]> git.proxmox.com Git - mirror_qemu.git/blob - hw/pci-host/pnv_phb4.c
Merge tag 'pull-ppc-20220920' of https://gitlab.com/danielhb/qemu into staging
[mirror_qemu.git] / hw / pci-host / pnv_phb4.c
1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
3 *
4 * Copyright (c) 2018-2020, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "monitor/monitor.h"
14 #include "target/ppc/cpu.h"
15 #include "hw/pci-host/pnv_phb4_regs.h"
16 #include "hw/pci-host/pnv_phb4.h"
17 #include "hw/pci/pcie_host.h"
18 #include "hw/pci/pcie_port.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_xscom.h"
21 #include "hw/irq.h"
22 #include "hw/qdev-properties.h"
23 #include "qom/object.h"
24 #include "trace.h"
25
26 #define phb_error(phb, fmt, ...) \
27 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
28 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
29
30 #define phb_pec_error(pec, fmt, ...) \
31 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \
32 (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
33
34 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
35 {
36 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
37 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
38 uint8_t bus, devfn;
39
40 if (!(addr >> 63)) {
41 return NULL;
42 }
43 bus = (addr >> 52) & 0xff;
44 devfn = (addr >> 44) & 0xff;
45
46 /* We don't access the root complex this way */
47 if (bus == 0 && devfn == 0) {
48 return NULL;
49 }
50 return pci_find_device(pci->bus, bus, devfn);
51 }
52
53 /*
54 * The CONFIG_DATA register expects little endian accesses, but as the
55 * region is big endian, we have to swap the value.
56 */
57 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
58 unsigned size, uint64_t val)
59 {
60 uint32_t cfg_addr, limit;
61 PCIDevice *pdev;
62
63 pdev = pnv_phb4_find_cfg_dev(phb);
64 if (!pdev) {
65 return;
66 }
67 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
68 cfg_addr |= off;
69 limit = pci_config_size(pdev);
70 if (limit <= cfg_addr) {
71 /*
72 * conventional pci device can be behind pcie-to-pci bridge.
73 * 256 <= addr < 4K has no effects.
74 */
75 return;
76 }
77 switch (size) {
78 case 1:
79 break;
80 case 2:
81 val = bswap16(val);
82 break;
83 case 4:
84 val = bswap32(val);
85 break;
86 default:
87 g_assert_not_reached();
88 }
89 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
90 }
91
92 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
93 unsigned size)
94 {
95 uint32_t cfg_addr, limit;
96 PCIDevice *pdev;
97 uint64_t val;
98
99 pdev = pnv_phb4_find_cfg_dev(phb);
100 if (!pdev) {
101 return ~0ull;
102 }
103 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
104 cfg_addr |= off;
105 limit = pci_config_size(pdev);
106 if (limit <= cfg_addr) {
107 /*
108 * conventional pci device can be behind pcie-to-pci bridge.
109 * 256 <= addr < 4K has no effects.
110 */
111 return ~0ull;
112 }
113 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
114 switch (size) {
115 case 1:
116 return val;
117 case 2:
118 return bswap16(val);
119 case 4:
120 return bswap32(val);
121 default:
122 g_assert_not_reached();
123 }
124 }
125
126 /*
127 * Root complex register accesses are memory mapped.
128 */
129 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
130 unsigned size, uint64_t val)
131 {
132 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
133 PCIDevice *pdev;
134
135 if (size != 4) {
136 phb_error(phb, "rc_config_write invalid size %d\n", size);
137 return;
138 }
139
140 pdev = pci_find_device(pci->bus, 0, 0);
141 if (!pdev) {
142 phb_error(phb, "rc_config_write device not found\n");
143 return;
144 }
145
146 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
147 bswap32(val), 4);
148 }
149
150 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
151 unsigned size)
152 {
153 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
154 PCIDevice *pdev;
155 uint64_t val;
156
157 if (size != 4) {
158 phb_error(phb, "rc_config_read invalid size %d\n", size);
159 return ~0ull;
160 }
161
162 pdev = pci_find_device(pci->bus, 0, 0);
163 if (!pdev) {
164 phb_error(phb, "rc_config_read device not found\n");
165 return ~0ull;
166 }
167
168 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
169 return bswap32(val);
170 }
171
172 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
173 {
174 uint64_t base, start, size, mbe0, mbe1;
175 MemoryRegion *parent;
176 char name[64];
177
178 /* Unmap first */
179 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
180 /* Should we destroy it in RCU friendly way... ? */
181 memory_region_del_subregion(phb->mr_mmio[index].container,
182 &phb->mr_mmio[index]);
183 }
184
185 /* Get table entry */
186 mbe0 = phb->ioda_MBT[(index << 1)];
187 mbe1 = phb->ioda_MBT[(index << 1) + 1];
188
189 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
190 return;
191 }
192
193 /* Grab geometry from registers */
194 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
195 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
196 size |= 0xff00000000000000ull;
197 size = ~size + 1;
198
199 /* Calculate PCI side start address based on M32/M64 window type */
200 if (mbe0 & IODA3_MBT0_TYPE_M32) {
201 start = phb->regs[PHB_M32_START_ADDR >> 3];
202 if ((start + size) > 0x100000000ull) {
203 phb_error(phb, "M32 set beyond 4GB boundary !");
204 size = 0x100000000 - start;
205 }
206 } else {
207 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
208 }
209
210 /* TODO: Figure out how to implemet/decode AOMASK */
211
212 /* Check if it matches an enabled MMIO region in the PEC stack */
213 if (memory_region_is_mapped(&phb->mmbar0) &&
214 base >= phb->mmio0_base &&
215 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
216 parent = &phb->mmbar0;
217 base -= phb->mmio0_base;
218 } else if (memory_region_is_mapped(&phb->mmbar1) &&
219 base >= phb->mmio1_base &&
220 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
221 parent = &phb->mmbar1;
222 base -= phb->mmio1_base;
223 } else {
224 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
225 return;
226 }
227
228 /* Create alias (better name ?) */
229 snprintf(name, sizeof(name), "phb4-mbar%d", index);
230 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
231 &phb->pci_mmio, start, size);
232 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
233 }
234
