
3740
3741 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3742 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3743 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3744
3745 s->mmc = omap_mmc_init(0xfffb7800, s->irq[1][OMAP_INT_OQN],
3746 &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck"));
3747
3748 s->mpuio = omap_mpuio_init(0xfffb5000,
3749 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3750 s->wakeup, omap_findclk(s, "clk32-kHz"));
3751
3752 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3753 omap_findclk(s, "arm_gpio_ck"));
3754
3755 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3756 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3757
3758 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "clk32-kHz"));
3759 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "xtal_osc_12m"));
3760
3761 qemu_register_reset(omap_mpu_reset, s);
3762
3763 return s;
3764 }