]> git.proxmox.com Git - mirror_qemu.git/blob - hw/omap1.c
Fix RTC initial date computation
[mirror_qemu.git] / hw / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21 #include "hw.h"
22 #include "arm-misc.h"
23 #include "omap.h"
24 #include "sysemu.h"
25 #include "qemu-timer.h"
26 #include "qemu-char.h"
27 #include "soc_dma.h"
28 /* We use pc-style serial ports. */
29 #include "pc.h"
30
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33 {
34 uint8_t ret;
35
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, (void *) &ret, 1);
38 return ret;
39 }
40
41 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42 uint32_t value)
43 {
44 uint8_t val8 = value;
45
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 }
49
50 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51 {
52 uint16_t ret;
53
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, (void *) &ret, 2);
56 return ret;
57 }
58
59 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60 uint32_t value)
61 {
62 uint16_t val16 = value;
63
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 }
67
68 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69 {
70 uint32_t ret;
71
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, (void *) &ret, 4);
74 return ret;
75 }
76
77 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78 uint32_t value)
79 {
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, (void *) &value, 4);
82 }
83
84 /* Interrupt Handlers */
85 struct omap_intr_handler_bank_s {
86 uint32_t irqs;
87 uint32_t inputs;
88 uint32_t mask;
89 uint32_t fiq;
90 uint32_t sens_edge;
91 uint32_t swi;
92 unsigned char priority[32];
93 };
94
95 struct omap_intr_handler_s {
96 qemu_irq *pins;
97 qemu_irq parent_intr[2];
98 unsigned char nbanks;
99 int level_only;
100
101 /* state */
102 uint32_t new_agr[2];
103 int sir_intr[2];
104 int autoidle;
105 uint32_t mask;
106 struct omap_intr_handler_bank_s bank[];
107 };
108
109 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
110 {
111 int i, j, sir_intr, p_intr, p, f;
112 uint32_t level;
113 sir_intr = 0;
114 p_intr = 255;
115
116 /* Find the interrupt line with the highest dynamic priority.
117 * Note: 0 denotes the hightest priority.
118 * If all interrupts have the same priority, the default order is IRQ_N,
119 * IRQ_N-1,...,IRQ_0. */
120 for (j = 0; j < s->nbanks; ++j) {
121 level = s->bank[j].irqs & ~s->bank[j].mask &
122 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
123 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
124 level >>= f) {
125 p = s->bank[j].priority[i];
126 if (p <= p_intr) {
127 p_intr = p;
128 sir_intr = 32 * j + i;
129 }
130 f = ffs(level >> 1);
131 }
132 }
133 s->sir_intr[is_fiq] = sir_intr;
134 }
135
136 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
137 {
138 int i;
139 uint32_t has_intr = 0;
140
141 for (i = 0; i < s->nbanks; ++i)
142 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
143 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
144
145 if (s->new_agr[is_fiq] & has_intr & s->mask) {
146 s->new_agr[is_fiq] = 0;
147 omap_inth_sir_update(s, is_fiq);
148 qemu_set_irq(s->parent_intr[is_fiq], 1);
149 }
150 }
151
152 #define INT_FALLING_EDGE 0
153 #define INT_LOW_LEVEL 1
154
155 static void omap_set_intr(void *opaque, int irq, int req)
156 {
157 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
158 uint32_t rise;
159
160 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
161 int n = irq & 31;
162
163 if (req) {
164 rise = ~bank->irqs & (1 << n);
165 if (~bank->sens_edge & (1 << n))
166 rise &= ~bank->inputs;
167
168 bank->inputs |= (1 << n);
169 if (rise) {
170 bank->irqs |= rise;
171 omap_inth_update(ih, 0);
172 omap_inth_update(ih, 1);
173 }
174 } else {
175 rise = bank->sens_edge & bank->irqs & (1 << n);
176 bank->irqs &= ~rise;
177 bank->inputs &= ~(1 << n);
178 }
179 }
180
181 /* Simplified version with no edge detection */
182 static void omap_set_intr_noedge(void *opaque, int irq, int req)
183 {
184 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
185 uint32_t rise;
186
187 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
188 int n = irq & 31;
189
190 if (req) {
191 rise = ~bank->inputs & (1 << n);
192 if (rise) {
193 bank->irqs |= bank->inputs |= rise;
194 omap_inth_update(ih, 0);
195 omap_inth_update(ih, 1);
196 }
197 } else
198 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
199 }
200
201 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
202 {
203 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
204 int i, offset = addr;
205 int bank_no = offset >> 8;
206 int line_no;
207 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
208 offset &= 0xff;
209
210 switch (offset) {
211 case 0x00: /* ITR */
212 return bank->irqs;
213
214 case 0x04: /* MIR */
215 return bank->mask;
216
217 case 0x10: /* SIR_IRQ_CODE */
218 case 0x14: /* SIR_FIQ_CODE */
219 if (bank_no != 0)
220 break;
221 line_no = s->sir_intr[(offset - 0x10) >> 2];
222 bank = &s->bank[line_no >> 5];
223 i = line_no & 31;
224 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
225 bank->irqs &= ~(1 << i);
226 return line_no;
227
228 case 0x18: /* CONTROL_REG */
229 if (bank_no != 0)
230 break;
231 return 0;
232
233 case 0x1c: /* ILR0 */
234 case 0x20: /* ILR1 */
235 case 0x24: /* ILR2 */
236 case 0x28: /* ILR3 */
237 case 0x2c: /* ILR4 */
238 case 0x30: /* ILR5 */
239 case 0x34: /* ILR6 */
240 case 0x38: /* ILR7 */
241 case 0x3c: /* ILR8 */
242 case 0x40: /* ILR9 */
243 case 0x44: /* ILR10 */
244 case 0x48: /* ILR11 */
245 case 0x4c: /* ILR12 */
246 case 0x50: /* ILR13 */
247 case 0x54: /* ILR14 */
248 case 0x58: /* ILR15 */
249 case 0x5c: /* ILR16 */
250 case 0x60: /* ILR17 */
251 case 0x64: /* ILR18 */
252 case 0x68: /* ILR19 */
253 case 0x6c: /* ILR20 */
254 case 0x70: /* ILR21 */
255 case 0x74: /* ILR22 */
256 case 0x78: /* ILR23 */
257 case 0x7c: /* ILR24 */
258 case 0x80: /* ILR25 */
259 case 0x84: /* ILR26 */
260 case 0x88: /* ILR27 */
261 case 0x8c: /* ILR28 */
262 case 0x90: /* ILR29 */
263 case 0x94: /* ILR30 */
264 case 0x98: /* ILR31 */
265 i = (offset - 0x1c) >> 2;
266 return (bank->priority[i] << 2) |
267 (((bank->sens_edge >> i) & 1) << 1) |
268 ((bank->fiq >> i) & 1);
269
270 case 0x9c: /* ISR */
271 return 0x00000000;
272
273 }
274 OMAP_BAD_REG(addr);
275 return 0;
276 }
277
278 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
279 uint32_t value)
280 {
281 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
282 int i, offset = addr;
283 int bank_no = offset >> 8;
284 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
285 offset &= 0xff;
286
287 switch (offset) {
288 case 0x00: /* ITR */
289 /* Important: ignore the clearing if the IRQ is level-triggered and
290 the input bit is 1 */
291 bank->irqs &= value | (bank->inputs & bank->sens_edge);
292 return;
293
294 case 0x04: /* MIR */
295 bank->mask = value;
296 omap_inth_update(s, 0);
297 omap_inth_update(s, 1);
298 return;
299
300 case 0x10: /* SIR_IRQ_CODE */
301 case 0x14: /* SIR_FIQ_CODE */
302 OMAP_RO_REG(addr);
303 break;
304
305 case 0x18: /* CONTROL_REG */
306 if (bank_no != 0)
307 break;
308 if (value & 2) {
309 qemu_set_irq(s->parent_intr[1], 0);
310 s->new_agr[1] = ~0;
311 omap_inth_update(s, 1);
312 }
313 if (value & 1) {
314 qemu_set_irq(s->parent_intr[0], 0);
315 s->new_agr[0] = ~0;
316 omap_inth_update(s, 0);
317 }
318 return;
319
320 case 0x1c: /* ILR0 */
321 case 0x20: /* ILR1 */
322 case 0x24: /* ILR2 */
323 case 0x28: /* ILR3 */
324 case 0x2c: /* ILR4 */
325 case 0x30: /* ILR5 */
326 case 0x34: /* ILR6 */
327 case 0x38: /* ILR7 */
328 case 0x3c: /* ILR8 */
329 case 0x40: /* ILR9 */
330 case 0x44: /* ILR10 */
331 case 0x48: /* ILR11 */
332 case 0x4c: /* ILR12 */
333 case 0x50: /* ILR13 */
334 case 0x54: /* ILR14 */
335 case 0x58: /* ILR15 */
336 case 0x5c: /* ILR16 */
337 case 0x60: /* ILR17 */
338 case 0x64: /* ILR18 */
339 case 0x68: /* ILR19 */
340 case 0x6c: /* ILR20 */
341 case 0x70: /* ILR21 */
342 case 0x74: /* ILR22 */
343 case 0x78: /* ILR23 */
344 case 0x7c: /* ILR24 */
345 case 0x80: /* ILR25 */
346 case 0x84: /* ILR26 */
347 case 0x88: /* ILR27 */
348 case 0x8c: /* ILR28 */
349 case 0x90: /* ILR29 */
350 case 0x94: /* ILR30 */
351 case 0x98: /* ILR31 */
352 i = (offset - 0x1c) >> 2;
353 bank->priority[i] = (value >> 2) & 0x1f;
354 bank->sens_edge &= ~(1 << i);
355 bank->sens_edge |= ((value >> 1) & 1) << i;
356 bank->fiq &= ~(1 << i);
357 bank->fiq |= (value & 1) << i;
358 return;
359
360 case 0x9c: /* ISR */
361 for (i = 0; i < 32; i ++)
362 if (value & (1 << i)) {
363 omap_set_intr(s, 32 * bank_no + i, 1);
364 return;
365 }
366 return;
367 }
368 OMAP_BAD_REG(addr);
369 }
370
371 static CPUReadMemoryFunc *omap_inth_readfn[] = {
372 omap_badwidth_read32,
373 omap_badwidth_read32,
374 omap_inth_read,
375 };
376
377 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
378 omap_inth_write,
379 omap_inth_write,
380 omap_inth_write,
381 };
382
383 void omap_inth_reset(struct omap_intr_handler_s *s)
384 {
385 int i;
386
387 for (i = 0; i < s->nbanks; ++i){
388 s->bank[i].irqs = 0x00000000;
389 s->bank[i].mask = 0xffffffff;
390 s->bank[i].sens_edge = 0x00000000;
391 s->bank[i].fiq = 0x00000000;
392 s->bank[i].inputs = 0x00000000;
393 s->bank[i].swi = 0x00000000;
394 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
395
396 if (s->level_only)
397 s->bank[i].sens_edge = 0xffffffff;
398 }
399
400 s->new_agr[0] = ~0;
401 s->new_agr[1] = ~0;
402 s->sir_intr[0] = 0;
403 s->sir_intr[1] = 0;
404 s->autoidle = 0;
405 s->mask = ~0;
406
407 qemu_set_irq(s->parent_intr[0], 0);
408 qemu_set_irq(s->parent_intr[1], 0);
409 }
410
411 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
412 unsigned long size, unsigned char nbanks, qemu_irq **pins,
413 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
414 {
415 int iomemtype;
416 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
417 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
418 sizeof(struct omap_intr_handler_bank_s) * nbanks);
419
420 s->parent_intr[0] = parent_irq;
421 s->parent_intr[1] = parent_fiq;
422 s->nbanks = nbanks;
423 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
424 if (pins)
425 *pins = s->pins;
426
427 omap_inth_reset(s);
428
429 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
430 omap_inth_writefn, s);
431 cpu_register_physical_memory(base, size, iomemtype);
432
433 return s;
434 }
435
436 static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
437 {
438 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
439 int offset = addr;
440 int bank_no, line_no;
441 struct omap_intr_handler_bank_s *bank = 0;
442
443 if ((offset & 0xf80) == 0x80) {
444 bank_no = (offset & 0x60) >> 5;
445 if (bank_no < s->nbanks) {
446 offset &= ~0x60;
447 bank = &s->bank[bank_no];
448 }
449 }
450
451 switch (offset) {
452 case 0x00: /* INTC_REVISION */
453 return 0x21;
454
455 case 0x10: /* INTC_SYSCONFIG */
456 return (s->autoidle >> 2) & 1;
457
458 case 0x14: /* INTC_SYSSTATUS */
459 return 1; /* RESETDONE */
460
461 case 0x40: /* INTC_SIR_IRQ */
462 return s->sir_intr[0];
463
464 case 0x44: /* INTC_SIR_FIQ */
465 return s->sir_intr[1];
466
467 case 0x48: /* INTC_CONTROL */
468 return (!s->mask) << 2; /* GLOBALMASK */
469
470 case 0x4c: /* INTC_PROTECTION */
471 return 0;
472
473 case 0x50: /* INTC_IDLE */
474 return s->autoidle & 3;
475
476 /* Per-bank registers */
477 case 0x80: /* INTC_ITR */
478 return bank->inputs;
479
480 case 0x84: /* INTC_MIR */
481 return bank->mask;
482
483 case 0x88: /* INTC_MIR_CLEAR */
484 case 0x8c: /* INTC_MIR_SET */
485 return 0;
486
487 case 0x90: /* INTC_ISR_SET */
488 return bank->swi;
489
490 case 0x94: /* INTC_ISR_CLEAR */
491 return 0;
492
493 case 0x98: /* INTC_PENDING_IRQ */
494 return bank->irqs & ~bank->mask & ~bank->fiq;
495
496 case 0x9c: /* INTC_PENDING_FIQ */
497 return bank->irqs & ~bank->mask & bank->fiq;
498
499 /* Per-line registers */
500 case 0x100 ... 0x300: /* INTC_ILR */
501 bank_no = (offset - 0x100) >> 7;
502 if (bank_no > s->nbanks)
503 break;
504 bank = &s->bank[bank_no];
505 line_no = (offset & 0x7f) >> 2;
506 return (bank->priority[line_no] << 2) |
507 ((bank->fiq >> line_no) & 1);
508 }
509 OMAP_BAD_REG(addr);
510 return 0;
511 }
512
513 static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
514 uint32_t value)
515 {
516 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
517 int offset = addr;
518 int bank_no, line_no;
519 struct omap_intr_handler_bank_s *bank = 0;
520
521 if ((offset & 0xf80) == 0x80) {
522 bank_no = (offset & 0x60) >> 5;
523 if (bank_no < s->nbanks) {
524 offset &= ~0x60;
525 bank = &s->bank[bank_no];
526 }
527 }
528
529 switch (offset) {
530 case 0x10: /* INTC_SYSCONFIG */
531 s->autoidle &= 4;
532 s->autoidle |= (value & 1) << 2;
533 if (value & 2) /* SOFTRESET */
534 omap_inth_reset(s);
535 return;
536
537 case 0x48: /* INTC_CONTROL */
538 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
539 if (value & 2) { /* NEWFIQAGR */
540 qemu_set_irq(s->parent_intr[1], 0);
541 s->new_agr[1] = ~0;
542 omap_inth_update(s, 1);
543 }
544 if (value & 1) { /* NEWIRQAGR */
545 qemu_set_irq(s->parent_intr[0], 0);
546 s->new_agr[0] = ~0;
547 omap_inth_update(s, 0);
548 }
549 return;
550
551 case 0x4c: /* INTC_PROTECTION */
552 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
553 * for every register, see Chapter 3 and 4 for privileged mode. */
554 if (value & 1)
555 fprintf(stderr, "%s: protection mode enable attempt\n",
556 __FUNCTION__);
557 return;
558
559 case 0x50: /* INTC_IDLE */
560 s->autoidle &= ~3;
561 s->autoidle |= value & 3;
562 return;
563
564 /* Per-bank registers */
565 case 0x84: /* INTC_MIR */
566 bank->mask = value;
567 omap_inth_update(s, 0);
568 omap_inth_update(s, 1);
569 return;
570
571 case 0x88: /* INTC_MIR_CLEAR */
572 bank->mask &= ~value;
573 omap_inth_update(s, 0);
574 omap_inth_update(s, 1);
575 return;
576
577 case 0x8c: /* INTC_MIR_SET */
578 bank->mask |= value;
579 return;
580
581 case 0x90: /* INTC_ISR_SET */
582 bank->irqs |= bank->swi |= value;
583 omap_inth_update(s, 0);
584 omap_inth_update(s, 1);
585 return;
586
587 case 0x94: /* INTC_ISR_CLEAR */
588 bank->swi &= ~value;
589 bank->irqs = bank->swi & bank->inputs;
590 return;
591
592 /* Per-line registers */
593 case 0x100 ... 0x300: /* INTC_ILR */
594 bank_no = (offset - 0x100) >> 7;
595 if (bank_no > s->nbanks)
596 break;
597 bank = &s->bank[bank_no];
598 line_no = (offset & 0x7f) >> 2;
599 bank->priority[line_no] = (value >> 2) & 0x3f;
600 bank->fiq &= ~(1 << line_no);
601 bank->fiq |= (value & 1) << line_no;
602 return;
603
604 case 0x00: /* INTC_REVISION */
605 case 0x14: /* INTC_SYSSTATUS */
606 case 0x40: /* INTC_SIR_IRQ */
607 case 0x44: /* INTC_SIR_FIQ */
608 case 0x80: /* INTC_ITR */
609 case 0x98: /* INTC_PENDING_IRQ */
610 case 0x9c: /* INTC_PENDING_FIQ */
611 OMAP_RO_REG(addr);
612 return;
613 }
614 OMAP_BAD_REG(addr);
615 }
616
617 static CPUReadMemoryFunc *omap2_inth_readfn[] = {
618 omap_badwidth_read32,
619 omap_badwidth_read32,
620 omap2_inth_read,
621 };
622
623 static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
624 omap2_inth_write,
625 omap2_inth_write,
626 omap2_inth_write,
627 };
628
629 struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
630 int size, int nbanks, qemu_irq **pins,
631 qemu_irq parent_irq, qemu_irq parent_fiq,
632 omap_clk fclk, omap_clk iclk)
633 {
634 int iomemtype;
635 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
636 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
637 sizeof(struct omap_intr_handler_bank_s) * nbanks);
638
639 s->parent_intr[0] = parent_irq;
640 s->parent_intr[1] = parent_fiq;
641 s->nbanks = nbanks;
642 s->level_only = 1;
643 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
644 if (pins)
645 *pins = s->pins;
646
647 omap_inth_reset(s);
648
649 iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
650 omap2_inth_writefn, s);
651 cpu_register_physical_memory(base, size, iomemtype);
652
653 return s;
654 }
655
656 /* MPU OS timers */
657 struct omap_mpu_timer_s {
658 qemu_irq irq;
659 omap_clk clk;
660 uint32_t val;
661 int64_t time;
662 QEMUTimer *timer;
663 QEMUBH *tick;
664 int64_t rate;
665 int it_ena;
666
667 int enable;
668 int ptv;
669 int ar;
670 int st;
671 uint32_t reset_val;
672 };
673
674 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
675 {
676 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
677
678 if (timer->st && timer->enable && timer->rate)
679 return timer->val - muldiv64(distance >> (timer->ptv + 1),
680 timer->rate, ticks_per_sec);
681 else
682 return timer->val;
683 }
684
685 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
686 {
687 timer->val = omap_timer_read(timer);
688 timer->time = qemu_get_clock(vm_clock);
689 }
690
691 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
692 {
693 int64_t expires;
694
695 if (timer->enable && timer->st && timer->rate) {
696 timer->val = timer->reset_val; /* Should skip this on clk enable */
697 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
698 ticks_per_sec, timer->rate);
699
700 /* If timer expiry would be sooner than in about 1 ms and
701 * auto-reload isn't set, then fire immediately. This is a hack
702 * to make systems like PalmOS run in acceptable time. PalmOS
703 * sets the interval to a very low value and polls the status bit
704 * in a busy loop when it wants to sleep just a couple of CPU
705 * ticks. */
706 if (expires > (ticks_per_sec >> 10) || timer->ar)
707 qemu_mod_timer(timer->timer, timer->time + expires);
708 else
709 qemu_bh_schedule(timer->tick);
710 } else
711 qemu_del_timer(timer->timer);
712 }
713
714 static void omap_timer_fire(void *opaque)
715 {
716 struct omap_mpu_timer_s *timer = opaque;
717
718 if (!timer->ar) {
719 timer->val = 0;
720 timer->st = 0;
721 }
722
723 if (timer->it_ena)
724 /* Edge-triggered irq */
725 qemu_irq_pulse(timer->irq);
726 }
727
728 static void omap_timer_tick(void *opaque)
729 {
730 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
731
732 omap_timer_sync(timer);
733 omap_timer_fire(timer);
734 omap_timer_update(timer);
735 }
736
737 static void omap_timer_clk_update(void *opaque, int line, int on)
738 {
739 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
740
741 omap_timer_sync(timer);
742 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
743 omap_timer_update(timer);
744 }
745
746 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
747 {
748 omap_clk_adduser(timer->clk,