235 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
236 {
237 uint64_t i;
238 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
239 PNV_PHB4_MIN_MMIO_WINDOWS;
240
241 for (i = 0; i < num_windows; i++) {
242 pnv_phb4_check_mbt(phb, i);
243 }
244 }
245
246 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
247 unsigned *out_table, unsigned *out_idx)
248 {
249 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
250 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
251 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
252 unsigned int mask;
253 uint64_t *tptr = NULL;
254
255 switch (table) {
256 case IODA3_TBL_LIST:
257 tptr = phb->ioda_LIST;
258 mask = 7;
259 break;
260 case IODA3_TBL_MIST:
261 tptr = phb->ioda_MIST;
262 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
263 mask -= 1;
264 break;
265 case IODA3_TBL_RCAM:
266 mask = phb->big_phb ? 127 : 63;
267 break;
268 case IODA3_TBL_MRT:
269 mask = phb->big_phb ? 15 : 7;
270 break;
271 case IODA3_TBL_PESTA:
272 case IODA3_TBL_PESTB:
273 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
274 mask -= 1;
275 break;
276 case IODA3_TBL_TVT:
277 tptr = phb->ioda_TVT;
278 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
279 mask -= 1;
280 break;
281 case IODA3_TBL_TCR:
282 case IODA3_TBL_TDR:
283 mask = phb->big_phb ? 1023 : 511;
284 break;
285 case IODA3_TBL_MBT:
286 tptr = phb->ioda_MBT;
287 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
288 mask -= 1;
289 break;
290 case IODA3_TBL_MDT:
291 tptr = phb->ioda_MDT;
292 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
293 mask -= 1;
294 break;
295 case IODA3_TBL_PEEV:
296 tptr = phb->ioda_PEEV;
297 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
298 mask -= 1;
299 break;
300 default:
301 phb_error(phb, "invalid IODA table %d", table);
302 return NULL;
303 }
304 index &= mask;
305 if (out_idx) {
306 *out_idx = index;
307 }
308 if (out_table) {
309 *out_table = table;
310 }
311 if (tptr) {
312 tptr += index;
313 }
314 if (adreg & PHB_IODA_AD_AUTOINC) {
315 index = (index + 1) & mask;
316 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
317 }
318
319 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
320 return tptr;
321 }
322
323 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
324 {
325 unsigned table, idx;
326 uint64_t *tptr;
327
328 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
329 if (!tptr) {
330 /* Special PESTA case */
331 if (table == IODA3_TBL_PESTA) {
332 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
333 } else if (table == IODA3_TBL_PESTB) {
334 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
335 }
336 /* Return 0 on unsupported tables, not ff's */
337 return 0;
338 }
339 return *tptr;
340 }
341
342 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
343 {
344 unsigned table, idx;
345 uint64_t *tptr;
346
347 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
348 if (!tptr) {
349 /* Special PESTA case */
350 if (table == IODA3_TBL_PESTA) {
351 phb->ioda_PEST_AB[idx] &= ~1;
352 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
353 } else if (table == IODA3_TBL_PESTB) {
354 phb->ioda_PEST_AB[idx] &= ~2;
355 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
356 }
357 return;
358 }
359
360 /* Handle side effects */
361 switch (table) {
362 case IODA3_TBL_LIST:
363 break;
364 case IODA3_TBL_MIST: {
365 /* Special mask for MIST partial write */
366 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
367 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
368 uint64_t v = *tptr;
369 if (mmask == 0) {
370 mmask = 0xf;
371 }
372 if (mmask & 8) {
373 v &= 0x0000ffffffffffffull;
374 v |= 0xcfff000000000000ull & val;
375 }
376 if (mmask & 4) {
377 v &= 0xffff0000ffffffffull;
378 v |= 0x0000cfff00000000ull & val;
379 }
380 if (mmask & 2) {
381 v &= 0xffffffff0000ffffull;
382 v |= 0x00000000cfff0000ull & val;
383 }
384 if (mmask & 1) {
385 v &= 0xffffffffffff0000ull;
386 v |= 0x000000000000cfffull & val;
387 }
388 *tptr = v;
389 break;
390 }
391 case IODA3_TBL_MBT:
392 *tptr = val;
393
394 /* Copy accross the valid bit to the other half */
395 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
396 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
397
398 /* Update mappings */
399 pnv_phb4_check_mbt(phb, idx >> 1);
400 break;
401 default:
402 *tptr = val;
403 }
404 }
405
406 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
407 {
408 PnvPhb4DMASpace *ds;
409
410 /* Always invalidate all for now ... */
411 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
412 ds->pe_num = PHB_INVALID_PE;
413 }
414 }
415
416 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
417 {
418 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
419
420 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
421 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
422 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
423 0xffff0000, &ds->msi32_mr);
424 }
425 } else {
426 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
427 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
428 &ds->msi32_mr);
429 }
430 }
431
432 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
433 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
434 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
435 (1ull << 60), &ds->msi64_mr);
436 }
437 } else {
438 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
439 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
440 &ds->msi64_mr);
441 }
442 }
443 }
444
445 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
446 {
447 PnvPhb4DMASpace *ds;
448
449 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
450 pnv_phb4_update_msi_regions(ds);
451 }
452 }
453
454 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
455 {
456 int shift, flags, i, lsi_base;
457 XiveSource *xsrc = &phb->xsrc;
458
459 /* The XIVE source characteristics can be set at run time */
460 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
461 shift = XIVE_ESB_64K;
462 } else {
463 shift = XIVE_ESB_4K;
464 }
465 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
466 flags = XIVE_SRC_STORE_EOI;
467 } else {
468 flags = 0;
469 }
470
471 /*
472 * When the PQ disable configuration bit is set, the check on the
473 * PQ state bits is disabled on the PHB side (for MSI only) and it
474 * is performed on the IC side instead.
