]> git.proxmox.com Git - mirror_qemu.git/blob - hw/pci-host/pnv_phb4.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / hw / pci-host / pnv_phb4.c
1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
3 *
4 * Copyright (c) 2018-2020, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "qemu-common.h"
14 #include "monitor/monitor.h"
15 #include "target/ppc/cpu.h"
16 #include "hw/pci-host/pnv_phb4_regs.h"
17 #include "hw/pci-host/pnv_phb4.h"
18 #include "hw/pci/pcie_host.h"
19 #include "hw/pci/pcie_port.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/irq.h"
23 #include "hw/qdev-properties.h"
24 #include "qom/object.h"
25 #include "trace.h"
26
27 #define phb_error(phb, fmt, ...) \
28 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
29 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
30
31 #define phb_pec_error(pec, fmt, ...) \
32 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \
33 (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
34
35 /*
36 * QEMU version of the GETFIELD/SETFIELD macros
37 *
38 * These are common with the PnvXive model.
39 */
40 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
41 {
42 return (word & mask) >> ctz64(mask);
43 }
44
45 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
46 uint64_t value)
47 {
48 return (word & ~mask) | ((value << ctz64(mask)) & mask);
49 }
50
51 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
52 {
53 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
54 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
55 uint8_t bus, devfn;
56
57 if (!(addr >> 63)) {
58 return NULL;
59 }
60 bus = (addr >> 52) & 0xff;
61 devfn = (addr >> 44) & 0xff;
62
63 /* We don't access the root complex this way */
64 if (bus == 0 && devfn == 0) {
65 return NULL;
66 }
67 return pci_find_device(pci->bus, bus, devfn);
68 }
69
70 /*
71 * The CONFIG_DATA register expects little endian accesses, but as the
72 * region is big endian, we have to swap the value.
73 */
74 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
75 unsigned size, uint64_t val)
76 {
77 uint32_t cfg_addr, limit;
78 PCIDevice *pdev;
79
80 pdev = pnv_phb4_find_cfg_dev(phb);
81 if (!pdev) {
82 return;
83 }
84 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
85 cfg_addr |= off;
86 limit = pci_config_size(pdev);
87 if (limit <= cfg_addr) {
88 /*
89 * conventional pci device can be behind pcie-to-pci bridge.
90 * 256 <= addr < 4K has no effects.
91 */
92 return;
93 }
94 switch (size) {
95 case 1:
96 break;
97 case 2:
98 val = bswap16(val);
99 break;
100 case 4:
101 val = bswap32(val);
102 break;
103 default:
104 g_assert_not_reached();
105 }
106 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
107 }
108
109 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
110 unsigned size)
111 {
112 uint32_t cfg_addr, limit;
113 PCIDevice *pdev;
114 uint64_t val;
115
116 pdev = pnv_phb4_find_cfg_dev(phb);
117 if (!pdev) {
118 return ~0ull;
119 }
120 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
121 cfg_addr |= off;
122 limit = pci_config_size(pdev);
123 if (limit <= cfg_addr) {
124 /*
125 * conventional pci device can be behind pcie-to-pci bridge.
126 * 256 <= addr < 4K has no effects.
127 */
128 return ~0ull;
129 }
130 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
131 switch (size) {
132 case 1:
133 return val;
134 case 2:
135 return bswap16(val);
136 case 4:
137 return bswap32(val);
138 default:
139 g_assert_not_reached();
140 }
141 }
142
143 /*
144 * Root complex register accesses are memory mapped.