749 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
750 timer->rate = omap_clk_getrate(timer->clk);
751 }
752
753 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
754 {
755 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
756
757 switch (addr) {
758 case 0x00: /* CNTL_TIMER */
759 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
760
761 case 0x04: /* LOAD_TIM */
762 break;
763
764 case 0x08: /* READ_TIM */
765 return omap_timer_read(s);
766 }
767
768 OMAP_BAD_REG(addr);
769 return 0;
770 }
771
772 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
773 uint32_t value)
774 {
775 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
776
777 switch (addr) {
778 case 0x00: /* CNTL_TIMER */
779 omap_timer_sync(s);
780 s->enable = (value >> 5) & 1;
781 s->ptv = (value >> 2) & 7;
782 s->ar = (value >> 1) & 1;
783 s->st = value & 1;
784 omap_timer_update(s);
785 return;
786
787 case 0x04: /* LOAD_TIM */
788 s->reset_val = value;
789 return;
790
791 case 0x08: /* READ_TIM */
792 OMAP_RO_REG(addr);
793 break;
794
795 default:
796 OMAP_BAD_REG(addr);
797 }
798 }
799
800 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
801 omap_badwidth_read32,
802 omap_badwidth_read32,
803 omap_mpu_timer_read,
804 };
805
806 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
807 omap_badwidth_write32,
808 omap_badwidth_write32,
809 omap_mpu_timer_write,
810 };
811
812 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
813 {
814 qemu_del_timer(s->timer);
815 s->enable = 0;
816 s->reset_val = 31337;
817 s->val = 0;
818 s->ptv = 0;
819 s->ar = 0;
820 s->st = 0;
821 s->it_ena = 1;
822 }
823
824 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
825 qemu_irq irq, omap_clk clk)
826 {
827 int iomemtype;
828 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
829 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
830
831 s->irq = irq;
832 s->clk = clk;
833 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
834 s->tick = qemu_bh_new(omap_timer_fire, s);
835 omap_mpu_timer_reset(s);
836 omap_timer_clk_setup(s);
837
838 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
839 omap_mpu_timer_writefn, s);
840 cpu_register_physical_memory(base, 0x100, iomemtype);
841
842 return s;
843 }
844
845 /* Watchdog timer */
846 struct omap_watchdog_timer_s {
847 struct omap_mpu_timer_s timer;
848 uint8_t last_wr;
849 int mode;
850 int free;
851 int reset;
852 };
853
854 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
855 {
856 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
857
858 switch (addr) {
859 case 0x00: /* CNTL_TIMER */
860 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
861 (s->timer.st << 7) | (s->free << 1);
862
863 case 0x04: /* READ_TIMER */
864 return omap_timer_read(&s->timer);
865
866 case 0x08: /* TIMER_MODE */
867 return s->mode << 15;
868 }
869
870 OMAP_BAD_REG(addr);
871 return 0;
872 }
873
874 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
875 uint32_t value)
876 {
877 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
878
879 switch (addr) {
880 case 0x00: /* CNTL_TIMER */
881 omap_timer_sync(&s->timer);
882 s->timer.ptv = (value >> 9) & 7;
883 s->timer.ar = (value >> 8) & 1;
884 s->timer.st = (value >> 7) & 1;
885 s->free = (value >> 1) & 1;
886 omap_timer_update(&s->timer);
887 break;
888
889 case 0x04: /* LOAD_TIMER */
890 s->timer.reset_val = value & 0xffff;
891 break;
892
893 case 0x08: /* TIMER_MODE */
894 if (!s->mode && ((value >> 15) & 1))
895 omap_clk_get(s->timer.clk);
896 s->mode |= (value >> 15) & 1;
897 if (s->last_wr == 0xf5) {
898 if ((value & 0xff) == 0xa0) {
899 if (s->mode) {
900 s->mode = 0;
901 omap_clk_put(s->timer.clk);
902 }
903 } else {
904 /* XXX: on T|E hardware somehow this has no effect,
905 * on Zire 71 it works as specified. */
906 s->reset = 1;
907 qemu_system_reset_request();
908 }
909 }
910 s->last_wr = value & 0xff;
911 break;
912
913 default:
914 OMAP_BAD_REG(addr);
915 }
916 }
917
918 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
919 omap_badwidth_read16,
920 omap_wd_timer_read,
921 omap_badwidth_read16,
922 };
923
924 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
925 omap_badwidth_write16,
926 omap_wd_timer_write,
927 omap_badwidth_write16,
928 };
929
930 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
931 {
932 qemu_del_timer(s->timer.timer);
933 if (!s->mode)
934 omap_clk_get(s->timer.clk);
935 s->mode = 1;
936 s->free = 1;
937 s->reset = 0;
938 s->timer.enable = 1;
939 s->timer.it_ena = 1;
940 s->timer.reset_val = 0xffff;
941 s->timer.val = 0;
942 s->timer.st = 0;
943 s->timer.ptv = 0;
944 s->timer.ar = 0;
945 omap_timer_update(&s->timer);
946 }
947
948 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
949 qemu_irq irq, omap_clk clk)
950 {
951 int iomemtype;
952 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
953 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
954
955 s->timer.irq = irq;
956 s->timer.clk = clk;
957 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
958 omap_wd_timer_reset(s);
959 omap_timer_clk_setup(&s->timer);
960
961 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
962 omap_wd_timer_writefn, s);
963 cpu_register_physical_memory(base, 0x100, iomemtype);
964
965 return s;
966 }
967
968 /* 32-kHz timer */
969 struct omap_32khz_timer_s {
970 struct omap_mpu_timer_s timer;
971 };
972
973 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
974 {
975 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
976 int offset = addr & OMAP_MPUI_REG_MASK;
977
978 switch (offset) {
979 case 0x00: /* TVR */
980 return s->timer.reset_val;
981
982 case 0x04: /* TCR */
983 return omap_timer_read(&s->timer);
984
985 case 0x08: /* CR */
986 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
987
988 default:
989 break;
990 }
991 OMAP_BAD_REG(addr);
992 return 0;
993 }
994
995 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
996 uint32_t value)
997 {
998 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
999 int offset = addr & OMAP_MPUI_REG_MASK;
1000
1001 switch (offset) {
1002 case 0x00: /* TVR */
1003 s->timer.reset_val = value & 0x00ffffff;
1004 break;
1005
1006 case 0x04: /* TCR */
1007 OMAP_RO_REG(addr);
1008 break;
1009
1010 case 0x08: /* CR */
1011 s->timer.ar = (value >> 3) & 1;
1012 s->timer.it_ena = (value >> 2) & 1;
1013 if (s->timer.st != (value & 1) || (value & 2)) {
1014 omap_timer_sync(&s->timer);
1015 s->timer.enable = value & 1;
1016 s->timer.st = value & 1;
1017 omap_timer_update(&s->timer);
1018 }
1019 break;
1020
1021 default:
1022 OMAP_BAD_REG(addr);
1023 }
1024 }
1025
1026 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1027 omap_badwidth_read32,
1028 omap_badwidth_read32,
1029 omap_os_timer_read,
1030 };
1031
1032 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1033 omap_badwidth_write32,
1034 omap_badwidth_write32,
1035 omap_os_timer_write,
1036 };
1037
1038 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1039 {
1040 qemu_del_timer(s->timer.timer);
1041 s->timer.enable = 0;
1042 s->timer.it_ena = 0;
1043 s->timer.reset_val = 0x00ffffff;
1044 s->timer.val = 0;
1045 s->timer.st = 0;
1046 s->timer.ptv = 0;
1047 s->timer.ar = 1;
1048 }
1049
1050 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1051 qemu_irq irq, omap_clk clk)
1052 {
1053 int iomemtype;
1054 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1055 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1056
1057 s->timer.irq = irq;
1058 s->timer.clk = clk;
1059 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1060 omap_os_timer_reset(s);
1061 omap_timer_clk_setup(&s->timer);
1062
1063 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1064 omap_os_timer_writefn, s);
1065 cpu_register_physical_memory(base, 0x800, iomemtype);
1066
1067 return s;
1068 }
1069
1070 /* Ultra Low-Power Device Module */
1071 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1072 {
1073 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074 uint16_t ret;
1075
1076 switch (addr) {
1077 case 0x14: /* IT_STATUS */
1078 ret = s->ulpd_pm_regs[addr >> 2];
1079 s->ulpd_pm_regs[addr >> 2] = 0;
1080 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1081 return ret;
1082
1083 case 0x18: /* Reserved */
1084 case 0x1c: /* Reserved */
1085 case 0x20: /* Reserved */
1086 case 0x28: /* Reserved */
1087 case 0x2c: /* Reserved */
1088 OMAP_BAD_REG(addr);
1089 case 0x00: /* COUNTER_32_LSB */
1090 case 0x04: /* COUNTER_32_MSB */
1091 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1092 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1093 case 0x10: /* GAUGING_CTRL */
1094 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1095 case 0x30: /* CLOCK_CTRL */
1096 case 0x34: /* SOFT_REQ */
1097 case 0x38: /* COUNTER_32_FIQ */
1098 case 0x3c: /* DPLL_CTRL */
1099 case 0x40: /* STATUS_REQ */
1100 /* XXX: check clk::usecount state for every clock */
1101 case 0x48: /* LOCL_TIME */
1102 case 0x4c: /* APLL_CTRL */
1103 case 0x50: /* POWER_CTRL */
1104 return s->ulpd_pm_regs[addr >> 2];
1105 }
1106
1107 OMAP_BAD_REG(addr);
1108 return 0;
1109 }
1110
1111 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1112 uint16_t diff, uint16_t value)
1113 {
1114 if (diff & (1 << 4)) /* USB_MCLK_EN */
1115 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1116 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1117 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1118 }
1119
1120 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1121 uint16_t diff, uint16_t value)
1122 {
1123 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1124 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1125 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1126 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1127 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1128 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1129 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1130 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1131 }
1132
1133 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1134 uint32_t value)
1135 {
1136 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1137 int64_t now, ticks;
1138 int div, mult;
1139 static const int bypass_div[4] = { 1, 2, 4, 4 };
1140 uint16_t diff;
1141
1142 switch (addr) {
1143 case 0x00: /* COUNTER_32_LSB */
1144 case 0x04: /* COUNTER_32_MSB */
1145 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1146 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1147 case 0x14: /* IT_STATUS */
1148 case 0x40: /* STATUS_REQ */
1149 OMAP_RO_REG(addr);
1150 break;
1151
1152 case 0x10: /* GAUGING_CTRL */
1153 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1154 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
1155 now = qemu_get_clock(vm_clock);
1156
1157 if (value & 1)
1158 s->ulpd_gauge_start = now;
1159 else {
1160 now -= s->ulpd_gauge_start;
1161
1162 /* 32-kHz ticks */
1163 ticks = muldiv64(now, 32768, ticks_per_sec);
1164 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1165 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1166 if (ticks >> 32) /* OVERFLOW_32K */
1167 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1168
1169 /* High frequency ticks */
1170 ticks = muldiv64(now, 12000000, ticks_per_sec);
1171 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1172 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1173 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1174 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1175
1176 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1177 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1178 }
1179 }
1180 s->ulpd_pm_regs[addr >> 2] = value;
1181 break;
1182
1183 case 0x18: /* Reserved */
1184 case 0x1c: /* Reserved */
1185 case 0x20: /* Reserved */
1186 case 0x28: /* Reserved */
1187 case 0x2c: /* Reserved */
1188 OMAP_BAD_REG(addr);
1189 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1190 case 0x38: /* COUNTER_32_FIQ */
1191 case 0x48: /* LOCL_TIME */
1192 case 0x50: /* POWER_CTRL */
1193 s->ulpd_pm_regs[addr >> 2] = value;
1194 break;
1195
1196 case 0x30: /* CLOCK_CTRL */
1197 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1198 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
1199 omap_ulpd_clk_update(s, diff, value);
1200 break;
1201
1202 case 0x34: /* SOFT_REQ */
1203 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1204 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
1205 omap_ulpd_req_update(s, diff, value);
1206 break;
1207
1208 case 0x3c: /* DPLL_CTRL */
1209 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1210 * omitted altogether, probably a typo. */
1211 /* This register has identical semantics with DPLL(1:3) control
1212 * registers, see omap_dpll_write() */
1213 diff = s->ulpd_pm_regs[addr >> 2] & value;
1214 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
1215 if (diff & (0x3ff << 2)) {
1216 if (value & (1 << 4)) { /* PLL_ENABLE */
1217 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1218 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1219 } else {
1220 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1221 mult = 1;
1222 }
1223 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1224 }
1225
1226 /* Enter the desired mode. */
1227 s->ulpd_pm_regs[addr >> 2] =
1228 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
1229 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
1230
1231 /* Act as if the lock is restored. */
1232 s->ulpd_pm_regs[addr >> 2] |= 2;
1233 break;
1234
1235 case 0x4c: /* APLL_CTRL */
1236 diff = s->ulpd_pm_regs[addr >> 2] & value;
1237 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
1238 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1239 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1240 (value & (1 << 0)) ? "apll" : "dpll4"));
1241 break;
1242
1243 default:
1244 OMAP_BAD_REG(addr);
1245 }
1246 }
1247
1248 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1249 omap_badwidth_read16,
1250 omap_ulpd_pm_read,
1251 omap_badwidth_read16,
1252 };
1253
1254 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1255 omap_badwidth_write16,
1256 omap_ulpd_pm_write,
1257 omap_badwidth_write16,
1258 };
1259
1260 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1261 {
1262 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1263 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1264 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1265 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1266 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1267 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1268 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1269 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1270 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1271 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1272 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1273 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1274 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1275 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1276 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1277 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1278 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1279 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1280 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1281 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1282 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1283 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1284 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1285 }
1286
1287 static void omap_ulpd_pm_init(target_phys_addr_t base,
1288 struct omap_mpu_state_s *mpu)
1289 {
1290 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1291 omap_ulpd_pm_writefn, mpu);
1292
1293 cpu_register_physical_memory(base, 0x800, iomemtype);
1294 omap_ulpd_pm_reset(mpu);
1295 }
1296
1297 /* OMAP Pin Configuration */
1298 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1299 {
1300 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1301
1302 switch (addr) {
1303 case 0x00: /* FUNC_MUX_CTRL_0 */
1304 case 0x04: /* FUNC_MUX_CTRL_1 */
1305 case 0x08: /* FUNC_MUX_CTRL_2 */
1306 return s->func_mux_ctrl[addr >> 2];
1307
1308 case 0x0c: /* COMP_MODE_CTRL_0 */
1309 return s->comp_mode_ctrl[0];
1310
1311 case 0x10: /* FUNC_MUX_CTRL_3 */
1312 case 0x14: /* FUNC_MUX_CTRL_4 */
1313 case 0x18: /* FUNC_MUX_CTRL_5 */
1314 case 0x1c: /* FUNC_MUX_CTRL_6 */
1315 case 0x20: /* FUNC_MUX_CTRL_7 */
1316 case 0x24: /* FUNC_MUX_CTRL_8 */
1317 case 0x28: /* FUNC_MUX_CTRL_9 */
1318 case 0x2c: /* FUNC_MUX_CTRL_A */
1319 case 0x30: /* FUNC_MUX_CTRL_B */
1320 case 0x34: /* FUNC_MUX_CTRL_C */
1321 case 0x38: /* FUNC_MUX_CTRL_D */
1322 return s->func_mux_ctrl[(addr >> 2) - 1];
1323
1324 case 0x40: /* PULL_DWN_CTRL_0 */
1325 case 0x44: /* PULL_DWN_CTRL_1 */
1326 case 0x48: /* PULL_DWN_CTRL_2 */
1327 case 0x4c: /* PULL_DWN_CTRL_3 */
1328 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
1329
1330 case 0x50: /* GATE_INH_CTRL_0 */
1331 return s->gate_inh_ctrl[0];
1332
1333 case 0x60: /* VOLTAGE_CTRL_0 */
1334 return s->voltage_ctrl[0];
1335
1336 case 0x70: /* TEST_DBG_CTRL_0 */
1337 return s->test_dbg_ctrl[0];
1338
1339 case 0x80: /* MOD_CONF_CTRL_0 */
1340 return s->mod_conf_ctrl[0];
1341 }
1342
1343 OMAP_BAD_REG(addr);
1344 return 0;
1345 }
1346
1347 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1348 uint32_t diff, uint32_t value)
1349 {
1350 if (s->compat1509) {
1351 if (diff & (1 << 9)) /* BLUETOOTH */
1352 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1353 (~value >> 9) & 1);
1354 if (diff & (1 << 7)) /* USB.CLKO */
1355 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1356 (value >> 7) & 1);
1357 }
1358 }
1359
1360 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1361 uint32_t diff, uint32_t value)
1362 {
1363 if (s->compat1509) {
1364 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1365 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1366 (value >> 31) & 1);
1367 if (diff & (1 << 1)) /* CLK32K */
1368 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1369 (~value >> 1) & 1);
1370 }
1371 }
1372
1373 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1374 uint32_t diff, uint32_t value)
1375 {
1376 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1377 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1378 omap_findclk(s, ((value >> 31) & 1) ?