475 */
476 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
477 flags |= XIVE_SRC_PQ_DISABLE;
478 }
479
480 phb->xsrc.esb_shift = shift;
481 phb->xsrc.esb_flags = flags;
482
483 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
484 lsi_base <<= 3;
485
486 /* TODO: handle reset values of PHB_LSI_SRC_ID */
487 if (!lsi_base) {
488 return;
489 }
490
491 /* TODO: need a xive_source_irq_reset_lsi() */
492 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
493
494 for (i = 0; i < xsrc->nr_irqs; i++) {
495 bool msi = (i < lsi_base || i >= (lsi_base + 8));
496 if (!msi) {
497 xive_source_irq_set_lsi(xsrc, i);
498 }
499 }
500 }
501
502 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
503 unsigned size)
504 {
505 PnvPHB4 *phb = PNV_PHB4(opaque);
506 bool changed;
507
508 /* Special case outbound configuration data */
509 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
510 pnv_phb4_config_write(phb, off & 0x3, size, val);
511 return;
512 }
513
514 /* Special case RC configuration space */
515 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
516 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
517 return;
518 }
519
520 /* Other registers are 64-bit only */
521 if (size != 8 || off & 0x7) {
522 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
523 off, size);
524 return;
525 }
526
527 /* Handle masking */
528 switch (off) {
529 case PHB_LSI_SOURCE_ID:
530 val &= PHB_LSI_SRC_ID;
531 break;
532 case PHB_M64_UPPER_BITS:
533 val &= 0xff00000000000000ull;
534 break;
535 /* TCE Kill */
536 case PHB_TCE_KILL:
537 /* Clear top 3 bits which HW does to indicate successful queuing */
538 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
539 break;
540 case PHB_Q_DMA_R:
541 /*
542 * This is enough logic to make SW happy but we aren't
543 * actually quiescing the DMAs
544 */
545 if (val & PHB_Q_DMA_R_AUTORESET) {
546 val = 0;
547 } else {
548 val &= PHB_Q_DMA_R_QUIESCE_DMA;
549 }
550 break;
551 /* LEM stuff */
552 case PHB_LEM_FIR_AND_MASK:
553 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
554 return;
555 case PHB_LEM_FIR_OR_MASK:
556 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
557 return;
558 case PHB_LEM_ERROR_AND_MASK:
559 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
560 return;
561 case PHB_LEM_ERROR_OR_MASK:
562 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
563 return;
564 case PHB_LEM_WOF:
565 val = 0;
566 break;
567 /* TODO: More regs ..., maybe create a table with masks... */
568
569 /* Read only registers */
570 case PHB_CPU_LOADSTORE_STATUS:
571 case PHB_ETU_ERR_SUMMARY:
572 case PHB_PHB4_GEN_CAP:
573 case PHB_PHB4_TCE_CAP:
574 case PHB_PHB4_IRQ_CAP:
575 case PHB_PHB4_EEH_CAP:
576 return;
577 }
578
579 /* Record whether it changed */
580 changed = phb->regs[off >> 3] != val;
581
582 /* Store in register cache first */
583 phb->regs[off >> 3] = val;
584
585 /* Handle side effects */
586 switch (off) {
587 case PHB_PHB4_CONFIG:
588 if (changed) {
589 pnv_phb4_update_all_msi_regions(phb);
590 }
591 break;
592 case PHB_M32_START_ADDR:
593 case PHB_M64_UPPER_BITS:
594 if (changed) {
595 pnv_phb4_check_all_mbt(phb);
596 }
597 break;
598
599 /* IODA table accesses */
600 case PHB_IODA_DATA0:
601 pnv_phb4_ioda_write(phb, val);
602 break;
603
604 /* RTC invalidation */
605 case PHB_RTC_INVALIDATE:
606 pnv_phb4_rtc_invalidate(phb, val);
607 break;
608
609 /* PHB Control (Affects XIVE source) */
610 case PHB_CTRLR:
611 case PHB_LSI_SOURCE_ID:
612 pnv_phb4_update_xsrc(phb);
613 break;
614
615 /* Silent simple writes */
616 case PHB_ASN_CMPM:
617 case PHB_CONFIG_ADDRESS:
618 case PHB_IODA_ADDR:
619 case PHB_TCE_KILL:
620 case PHB_TCE_SPEC_CTL:
621 case PHB_PEST_BAR:
622 case PHB_PELTV_BAR:
623 case PHB_RTT_BAR:
624 case PHB_LEM_FIR_ACCUM:
625 case PHB_LEM_ERROR_MASK:
626 case PHB_LEM_ACTION0:
627 case PHB_LEM_ACTION1:
628 case PHB_TCE_TAG_ENABLE:
629 case PHB_INT_NOTIFY_ADDR:
630 case PHB_INT_NOTIFY_INDEX:
631 case PHB_DMARD_SYNC:
632 break;
633
634 /* Noise on anything else */
635 default:
636 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
637 off, val);
638 }
639 }
640
641 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
642 {
643 PnvPHB4 *phb = PNV_PHB4(opaque);
644 uint64_t val;
645
646 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
647 return pnv_phb4_config_read(phb, off & 0x3, size);
648 }
649
650 /* Special case RC configuration space */
651 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
652 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
653 }
654
655 /* Other registers are 64-bit only */
656 if (size != 8 || off & 0x7) {
657 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
658 off, size);
659 return ~0ull;
660 }
661
662 /* Default read from cache */
663 val = phb->regs[off >> 3];
664
665 switch (off) {
666 case PHB_VERSION:
667 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
668
669 /* Read-only */
670 case PHB_PHB4_GEN_CAP:
671 return 0xe4b8000000000000ull;
672 case PHB_PHB4_TCE_CAP:
673 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
674 case PHB_PHB4_IRQ_CAP:
675 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
676 case PHB_PHB4_EEH_CAP:
677 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
678
679 /* IODA table accesses */
680 case PHB_IODA_DATA0:
681 return pnv_phb4_ioda_read(phb);
682
683 /* Link training always appears trained */
684 case PHB_PCIE_DLP_TRAIN_CTL:
685 /* TODO: Do something sensible with speed ? */
686 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