145 */
146 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
147 unsigned size, uint64_t val)
148 {
149 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
150 PCIDevice *pdev;
151
152 if (size != 4) {
153 phb_error(phb, "rc_config_write invalid size %d\n", size);
154 return;
155 }
156
157 pdev = pci_find_device(pci->bus, 0, 0);
158 if (!pdev) {
159 phb_error(phb, "rc_config_write device not found\n");
160 return;
161 }
162
163 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
164 bswap32(val), 4);
165 }
166
167 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
168 unsigned size)
169 {
170 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
171 PCIDevice *pdev;
172 uint64_t val;
173
174 if (size != 4) {
175 phb_error(phb, "rc_config_read invalid size %d\n", size);
176 return ~0ull;
177 }
178
179 pdev = pci_find_device(pci->bus, 0, 0);
180 if (!pdev) {
181 phb_error(phb, "rc_config_read device not found\n");
182 return ~0ull;
183 }
184
185 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
186 return bswap32(val);
187 }
188
189 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
190 {
191 uint64_t base, start, size, mbe0, mbe1;
192 MemoryRegion *parent;
193 char name[64];
194
195 /* Unmap first */
196 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
197 /* Should we destroy it in RCU friendly way... ? */
198 memory_region_del_subregion(phb->mr_mmio[index].container,
199 &phb->mr_mmio[index]);
200 }
201
202 /* Get table entry */
203 mbe0 = phb->ioda_MBT[(index << 1)];
204 mbe1 = phb->ioda_MBT[(index << 1) + 1];
205
206 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
207 return;
208 }
209
210 /* Grab geometry from registers */
211 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
212 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
213 size |= 0xff00000000000000ull;
214 size = ~size + 1;
215
216 /* Calculate PCI side start address based on M32/M64 window type */
217 if (mbe0 & IODA3_MBT0_TYPE_M32) {
218 start = phb->regs[PHB_M32_START_ADDR >> 3];
219 if ((start + size) > 0x100000000ull) {
220 phb_error(phb, "M32 set beyond 4GB boundary !");
221 size = 0x100000000 - start;
222 }
223 } else {
224 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
225 }
226
227 /* TODO: Figure out how to implemet/decode AOMASK */
228
229 /* Check if it matches an enabled MMIO region in the PEC stack */
230 if (memory_region_is_mapped(&phb->mmbar0) &&
231 base >= phb->mmio0_base &&
232 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
233 parent = &phb->mmbar0;
234 base -= phb->mmio0_base;
235 } else if (memory_region_is_mapped(&phb->mmbar1) &&
236 base >= phb->mmio1_base &&
237 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
238 parent = &phb->mmbar1;
239 base -= phb->mmio1_base;
240 } else {
241 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
242 return;
243 }
244
245 /* Create alias (better name ?) */
246 snprintf(name, sizeof(name), "phb4-mbar%d", index);
247 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
248 &phb->pci_mmio, start, size);
249 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
250 }
251
252 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
253 {
254 uint64_t i;
255 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
256 PNV_PHB4_MIN_MMIO_WINDOWS;
257
258 for (i = 0; i < num_windows; i++) {
259 pnv_phb4_check_mbt(phb, i);
260 }
261 }
262
263 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
264 unsigned *out_table, unsigned *out_idx)
265 {
266 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
267 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
268 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
269 unsigned int mask;
270 uint64_t *tptr = NULL;
271
272 switch (table) {
273 case IODA3_TBL_LIST:
274 tptr = phb->ioda_LIST;
275 mask = 7;
276 break;
277 case IODA3_TBL_MIST:
278 tptr = phb->ioda_MIST;
279 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
280 mask -= 1;
281 break;
282 case IODA3_TBL_RCAM:
283 mask = phb->big_phb ? 127 : 63;
284 break;
285 case IODA3_TBL_MRT:
286 mask = phb->big_phb ? 15 : 7;
287 break;
288 case IODA3_TBL_PESTA:
289 case IODA3_TBL_PESTB:
290 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
291 mask -= 1;
292 break;
293 case IODA3_TBL_TVT:
294 tptr = phb->ioda_TVT;
295 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
296 mask -= 1;
297 break;
298 case IODA3_TBL_TCR:
299 case IODA3_TBL_TDR:
300 mask = phb->big_phb ? 1023 : 511;
301 break;
302 case IODA3_TBL_MBT:
303 tptr = phb->ioda_MBT;
304 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
305 mask -= 1;
306 break;
307 case IODA3_TBL_MDT:
308 tptr = phb->ioda_MDT;
309 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
310 mask -= 1;
311 break;
312 case IODA3_TBL_PEEV:
313 tptr = phb->ioda_PEEV;
314 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
315 mask -= 1;
316 break;
317 default:
318 phb_error(phb, "invalid IODA table %d", table);
319 return NULL;
320 }
321 index &= mask;
322 if (out_idx) {
323 *out_idx = index;
324 }
325 if (out_table) {
326 *out_table = table;
327 }
328 if (tptr) {
329 tptr += index;
330 }
331 if (adreg & PHB_IODA_AD_AUTOINC) {
332 index = (index + 1) & mask;
333 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
334 }
335
336 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
337 return tptr;
338 }
339
340 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
341 {
342 unsigned table, idx;
343 uint64_t *tptr;
344
345 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
346 if (!tptr) {
347 /* Special PESTA case */
348 if (table == IODA3_TBL_PESTA) {
349 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
350 } else if (table == IODA3_TBL_PESTB) {
351 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