1379 "ck_48m" : "armper_ck"));
1380 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1381 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1382 omap_findclk(s, ((value >> 30) & 1) ?
1383 "ck_48m" : "armper_ck"));
1384 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1385 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1386 omap_findclk(s, ((value >> 29) & 1) ?
1387 "ck_48m" : "armper_ck"));
1388 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1389 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1390 omap_findclk(s, ((value >> 23) & 1) ?
1391 "ck_48m" : "armper_ck"));
1392 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1393 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1394 omap_findclk(s, ((value >> 12) & 1) ?
1395 "ck_48m" : "armper_ck"));
1396 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1397 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1398 }
1399
1400 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1401 uint32_t value)
1402 {
1403 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1404 uint32_t diff;
1405
1406 switch (addr) {
1407 case 0x00: /* FUNC_MUX_CTRL_0 */
1408 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1409 s->func_mux_ctrl[addr >> 2] = value;
1410 omap_pin_funcmux0_update(s, diff, value);
1411 return;
1412
1413 case 0x04: /* FUNC_MUX_CTRL_1 */
1414 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1415 s->func_mux_ctrl[addr >> 2] = value;
1416 omap_pin_funcmux1_update(s, diff, value);
1417 return;
1418
1419 case 0x08: /* FUNC_MUX_CTRL_2 */
1420 s->func_mux_ctrl[addr >> 2] = value;
1421 return;
1422
1423 case 0x0c: /* COMP_MODE_CTRL_0 */
1424 s->comp_mode_ctrl[0] = value;
1425 s->compat1509 = (value != 0x0000eaef);
1426 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1427 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1428 return;
1429
1430 case 0x10: /* FUNC_MUX_CTRL_3 */
1431 case 0x14: /* FUNC_MUX_CTRL_4 */
1432 case 0x18: /* FUNC_MUX_CTRL_5 */
1433 case 0x1c: /* FUNC_MUX_CTRL_6 */
1434 case 0x20: /* FUNC_MUX_CTRL_7 */
1435 case 0x24: /* FUNC_MUX_CTRL_8 */
1436 case 0x28: /* FUNC_MUX_CTRL_9 */
1437 case 0x2c: /* FUNC_MUX_CTRL_A */
1438 case 0x30: /* FUNC_MUX_CTRL_B */
1439 case 0x34: /* FUNC_MUX_CTRL_C */
1440 case 0x38: /* FUNC_MUX_CTRL_D */
1441 s->func_mux_ctrl[(addr >> 2) - 1] = value;
1442 return;
1443
1444 case 0x40: /* PULL_DWN_CTRL_0 */
1445 case 0x44: /* PULL_DWN_CTRL_1 */
1446 case 0x48: /* PULL_DWN_CTRL_2 */
1447 case 0x4c: /* PULL_DWN_CTRL_3 */
1448 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
1449 return;
1450
1451 case 0x50: /* GATE_INH_CTRL_0 */
1452 s->gate_inh_ctrl[0] = value;
1453 return;
1454
1455 case 0x60: /* VOLTAGE_CTRL_0 */
1456 s->voltage_ctrl[0] = value;
1457 return;
1458
1459 case 0x70: /* TEST_DBG_CTRL_0 */
1460 s->test_dbg_ctrl[0] = value;
1461 return;
1462
1463 case 0x80: /* MOD_CONF_CTRL_0 */
1464 diff = s->mod_conf_ctrl[0] ^ value;
1465 s->mod_conf_ctrl[0] = value;
1466 omap_pin_modconf1_update(s, diff, value);
1467 return;
1468
1469 default:
1470 OMAP_BAD_REG(addr);
1471 }
1472 }
1473
1474 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1475 omap_badwidth_read32,
1476 omap_badwidth_read32,
1477 omap_pin_cfg_read,
1478 };
1479
1480 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1481 omap_badwidth_write32,
1482 omap_badwidth_write32,
1483 omap_pin_cfg_write,
1484 };
1485
1486 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1487 {
1488 /* Start in Compatibility Mode. */
1489 mpu->compat1509 = 1;
1490 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1491 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1492 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1493 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1494 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1495 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1496 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1497 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1498 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1499 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1500 }
1501
1502 static void omap_pin_cfg_init(target_phys_addr_t base,
1503 struct omap_mpu_state_s *mpu)
1504 {
1505 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1506 omap_pin_cfg_writefn, mpu);
1507
1508 cpu_register_physical_memory(base, 0x800, iomemtype);
1509 omap_pin_cfg_reset(mpu);
1510 }
1511
1512 /* Device Identification, Die Identification */
1513 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1514 {
1515 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1516
1517 switch (addr) {
1518 case 0xfffe1800: /* DIE_ID_LSB */
1519 return 0xc9581f0e;
1520 case 0xfffe1804: /* DIE_ID_MSB */
1521 return 0xa8858bfa;
1522
1523 case 0xfffe2000: /* PRODUCT_ID_LSB */
1524 return 0x00aaaafc;
1525 case 0xfffe2004: /* PRODUCT_ID_MSB */
1526 return 0xcafeb574;
1527
1528 case 0xfffed400: /* JTAG_ID_LSB */
1529 switch (s->mpu_model) {
1530 case omap310:
1531 return 0x03310315;
1532 case omap1510:
1533 return 0x03310115;
1534 default:
1535 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1536 }
1537 break;
1538
1539 case 0xfffed404: /* JTAG_ID_MSB */
1540 switch (s->mpu_model) {
1541 case omap310:
1542 return 0xfb57402f;
1543 case omap1510:
1544 return 0xfb47002f;
1545 default:
1546 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1547 }
1548 break;
1549 }
1550
1551 OMAP_BAD_REG(addr);
1552 return 0;
1553 }
1554
1555 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1556 uint32_t value)
1557 {
1558 OMAP_BAD_REG(addr);
1559 }
1560
1561 static CPUReadMemoryFunc *omap_id_readfn[] = {
1562 omap_badwidth_read32,
1563 omap_badwidth_read32,
1564 omap_id_read,
1565 };
1566
1567 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1568 omap_badwidth_write32,
1569 omap_badwidth_write32,
1570 omap_id_write,
1571 };
1572
1573 static void omap_id_init(struct omap_mpu_state_s *mpu)
1574 {
1575 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1576 omap_id_writefn, mpu);
1577 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1578 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1579 if (!cpu_is_omap15xx(mpu))
1580 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1581 }
1582
1583 /* MPUI Control (Dummy) */
1584 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1585 {
1586 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1587
1588 switch (addr) {
1589 case 0x00: /* CTRL */
1590 return s->mpui_ctrl;
1591 case 0x04: /* DEBUG_ADDR */
1592 return 0x01ffffff;
1593 case 0x08: /* DEBUG_DATA */
1594 return 0xffffffff;
1595 case 0x0c: /* DEBUG_FLAG */
1596 return 0x00000800;
1597 case 0x10: /* STATUS */
1598 return 0x00000000;
1599
1600 /* Not in OMAP310 */
1601 case 0x14: /* DSP_STATUS */
1602 case 0x18: /* DSP_BOOT_CONFIG */
1603 return 0x00000000;
1604 case 0x1c: /* DSP_MPUI_CONFIG */
1605 return 0x0000ffff;
1606 }
1607
1608 OMAP_BAD_REG(addr);
1609 return 0;
1610 }
1611
1612 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1613 uint32_t value)
1614 {
1615 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1616
1617 switch (addr) {
1618 case 0x00: /* CTRL */
1619 s->mpui_ctrl = value & 0x007fffff;
1620 break;
1621
1622 case 0x04: /* DEBUG_ADDR */
1623 case 0x08: /* DEBUG_DATA */
1624 case 0x0c: /* DEBUG_FLAG */
1625 case 0x10: /* STATUS */
1626 /* Not in OMAP310 */
1627 case 0x14: /* DSP_STATUS */
1628 OMAP_RO_REG(addr);
1629 case 0x18: /* DSP_BOOT_CONFIG */
1630 case 0x1c: /* DSP_MPUI_CONFIG */
1631 break;
1632
1633 default:
1634 OMAP_BAD_REG(addr);
1635 }
1636 }
1637
1638 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1639 omap_badwidth_read32,
1640 omap_badwidth_read32,
1641 omap_mpui_read,
1642 };
1643
1644 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1645 omap_badwidth_write32,
1646 omap_badwidth_write32,
1647 omap_mpui_write,
1648 };
1649
1650 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1651 {
1652 s->mpui_ctrl = 0x0003ff1b;
1653 }
1654
1655 static void omap_mpui_init(target_phys_addr_t base,
1656 struct omap_mpu_state_s *mpu)
1657 {
1658 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1659 omap_mpui_writefn, mpu);
1660
1661 cpu_register_physical_memory(base, 0x100, iomemtype);
1662
1663 omap_mpui_reset(mpu);
1664 }
1665
1666 /* TIPB Bridges */
1667 struct omap_tipb_bridge_s {
1668 qemu_irq abort;
1669
1670 int width_intr;
1671 uint16_t control;
1672 uint16_t alloc;
1673 uint16_t buffer;
1674 uint16_t enh_control;
1675 };
1676
1677 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1678 {
1679 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1680
1681 switch (addr) {
1682 case 0x00: /* TIPB_CNTL */
1683 return s->control;
1684 case 0x04: /* TIPB_BUS_ALLOC */
1685 return s->alloc;
1686 case 0x08: /* MPU_TIPB_CNTL */
1687 return s->buffer;
1688 case 0x0c: /* ENHANCED_TIPB_CNTL */
1689 return s->enh_control;
1690 case 0x10: /* ADDRESS_DBG */
1691 case 0x14: /* DATA_DEBUG_LOW */
1692 case 0x18: /* DATA_DEBUG_HIGH */
1693 return 0xffff;
1694 case 0x1c: /* DEBUG_CNTR_SIG */
1695 return 0x00f8;
1696 }
1697
1698 OMAP_BAD_REG(addr);
1699 return 0;
1700 }
1701
1702 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1703 uint32_t value)
1704 {
1705 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1706
1707 switch (addr) {
1708 case 0x00: /* TIPB_CNTL */
1709 s->control = value & 0xffff;
1710 break;
1711
1712 case 0x04: /* TIPB_BUS_ALLOC */
1713 s->alloc = value & 0x003f;
1714 break;
1715
1716 case 0x08: /* MPU_TIPB_CNTL */
1717 s->buffer = value & 0x0003;
1718 break;
1719
1720 case 0x0c: /* ENHANCED_TIPB_CNTL */
1721 s->width_intr = !(value & 2);
1722 s->enh_control = value & 0x000f;
1723 break;
1724
1725 case 0x10: /* ADDRESS_DBG */
1726 case 0x14: /* DATA_DEBUG_LOW */
1727 case 0x18: /* DATA_DEBUG_HIGH */
1728 case 0x1c: /* DEBUG_CNTR_SIG */
1729 OMAP_RO_REG(addr);
1730 break;
1731
1732 default:
1733 OMAP_BAD_REG(addr);
1734 }
1735 }
1736
1737 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1738 omap_badwidth_read16,
1739 omap_tipb_bridge_read,
1740 omap_tipb_bridge_read,
1741 };
1742
1743 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1744 omap_badwidth_write16,
1745 omap_tipb_bridge_write,
1746 omap_tipb_bridge_write,
1747 };
1748
1749 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1750 {
1751 s->control = 0xffff;
1752 s->alloc = 0x0009;
1753 s->buffer = 0x0000;
1754 s->enh_control = 0x000f;
1755 }
1756
1757 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1758 qemu_irq abort_irq, omap_clk clk)
1759 {
1760 int iomemtype;
1761 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1762 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1763
1764 s->abort = abort_irq;
1765 omap_tipb_bridge_reset(s);
1766
1767 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1768 omap_tipb_bridge_writefn, s);
1769 cpu_register_physical_memory(base, 0x100, iomemtype);
1770
1771 return s;
1772 }
1773
1774 /* Dummy Traffic Controller's Memory Interface */
1775 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1776 {
1777 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1778 uint32_t ret;
1779
1780 switch (addr) {
1781 case 0x00: /* IMIF_PRIO */
1782 case 0x04: /* EMIFS_PRIO */
1783 case 0x08: /* EMIFF_PRIO */
1784 case 0x0c: /* EMIFS_CONFIG */
1785 case 0x10: /* EMIFS_CS0_CONFIG */
1786 case 0x14: /* EMIFS_CS1_CONFIG */
1787 case 0x18: /* EMIFS_CS2_CONFIG */
1788 case 0x1c: /* EMIFS_CS3_CONFIG */
1789 case 0x24: /* EMIFF_MRS */
1790 case 0x28: /* TIMEOUT1 */
1791 case 0x2c: /* TIMEOUT2 */
1792 case 0x30: /* TIMEOUT3 */
1793 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1794 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1795 return s->tcmi_regs[addr >> 2];
1796
1797 case 0x20: /* EMIFF_SDRAM_CONFIG */
1798 ret = s->tcmi_regs[addr >> 2];
1799 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1800 /* XXX: We can try using the VGA_DIRTY flag for this */
1801 return ret;
1802 }
1803
1804 OMAP_BAD_REG(addr);
1805 return 0;
1806 }
1807
1808 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1809 uint32_t value)
1810 {
1811 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1812
1813 switch (addr) {
1814 case 0x00: /* IMIF_PRIO */
1815 case 0x04: /* EMIFS_PRIO */
1816 case 0x08: /* EMIFF_PRIO */
1817 case 0x10: /* EMIFS_CS0_CONFIG */
1818 case 0x14: /* EMIFS_CS1_CONFIG */
1819 case 0x18: /* EMIFS_CS2_CONFIG */
1820 case 0x1c: /* EMIFS_CS3_CONFIG */
1821 case 0x20: /* EMIFF_SDRAM_CONFIG */
1822 case 0x24: /* EMIFF_MRS */
1823 case 0x28: /* TIMEOUT1 */
1824 case 0x2c: /* TIMEOUT2 */
1825 case 0x30: /* TIMEOUT3 */
1826 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1827 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1828 s->tcmi_regs[addr >> 2] = value;
1829 break;
1830 case 0x0c: /* EMIFS_CONFIG */
1831 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1832 break;
1833
1834 default:
1835 OMAP_BAD_REG(addr);
1836 }
1837 }
1838
1839 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1840 omap_badwidth_read32,
1841 omap_badwidth_read32,
1842 omap_tcmi_read,
1843 };
1844
1845 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1846 omap_badwidth_write32,
1847 omap_badwidth_write32,
1848 omap_tcmi_write,
1849 };
1850
1851 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1852 {
1853 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1854 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1855 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1856 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1857 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1858 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1859 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1860 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1861 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1862 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1863 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1864 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1865 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1866 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1867 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1868 }
1869
1870 static void omap_tcmi_init(target_phys_addr_t base,
1871 struct omap_mpu_state_s *mpu)
1872 {
1873 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1874 omap_tcmi_writefn, mpu);
1875
1876 cpu_register_physical_memory(base, 0x100, iomemtype);
1877 omap_tcmi_reset(mpu);
1878 }
1879
1880 /* Digital phase-locked loops control */
1881 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1882 {
1883 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1884
1885 if (addr == 0x00) /* CTL_REG */
1886 return s->mode;
1887
1888 OMAP_BAD_REG(addr);
1889 return 0;
1890 }
1891
1892 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1893 uint32_t value)
1894 {
1895 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1896 uint16_t diff;
1897 static const int bypass_div[4] = { 1, 2, 4, 4 };
1898 int div, mult;
1899
1900 if (addr == 0x00) { /* CTL_REG */
1901 /* See omap_ulpd_pm_write() too */
1902 diff = s->mode & value;
1903 s->mode = value & 0x2fff;
1904 if (diff & (0x3ff << 2)) {
1905 if (value & (1 << 4)) { /* PLL_ENABLE */
1906 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1907 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1908 } else {
1909 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1910 mult = 1;
1911 }
1912 omap_clk_setrate(s->dpll, div, mult);
1913 }
1914