687
688 /* DMA read sync: make it look like it's complete */
689 case PHB_DMARD_SYNC:
690 return PHB_DMARD_SYNC_COMPLETE;
691
692 /* Silent simple reads */
693 case PHB_LSI_SOURCE_ID:
694 case PHB_CPU_LOADSTORE_STATUS:
695 case PHB_ASN_CMPM:
696 case PHB_PHB4_CONFIG:
697 case PHB_M32_START_ADDR:
698 case PHB_CONFIG_ADDRESS:
699 case PHB_IODA_ADDR:
700 case PHB_RTC_INVALIDATE:
701 case PHB_TCE_KILL:
702 case PHB_TCE_SPEC_CTL:
703 case PHB_PEST_BAR:
704 case PHB_PELTV_BAR:
705 case PHB_RTT_BAR:
706 case PHB_M64_UPPER_BITS:
707 case PHB_CTRLR:
708 case PHB_LEM_FIR_ACCUM:
709 case PHB_LEM_ERROR_MASK:
710 case PHB_LEM_ACTION0:
711 case PHB_LEM_ACTION1:
712 case PHB_TCE_TAG_ENABLE:
713 case PHB_INT_NOTIFY_ADDR:
714 case PHB_INT_NOTIFY_INDEX:
715 case PHB_Q_DMA_R:
716 case PHB_ETU_ERR_SUMMARY:
717 break;
718
719 /* Noise on anything else */
720 default:
721 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
722 off, val);
723 }
724 return val;
725 }
726
727 static const MemoryRegionOps pnv_phb4_reg_ops = {
728 .read = pnv_phb4_reg_read,
729 .write = pnv_phb4_reg_write,
730 .valid.min_access_size = 1,
731 .valid.max_access_size = 8,
732 .impl.min_access_size = 1,
733 .impl.max_access_size = 8,
734 .endianness = DEVICE_BIG_ENDIAN,
735 };
736
737 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
738 {
739 PnvPHB4 *phb = PNV_PHB4(opaque);
740 uint32_t reg = addr >> 3;
741 uint64_t val;
742 hwaddr offset;
743
744 switch (reg) {
745 case PHB_SCOM_HV_IND_ADDR:
746 return phb->scom_hv_ind_addr_reg;
747
748 case PHB_SCOM_HV_IND_DATA:
749 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
750 phb_error(phb, "Invalid indirect address");
751 return ~0ull;
752 }
753 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
754 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
755 val = pnv_phb4_reg_read(phb, offset, size);
756 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
757 offset += size;
758 offset &= 0x3fff;
759 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
760 phb->scom_hv_ind_addr_reg,
761 offset);
762 }
763 return val;
764 case PHB_SCOM_ETU_LEM_FIR:
765 case PHB_SCOM_ETU_LEM_FIR_AND:
766 case PHB_SCOM_ETU_LEM_FIR_OR:
767 case PHB_SCOM_ETU_LEM_FIR_MSK:
768 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
769 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
770 case PHB_SCOM_ETU_LEM_ACT0:
771 case PHB_SCOM_ETU_LEM_ACT1:
772 case PHB_SCOM_ETU_LEM_WOF:
773 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
774 return pnv_phb4_reg_read(phb, offset, size);
775 case PHB_SCOM_ETU_PMON_CONFIG:
776 case PHB_SCOM_ETU_PMON_CTR0:
777 case PHB_SCOM_ETU_PMON_CTR1:
778 case PHB_SCOM_ETU_PMON_CTR2:
779 case PHB_SCOM_ETU_PMON_CTR3:
780 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
781 return pnv_phb4_reg_read(phb, offset, size);
782
783 default:
784 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
785 return ~0ull;
786 }
787 }
788
789 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
790 uint64_t val, unsigned size)
791 {
792 PnvPHB4 *phb = PNV_PHB4(opaque);
793 uint32_t reg = addr >> 3;
794 hwaddr offset;
795
796 switch (reg) {
797 case PHB_SCOM_HV_IND_ADDR:
798 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
799 break;
800 case PHB_SCOM_HV_IND_DATA:
801 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
802 phb_error(phb, "Invalid indirect address");
803 break;
804 }
805 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
806 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
807 pnv_phb4_reg_write(phb, offset, val, size);
808 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
809 offset += size;
810 offset &= 0x3fff;
811 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
812 phb->scom_hv_ind_addr_reg,
813 offset);
814 }
815 break;
816 case PHB_SCOM_ETU_LEM_FIR:
817 case PHB_SCOM_ETU_LEM_FIR_AND:
818 case PHB_SCOM_ETU_LEM_FIR_OR:
819 case PHB_SCOM_ETU_LEM_FIR_MSK:
820 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
821 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
822 case PHB_SCOM_ETU_LEM_ACT0:
823 case PHB_SCOM_ETU_LEM_ACT1:
824 case PHB_SCOM_ETU_LEM_WOF:
825 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
826 pnv_phb4_reg_write(phb, offset, val, size);
827 break;
828 case PHB_SCOM_ETU_PMON_CONFIG:
829 case PHB_SCOM_ETU_PMON_CTR0:
830 case PHB_SCOM_ETU_PMON_CTR1:
831 case PHB_SCOM_ETU_PMON_CTR2:
832 case PHB_SCOM_ETU_PMON_CTR3:
833 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
834 pnv_phb4_reg_write(phb, offset, val, size);
835 break;
836 default:
837 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
838 "=%"PRIx64"\n", addr, val);
839 }
840 }
841
842 const MemoryRegionOps pnv_phb4_xscom_ops = {
843 .read = pnv_phb4_xscom_read,
844 .write = pnv_phb4_xscom_write,
845 .valid.min_access_size = 8,
846 .valid.max_access_size = 8,
847 .impl.min_access_size = 8,
848 .impl.max_access_size = 8,
849 .endianness = DEVICE_BIG_ENDIAN,
850 };
851
852 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
853 unsigned size)
854 {
855 PnvPHB4 *phb = PNV_PHB4(opaque);
856 uint32_t reg = addr >> 3;
857
858 /* TODO: add list of allowed registers and error out if not */
859 return phb->nest_regs[reg];
860 }
861
862 /*
863 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
864 * the PHB4 occupies in the PEC. This is the reverse of what
865 * pnv_phb4_pec_get_phb_id() does.
866 *
867 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
868 * be the second phb (stack_no = 1) of the PEC.
869 */
870 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
871 {
872 PnvPhb4PecState *pec = phb->pec;
873 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
874 int index = pec->index;
875 int stack_no = phb->phb_id;
876
877 while (index--) {
878 stack_no -= pecc->num_phbs[index];
879 }
880
881 return stack_no;
882 }
883
884 static void pnv_phb4_update_regions(PnvPHB4 *phb)
885 {
886 /* Unmap first always */
887 if (memory_region_is_mapped(&phb->mr_regs)) {
888 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
889 }
890 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
891 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
892 }
893
894 /* Map registers if enabled */
895 if (memory_region_is_mapped(&phb->phbbar)) {
896 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
897 }
898
899 /* Map ESB if enabled */
900 if (memory_region_is_mapped(&phb->intbar)) {
901 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
902 }
903
904 /* Check/update m32 */
905 pnv_phb4_check_all_mbt(phb);
906 }
907
908 static void pnv_pec_phb_update_map(PnvPHB4 *phb)
909 {
910 PnvPhb4PecState *pec = phb->pec;
911 MemoryRegion *sysmem = get_system_memory();
912 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
913 int stack_no = pnv_phb4_get_phb_stack_no(phb);
914 uint64_t bar, mask, size;
915 char name[64];
916
917 /*
918 * NOTE: This will really not work well if those are remapped
919 * after the PHB has created its sub regions. We could do better
920 * if we had a way to resize regions but we don't really care
921 * that much in practice as the stuff below really only happens
922 * once early during boot
923 */
924
925 /* Handle unmaps */
926 if (memory_region_is_mapped(&phb->mmbar0) &&
927 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
928 memory_region_del_subregion(sysmem, &phb->mmbar0);
929 }
930 if (memory_region_is_mapped(&phb->mmbar1) &&
931 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
932 memory_region_del_subregion(sysmem, &phb->mmbar1);
933 }
934 if (memory_region_is_mapped(&phb->phbbar) &&
935 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
936 memory_region_del_subregion(sysmem, &phb->phbbar);
937 }
938 if (memory_region_is_mapped(&phb->intbar) &&
939 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
940 memory_region_del_subregion(sysmem, &phb->intbar);
941 }
942
943 /* Update PHB */
944 pnv_phb4_update_regions(phb);
945
946 /* Handle maps */
947 if (!memory_region_is_mapped(&phb->mmbar0) &&
948 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
949 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
950 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
951 size = ((~mask) >> 8) + 1;
952 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
953 pec->chip_id, pec->index, stack_no);
954 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
955 memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
956 phb->mmio0_base = bar;
957 phb->mmio0_size = size;
958 }
959 if (!memory_region_is_mapped(&phb->mmbar1) &&
960 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
961 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
962 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
963 size = ((~mask) >> 8) + 1;
964 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
965 pec->chip_id, pec->index, stack_no);
966 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
967 memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
968 phb->mmio1_base = bar;
969 phb->mmio1_size = size;
970 }
971 if (!memory_region_is_mapped(&phb->phbbar) &&
972 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
973 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
974 size = PNV_PHB4_NUM_REGS << 3;
975 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
976 pec->chip_id, pec->index, stack_no);
977 memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
978 memory_region_add_subregion(sysmem, bar, &phb->phbbar);
979 }
980 if (!memory_region_is_mapped(&phb->intbar) &&
981 (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
982 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
983 size = PNV_PHB4_MAX_INTs << 16;
984 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
985 phb->pec->chip_id, phb->pec->index, stack_no);
986 memory_region_init(&phb->intbar, OBJECT(phb), name, size);
987 memory_region_add_subregion(sysmem, bar, &phb->intbar);
988 }
989
990 /* Update PHB */
991 pnv_phb4_update_regions(phb);
992 }
993
994 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
995 uint64_t val, unsigned size)
996 {
997 PnvPHB4 *phb = PNV_PHB4(opaque);
998 PnvPhb4PecState *pec = phb->pec;
999 uint32_t reg = addr >> 3;
1000
1001 switch (reg) {
1002 case PEC_NEST_STK_PCI_NEST_FIR:
1003 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
1004 break;
1005 case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1006 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1007 break;
1008 case PEC_NEST_STK_PCI_NEST_FIR_SET:
1009 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1010 break;
1011 case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1012 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
1013 break;
1014 case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1015 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1016 break;
1017 case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1018 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1019 break;
1020 case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1021 case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1022 phb->nest_regs[reg] = val;
1023 break;
1024 case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1025 phb->nest_regs[reg] = 0;
1026 break;
1027 case PEC_NEST_STK_ERR_REPORT_0:
1028 case PEC_NEST_STK_ERR_REPORT_1:
1029 case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1030 /* Flag error ? */
1031 break;
1032 case PEC_NEST_STK_PBCQ_MODE:
1033 phb->nest_regs[reg] = val & 0xff00000000000000ull;
1034 break;
1035 case PEC_NEST_STK_MMIO_BAR0:
1036 case PEC_NEST_STK_MMIO_BAR0_MASK:
1037 case PEC_NEST_STK_MMIO_BAR1:
1038 case PEC_NEST_STK_MMIO_BAR1_MASK:
1039 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1040 (PEC_NEST_STK_BAR_EN_MMIO0 |
1041 PEC_NEST_STK_BAR_EN_MMIO1)) {
1042 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1043 }
1044 phb->nest_regs[reg] = val & 0xffffffffff000000ull;
1045 break;
1046 case PEC_NEST_STK_PHB_REGS_BAR:
1047 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1048 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1049 }
1050 phb->nest_regs[reg] = val & 0xffffffffffc00000ull;
1051 break;
1052 case PEC_NEST_STK_INT_BAR:
1053 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1054 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1055 }
1056 phb->nest_regs[reg] = val & 0xfffffff000000000ull;
1057 break;
1058 case PEC_NEST_STK_BAR_EN:
1059 phb->nest_regs[reg] = val & 0xf000000000000000ull;
1060 pnv_pec_phb_update_map(phb);
1061 break;
1062 case PEC_NEST_STK_DATA_FRZ_TYPE:
1063 case PEC_NEST_STK_PBCQ_TUN_BAR:
1064 /* Not used for now */
1065 phb->nest_regs[reg] = val;
1066 break;
1067 default:
1068 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1069 "=%"PRIx64"\n", addr, val);
1070 }
1071 }
1072
1073 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1074 .read = pnv_pec_stk_nest_xscom_read,
1075 .write = pnv_pec_stk_nest_xscom_write,
1076 .valid.min_access_size = 8,
1077 .valid.max_access_size = 8,
1078 .impl.min_access_size = 8,
1079 .impl.max_access_size = 8,
1080 .endianness = DEVICE_BIG_ENDIAN,
1081 };
1082
1083 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1084 unsigned size)
1085 {
1086 PnvPHB4 *phb = PNV_PHB4(opaque);
1087 uint32_t reg = addr >> 3;
1088
1089 /* TODO: add list of allowed registers and error out if not */
1090 return phb->pci_regs[reg];
1091 }
1092
1093 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1094 uint64_t val, unsigned size)
1095 {
1096 PnvPHB4 *phb = PNV_PHB4(opaque);
1097 uint32_t reg = addr >> 3;
1098
1099 switch (reg) {
1100 case PEC_PCI_STK_PCI_FIR:
1101 phb->pci_regs[reg] = val;
1102 break;
1103 case PEC_PCI_STK_PCI_FIR_CLR:
1104 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1105 break;
1106 case PEC_PCI_STK_PCI_FIR_SET:
1107 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1108 break;
1109 case PEC_PCI_STK_PCI_FIR_MSK:
1110 phb->pci_regs[reg] = val;
1111 break;
1112 case PEC_PCI_STK_PCI_FIR_MSKC:
1113 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1114 break;
1115 case PEC_PCI_STK_PCI_FIR_MSKS:
1116 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1117 break;
1118 case PEC_PCI_STK_PCI_FIR_ACT0:
1119 case PEC_PCI_STK_PCI_FIR_ACT1:
1120 phb->pci_regs[reg] = val;
1121 break;
1122 case PEC_PCI_STK_PCI_FIR_WOF:
1123 phb->pci_regs[reg] = 0;
1124 break;
1125 case PEC_PCI_STK_ETU_RESET:
1126 phb->pci_regs[reg] = val & 0x8000000000000000ull;
1127 /* TODO: Implement reset */
1128 break;
1129 case PEC_PCI_STK_PBAIB_ERR_REPORT:
1130 break;
1131 case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1132 case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1133 phb->pci_regs[reg] = val;
1134 break;
1135 default:
1136 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1137 "=%"PRIx64"\n", addr, val);
1138 }
1139 }
1140
1141 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1142 .read = pnv_pec_stk_pci_xscom_read,
1143 .write = pnv_pec_stk_pci_xscom_write,
1144 .valid.min_access_size = 8,
1145 .valid.max_access_size = 8,
1146 .impl.min_access_size = 8,
1147 .impl.max_access_size = 8,
1148 .endianness = DEVICE_BIG_ENDIAN,
1149 };
1150
1151 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1152 {
1153 /* Check that out properly ... */
1154 return irq_num & 3;
1155 }
1156
1157 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1158 {
1159 PnvPHB4 *phb = PNV_PHB4(opaque);
1160 uint32_t lsi_base;
1161
1162 /* LSI only ... */
1163 if (irq_num > 3) {
1164 phb_error(phb, "IRQ %x is not an LSI", irq_num);
1165 }
1166 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1167 lsi_base <<= 3;
1168 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1169 }
1170
1171 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1172 {
1173 uint64_t rtt, addr;
1174 uint16_t rte;
1175 int bus_num;
1176 int num_PEs;
1177
1178 /* Already resolved ? */
1179 if (ds->pe_num != PHB_INVALID_PE) {
1180 return true;
1181 }
1182
1183 /* We need to lookup the RTT */
1184 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1185 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1186 phb_error(ds->phb, "DMA with RTT BAR disabled !");
1187 /* Set error bits ? fence ? ... */
1188 return false;
1189 }
1190
1191 /* Read RTE */
1192 bus_num = pci_bus_num(ds->bus);
1193 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1194 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1195 if (dma_memory_read(&address_space_memory, addr, &rte,
1196 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1197 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1198 /* Set error bits ? fence ? ... */
1199 return false;
1200 }
1201 rte = be16_to_cpu(rte);
1202
1203 /* Fail upon reading of invalid PE# */
1204 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1205 if (rte >= num_PEs) {
1206 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1207 rte &= num_PEs - 1;
1208 }
1209 ds->pe_num = rte;
1210 return true;
1211 }
1212
1213 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1214 bool is_write, uint64_t tve,
1215 IOMMUTLBEntry *tlb)
1216 {
1217 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1218 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1219 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1220 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1221
1222 /* Invalid levels */
1223 if (lev > 4) {
1224 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1225 return;
1226 }
1227
1228 /* Invalid entry */
1229 if (tts == 0) {
1230 phb_error(ds->phb, "Access to invalid TVE");
1231 return;
1232 }
1233
1234 /* IO Page Size of 0 means untranslated, else use TCEs */
1235 if (tps == 0) {
1236 /* TODO: Handle boundaries */
1237
1238 /* Use 4k pages like q35 ... for now */
1239 tlb->iova = addr & 0xfffffffffffff000ull;
1240 tlb->translated_addr = addr & 0x0003fffffffff000ull;
1241 tlb->addr_mask = 0xfffull;
1242 tlb->perm = IOMMU_RW;
1243 } else {
1244 uint32_t tce_shift, tbl_shift, sh;
1245 uint64_t base, taddr, tce, tce_mask;
1246
1247 /* Address bits per bottom level TCE entry */
1248 tce_shift = tps + 11;
1249
1250 /* Address bits per table level */
1251 tbl_shift = tts + 8;
1252
1253 /* Top level table base address */
1254 base = tta << 12;
1255
1256 /* Total shift to first level */
1257 sh = tbl_shift * lev + tce_shift;
1258
1259 /* TODO: Limit to support IO page sizes */
1260
1261 /* TODO: Multi-level untested */
1262 do {
1263 lev--;
1264
1265 /* Grab the TCE address */
1266 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1267 if (dma_memory_read(&address_space_memory, taddr, &tce,
1268 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1269 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1270 return;
1271 }
1272 tce = be64_to_cpu(tce);
1273
1274 /* Check permission for indirect TCE */
1275 if ((lev >= 0) && !(tce & 3)) {
1276 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1277 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1278 is_write ? 'W' : 'R', tve);
1279 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1280 tta, lev, tts, tps);
1281 return;
1282 }
1283 sh -= tbl_shift;
1284 base = tce & ~0xfffull;
1285 } while (lev >= 0);
1286
1287 /* We exit the loop with TCE being the final TCE */
1288 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1289 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1290 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1291 is_write ? 'W' : 'R', tve);
1292 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1293 tta, lev, tts, tps);
1294 return;
1295 }
1296 tce_mask = ~((1ull << tce_shift) - 1);
1297 tlb->iova = addr & tce_mask;
1298 tlb->translated_addr = tce & tce_mask;
1299 tlb->addr_mask = ~tce_mask;
1300 tlb->perm = tce & 3;
1301 }
1302 }
1303
1304 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1305 hwaddr addr,
1306 IOMMUAccessFlags flag,
1307 int iommu_idx)
1308 {
1309 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1310 int tve_sel;
1311 uint64_t tve, cfg;
1312 IOMMUTLBEntry ret = {
1313 .target_as = &address_space_memory,
1314 .iova = addr,
1315 .translated_addr = 0,
1316 .addr_mask = ~(hwaddr)0,
1317 .perm = IOMMU_NONE,
1318 };
1319
1320 /* Resolve PE# */
1321 if (!pnv_phb4_resolve_pe(ds)) {
1322 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1323 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1324 return ret;
1325 }
1326
1327 /* Check top bits */
1328 switch (addr >> 60) {
1329 case 00:
1330 /* DMA or 32-bit MSI ? */
1331 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1332 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1333 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1334 phb_error(ds->phb, "xlate on 32-bit MSI region");
1335 return ret;
1336 }
1337 /* Choose TVE XXX Use PHB4 Control Register */
1338 tve_sel = (addr >> 59) & 1;
1339 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1340 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1341 break;
1342 case 01:
1343 phb_error(ds->phb, "xlate on 64-bit MSI region");
1344 break;
1345 default:
1346 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1347 }
1348 return ret;
1349 }
1350
1351 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1352 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1353 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1354
1355 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1356 void *data)
1357 {
1358 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1359
1360 imrc->translate = pnv_phb4_translate_iommu;
1361 }
1362
1363 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1364 .parent = TYPE_IOMMU_MEMORY_REGION,
1365 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1366 .class_init = pnv_phb4_iommu_memory_region_class_init,
1367 };
1368
1369 /*
1370 * Return the index/phb-id of a PHB4 that belongs to a
1371 * pec->stacks[stack_index] stack.