1915 /* Enter the desired mode. */
1916 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1917
1918 /* Act as if the lock is restored. */
1919 s->mode |= 2;
1920 } else {
1921 OMAP_BAD_REG(addr);
1922 }
1923 }
1924
1925 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1926 omap_badwidth_read16,
1927 omap_dpll_read,
1928 omap_badwidth_read16,
1929 };
1930
1931 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1932 omap_badwidth_write16,
1933 omap_dpll_write,
1934 omap_badwidth_write16,
1935 };
1936
1937 static void omap_dpll_reset(struct dpll_ctl_s *s)
1938 {
1939 s->mode = 0x2002;
1940 omap_clk_setrate(s->dpll, 1, 1);
1941 }
1942
1943 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1944 omap_clk clk)
1945 {
1946 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1947 omap_dpll_writefn, s);
1948
1949 s->dpll = clk;
1950 omap_dpll_reset(s);
1951
1952 cpu_register_physical_memory(base, 0x100, iomemtype);
1953 }
1954
1955 /* UARTs */
1956 struct omap_uart_s {
1957 target_phys_addr_t base;
1958 SerialState *serial; /* TODO */
1959 struct omap_target_agent_s *ta;
1960 omap_clk fclk;
1961 qemu_irq irq;
1962
1963 uint8_t eblr;
1964 uint8_t syscontrol;
1965 uint8_t wkup;
1966 uint8_t cfps;
1967 uint8_t mdr[2];
1968 uint8_t scr;
1969 };
1970
1971 void omap_uart_reset(struct omap_uart_s *s)
1972 {
1973 s->eblr = 0x00;
1974 s->syscontrol = 0;
1975 s->wkup = 0x3f;
1976 s->cfps = 0x69;
1977 }
1978
1979 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1980 qemu_irq irq, omap_clk fclk, omap_clk iclk,
1981 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
1982 {
1983 struct omap_uart_s *s = (struct omap_uart_s *)
1984 qemu_mallocz(sizeof(struct omap_uart_s));
1985
1986 s->base = base;
1987 s->fclk = fclk;
1988 s->irq = irq;
1989 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1990 chr ?: qemu_chr_open("null", "null"), 1);
1991
1992 return s;
1993 }
1994
1995 static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
1996 {
1997 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
1998
1999 addr &= 0xff;
2000 switch (addr) {
2001 case 0x20: /* MDR1 */
2002 return s->mdr[0];
2003 case 0x24: /* MDR2 */
2004 return s->mdr[1];
2005 case 0x40: /* SCR */
2006 return s->scr;
2007 case 0x44: /* SSR */
2008 return 0x0;
2009 case 0x48: /* EBLR */
2010 return s->eblr;
2011 case 0x50: /* MVR */
2012 return 0x30;
2013 case 0x54: /* SYSC */
2014 return s->syscontrol;
2015 case 0x58: /* SYSS */
2016 return 1;
2017 case 0x5c: /* WER */
2018 return s->wkup;
2019 case 0x60: /* CFPS */
2020 return s->cfps;
2021 }
2022
2023 OMAP_BAD_REG(addr);
2024 return 0;
2025 }
2026
2027 static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2028 uint32_t value)
2029 {
2030 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2031
2032 addr &= 0xff;
2033 switch (addr) {
2034 case 0x20: /* MDR1 */
2035 s->mdr[0] = value & 0x7f;
2036 break;
2037 case 0x24: /* MDR2 */
2038 s->mdr[1] = value & 0xff;
2039 break;
2040 case 0x40: /* SCR */
2041 s->scr = value & 0xff;
2042 break;
2043 case 0x48: /* EBLR */
2044 s->eblr = value & 0xff;
2045 break;
2046 case 0x44: /* SSR */
2047 case 0x50: /* MVR */
2048 case 0x58: /* SYSS */
2049 OMAP_RO_REG(addr);
2050 break;
2051 case 0x54: /* SYSC */
2052 s->syscontrol = value & 0x1d;
2053 if (value & 2)
2054 omap_uart_reset(s);
2055 break;
2056 case 0x5c: /* WER */
2057 s->wkup = value & 0x7f;
2058 break;
2059 case 0x60: /* CFPS */
2060 s->cfps = value & 0xff;
2061 break;
2062 default:
2063 OMAP_BAD_REG(addr);
2064 }
2065 }
2066
2067 static CPUReadMemoryFunc *omap_uart_readfn[] = {
2068 omap_uart_read,
2069 omap_uart_read,
2070 omap_badwidth_read8,
2071 };
2072
2073 static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2074 omap_uart_write,
2075 omap_uart_write,
2076 omap_badwidth_write8,
2077 };
2078
2079 struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2080 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2081 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2082 {
2083 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2084 struct omap_uart_s *s = omap_uart_init(base, irq,
2085 fclk, iclk, txdma, rxdma, chr);
2086 int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2087 omap_uart_writefn, s);
2088
2089 s->ta = ta;
2090
2091 cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
2092
2093 return s;
2094 }
2095
2096 void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2097 {
2098 /* TODO: Should reuse or destroy current s->serial */
2099 s->serial = serial_mm_init(s->base, 2, s->irq,
2100 omap_clk_getrate(s->fclk) / 16,
2101 chr ?: qemu_chr_open("null", "null"), 1);
2102 }
2103
2104 /* MPU Clock/Reset/Power Mode Control */
2105 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2106 {
2107 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2108
2109 switch (addr) {
2110 case 0x00: /* ARM_CKCTL */
2111 return s->clkm.arm_ckctl;
2112
2113 case 0x04: /* ARM_IDLECT1 */
2114 return s->clkm.arm_idlect1;
2115
2116 case 0x08: /* ARM_IDLECT2 */
2117 return s->clkm.arm_idlect2;
2118
2119 case 0x0c: /* ARM_EWUPCT */
2120 return s->clkm.arm_ewupct;
2121
2122 case 0x10: /* ARM_RSTCT1 */
2123 return s->clkm.arm_rstct1;
2124
2125 case 0x14: /* ARM_RSTCT2 */
2126 return s->clkm.arm_rstct2;
2127
2128 case 0x18: /* ARM_SYSST */
2129 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2130
2131 case 0x1c: /* ARM_CKOUT1 */
2132 return s->clkm.arm_ckout1;
2133
2134 case 0x20: /* ARM_CKOUT2 */
2135 break;
2136 }
2137
2138 OMAP_BAD_REG(addr);
2139 return 0;
2140 }
2141
2142 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2143 uint16_t diff, uint16_t value)
2144 {
2145 omap_clk clk;
2146
2147 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2148 if (value & (1 << 14))
2149 /* Reserved */;
2150 else {
2151 clk = omap_findclk(s, "arminth_ck");
2152 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2153 }
2154 }
2155 if (diff & (1 << 12)) { /* ARM_TIMXO */
2156 clk = omap_findclk(s, "armtim_ck");
2157 if (value & (1 << 12))
2158 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2159 else
2160 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2161 }
2162 /* XXX: en_dspck */
2163 if (diff & (3 << 10)) { /* DSPMMUDIV */
2164 clk = omap_findclk(s, "dspmmu_ck");
2165 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2166 }
2167 if (diff & (3 << 8)) { /* TCDIV */
2168 clk = omap_findclk(s, "tc_ck");
2169 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2170 }
2171 if (diff & (3 << 6)) { /* DSPDIV */
2172 clk = omap_findclk(s, "dsp_ck");
2173 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2174 }
2175 if (diff & (3 << 4)) { /* ARMDIV */
2176 clk = omap_findclk(s, "arm_ck");
2177 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2178 }
2179 if (diff & (3 << 2)) { /* LCDDIV */
2180 clk = omap_findclk(s, "lcd_ck");
2181 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2182 }
2183 if (diff & (3 << 0)) { /* PERDIV */
2184 clk = omap_findclk(s, "armper_ck");
2185 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2186 }
2187 }
2188
2189 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2190 uint16_t diff, uint16_t value)
2191 {
2192 omap_clk clk;
2193
2194 if (value & (1 << 11)) /* SETARM_IDLE */
2195 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2196 if (!(value & (1 << 10))) /* WKUP_MODE */
2197 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2198
2199 #define SET_CANIDLE(clock, bit) \
2200 if (diff & (1 << bit)) { \
2201 clk = omap_findclk(s, clock); \
2202 omap_clk_canidle(clk, (value >> bit) & 1); \
2203 }
2204 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2205 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2206 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2207 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2208 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2209 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2210 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2211 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2212 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2213 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2214 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2215 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2216 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2217 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2218 }
2219
2220 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2221 uint16_t diff, uint16_t value)
2222 {
2223 omap_clk clk;
2224
2225 #define SET_ONOFF(clock, bit) \
2226 if (diff & (1 << bit)) { \
2227 clk = omap_findclk(s, clock); \
2228 omap_clk_onoff(clk, (value >> bit) & 1); \
2229 }
2230 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2231 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2232 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2233 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2234 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2235 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2236 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2237 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2238 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2239 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2240 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2241 }
2242
2243 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2244 uint16_t diff, uint16_t value)
2245 {
2246 omap_clk clk;
2247
2248 if (diff & (3 << 4)) { /* TCLKOUT */
2249 clk = omap_findclk(s, "tclk_out");
2250 switch ((value >> 4) & 3) {
2251 case 1:
2252 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2253 omap_clk_onoff(clk, 1);
2254 break;
2255 case 2:
2256 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2257 omap_clk_onoff(clk, 1);
2258 break;
2259 default:
2260 omap_clk_onoff(clk, 0);
2261 }
2262 }
2263 if (diff & (3 << 2)) { /* DCLKOUT */
2264 clk = omap_findclk(s, "dclk_out");
2265 switch ((value >> 2) & 3) {
2266 case 0:
2267 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2268 break;
2269 case 1:
2270 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2271 break;
2272 case 2:
2273 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2274 break;
2275 case 3:
2276 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2277 break;
2278 }
2279 }
2280 if (diff & (3 << 0)) { /* ACLKOUT */
2281 clk = omap_findclk(s, "aclk_out");
2282 switch ((value >> 0) & 3) {
2283 case 1:
2284 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2285 omap_clk_onoff(clk, 1);
2286 break;
2287 case 2:
2288 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2289 omap_clk_onoff(clk, 1);
2290 break;
2291 case 3:
2292 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2293 omap_clk_onoff(clk, 1);
2294 break;
2295 default:
2296 omap_clk_onoff(clk, 0);
2297 }
2298 }
2299 }
2300
2301 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2302 uint32_t value)
2303 {
2304 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2305 uint16_t diff;
2306 omap_clk clk;
2307 static const char *clkschemename[8] = {
2308 "fully synchronous", "fully asynchronous", "synchronous scalable",
2309 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2310 };
2311
2312 switch (addr) {
2313 case 0x00: /* ARM_CKCTL */
2314 diff = s->clkm.arm_ckctl ^ value;
2315 s->clkm.arm_ckctl = value & 0x7fff;
2316 omap_clkm_ckctl_update(s, diff, value);
2317 return;
2318
2319 case 0x04: /* ARM_IDLECT1 */
2320 diff = s->clkm.arm_idlect1 ^ value;
2321 s->clkm.arm_idlect1 = value & 0x0fff;
2322 omap_clkm_idlect1_update(s, diff, value);
2323 return;
2324
2325 case 0x08: /* ARM_IDLECT2 */
2326 diff = s->clkm.arm_idlect2 ^ value;
2327 s->clkm.arm_idlect2 = value & 0x07ff;
2328 omap_clkm_idlect2_update(s, diff, value);
2329 return;
2330
2331 case 0x0c: /* ARM_EWUPCT */
2332 diff = s->clkm.arm_ewupct ^ value;
2333 s->clkm.arm_ewupct = value & 0x003f;
2334 return;
2335
2336 case 0x10: /* ARM_RSTCT1 */
2337 diff = s->clkm.arm_rstct1 ^ value;
2338 s->clkm.arm_rstct1 = value & 0x0007;
2339 if (value & 9) {
2340 qemu_system_reset_request();
2341 s->clkm.cold_start = 0xa;
2342 }
2343 if (diff & ~value & 4) { /* DSP_RST */
2344 omap_mpui_reset(s);
2345 omap_tipb_bridge_reset(s->private_tipb);
2346 omap_tipb_bridge_reset(s->public_tipb);
2347 }
2348 if (diff & 2) { /* DSP_EN */
2349 clk = omap_findclk(s, "dsp_ck");
2350 omap_clk_canidle(clk, (~value >> 1) & 1);
2351 }
2352 return;
2353
2354 case 0x14: /* ARM_RSTCT2 */
2355 s->clkm.arm_rstct2 = value & 0x0001;
2356 return;
2357
2358 case 0x18: /* ARM_SYSST */
2359 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2360 s->clkm.clocking_scheme = (value >> 11) & 7;
2361 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2362 clkschemename[s->clkm.clocking_scheme]);
2363 }
2364 s->clkm.cold_start &= value & 0x3f;
2365 return;
2366
2367 case 0x1c: /* ARM_CKOUT1 */
2368 diff = s->clkm.arm_ckout1 ^ value;
2369 s->clkm.arm_ckout1 = value & 0x003f;
2370 omap_clkm_ckout1_update(s, diff, value);
2371 return;
2372
2373 case 0x20: /* ARM_CKOUT2 */
2374 default:
2375 OMAP_BAD_REG(addr);
2376 }
2377 }
2378
2379 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2380 omap_badwidth_read16,
2381 omap_clkm_read,
2382 omap_badwidth_read16,
2383 };
2384
2385 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2386 omap_badwidth_write16,
2387 omap_clkm_write,
2388 omap_badwidth_write16,
2389 };
2390
2391 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2392 {
2393 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2394
2395 switch (addr) {
2396 case 0x04: /* DSP_IDLECT1 */
2397 return s->clkm.dsp_idlect1;
2398
2399 case 0x08: /* DSP_IDLECT2 */
2400 return s->clkm.dsp_idlect2;
2401
2402 case 0x14: /* DSP_RSTCT2 */
2403 return s->clkm.dsp_rstct2;
2404
2405 case 0x18: /* DSP_SYSST */
2406 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2407 (s->env->halted << 6); /* Quite useless... */
2408 }
2409
2410 OMAP_BAD_REG(addr);
2411 return 0;
2412 }
2413
2414 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2415 uint16_t diff, uint16_t value)
2416 {
2417 omap_clk clk;
2418
2419 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2420 }
2421
2422 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2423 uint16_t diff, uint16_t value)
2424 {
2425 omap_clk clk;
2426
2427 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2428 }
2429
2430 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2431 uint32_t value)
2432 {
2433 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2434 uint16_t diff;
2435
2436 switch (addr) {
2437 case 0x04: /* DSP_IDLECT1 */
2438 diff = s->clkm.dsp_idlect1 ^ value;
2439 s->clkm.dsp_idlect1 = value & 0x01f7;
2440 omap_clkdsp_idlect1_update(s, diff, value);
2441 break;
2442
2443 case 0x08: /* DSP_IDLECT2 */
2444 s->clkm.dsp_idlect2 = value & 0x0037;
2445 diff = s->clkm.dsp_idlect1 ^ value;
2446 omap_clkdsp_idlect2_update(s, diff, value);
2447 break;
2448
2449 case 0x14: /* DSP_RSTCT2 */
2450 s->clkm.dsp_rstct2 = value & 0x0001;
2451 break;
2452
2453 case 0x18: /* DSP_SYSST */
2454 s->clkm.cold_start &= value & 0x3f;
2455 break;
2456
2457 default:
2458 OMAP_BAD_REG(addr);
2459 }
2460 }
2461
2462 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2463 omap_badwidth_read16,
2464 omap_clkdsp_read,
2465 omap_badwidth_read16,
2466 };
2467
2468 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2469 omap_badwidth_write16,
2470 omap_clkdsp_write,
2471 omap_badwidth_write16,
2472 };
2473
2474 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2475 {
2476 if (s->wdt && s->wdt->reset)
2477 s->clkm.cold_start = 0x6;
2478 s->clkm.clocking_scheme = 0;
2479 omap_clkm_ckctl_update(s, ~0, 0x3000);
2480 s->clkm.arm_ckctl = 0x3000;
2481 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2482 s->clkm.arm_idlect1 = 0x0400;
2483 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2484 s->clkm.arm_idlect2 = 0x0100;
2485 s->clkm.arm_ewupct = 0x003f;
2486 s->clkm.arm_rstct1 = 0x0000;
2487 s->clkm.arm_rstct2 = 0x0000;
2488 s->clkm.arm_ckout1 = 0x0015;
2489 s->clkm.dpll1_mode = 0x2002;
2490 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2491 s->clkm.dsp_idlect1 = 0x0040;
2492 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2493 s->clkm.dsp_idlect2 = 0x0000;
2494 s->clkm.dsp_rstct2 = 0x0000;
2495 }
2496
2497 static void omap_clkm_init(target_phys_addr_t mpu_base,
2498 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2499 {
2500 int iomemtype[2] = {
2501 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2502 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2503 };
2504
2505 s->clkm.arm_idlect1 = 0x03ff;
2506 s->clkm.arm_idlect2 = 0x0100;
2507 s->clkm.dsp_idlect1 = 0x0002;
2508 omap_clkm_reset(s);
2509 s->clkm.cold_start = 0x3a;
2510
2511 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
2512 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
2513 }
2514
2515 /* MPU I/O */
2516 struct omap_mpuio_s {
2517 qemu_irq irq;
2518 qemu_irq kbd_irq;
2519 qemu_irq *in;
2520 qemu_irq handler[16];
2521 qemu_irq wakeup;
2522
2523 uint16_t inputs;
2524 uint16_t outputs;
2525 uint16_t dir;
2526 uint16_t edge;
2527 uint16_t mask;
2528 uint16_t ints;
2529
2530 uint16_t debounce;
2531 uint16_t latch;
2532 uint8_t event;
2533
2534 uint8_t buttons[5];
2535 uint8_t row_latch;
2536 uint8_t cols;
2537 int kbd_mask;
2538 int clk;
2539 };
2540
2541 static void omap_mpuio_set(void *opaque, int line, int level)
2542 {
2543 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2544 uint16_t prev = s->inputs;
2545
2546 if (level)
2547 s->inputs |= 1 << line;
2548 else
2549 s->inputs &= ~(1 << line);
2550
2551 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2552 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2553 s->ints |= 1 << line;
2554 qemu_irq_raise(s->irq);
2555 /* TODO: wakeup */
2556 }
2557 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2558 (s->event >> 1) == line) /* PIN_SELECT */
2559 s->latch = s->inputs;
2560 }
2561 }
2562
2563 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2564 {
2565 int i;
2566 uint8_t *row, rows = 0, cols = ~s->cols;
2567
2568 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2569 if (*row & cols)
2570 rows |= i;
2571
2572 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2573 s->row_latch = ~rows;
2574 }
2575
2576 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2577 {
2578 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2579 int offset = addr & OMAP_MPUI_REG_MASK;
2580 uint16_t ret;
2581
2582 switch (offset) {
2583 case 0x00: /* INPUT_LATCH */
2584 return s->inputs;
2585
2586 case 0x04: /* OUTPUT_REG */
2587 return s->outputs;
2588
2589 case 0x08: /* IO_CNTL */
2590 return s->dir;
2591
2592 case 0x10: /* KBR_LATCH */
2593 return s->row_latch;
2594
2595 case 0x14: /* KBC_REG */
2596 return s->cols;
2597
2598 case 0x18: /* GPIO_EVENT_MODE_REG */
2599 return s->event;
2600
2601 case 0x1c: /* GPIO_INT_EDGE_REG */
2602 return s->edge;
2603
2604 case 0x20: /* KBD_INT */
2605 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2606
2607 case 0x24: /* GPIO_INT */
2608 ret = s->ints;
2609 s->ints &= s->mask;
2610 if (ret)
2611 qemu_irq_lower(s->irq);
2612 return ret;
2613
2614 case 0x28: /* KBD_MASKIT */
2615 return s->kbd_mask;
2616
2617 case 0x2c: /* GPIO_MASKIT */
2618 return s->mask;
2619
2620 case 0x30: /* GPIO_DEBOUNCING_REG */
2621 return s->debounce;
2622
2623 case 0x34: /* GPIO_LATCH_REG */
2624 return s->latch;
2625 }
2626
2627 OMAP_BAD_REG(addr);
2628 return 0;
2629 }
2630
2631 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2632 uint32_t value)
2633 {
2634 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2635 int offset = addr & OMAP_MPUI_REG_MASK;
2636 uint16_t diff;
2637 int ln;
2638
2639 switch (offset) {
2640 case 0x04: /* OUTPUT_REG */
2641 diff = (s->outputs ^ value) & ~s->dir;
2642 s->outputs = value;
2643 while ((ln = ffs(diff))) {
2644 ln --;
2645 if (s->handler[ln])
2646 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2647 diff &= ~(1 << ln);
2648 }
2649 break;
2650
2651 case 0x08: /* IO_CNTL */
2652 diff = s->outputs & (s->dir ^ value);
2653 s->dir = value;
2654
2655 value = s->outputs & ~s->dir;
2656 while ((ln = ffs(diff))) {
2657 ln --;
2658 if (s->handler[ln])
2659 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2660 diff &= ~(1 << ln);
2661 }
2662 break;
2663
2664 case 0x14: /* KBC_REG */
2665 s->cols = value;
2666 omap_mpuio_kbd_update(s);
2667 break;
2668
2669 case 0x18: /* GPIO_EVENT_MODE_REG */
2670 s->event = value & 0x1f;
2671 break;
2672
2673 case 0x1c: /* GPIO_INT_EDGE_REG */
2674 s->edge = value;
2675 break;
2676
2677 case 0x28: /* KBD_MASKIT */
2678 s->kbd_mask = value & 1;
2679 omap_mpuio_kbd_update(s);
2680 break;
2681
2682 case 0x2c: /* GPIO_MASKIT */
2683 s->mask = value;
2684 break;
2685
2686 case 0x30: /* GPIO_DEBOUNCING_REG */
2687 s->debounce = value & 0x1ff;
2688 break;
2689
2690 case 0x00: /* INPUT_LATCH */
2691 case 0x10: /* KBR_LATCH */
2692 case 0x20: /* KBD_INT */
2693 case 0x24: /* GPIO_INT */
2694 case 0x34: /* GPIO_LATCH_REG */
2695 OMAP_RO_REG(addr);
2696 return;
2697
2698 default:
2699 OMAP_BAD_REG(addr);
2700 return;
2701 }
2702 }
2703
2704 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2705 omap_badwidth_read16,
2706 omap_mpuio_read,
2707 omap_badwidth_read16,
2708 };
2709
2710 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2711 omap_badwidth_write16,
2712 omap_mpuio_write,
2713 omap_badwidth_write16,
2714 };
2715
2716 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2717 {
2718 s->inputs = 0;
2719 s->outputs = 0;
2720 s->dir = ~0;
2721 s->event = 0;
2722 s->edge = 0;
2723 s->kbd_mask = 0;
2724 s->mask = 0;
2725 s->debounce = 0;
2726 s->latch = 0;
2727 s->ints = 0;
2728 s->row_latch = 0x1f;
2729 s->clk = 1;
2730 }
2731
2732 static void omap_mpuio_onoff(void *opaque, int line, int on)
2733 {
2734 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2735
2736 s->clk = on;
2737 if (on)
2738 omap_mpuio_kbd_update(s);
2739 }
2740
2741 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2742 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2743 omap_clk clk)
2744 {
2745 int iomemtype;
2746 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2747 qemu_mallocz(sizeof(struct omap_mpuio_s));
2748
2749 s->irq = gpio_int;
2750 s->kbd_irq = kbd_int;
2751 s->wakeup = wakeup;
2752 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2753 omap_mpuio_reset(s);
2754
2755 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2756 omap_mpuio_writefn, s);
2757 cpu_register_physical_memory(base, 0x800, iomemtype);
2758
2759 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2760
2761 return s;
2762 }
2763
2764 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2765 {
2766 return s->in;
2767 }
2768
2769 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2770 {
2771 if (line >= 16 || line < 0)
2772 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2773 s->handler[line] = handler;
2774 }
2775
2776 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2777 {
2778 if (row >= 5 || row < 0)
2779 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2780 __FUNCTION__, col, row);
2781
2782 if (down)
2783 s->buttons[row] |= 1 << col;
2784 else
2785 s->buttons[row] &= ~(1 << col);
2786
2787 omap_mpuio_kbd_update(s);
2788 }
2789
2790 /* General-Purpose I/O */
2791 struct omap_gpio_s {
2792 qemu_irq irq;
2793 qemu_irq *in;
2794 qemu_irq handler[16];
2795
2796 uint16_t inputs;
2797 uint16_t outputs;
2798 uint16_t dir;
2799 uint16_t edge;
2800 uint16_t mask;
2801 uint16_t ints;
2802 uint16_t pins;
2803 };
2804
2805 static void omap_gpio_set(void *opaque, int line, int level)
2806 {
2807 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2808 uint16_t prev = s->inputs;
2809
2810 if (level)
2811 s->inputs |= 1 << line;
2812 else
2813 s->inputs &= ~(1 << line);
2814
2815 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2816 (1 << line) & s->dir & ~s->mask) {
2817 s->ints |= 1 << line;
2818 qemu_irq_raise(s->irq);
2819 }
2820 }
2821
2822 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2823 {
2824 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2825 int offset = addr & OMAP_MPUI_REG_MASK;
2826
2827 switch (offset) {
2828 case 0x00: /* DATA_INPUT */
2829 return s->inputs & s->pins;
2830
2831 case 0x04: /* DATA_OUTPUT */
2832 return s->outputs;
2833
2834 case 0x08: /* DIRECTION_CONTROL */
2835 return s->dir;
2836
2837 case 0x0c: /* INTERRUPT_CONTROL */
2838 return s->edge;
2839
2840 case 0x10: /* INTERRUPT_MASK */
2841 return s->mask;
2842
2843 case 0x14: /* INTERRUPT_STATUS */
2844 return s->ints;
2845
2846 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2847 OMAP_BAD_REG(addr);
2848 return s->pins;
2849 }
2850
2851 OMAP_BAD_REG(addr);
2852 return 0;
2853 }
2854
2855 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2856 uint32_t value)
2857 {
2858 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2859 int offset = addr & OMAP_MPUI_REG_MASK;
2860 uint16_t diff;
2861 int ln;
2862
2863 switch (offset) {
2864 case 0x00: /* DATA_INPUT */
2865 OMAP_RO_REG(addr);
2866 return;
2867
2868 case 0x04: /* DATA_OUTPUT */
2869 diff = (s->outputs ^ value) & ~s->dir;
2870 s->outputs = value;
2871 while ((ln = ffs(diff))) {
2872 ln --;
2873 if (s->handler[ln])
2874 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2875 diff &= ~(1 << ln);
2876 }
2877 break;
2878
2879 case 0x08: /* DIRECTION_CONTROL */
2880 diff = s->outputs & (s->dir ^ value);
2881 s->dir = value;
2882
2883 value = s->outputs & ~s->dir;
2884 while ((ln = ffs(diff))) {
2885 ln --;
2886 if (s->handler[ln])
2887 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2888 diff &= ~(1 << ln);
2889 }
2890 break;
2891
2892 case 0x0c: /* INTERRUPT_CONTROL */
2893 s->edge = value;
2894 break;
2895
2896 case 0x10: /* INTERRUPT_MASK */
2897 s->mask = value;
2898 break;
2899
2900 case 0x14: /* INTERRUPT_STATUS */
2901 s->ints &= ~value;
2902 if (!s->ints)
2903 qemu_irq_lower(s->irq);
2904 break;
2905
2906 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2907 OMAP_BAD_REG(addr);
2908 s->pins = value;
2909 break;
2910
2911 default:
2912 OMAP_BAD_REG(addr);
2913 return;
2914 }
2915 }
2916
2917 /* *Some* sources say the memory region is 32-bit. */
2918 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2919 omap_badwidth_read16,
2920 omap_gpio_read,
2921 omap_badwidth_read16,
2922 };
2923
2924 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2925 omap_badwidth_write16,
2926 omap_gpio_write,
2927 omap_badwidth_write16,
2928 };
2929
2930 static void omap_gpio_reset(struct omap_gpio_s *s)
2931 {
2932 s->inputs = 0;
2933 s->outputs = ~0;
2934 s->dir = ~0;
2935 s->edge = ~0;
2936 s->mask = ~0;
2937 s->ints = 0;
2938 s->pins = ~0;
2939 }
2940
2941 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2942 qemu_irq irq, omap_clk clk)
2943 {
2944 int iomemtype;
2945 struct omap_gpio_s *s = (struct omap_gpio_s *)
2946 qemu_mallocz(sizeof(struct omap_gpio_s));
2947
2948 s->irq = irq;
2949 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2950 omap_gpio_reset(s);
2951
2952 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2953 omap_gpio_writefn, s);
2954 cpu_register_physical_memory(base, 0x1000, iomemtype);
2955
2956 return s;
2957 }
2958
2959 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2960 {
2961 return s->in;
2962 }
2963
2964 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2965 {
2966 if (line >= 16 || line < 0)
2967 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2968 s->handler[line] = handler;
2969 }
2970
2971 /* MicroWire Interface */
2972 struct omap_uwire_s {
2973 qemu_irq txirq;
2974 qemu_irq rxirq;
2975 qemu_irq txdrq;
2976
2977 uint16_t txbuf;
2978 uint16_t rxbuf;
2979 uint16_t control;
2980 uint16_t setup[5];
2981
2982 struct uwire_slave_s *chip[4];
2983 };
2984
2985 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2986 {
2987 int chipselect = (s->control >> 10) & 3; /* INDEX */
2988 struct uwire_slave_s *slave = s->chip[chipselect];
2989
2990 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2991 if (s->control & (1 << 12)) /* CS_CMD */
2992 if (slave && slave->send)
2993 slave->send(slave->opaque,
2994 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2995 s->control &= ~(1 << 14); /* CSRB */
2996 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2997 * a DRQ. When is the level IRQ supposed to be reset? */
2998 }
2999
3000 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3001 if (s->control & (1 << 12)) /* CS_CMD */
3002 if (slave && slave->receive)
3003 s->rxbuf = slave->receive(slave->opaque);
3004 s->control |= 1 << 15; /* RDRB */
3005 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3006 * a DRQ. When is the level IRQ supposed to be reset? */
3007 }
3008 }
3009
3010 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3011 {
3012 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3013 int offset = addr & OMAP_MPUI_REG_MASK;
3014
3015 switch (offset) {
3016 case 0x00: /* RDR */
3017 s->control &= ~(1 << 15); /* RDRB */
3018 return s->rxbuf;
3019
3020 case 0x04: /* CSR */
3021 return s->control;
3022
3023 case 0x08: /* SR1 */
3024 return s->setup[0];
3025 case 0x0c: /* SR2 */
3026 return s->setup[1];
3027 case 0x10: /* SR3 */
3028 return s->setup[2];
3029 case 0x14: /* SR4 */
3030 return s->setup[3];
3031 case 0x18: /* SR5 */
3032 return s->setup[4];
3033 }
3034
3035 OMAP_BAD_REG(addr);
3036 return 0;
3037 }
3038
3039 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3040 uint32_t value)
3041 {
3042 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3043 int offset = addr & OMAP_MPUI_REG_MASK;
3044
3045 switch (offset) {
3046 case 0x00: /* TDR */
3047 s->txbuf = value; /* TD */
3048 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3049 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3050 (s->control & (1 << 12)))) { /* CS_CMD */
3051 s->control |= 1 << 14; /* CSRB */
3052 omap_uwire_transfer_start(s);
3053 }
3054 break;
3055
3056 case 0x04: /* CSR */
3057 s->control = value & 0x1fff;
3058 if (value & (1 << 13)) /* START */
3059 omap_uwire_transfer_start(s);
3060 break;
3061
3062 case 0x08: /* SR1 */
3063 s->setup[0] = value & 0x003f;
3064 break;
3065
3066 case 0x0c: /* SR2 */
3067 s->setup[1] = value & 0x0fc0;
3068 break;
3069
3070 case 0x10: /* SR3 */
3071 s->setup[2] = value & 0x0003;
3072 break;
3073
3074 case 0x14: /* SR4 */
3075 s->setup[3] = value & 0x0001;
3076 break;
3077
3078 case 0x18: /* SR5 */
3079 s->setup[4] = value & 0x000f;
3080 break;
3081
3082 default:
3083 OMAP_BAD_REG(addr);
3084 return;
3085 }
3086 }
3087
3088 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3089 omap_badwidth_read16,
3090 omap_uwire_read,
3091 omap_badwidth_read16,
3092 };
3093
3094 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3095 omap_badwidth_write16,
3096 omap_uwire_write,
3097 omap_badwidth_write16,
3098 };
3099
3100 static void omap_uwire_reset(struct omap_uwire_s *s)
3101 {
3102 s->control = 0;
3103 s->setup[0] = 0;