1372 */
1373 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1374 {
1375 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1376 int index = pec->index;
1377 int offset = 0;
1378
1379 while (index--) {
1380 offset += pecc->num_phbs[index];
1381 }
1382
1383 return offset + stack_index;
1384 }
1385
1386 /*
1387 * MSI/MSIX memory region implementation.
1388 * The handler handles both MSI and MSIX.
1389 */
1390 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1391 uint64_t data, unsigned size)
1392 {
1393 PnvPhb4DMASpace *ds = opaque;
1394 PnvPHB4 *phb = ds->phb;
1395
1396 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1397
1398 /* Resolve PE# */
1399 if (!pnv_phb4_resolve_pe(ds)) {
1400 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1401 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1402 return;
1403 }
1404
1405 /* TODO: Check it doesn't collide with LSIs */
1406 if (src >= phb->xsrc.nr_irqs) {
1407 phb_error(phb, "MSI %d out of bounds", src);
1408 return;
1409 }
1410
1411 /* TODO: check PE/MSI assignement */
1412
1413 qemu_irq_pulse(phb->qirqs[src]);
1414 }
1415
1416 /* There is no .read as the read result is undefined by PCI spec */
1417 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1418 {
1419 PnvPhb4DMASpace *ds = opaque;
1420
1421 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1422 return -1;
1423 }
1424
1425 static const MemoryRegionOps pnv_phb4_msi_ops = {
1426 .read = pnv_phb4_msi_read,
1427 .write = pnv_phb4_msi_write,
1428 .endianness = DEVICE_LITTLE_ENDIAN
1429 };
1430
1431 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1432 {
1433 PnvPhb4DMASpace *ds;
1434
1435 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1436 if (ds->bus == bus && ds->devfn == devfn) {
1437 break;
1438 }
1439 }
1440 return ds;
1441 }
1442
1443 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1444 {
1445 PnvPHB4 *phb = opaque;
1446 PnvPhb4DMASpace *ds;
1447 char name[32];
1448
1449 ds = pnv_phb4_dma_find(phb, bus, devfn);
1450
1451 if (ds == NULL) {
1452 ds = g_new0(PnvPhb4DMASpace, 1);
1453 ds->bus = bus;
1454 ds->devfn = devfn;
1455 ds->pe_num = PHB_INVALID_PE;
1456 ds->phb = phb;
1457 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1458 phb->phb_id);
1459 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1460 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1461 OBJECT(phb), name, UINT64_MAX);
1462 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1463 name);
1464 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1465 ds, "msi32", 0x10000);
1466 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1467 ds, "msi64", 0x100000);
1468 pnv_phb4_update_msi_regions(ds);
1469
1470 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1471 }
1472 return &ds->dma_as;
1473 }
1474
1475 static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1476 {
1477 PnvPhb4PecState *pec = phb->pec;
1478 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1479 int stack_no = pnv_phb4_get_phb_stack_no(phb);
1480 uint32_t pec_nest_base;
1481 uint32_t pec_pci_base;
1482 char name[64];
1483
1484 assert(pec);
1485
1486 /* Initialize the XSCOM regions for the stack registers */
1487 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1488 pec->chip_id, pec->index, stack_no);
1489 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1490 &pnv_pec_stk_nest_xscom_ops, phb, name,
1491 PHB4_PEC_NEST_STK_REGS_COUNT);
1492
1493 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1494 pec->chip_id, pec->index, stack_no);
1495 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1496 &pnv_pec_stk_pci_xscom_ops, phb, name,
1497 PHB4_PEC_PCI_STK_REGS_COUNT);
1498
1499 /* PHB pass-through */
1500 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1501 pec->chip_id, pec->index, stack_no);
1502 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1503 &pnv_phb4_xscom_ops, phb, name, 0x40);
1504
1505 pec_nest_base = pecc->xscom_nest_base(pec);
1506 pec_pci_base = pecc->xscom_pci_base(pec);
1507
1508 /* Populate the XSCOM address space. */
1509 pnv_xscom_add_subregion(pec->chip,
1510 pec_nest_base + 0x40 * (stack_no + 1),
1511 &phb->nest_regs_mr);
1512 pnv_xscom_add_subregion(pec->chip,
1513 pec_pci_base + 0x40 * (stack_no + 1),
1514 &phb->pci_regs_mr);
1515 pnv_xscom_add_subregion(pec->chip,
1516 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1517 0x40 * stack_no,
1518 &phb->phb_regs_mr);
1519 }
1520
1521 static void pnv_phb4_instance_init(Object *obj)
1522 {
1523 PnvPHB4 *phb = PNV_PHB4(obj);
1524
1525 QLIST_INIT(&phb->dma_spaces);
1526
1527 /* XIVE interrupt source object */
1528 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1529 }
1530
1531 void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb)
1532 {
1533 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1534 char name[32];
1535
1536 /*
1537 * PHB4 doesn't support IO space. However, qemu gets very upset if
1538 * we don't have an IO region to anchor IO BARs onto so we just
1539 * initialize one which we never hook up to anything
1540 */
1541 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1542 phb->phb_id);
1543 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1544
1545 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1546 phb->phb_id);
1547 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1548 PCI_MMIO_TOTAL_SIZE);
1549
1550 pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL,
1551 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1552 &phb->pci_mmio, &phb->pci_io,
1553 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1554
1555 object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id,
1556 &error_abort);
1557 object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id,
1558 &error_abort);
1559
1560 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1561 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1562 }
1563
1564 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1565 {
1566 PnvPHB4 *phb = PNV_PHB4(dev);
1567 XiveSource *xsrc = &phb->xsrc;
1568 int nr_irqs;
1569 char name[32];
1570
1571 /* Set the "big_phb" flag */
1572 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1573
1574 /* Controller Registers */
1575 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1576 phb->phb_id);
1577 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1578 name, 0x2000);
1579
1580 /* Setup XIVE Source */