3104 s->setup[1] = 0;
3105 s->setup[2] = 0;
3106 s->setup[3] = 0;
3107 s->setup[4] = 0;
3108 }
3109
3110 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3111 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3112 {
3113 int iomemtype;
3114 struct omap_uwire_s *s = (struct omap_uwire_s *)
3115 qemu_mallocz(sizeof(struct omap_uwire_s));
3116
3117 s->txirq = irq[0];
3118 s->rxirq = irq[1];
3119 s->txdrq = dma;
3120 omap_uwire_reset(s);
3121
3122 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3123 omap_uwire_writefn, s);
3124 cpu_register_physical_memory(base, 0x800, iomemtype);
3125
3126 return s;
3127 }
3128
3129 void omap_uwire_attach(struct omap_uwire_s *s,
3130 struct uwire_slave_s *slave, int chipselect)
3131 {
3132 if (chipselect < 0 || chipselect > 3) {
3133 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3134 exit(-1);
3135 }
3136
3137 s->chip[chipselect] = slave;
3138 }
3139
3140 /* Pseudonoise Pulse-Width Light Modulator */
3141 static void omap_pwl_update(struct omap_mpu_state_s *s)
3142 {
3143 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3144
3145 if (output != s->pwl.output) {
3146 s->pwl.output = output;
3147 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3148 }
3149 }
3150
3151 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3152 {
3153 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3154 int offset = addr & OMAP_MPUI_REG_MASK;
3155
3156 switch (offset) {
3157 case 0x00: /* PWL_LEVEL */
3158 return s->pwl.level;
3159 case 0x04: /* PWL_CTRL */
3160 return s->pwl.enable;
3161 }
3162 OMAP_BAD_REG(addr);
3163 return 0;
3164 }
3165
3166 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3167 uint32_t value)
3168 {
3169 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3170 int offset = addr & OMAP_MPUI_REG_MASK;
3171
3172 switch (offset) {
3173 case 0x00: /* PWL_LEVEL */
3174 s->pwl.level = value;
3175 omap_pwl_update(s);
3176 break;
3177 case 0x04: /* PWL_CTRL */
3178 s->pwl.enable = value & 1;
3179 omap_pwl_update(s);
3180 break;
3181 default:
3182 OMAP_BAD_REG(addr);
3183 return;
3184 }
3185 }
3186
3187 static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3188 omap_pwl_read,
3189 omap_badwidth_read8,
3190 omap_badwidth_read8,
3191 };
3192
3193 static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3194 omap_pwl_write,
3195 omap_badwidth_write8,
3196 omap_badwidth_write8,
3197 };
3198
3199 static void omap_pwl_reset(struct omap_mpu_state_s *s)
3200 {
3201 s->pwl.output = 0;
3202 s->pwl.level = 0;
3203 s->pwl.enable = 0;
3204 s->pwl.clk = 1;
3205 omap_pwl_update(s);
3206 }
3207
3208 static void omap_pwl_clk_update(void *opaque, int line, int on)
3209 {
3210 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3211
3212 s->pwl.clk = on;
3213 omap_pwl_update(s);
3214 }
3215
3216 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3217 omap_clk clk)
3218 {
3219 int iomemtype;
3220
3221 omap_pwl_reset(s);
3222
3223 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3224 omap_pwl_writefn, s);
3225 cpu_register_physical_memory(base, 0x800, iomemtype);
3226
3227 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3228 }
3229
3230 /* Pulse-Width Tone module */
3231 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3232 {
3233 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3234 int offset = addr & OMAP_MPUI_REG_MASK;
3235
3236 switch (offset) {
3237 case 0x00: /* FRC */
3238 return s->pwt.frc;
3239 case 0x04: /* VCR */
3240 return s->pwt.vrc;
3241 case 0x08: /* GCR */
3242 return s->pwt.gcr;
3243 }
3244 OMAP_BAD_REG(addr);
3245 return 0;
3246 }
3247
3248 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3249 uint32_t value)
3250 {
3251 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3252 int offset = addr & OMAP_MPUI_REG_MASK;
3253
3254 switch (offset) {
3255 case 0x00: /* FRC */
3256 s->pwt.frc = value & 0x3f;
3257 break;
3258 case 0x04: /* VRC */
3259 if ((value ^ s->pwt.vrc) & 1) {
3260 if (value & 1)
3261 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3262 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3263 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3264 /* Pre-multiplexer divider */
3265 ((s->pwt.gcr & 2) ? 1 : 154) /
3266 /* Octave multiplexer */
3267 (2 << (value & 3)) *
3268 /* 101/107 divider */
3269 ((value & (1 << 2)) ? 101 : 107) *
3270 /* 49/55 divider */
3271 ((value & (1 << 3)) ? 49 : 55) *
3272 /* 50/63 divider */
3273 ((value & (1 << 4)) ? 50 : 63) *
3274 /* 80/127 divider */
3275 ((value & (1 << 5)) ? 80 : 127) /
3276 (107 * 55 * 63 * 127)));
3277 else
3278 printf("%s: silence!\n", __FUNCTION__);
3279 }
3280 s->pwt.vrc = value & 0x7f;
3281 break;
3282 case 0x08: /* GCR */
3283 s->pwt.gcr = value & 3;
3284 break;
3285 default:
3286 OMAP_BAD_REG(addr);
3287 return;
3288 }
3289 }
3290
3291 static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3292 omap_pwt_read,
3293 omap_badwidth_read8,
3294 omap_badwidth_read8,
3295 };
3296
3297 static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3298 omap_pwt_write,
3299 omap_badwidth_write8,
3300 omap_badwidth_write8,
3301 };
3302
3303 static void omap_pwt_reset(struct omap_mpu_state_s *s)
3304 {
3305 s->pwt.frc = 0;
3306 s->pwt.vrc = 0;
3307 s->pwt.gcr = 0;
3308 }
3309
3310 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3311 omap_clk clk)
3312 {
3313 int iomemtype;
3314
3315 s->pwt.clk = clk;
3316 omap_pwt_reset(s);
3317
3318 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3319 omap_pwt_writefn, s);
3320 cpu_register_physical_memory(base, 0x800, iomemtype);
3321 }
3322
3323 /* Real-time Clock module */
3324 struct omap_rtc_s {
3325 qemu_irq irq;
3326 qemu_irq alarm;
3327 QEMUTimer *clk;
3328
3329 uint8_t interrupts;
3330 uint8_t status;
3331 int16_t comp_reg;
3332 int running;
3333 int pm_am;
3334 int auto_comp;
3335 int round;
3336 struct tm alarm_tm;
3337 time_t alarm_ti;
3338
3339 struct tm current_tm;
3340 time_t ti;
3341 uint64_t tick;
3342 };
3343
3344 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3345 {
3346 /* s->alarm is level-triggered */
3347 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3348 }
3349
3350 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3351 {
3352 s->alarm_ti = mktimegm(&s->alarm_tm);
3353 if (s->alarm_ti == -1)
3354 printf("%s: conversion failed\n", __FUNCTION__);
3355 }
3356
3357 static inline uint8_t omap_rtc_bcd(int num)
3358 {
3359 return ((num / 10) << 4) | (num % 10);
3360 }
3361
3362 static inline int omap_rtc_bin(uint8_t num)
3363 {
3364 return (num & 15) + 10 * (num >> 4);
3365 }
3366
3367 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3368 {
3369 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3370 int offset = addr & OMAP_MPUI_REG_MASK;
3371 uint8_t i;
3372
3373 switch (offset) {
3374 case 0x00: /* SECONDS_REG */
3375 return omap_rtc_bcd(s->current_tm.tm_sec);
3376
3377 case 0x04: /* MINUTES_REG */
3378 return omap_rtc_bcd(s->current_tm.tm_min);
3379
3380 case 0x08: /* HOURS_REG */
3381 if (s->pm_am)
3382 return ((s->current_tm.tm_hour > 11) << 7) |
3383 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3384 else
3385 return omap_rtc_bcd(s->current_tm.tm_hour);
3386
3387 case 0x0c: /* DAYS_REG */
3388 return omap_rtc_bcd(s->current_tm.tm_mday);
3389
3390 case 0x10: /* MONTHS_REG */
3391 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3392
3393 case 0x14: /* YEARS_REG */
3394 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3395
3396 case 0x18: /* WEEK_REG */
3397 return s->current_tm.tm_wday;
3398
3399 case 0x20: /* ALARM_SECONDS_REG */
3400 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3401
3402 case 0x24: /* ALARM_MINUTES_REG */
3403 return omap_rtc_bcd(s->alarm_tm.tm_min);
3404
3405 case 0x28: /* ALARM_HOURS_REG */
3406 if (s->pm_am)
3407 return ((s->alarm_tm.tm_hour > 11) << 7) |
3408 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3409 else
3410 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3411
3412 case 0x2c: /* ALARM_DAYS_REG */
3413 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3414
3415 case 0x30: /* ALARM_MONTHS_REG */
3416 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3417
3418 case 0x34: /* ALARM_YEARS_REG */
3419 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3420
3421 case 0x40: /* RTC_CTRL_REG */
3422 return (s->pm_am << 3) | (s->auto_comp << 2) |
3423 (s->round << 1) | s->running;
3424
3425 case 0x44: /* RTC_STATUS_REG */
3426 i = s->status;
3427 s->status &= ~0x3d;
3428 return i;
3429
3430 case 0x48: /* RTC_INTERRUPTS_REG */
3431 return s->interrupts;
3432
3433 case 0x4c: /* RTC_COMP_LSB_REG */
3434 return ((uint16_t) s->comp_reg) & 0xff;
3435
3436 case 0x50: /* RTC_COMP_MSB_REG */
3437 return ((uint16_t) s->comp_reg) >> 8;
3438 }
3439
3440 OMAP_BAD_REG(addr);
3441 return 0;
3442 }
3443
3444 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3445 uint32_t value)
3446 {
3447 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3448 int offset = addr & OMAP_MPUI_REG_MASK;
3449 struct tm new_tm;
3450 time_t ti[2];
3451
3452 switch (offset) {
3453 case 0x00: /* SECONDS_REG */
3454 #ifdef ALMDEBUG
3455 printf("RTC SEC_REG <-- %02x\n", value);
3456 #endif
3457 s->ti -= s->current_tm.tm_sec;
3458 s->ti += omap_rtc_bin(value);
3459 return;
3460
3461 case 0x04: /* MINUTES_REG */
3462 #ifdef ALMDEBUG
3463 printf("RTC MIN_REG <-- %02x\n", value);
3464 #endif
3465 s->ti -= s->current_tm.tm_min * 60;
3466 s->ti += omap_rtc_bin(value) * 60;
3467 return;
3468
3469 case 0x08: /* HOURS_REG */
3470 #ifdef ALMDEBUG
3471 printf("RTC HRS_REG <-- %02x\n", value);
3472 #endif
3473 s->ti -= s->current_tm.tm_hour * 3600;
3474 if (s->pm_am) {
3475 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3476 s->ti += ((value >> 7) & 1) * 43200;
3477 } else
3478 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3479 return;
3480
3481 case 0x0c: /* DAYS_REG */
3482 #ifdef ALMDEBUG
3483 printf("RTC DAY_REG <-- %02x\n", value);
3484 #endif
3485 s->ti -= s->current_tm.tm_mday * 86400;
3486 s->ti += omap_rtc_bin(value) * 86400;
3487 return;
3488
3489 case 0x10: /* MONTHS_REG */
3490 #ifdef ALMDEBUG
3491 printf("RTC MTH_REG <-- %02x\n", value);
3492 #endif
3493 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3494 new_tm.tm_mon = omap_rtc_bin(value);
3495 ti[0] = mktimegm(&s->current_tm);
3496 ti[1] = mktimegm(&new_tm);
3497
3498 if (ti[0] != -1 && ti[1] != -1) {
3499 s->ti -= ti[0];
3500 s->ti += ti[1];
3501 } else {
3502 /* A less accurate version */
3503 s->ti -= s->current_tm.tm_mon * 2592000;
3504 s->ti += omap_rtc_bin(value) * 2592000;
3505 }
3506 return;
3507
3508 case 0x14: /* YEARS_REG */
3509 #ifdef ALMDEBUG
3510 printf("RTC YRS_REG <-- %02x\n", value);
3511 #endif
3512 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3513 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3514 ti[0] = mktimegm(&s->current_tm);
3515 ti[1] = mktimegm(&new_tm);
3516
3517 if (ti[0] != -1 && ti[1] != -1) {
3518 s->ti -= ti[0];
3519 s->ti += ti[1];
3520 } else {
3521 /* A less accurate version */
3522 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3523 s->ti += omap_rtc_bin(value) * 31536000;
3524 }
3525 return;
3526
3527 case 0x18: /* WEEK_REG */
3528 return; /* Ignored */
3529
3530 case 0x20: /* ALARM_SECONDS_REG */
3531 #ifdef ALMDEBUG
3532 printf("ALM SEC_REG <-- %02x\n", value);
3533 #endif
3534 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3535 omap_rtc_alarm_update(s);
3536 return;
3537
3538 case 0x24: /* ALARM_MINUTES_REG */
3539 #ifdef ALMDEBUG
3540 printf("ALM MIN_REG <-- %02x\n", value);
3541 #endif
3542 s->alarm_tm.tm_min = omap_rtc_bin(value);
3543 omap_rtc_alarm_update(s);
3544 return;
3545
3546 case 0x28: /* ALARM_HOURS_REG */
3547 #ifdef ALMDEBUG
3548 printf("ALM HRS_REG <-- %02x\n", value);
3549 #endif
3550 if (s->pm_am)
3551 s->alarm_tm.tm_hour =
3552 ((omap_rtc_bin(value & 0x3f)) % 12) +
3553 ((value >> 7) & 1) * 12;
3554 else
3555 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3556 omap_rtc_alarm_update(s);
3557 return;
3558
3559 case 0x2c: /* ALARM_DAYS_REG */
3560 #ifdef ALMDEBUG
3561 printf("ALM DAY_REG <-- %02x\n", value);
3562 #endif
3563 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3564 omap_rtc_alarm_update(s);
3565 return;
3566
3567 case 0x30: /* ALARM_MONTHS_REG */
3568 #ifdef ALMDEBUG
3569 printf("ALM MON_REG <-- %02x\n", value);
3570 #endif
3571 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3572 omap_rtc_alarm_update(s);
3573 return;
3574
3575 case 0x34: /* ALARM_YEARS_REG */
3576 #ifdef ALMDEBUG
3577 printf("ALM YRS_REG <-- %02x\n", value);
3578 #endif
3579 s->alarm_tm.tm_year = omap_rtc_bin(value);
3580 omap_rtc_alarm_update(s);
3581 return;
3582
3583 case 0x40: /* RTC_CTRL_REG */
3584 #ifdef ALMDEBUG
3585 printf("RTC CONTROL <-- %02x\n", value);
3586 #endif
3587 s->pm_am = (value >> 3) & 1;
3588 s->auto_comp = (value >> 2) & 1;
3589 s->round = (value >> 1) & 1;
3590 s->running = value & 1;
3591 s->status &= 0xfd;
3592 s->status |= s->running << 1;
3593 return;
3594
3595 case 0x44: /* RTC_STATUS_REG */
3596 #ifdef ALMDEBUG
3597 printf("RTC STATUSL <-- %02x\n", value);
3598 #endif
3599 s->status &= ~((value & 0xc0) ^ 0x80);
3600 omap_rtc_interrupts_update(s);
3601 return;
3602
3603 case 0x48: /* RTC_INTERRUPTS_REG */
3604 #ifdef ALMDEBUG
3605 printf("RTC INTRS <-- %02x\n", value);
3606 #endif
3607 s->interrupts = value;
3608 return;
3609
3610 case 0x4c: /* RTC_COMP_LSB_REG */
3611 #ifdef ALMDEBUG
3612 printf("RTC COMPLSB <-- %02x\n", value);
3613 #endif
3614 s->comp_reg &= 0xff00;
3615 s->comp_reg |= 0x00ff & value;
3616 return;
3617
3618 case 0x50: /* RTC_COMP_MSB_REG */
3619 #ifdef ALMDEBUG
3620 printf("RTC COMPMSB <-- %02x\n", value);
3621 #endif
3622 s->comp_reg &= 0x00ff;
3623 s->comp_reg |= 0xff00 & (value << 8);
3624 return;
3625
3626 default:
3627 OMAP_BAD_REG(addr);
3628 return;
3629 }
3630 }
3631
3632 static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3633 omap_rtc_read,
3634 omap_badwidth_read8,
3635 omap_badwidth_read8,
3636 };
3637
3638 static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3639 omap_rtc_write,
3640 omap_badwidth_write8,
3641 omap_badwidth_write8,
3642 };
3643
3644 static void omap_rtc_tick(void *opaque)
3645 {
3646 struct omap_rtc_s *s = opaque;
3647
3648 if (s->round) {
3649 /* Round to nearest full minute. */
3650 if (s->current_tm.tm_sec < 30)
3651 s->ti -= s->current_tm.tm_sec;
3652 else
3653 s->ti += 60 - s->current_tm.tm_sec;
3654
3655 s->round = 0;
3656 }
3657
3658 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3659
3660 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3661 s->status |= 0x40;
3662 omap_rtc_interrupts_update(s);
3663 }
3664
3665 if (s->interrupts & 0x04)
3666 switch (s->interrupts & 3) {
3667 case 0:
3668 s->status |= 0x04;
3669 qemu_irq_pulse(s->irq);
3670 break;
3671 case 1:
3672 if (s->current_tm.tm_sec)
3673 break;
3674 s->status |= 0x08;
3675 qemu_irq_pulse(s->irq);
3676 break;
3677 case 2:
3678 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3679 break;
3680 s->status |= 0x10;
3681 qemu_irq_pulse(s->irq);
3682 break;
3683 case 3:
3684 if (s->current_tm.tm_sec ||
3685 s->current_tm.tm_min || s->current_tm.tm_hour)
3686 break;
3687 s->status |= 0x20;
3688 qemu_irq_pulse(s->irq);
3689 break;
3690 }
3691
3692 /* Move on */
3693 if (s->running)
3694 s->ti ++;
3695 s->tick += 1000;
3696
3697 /*
3698 * Every full hour add a rough approximation of the compensation
3699 * register to the 32kHz Timer (which drives the RTC) value.
3700 */
3701 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3702 s->tick += s->comp_reg * 1000 / 32768;
3703
3704 qemu_mod_timer(s->clk, s->tick);
3705 }
3706
3707 static void omap_rtc_reset(struct omap_rtc_s *s)
3708 {
3709 struct tm tm;
3710
3711 s->interrupts = 0;
3712 s->comp_reg = 0;
3713 s->running = 0;
3714 s->pm_am = 0;
3715 s->auto_comp = 0;
3716 s->round = 0;
3717 s->tick = qemu_get_clock(rt_clock);
3718 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3719 s->alarm_tm.tm_mday = 0x01;
3720 s->status = 1 << 7;
3721 qemu_get_timedate(&tm, 0);
3722 s->ti = mktimegm(&tm);
3723
3724 omap_rtc_alarm_update(s);
3725 omap_rtc_tick(s);
3726 }
3727
3728 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3729 qemu_irq *irq, omap_clk clk)
3730 {
3731 int iomemtype;
3732 struct omap_rtc_s *s = (struct omap_rtc_s *)
3733 qemu_mallocz(sizeof(struct omap_rtc_s));
3734
3735 s->irq = irq[0];
3736 s->alarm = irq[1];
3737 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3738
3739 omap_rtc_reset(s);
3740
3741 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3742 omap_rtc_writefn, s);
3743 cpu_register_physical_memory(base, 0x800, iomemtype);
3744
3745 return s;
3746 }
3747
3748 /* Multi-channel Buffered Serial Port interfaces */
3749 struct omap_mcbsp_s {
3750 qemu_irq txirq;
3751 qemu_irq rxirq;
3752 qemu_irq txdrq;
3753 qemu_irq rxdrq;
3754
3755 uint16_t spcr[2];
3756 uint16_t rcr[2];
3757 uint16_t xcr[2];
3758 uint16_t srgr[2];
3759 uint16_t mcr[2];
3760 uint16_t pcr;
3761 uint16_t rcer[8];
3762 uint16_t xcer[8];
3763 int tx_rate;
3764 int rx_rate;
3765 int tx_req;
3766 int rx_req;
3767
3768 struct i2s_codec_s *codec;
3769 QEMUTimer *source_timer;
3770 QEMUTimer *sink_timer;
3771 };
3772
3773 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3774 {
3775 int irq;
3776
3777 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3778 case 0:
3779 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3780 break;
3781 case 3:
3782 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3783 break;
3784 default:
3785 irq = 0;
3786 break;
3787 }
3788
3789 if (irq)
3790 qemu_irq_pulse(s->rxirq);
3791
3792 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3793 case 0:
3794 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3795 break;
3796 case 3:
3797 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3798 break;
3799 default:
3800 irq = 0;
3801 break;
3802 }
3803
3804 if (irq)
3805 qemu_irq_pulse(s->txirq);
3806 }
3807
3808 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3809 {
3810 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3811 s->spcr[0] |= 1 << 2; /* RFULL */
3812 s->spcr[0] |= 1 << 1; /* RRDY */
3813 qemu_irq_raise(s->rxdrq);
3814 omap_mcbsp_intr_update(s);
3815 }
3816
3817 static void omap_mcbsp_source_tick(void *opaque)
3818 {
3819 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3820 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3821
3822 if (!s->rx_rate)
3823 return;
3824 if (s->rx_req)
3825 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3826
3827 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3828
3829 omap_mcbsp_rx_newdata(s);
3830 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3831 }
3832
3833 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3834 {
3835 if (!s->codec || !s->codec->rts)
3836 omap_mcbsp_source_tick(s);
3837 else if (s->codec->in.len) {
3838 s->rx_req = s->codec->in.len;
3839 omap_mcbsp_rx_newdata(s);
3840 }
3841 }
3842
3843 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3844 {
3845 qemu_del_timer(s->source_timer);
3846 }
3847
3848 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3849 {
3850 s->spcr[0] &= ~(1 << 1); /* RRDY */
3851 qemu_irq_lower(s->rxdrq);
3852 omap_mcbsp_intr_update(s);
3853 }
3854
3855 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3856 {
3857 s->spcr[1] |= 1 << 1; /* XRDY */
3858 qemu_irq_raise(s->txdrq);
3859 omap_mcbsp_intr_update(s);
3860 }
3861
3862 static void omap_mcbsp_sink_tick(void *opaque)
3863 {
3864 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3865 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3866
3867 if (!s->tx_rate)
3868 return;
3869 if (s->tx_req)
3870 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3871
3872 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3873
3874 omap_mcbsp_tx_newdata(s);
3875 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3876 }
3877
3878 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3879 {
3880 if (!s->codec || !s->codec->cts)
3881 omap_mcbsp_sink_tick(s);
3882 else if (s->codec->out.size) {
3883 s->tx_req = s->codec->out.size;
3884 omap_mcbsp_tx_newdata(s);
3885 }
3886 }
3887
3888 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3889 {
3890 s->spcr[1] &= ~(1 << 1); /* XRDY */
3891 qemu_irq_lower(s->txdrq);
3892 omap_mcbsp_intr_update(s);
3893 if (s->codec && s->codec->cts)
3894 s->codec->tx_swallow(s->codec->opaque);
3895 }
3896
3897 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3898 {
3899 s->tx_req = 0;
3900 omap_mcbsp_tx_done(s);
3901 qemu_del_timer(s->sink_timer);
3902 }
3903
3904 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3905 {
3906 int prev_rx_rate, prev_tx_rate;
3907 int rx_rate = 0, tx_rate = 0;
3908 int cpu_rate = 1500000; /* XXX */
3909
3910 /* TODO: check CLKSTP bit */
3911 if (s->spcr[1] & (1 << 6)) { /* GRST */
3912 if (s->spcr[0] & (1 << 0)) { /* RRST */
3913 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3914 (s->pcr & (1 << 8))) { /* CLKRM */
3915 if (~s->pcr & (1 << 7)) /* SCLKME */
3916 rx_rate = cpu_rate /
3917 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3918 } else
3919 if (s->codec)
3920 rx_rate = s->codec->rx_rate;
3921 }
3922
3923 if (s->spcr[1] & (1 << 0)) { /* XRST */
3924 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3925 (s->pcr & (1 << 9))) { /* CLKXM */
3926 if (~s->pcr & (1 << 7)) /* SCLKME */
3927 tx_rate = cpu_rate /
3928 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3929 } else
3930 if (s->codec)
3931 tx_rate = s->codec->tx_rate;
3932 }
3933 }
3934 prev_tx_rate = s->tx_rate;
3935 prev_rx_rate = s->rx_rate;
3936 s->tx_rate = tx_rate;
3937 s->rx_rate = rx_rate;
3938
3939 if (s->codec)
3940 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3941
3942 if (!prev_tx_rate && tx_rate)
3943 omap_mcbsp_tx_start(s);
3944 else if (s->tx_rate && !tx_rate)
3945 omap_mcbsp_tx_stop(s);
3946
3947 if (!prev_rx_rate && rx_rate)
3948 omap_mcbsp_rx_start(s);
3949 else if (prev_tx_rate && !tx_rate)
3950 omap_mcbsp_rx_stop(s);
3951 }
3952
3953 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3954 {
3955 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3956 int offset = addr & OMAP_MPUI_REG_MASK;
3957 uint16_t ret;
3958
3959 switch (offset) {
3960 case 0x00: /* DRR2 */
3961 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3962 return 0x0000;
3963 /* Fall through. */
3964 case 0x02: /* DRR1 */
3965 if (s->rx_req < 2) {
3966 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3967 omap_mcbsp_rx_done(s);
3968 } else {
3969 s->tx_req -= 2;
3970 if (s->codec && s->codec->in.len >= 2) {
3971 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3972 ret |= s->codec->in.fifo[s->codec->in.start ++];
3973 s->codec->in.len -= 2;
3974 } else
3975 ret = 0x0000;
3976 if (!s->tx_req)
3977 omap_mcbsp_rx_done(s);
3978 return ret;
3979 }
3980 return 0x0000;
3981
3982 case 0x04: /* DXR2 */
3983 case 0x06: /* DXR1 */
3984 return 0x0000;
3985
3986 case 0x08: /* SPCR2 */
3987 return s->spcr[1];
3988 case 0x0a: /* SPCR1 */
3989 return s->spcr[0];
3990 case 0x0c: /* RCR2 */
3991 return s->rcr[1];
3992 case 0x0e: /* RCR1 */
3993 return s->rcr[0];
3994 case 0x10: /* XCR2 */
3995 return s->xcr[1];
3996 case 0x12: /* XCR1 */
3997 return s->xcr[0];
3998 case 0x14: /* SRGR2 */
3999 return s->srgr[1];
4000 case 0x16: /* SRGR1 */
4001 return s->srgr[0];
4002 case 0x18: /* MCR2 */
4003 return s->mcr[1];
4004 case 0x1a: /* MCR1 */
4005 return s->mcr[0];
4006 case 0x1c: /* RCERA */
4007 return s->rcer[0];
4008 case 0x1e: /* RCERB */
4009 return s->rcer[1];
4010 case 0x20: /* XCERA */
4011 return s->xcer[0];
4012 case 0x22: /* XCERB */
4013 return s->xcer[1];
4014 case 0x24: /* PCR0 */
4015 return s->pcr;
4016 case 0x26: /* RCERC */
4017 return s->rcer[2];
4018 case 0x28: /* RCERD */
4019 return s->rcer[3];
4020 case 0x2a: /* XCERC */
4021 return s->xcer[2];
4022 case 0x2c: /* XCERD */
4023 return s->xcer[3];
4024 case 0x2e: /* RCERE */
4025 return s->rcer[4];
4026 case 0x30: /* RCERF */
4027 return s->rcer[5];
4028 case 0x32: /* XCERE */
4029 return s->xcer[4];
4030 case 0x34: /* XCERF */
4031 return s->xcer[5];
4032 case 0x36: /* RCERG */
4033 return s->rcer[6];
4034 case 0x38: /* RCERH */
4035 return s->rcer[7];
4036 case 0x3a: /* XCERG */
4037 return s->xcer[6];
4038 case 0x3c: /* XCERH */
4039 return s->xcer[7];
4040 }
4041
4042 OMAP_BAD_REG(addr);
4043 return 0;
4044 }
4045
4046 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4047 uint32_t value)
4048 {
4049 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4050 int offset = addr & OMAP_MPUI_REG_MASK;
4051
4052 switch (offset) {
4053 case 0x00: /* DRR2 */
4054 case 0x02: /* DRR1 */
4055 OMAP_RO_REG(addr);
4056 return;
4057
4058 case 0x04: /* DXR2 */
4059 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4060 return;
4061 /* Fall through. */
4062 case 0x06: /* DXR1 */
4063 if (s->tx_req > 1) {
4064 s->tx_req -= 2;
4065 if (s->codec && s->codec->cts) {
4066 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4067 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4068 }
4069 if (s->tx_req < 2)
4070 omap_mcbsp_tx_done(s);
4071 } else
4072 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4073 return;
4074
4075 case 0x08: /* SPCR2 */
4076 s->spcr[1] &= 0x0002;
4077 s->spcr[1] |= 0x03f9 & value;
4078 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4079 if (~value & 1) /* XRST */
4080 s->spcr[1] &= ~6;
4081 omap_mcbsp_req_update(s);
4082 return;
4083 case 0x0a: /* SPCR1 */
4084 s->spcr[0] &= 0x0006;
4085 s->spcr[0] |= 0xf8f9 & value;
4086 if (value & (1 << 15)) /* DLB */
4087 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4088 if (~value & 1) { /* RRST */
4089 s->spcr[0] &= ~6;
4090 s->rx_req = 0;
4091 omap_mcbsp_rx_done(s);
4092 }
4093 omap_mcbsp_req_update(s);
4094 return;
4095
4096 case 0x0c: /* RCR2 */
4097 s->rcr[1] = value & 0xffff;
4098 return;
4099 case 0x0e: /* RCR1 */
4100 s->rcr[0] = value & 0x7fe0;
4101 return;
4102 case 0x10: /* XCR2 */
4103 s->xcr[1] = value & 0xffff;
4104 return;
4105 case 0x12: /* XCR1 */
4106 s->xcr[0] = value & 0x7fe0;
4107 return;
4108 case 0x14: /* SRGR2 */
4109 s->srgr[1] = value & 0xffff;
4110 omap_mcbsp_req_update(s);
4111 return;
4112 case 0x16: /* SRGR1 */
4113 s->srgr[0] = value & 0xffff;
4114 omap_mcbsp_req_update(s);
4115 return;
4116 case 0x18: /* MCR2 */
4117 s->mcr[1] = value & 0x03e3;
4118 if (value & 3) /* XMCM */
4119 printf("%s: Tx channel selection mode enable attempt\n",
4120 __FUNCTION__);
4121 return;
4122 case 0x1a: /* MCR1 */
4123 s->mcr[0] = value & 0x03e1;
4124 if (value & 1) /* RMCM */
4125 printf("%s: Rx channel selection mode enable attempt\n",
4126 __FUNCTION__);
4127 return;
4128 case 0x1c: /* RCERA */
4129 s->rcer[0] = value & 0xffff;
4130 return;
4131 case 0x1e: /* RCERB */
4132 s->rcer[1] = value & 0xffff;
4133 return;
4134 case 0x20: /* XCERA */
4135 s->xcer[0] = value & 0xffff;
4136 return;
4137 case 0x22: /* XCERB */
4138 s->xcer[1] = value & 0xffff;
4139 return;
4140 case 0x24: /* PCR0 */
4141 s->pcr = value & 0x7faf;
4142 return;
4143 case 0x26: /* RCERC */
4144 s->rcer[2] = value & 0xffff;
4145 return;
4146 case 0x28: /* RCERD */
4147 s->rcer[3] = value & 0xffff;
4148 return;
4149 case 0x2a: /* XCERC */
4150 s->xcer[2] = value & 0xffff;
4151 return;
4152 case 0x2c: /* XCERD */
4153 s->xcer[3] = value & 0xffff;
4154 return;
4155 case 0x2e: /* RCERE */
4156 s->rcer[4] = value & 0xffff;
4157 return;
4158 case 0x30: /* RCERF */
4159 s->rcer[5] = value & 0xffff;
4160 return;
4161 case 0x32: /* XCERE */
4162 s->xcer[4] = value & 0xffff;
4163 return;
4164 case 0x34: /* XCERF */
4165 s->xcer[5] = value & 0xffff;
4166 return;
4167 case 0x36: /* RCERG */
4168 s->rcer[6] = value & 0xffff;
4169 return;
4170 case 0x38: /* RCERH */
4171 s->rcer[7] = value & 0xffff;
4172 return;
4173 case 0x3a: /* XCERG */
4174 s->xcer[6] = value & 0xffff;
4175 return;
4176 case 0x3c: /* XCERH */
4177 s->xcer[7] = value & 0xffff;
4178 return;
4179 }
4180
4181 OMAP_BAD_REG(addr);
4182 }
4183
4184 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4185 uint32_t value)
4186 {
4187 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4188 int offset = addr & OMAP_MPUI_REG_MASK;
4189
4190 if (offset == 0x04) { /* DXR */
4191 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4192 return;
4193 if (s->tx_req > 3) {
4194 s->tx_req -= 4;
4195 if (s->codec && s->codec->cts) {
4196 s->codec->out.fifo[s->codec->out.len ++] =
4197 (value >> 24) & 0xff;
4198 s->codec->out.fifo[s->codec->out.len ++] =
4199 (value >> 16) & 0xff;
4200 s->codec->out.fifo[s->codec->out.len ++] =
4201 (value >> 8) & 0xff;
4202 s->codec->out.fifo[s->codec->out.len ++] =
4203 (value >> 0) & 0xff;
4204 }
4205 if (s->tx_req < 4)
4206 omap_mcbsp_tx_done(s);
4207 } else
4208 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4209 return;
4210 }
4211
4212 omap_badwidth_write16(opaque, addr, value);
4213 }
4214
4215 static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4216 omap_badwidth_read16,
4217 omap_mcbsp_read,
4218 omap_badwidth_read16,
4219 };
4220
4221 static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4222 omap_badwidth_write16,
4223 omap_mcbsp_writeh,
4224 omap_mcbsp_writew,
4225 };
4226
4227 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4228 {
4229 memset(&s->spcr, 0, sizeof(s->spcr));
4230 memset(&s->rcr, 0, sizeof(s->rcr));
4231 memset(&s->xcr, 0, sizeof(s->xcr));
4232 s->srgr[0] = 0x0001;
4233 s->srgr[1] = 0x2000;
4234 memset(&s->mcr, 0, sizeof(s->mcr));
4235 memset(&s->pcr, 0, sizeof(s->pcr));
4236 memset(&s->rcer, 0, sizeof(s->rcer));
4237 memset(&s->xcer, 0, sizeof(s->xcer));
4238 s->tx_req = 0;
4239 s->rx_req = 0;
4240 s->tx_rate = 0;
4241 s->rx_rate = 0;
4242 qemu_del_timer(s->source_timer);
4243 qemu_del_timer(s->sink_timer);
4244 }
4245
4246 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4247 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4248 {
4249 int iomemtype;
4250 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4251 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4252
4253 s->txirq = irq[0];
4254 s->rxirq = irq[1];
4255 s->txdrq = dma[0];
4256 s->rxdrq = dma[1];
4257 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4258 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4259 omap_mcbsp_reset(s);
4260
4261 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4262 omap_mcbsp_writefn, s);
4263 cpu_register_physical_memory(base, 0x800, iomemtype);
4264
4265 return s;
4266 }
4267
4268 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4269 {
4270 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4271
4272 if (s->rx_rate) {
4273 s->rx_req = s->codec->in.len;
4274 omap_mcbsp_rx_newdata(s);
4275 }
4276 }
4277
4278 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4279 {
4280 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4281
4282 if (s->tx_rate) {
4283 s->tx_req = s->codec->out.size;
4284 omap_mcbsp_tx_newdata(s);
4285 }
4286 }
4287
4288 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4289 {
4290 s->codec = slave;
4291 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4292 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4293 }
4294
4295 /* LED Pulse Generators */