1581 if (phb->big_phb) {
1582 nr_irqs = PNV_PHB4_MAX_INTs;
1583 } else {
1584 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1585 }
1586 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1587 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1588 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1589 return;
1590 }
1591
1592 pnv_phb4_update_xsrc(phb);
1593
1594 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1595
1596 pnv_phb4_xscom_realize(phb);
1597 }
1598
1599 /*
1600 * Address base trigger mode (POWER10)
1601 *
1602 * Trigger directly the IC ESB page
1603 */
1604 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1605 bool pq_checked)
1606 {
1607 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1608 uint64_t data = 0; /* trigger data : don't care */
1609 hwaddr addr;
1610 MemTxResult result;
1611 int esb_shift;
1612
1613 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1614 esb_shift = 16;
1615 } else {
1616 esb_shift = 12;
1617 }
1618
1619 /* Compute the address of the IC ESB management page */
1620 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1621 addr |= (1ull << (esb_shift + 1)) * srcno;
1622 addr |= (1ull << esb_shift);
1623
1624 /*
1625 * When the PQ state bits are checked on the PHB, the associated
1626 * PQ state bits on the IC should be ignored. Use the unconditional
1627 * trigger offset to inject a trigger on the IC. This is always
1628 * the case for LSIs
1629 */
1630 if (pq_checked) {
1631 addr |= XIVE_ESB_INJECT;
1632 }
1633
1634 trace_pnv_phb4_xive_notify_ic(addr, data);
1635
1636 address_space_stq_be(&address_space_memory, addr, data,
1637 MEMTXATTRS_UNSPECIFIED, &result);
1638 if (result != MEMTX_OK) {
1639 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1640 return;
1641 }
1642 }
1643
1644 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1645 bool pq_checked)
1646 {
1647 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1648 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1649 uint64_t data = offset | srcno;
1650 MemTxResult result;
1651
1652 if (pq_checked) {
1653 data |= XIVE_TRIGGER_PQ;
1654 }
1655
1656 trace_pnv_phb4_xive_notify_ic(notif_port, data);
1657
1658 address_space_stq_be(&address_space_memory, notif_port, data,
1659 MEMTXATTRS_UNSPECIFIED, &result);
1660 if (result != MEMTX_OK) {
1661 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1662 return;
1663 }
1664 }
1665
1666 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1667 bool pq_checked)
1668 {
1669 PnvPHB4 *phb = PNV_PHB4(xf);
1670
1671 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1672 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1673 } else {
1674 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1675 }
1676 }
1677
1678 static Property pnv_phb4_properties[] = {
1679 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1680 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1681 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1682 PnvPhb4PecState *),
1683 DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *),
1684 DEFINE_PROP_END_OF_LIST(),
1685 };
1686
1687 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1688 {
1689 DeviceClass *dc = DEVICE_CLASS(klass);
1690 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1691
1692 dc->realize = pnv_phb4_realize;
1693 device_class_set_props(dc, pnv_phb4_properties);
1694 dc->user_creatable = false;
1695
1696 xfc->notify = pnv_phb4_xive_notify;
1697 }
1698
1699 static const TypeInfo pnv_phb4_type_info = {
1700 .name = TYPE_PNV_PHB4,
1701 .parent = TYPE_DEVICE,
1702 .instance_init = pnv_phb4_instance_init,
1703 .instance_size = sizeof(PnvPHB4),
1704 .class_init = pnv_phb4_class_init,
1705 .interfaces = (InterfaceInfo[]) {
1706 { TYPE_XIVE_NOTIFIER },
1707 { },
1708 }
1709 };
1710
1711 static const TypeInfo pnv_phb5_type_info = {
1712 .name = TYPE_PNV_PHB5,
1713 .parent = TYPE_PNV_PHB4,
1714 .instance_size = sizeof(PnvPHB4),
1715 };
1716
1717 static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v,
1718 const char *name,
1719 void *opaque, Error **errp)
1720 {
1721 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1722 uint64_t value = 0;
1723
1724 if (strcmp(name, "phb-id") == 0) {
1725 value = bus->phb_id;
1726 } else {
1727 value = bus->chip_id;
1728 }
1729
1730 visit_type_size(v, name, &value, errp);
1731 }
1732
1733 static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v,
1734 const char *name,
1735 void *opaque, Error **errp)
1736
1737 {
1738 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1739 uint64_t value;
1740
1741 if (!visit_type_size(v, name, &value, errp)) {
1742 return;
1743 }
1744
1745 if (strcmp(name, "phb-id") == 0) {
1746 bus->phb_id = value;
1747 } else {
1748 bus->chip_id = value;
1749 }
1750 }
1751
1752 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1753 {
1754 BusClass *k = BUS_CLASS(klass);
1755
1756 object_class_property_add(klass, "phb-id", "int",
1757 pnv_phb4_root_bus_get_prop,
1758 pnv_phb4_root_bus_set_prop,
1759 NULL, NULL);
1760
1761 object_class_property_add(klass, "chip-id", "int",
1762 pnv_phb4_root_bus_get_prop,
1763 pnv_phb4_root_bus_set_prop,
1764 NULL, NULL);
1765
1766 /*
1767 * PHB4 has only a single root complex. Enforce the limit on the
1768 * parent bus
1769 */
1770 k->max_dev = 1;
1771 }
1772
1773 static const TypeInfo pnv_phb4_root_bus_info = {
1774 .name = TYPE_PNV_PHB4_ROOT_BUS,
1775 .parent = TYPE_PCIE_BUS,
1776 .instance_size = sizeof(PnvPHB4RootBus),
1777 .class_init = pnv_phb4_root_bus_class_init,
1778 };
1779
1780 static void pnv_phb4_register_types(void)
1781 {
1782 type_register_static(&pnv_phb4_root_bus_info);
1783 type_register_static(&pnv_phb4_type_info);
1784 type_register_static(&pnv_phb5_type_info);
1785 type_register_static(&pnv_phb4_iommu_memory_region_info);
1786 }
1787
1788 type_init(pnv_phb4_register_types);
1789
1790 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1791 {
1792 uint64_t notif_port =
1793 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1794 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1795 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1796
1797 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n",
1798 phb->chip_id, phb->phb_id,
1799 offset, offset + phb->xsrc.nr_irqs - 1,
1800 abt ? "ABT" : "",
1801 notif_port);
1802 xive_source_pic_print_info(&phb->xsrc, 0, mon);
1803 }