4296 struct omap_lpg_s {
4297 QEMUTimer *tm;
4298
4299 uint8_t control;
4300 uint8_t power;
4301 int64_t on;
4302 int64_t period;
4303 int clk;
4304 int cycle;
4305 };
4306
4307 static void omap_lpg_tick(void *opaque)
4308 {
4309 struct omap_lpg_s *s = opaque;
4310
4311 if (s->cycle)
4312 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4313 else
4314 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4315
4316 s->cycle = !s->cycle;
4317 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4318 }
4319
4320 static void omap_lpg_update(struct omap_lpg_s *s)
4321 {
4322 int64_t on, period = 1, ticks = 1000;
4323 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4324
4325 if (~s->control & (1 << 6)) /* LPGRES */
4326 on = 0;
4327 else if (s->control & (1 << 7)) /* PERM_ON */
4328 on = period;
4329 else {
4330 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4331 256 / 32);
4332 on = (s->clk && s->power) ? muldiv64(ticks,
4333 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4334 }
4335
4336 qemu_del_timer(s->tm);
4337 if (on == period && s->on < s->period)
4338 printf("%s: LED is on\n", __FUNCTION__);
4339 else if (on == 0 && s->on)
4340 printf("%s: LED is off\n", __FUNCTION__);
4341 else if (on && (on != s->on || period != s->period)) {
4342 s->cycle = 0;
4343 s->on = on;
4344 s->period = period;
4345 omap_lpg_tick(s);
4346 return;
4347 }
4348
4349 s->on = on;
4350 s->period = period;
4351 }
4352
4353 static void omap_lpg_reset(struct omap_lpg_s *s)
4354 {
4355 s->control = 0x00;
4356 s->power = 0x00;
4357 s->clk = 1;
4358 omap_lpg_update(s);
4359 }
4360
4361 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4362 {
4363 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4364 int offset = addr & OMAP_MPUI_REG_MASK;
4365
4366 switch (offset) {
4367 case 0x00: /* LCR */
4368 return s->control;
4369
4370 case 0x04: /* PMR */
4371 return s->power;
4372 }
4373
4374 OMAP_BAD_REG(addr);
4375 return 0;
4376 }
4377
4378 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4379 uint32_t value)
4380 {
4381 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4382 int offset = addr & OMAP_MPUI_REG_MASK;
4383
4384 switch (offset) {
4385 case 0x00: /* LCR */
4386 if (~value & (1 << 6)) /* LPGRES */
4387 omap_lpg_reset(s);
4388 s->control = value & 0xff;
4389 omap_lpg_update(s);
4390 return;
4391
4392 case 0x04: /* PMR */
4393 s->power = value & 0x01;
4394 omap_lpg_update(s);
4395 return;
4396
4397 default:
4398 OMAP_BAD_REG(addr);
4399 return;
4400 }
4401 }
4402
4403 static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4404 omap_lpg_read,
4405 omap_badwidth_read8,
4406 omap_badwidth_read8,
4407 };
4408
4409 static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4410 omap_lpg_write,
4411 omap_badwidth_write8,
4412 omap_badwidth_write8,
4413 };
4414
4415 static void omap_lpg_clk_update(void *opaque, int line, int on)
4416 {
4417 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4418
4419 s->clk = on;
4420 omap_lpg_update(s);
4421 }
4422
4423 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4424 {
4425 int iomemtype;
4426 struct omap_lpg_s *s = (struct omap_lpg_s *)
4427 qemu_mallocz(sizeof(struct omap_lpg_s));
4428
4429 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4430
4431 omap_lpg_reset(s);
4432
4433 iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4434 omap_lpg_writefn, s);
4435 cpu_register_physical_memory(base, 0x800, iomemtype);
4436
4437 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4438
4439 return s;
4440 }
4441
4442 /* MPUI Peripheral Bridge configuration */
4443 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4444 {
4445 if (addr == OMAP_MPUI_BASE) /* CMR */
4446 return 0xfe4d;
4447
4448 OMAP_BAD_REG(addr);
4449 return 0;
4450 }
4451
4452 static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4453 omap_badwidth_read16,
4454 omap_mpui_io_read,
4455 omap_badwidth_read16,
4456 };
4457
4458 static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4459 omap_badwidth_write16,
4460 omap_badwidth_write16,
4461 omap_badwidth_write16,
4462 };
4463
4464 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4465 {
4466 int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4467 omap_mpui_io_writefn, mpu);
4468 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4469 }
4470
4471 /* General chip reset */
4472 static void omap1_mpu_reset(void *opaque)
4473 {
4474 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4475
4476 omap_inth_reset(mpu->ih[0]);
4477 omap_inth_reset(mpu->ih[1]);
4478 omap_dma_reset(mpu->dma);
4479 omap_mpu_timer_reset(mpu->timer[0]);
4480 omap_mpu_timer_reset(mpu->timer[1]);
4481 omap_mpu_timer_reset(mpu->timer[2]);
4482 omap_wd_timer_reset(mpu->wdt);
4483 omap_os_timer_reset(mpu->os_timer);
4484 omap_lcdc_reset(mpu->lcd);
4485 omap_ulpd_pm_reset(mpu);
4486 omap_pin_cfg_reset(mpu);
4487 omap_mpui_reset(mpu);
4488 omap_tipb_bridge_reset(mpu->private_tipb);
4489 omap_tipb_bridge_reset(mpu->public_tipb);
4490 omap_dpll_reset(&mpu->dpll[0]);
4491 omap_dpll_reset(&mpu->dpll[1]);
4492 omap_dpll_reset(&mpu->dpll[2]);
4493 omap_uart_reset(mpu->uart[0]);
4494 omap_uart_reset(mpu->uart[1]);
4495 omap_uart_reset(mpu->uart[2]);
4496 omap_mmc_reset(mpu->mmc);
4497 omap_mpuio_reset(mpu->mpuio);
4498 omap_gpio_reset(mpu->gpio);
4499 omap_uwire_reset(mpu->microwire);
4500 omap_pwl_reset(mpu);
4501 omap_pwt_reset(mpu);
4502 omap_i2c_reset(mpu->i2c[0]);
4503 omap_rtc_reset(mpu->rtc);
4504 omap_mcbsp_reset(mpu->mcbsp1);
4505 omap_mcbsp_reset(mpu->mcbsp2);
4506 omap_mcbsp_reset(mpu->mcbsp3);
4507 omap_lpg_reset(mpu->led[0]);
4508 omap_lpg_reset(mpu->led[1]);
4509 omap_clkm_reset(mpu);
4510 cpu_reset(mpu->env);
4511 }
4512
4513 static const struct omap_map_s {
4514 target_phys_addr_t phys_dsp;
4515 target_phys_addr_t phys_mpu;
4516 uint32_t size;
4517 const char *name;
4518 } omap15xx_dsp_mm[] = {
4519 /* Strobe 0 */
4520 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4521 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4522 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4523 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4524 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4525 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4526 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4527 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4528 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4529 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4530 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4531 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4532 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4533 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4534 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4535 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4536 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4537 /* Strobe 1 */
4538 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4539
4540 { 0 }
4541 };
4542
4543 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4544 {
4545 int io;
4546
4547 for (; map->phys_dsp; map ++) {
4548 io = cpu_get_physical_page_desc(map->phys_mpu);
4549
4550 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4551 }
4552 }
4553
4554 void omap_mpu_wakeup(void *opaque, int irq, int req)
4555 {
4556 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4557
4558 if (mpu->env->halted)
4559 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4560 }
4561
4562 static const struct dma_irq_map omap1_dma_irq_map[] = {
4563 { 0, OMAP_INT_DMA_CH0_6 },
4564 { 0, OMAP_INT_DMA_CH1_7 },
4565 { 0, OMAP_INT_DMA_CH2_8 },
4566 { 0, OMAP_INT_DMA_CH3 },
4567 { 0, OMAP_INT_DMA_CH4 },
4568 { 0, OMAP_INT_DMA_CH5 },
4569 { 1, OMAP_INT_1610_DMA_CH6 },
4570 { 1, OMAP_INT_1610_DMA_CH7 },
4571 { 1, OMAP_INT_1610_DMA_CH8 },
4572 { 1, OMAP_INT_1610_DMA_CH9 },
4573 { 1, OMAP_INT_1610_DMA_CH10 },
4574 { 1, OMAP_INT_1610_DMA_CH11 },
4575 { 1, OMAP_INT_1610_DMA_CH12 },
4576 { 1, OMAP_INT_1610_DMA_CH13 },
4577 { 1, OMAP_INT_1610_DMA_CH14 },
4578 { 1, OMAP_INT_1610_DMA_CH15 }
4579 };
4580
4581 /* DMA ports for OMAP1 */
4582 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4583 target_phys_addr_t addr)
4584 {
4585 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4586 }
4587
4588 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4589 target_phys_addr_t addr)
4590 {
4591 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4592 }
4593
4594 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4595 target_phys_addr_t addr)
4596 {
4597 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4598 }
4599
4600 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4601 target_phys_addr_t addr)
4602 {
4603 return addr >= 0xfffb0000 && addr < 0xffff0000;
4604 }
4605
4606 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4607 target_phys_addr_t addr)
4608 {
4609 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4610 }
4611
4612 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4613 target_phys_addr_t addr)
4614 {
4615 return addr >= 0xe1010000 && addr < 0xe1020004;
4616 }
4617
4618 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4619 DisplayState *ds, const char *core)
4620 {
4621 int i;
4622 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4623 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4624 ram_addr_t imif_base, emiff_base;
4625 qemu_irq *cpu_irq;
4626 qemu_irq dma_irqs[6];
4627 int sdindex;
4628
4629 if (!core)
4630 core = "ti925t";
4631
4632 /* Core */
4633 s->mpu_model = omap310;
4634 s->env = cpu_init(core);
4635 if (!s->env) {
4636 fprintf(stderr, "Unable to find CPU definition\n");
4637 exit(1);
4638 }
4639 s->sdram_size = sdram_size;
4640 s->sram_size = OMAP15XX_SRAM_SIZE;
4641
4642 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4643
4644 /* Clocks */
4645 omap_clk_init(s);
4646
4647 /* Memory-mapped stuff */
4648 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4649 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4650 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4651 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4652
4653 omap_clkm_init(0xfffece00, 0xe1008000, s);
4654
4655 cpu_irq = arm_pic_init_cpu(s->env);
4656 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4657 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4658 omap_findclk(s, "arminth_ck"));
4659 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4660 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4661 omap_findclk(s, "arminth_ck"));
4662
4663 for (i = 0; i < 6; i ++)
4664 dma_irqs[i] =
4665 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4666 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4667 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4668
4669 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4670 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4671 s->port[imif ].addr_valid = omap_validate_imif_addr;
4672 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4673 s->port[local ].addr_valid = omap_validate_local_addr;
4674 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4675
4676 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4677 soc_dma_port_add_mem_ram(s->dma,
4678 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4679 soc_dma_port_add_mem_ram(s->dma,
4680 imif_base, OMAP_IMIF_BASE, s->sram_size);
4681
4682 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4683 s->irq[0][OMAP_INT_TIMER1],
4684 omap_findclk(s, "mputim_ck"));
4685 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4686 s->irq[0][OMAP_INT_TIMER2],
4687 omap_findclk(s, "mputim_ck"));
4688 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4689 s->irq[0][OMAP_INT_TIMER3],
4690 omap_findclk(s, "mputim_ck"));
4691
4692 s->wdt = omap_wd_timer_init(0xfffec800,
4693 s->irq[0][OMAP_INT_WD_TIMER],
4694 omap_findclk(s, "armwdt_ck"));
4695
4696 s->os_timer = omap_os_timer_init(0xfffb9000,
4697 s->irq[1][OMAP_INT_OS_TIMER],
4698 omap_findclk(s, "clk32-kHz"));
4699
4700 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4701 omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4702 omap_findclk(s, "lcd_ck"));
4703
4704 omap_ulpd_pm_init(0xfffe0800, s);
4705 omap_pin_cfg_init(0xfffe1000, s);
4706 omap_id_init(s);
4707
4708 omap_mpui_init(0xfffec900, s);
4709
4710 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4711 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4712 omap_findclk(s, "tipb_ck"));
4713 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4714 s->irq[0][OMAP_INT_BRIDGE_PUB],
4715 omap_findclk(s, "tipb_ck"));
4716
4717 omap_tcmi_init(0xfffecc00, s);
4718
4719 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4720 omap_findclk(s, "uart1_ck"),
4721 omap_findclk(s, "uart1_ck"),
4722 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4723 serial_hds[0]);
4724 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4725 omap_findclk(s, "uart2_ck"),
4726 omap_findclk(s, "uart2_ck"),
4727 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4728 serial_hds[0] ? serial_hds[1] : 0);
4729 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4730 omap_findclk(s, "uart3_ck"),
4731 omap_findclk(s, "uart3_ck"),
4732 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4733 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4734
4735 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4736 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4737 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4738
4739 sdindex = drive_get_index(IF_SD, 0, 0);
4740 if (sdindex == -1) {
4741 fprintf(stderr, "qemu: missing SecureDigital device\n");
4742 exit(1);
4743 }
4744 s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4745 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4746 omap_findclk(s, "mmc_ck"));
4747
4748 s->mpuio = omap_mpuio_init(0xfffb5000,
4749 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4750 s->wakeup, omap_findclk(s, "clk32-kHz"));
4751
4752 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4753 omap_findclk(s, "arm_gpio_ck"));
4754
4755 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4756 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4757
4758 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4759 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4760
4761 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4762 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4763
4764 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4765 omap_findclk(s, "clk32-kHz"));
4766
4767 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4768 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4769 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4770 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4771 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4772 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4773
4774 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4775 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4776
4777 /* Register mappings not currenlty implemented:
4778 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4779 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4780 * USB W2FC fffb4000 - fffb47ff
4781 * Camera Interface fffb6800 - fffb6fff
4782 * USB Host fffba000 - fffba7ff
4783 * FAC fffba800 - fffbafff
4784 * HDQ/1-Wire fffbc000 - fffbc7ff
4785 * TIPB switches fffbc800 - fffbcfff
4786 * Mailbox fffcf000 - fffcf7ff
4787 * Local bus IF fffec100 - fffec1ff
4788 * Local bus MMU fffec200 - fffec2ff
4789 * DSP MMU fffed200 - fffed2ff
4790 */
4791
4792 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4793 omap_setup_mpui_io(s);
4794
4795 qemu_register_reset(omap1_mpu_reset, s);
4796
4797 return s;
4798 }