352 }
353 /* Return 0 on unsupported tables, not ff's */
354 return 0;
355 }
356 return *tptr;
357 }
358
359 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
360 {
361 unsigned table, idx;
362 uint64_t *tptr;
363
364 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
365 if (!tptr) {
366 /* Special PESTA case */
367 if (table == IODA3_TBL_PESTA) {
368 phb->ioda_PEST_AB[idx] &= ~1;
369 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
370 } else if (table == IODA3_TBL_PESTB) {
371 phb->ioda_PEST_AB[idx] &= ~2;
372 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
373 }
374 return;
375 }
376
377 /* Handle side effects */
378 switch (table) {
379 case IODA3_TBL_LIST:
380 break;
381 case IODA3_TBL_MIST: {
382 /* Special mask for MIST partial write */
383 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
384 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
385 uint64_t v = *tptr;
386 if (mmask == 0) {
387 mmask = 0xf;
388 }
389 if (mmask & 8) {
390 v &= 0x0000ffffffffffffull;
391 v |= 0xcfff000000000000ull & val;
392 }
393 if (mmask & 4) {
394 v &= 0xffff0000ffffffffull;
395 v |= 0x0000cfff00000000ull & val;
396 }
397 if (mmask & 2) {
398 v &= 0xffffffff0000ffffull;
399 v |= 0x00000000cfff0000ull & val;
400 }
401 if (mmask & 1) {
402 v &= 0xffffffffffff0000ull;
403 v |= 0x000000000000cfffull & val;
404 }
405 *tptr = v;
406 break;
407 }
408 case IODA3_TBL_MBT:
409 *tptr = val;
410
411 /* Copy accross the valid bit to the other half */
412 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
413 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
414
415 /* Update mappings */
416 pnv_phb4_check_mbt(phb, idx >> 1);
417 break;
418 default:
419 *tptr = val;
420 }
421 }
422
423 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
424 {
425 PnvPhb4DMASpace *ds;
426
427 /* Always invalidate all for now ... */
428 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
429 ds->pe_num = PHB_INVALID_PE;
430 }
431 }
432
433 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
434 {
435 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
436
437 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
438 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
439 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
440 0xffff0000, &ds->msi32_mr);
441 }
442 } else {
443 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
444 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
445 &ds->msi32_mr);
446 }
447 }
448
449 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
450 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
451 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
452 (1ull << 60), &ds->msi64_mr);
453 }
454 } else {
455 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
456 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
457 &ds->msi64_mr);
458 }
459 }
460 }
461
462 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
463 {
464 PnvPhb4DMASpace *ds;
465
466 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
467 pnv_phb4_update_msi_regions(ds);
468 }
469 }
470
471 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
472 {
473 int shift, flags, i, lsi_base;
474 XiveSource *xsrc = &phb->xsrc;
475
476 /* The XIVE source characteristics can be set at run time */
477 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
478 shift = XIVE_ESB_64K;
479 } else {
480 shift = XIVE_ESB_4K;
481 }
482 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
483 flags = XIVE_SRC_STORE_EOI;
484 } else {
485 flags = 0;
486 }
487
488 /*
489 * When the PQ disable configuration bit is set, the check on the
490 * PQ state bits is disabled on the PHB side (for MSI only) and it
491 * is performed on the IC side instead.
492 */
493 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
494 flags |= XIVE_SRC_PQ_DISABLE;
495 }
496
497 phb->xsrc.esb_shift = shift;
498 phb->xsrc.esb_flags = flags;
499
500 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
501 lsi_base <<= 3;
502
503 /* TODO: handle reset values of PHB_LSI_SRC_ID */
504 if (!lsi_base) {
505 return;
506 }
507
508 /* TODO: need a xive_source_irq_reset_lsi() */
509 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
510
511 for (i = 0; i < xsrc->nr_irqs; i++) {
512 bool msi = (i < lsi_base || i >= (lsi_base + 8));
513 if (!msi) {
514 xive_source_irq_set_lsi(xsrc, i);
515 }
516 }
517 }
518
519 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
520 unsigned size)
521 {
522 PnvPHB4 *phb = PNV_PHB4(opaque);
523 bool changed;
524
525 /* Special case outbound configuration data */
526 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
527 pnv_phb4_config_write(phb, off & 0x3, size, val);
528 return;
529 }
530
531 /* Special case RC configuration space */
532 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
533 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
534 return;
535 }
536
537 /* Other registers are 64-bit only */
538 if (size != 8 || off & 0x7) {
539 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
540 off, size);
541 return;
542 }
543
544 /* Handle masking */
545 switch (off) {
546 case PHB_LSI_SOURCE_ID:
547 val &= PHB_LSI_SRC_ID;
548 break;
549 case PHB_M64_UPPER_BITS:
550 val &= 0xff00000000000000ull;
551 break;
552 /* TCE Kill */
553 case PHB_TCE_KILL:
554 /* Clear top 3 bits which HW does to indicate successful queuing */
555 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
556 break;
557 case PHB_Q_DMA_R:
558 /*
559 * This is enough logic to make SW happy but we aren't
560 * actually quiescing the DMAs
561 */
562 if (val & PHB_Q_DMA_R_AUTORESET) {
563 val = 0;
564 } else {
565 val &= PHB_Q_DMA_R_QUIESCE_DMA;
566 }
567 break;
568 /* LEM stuff */
569 case PHB_LEM_FIR_AND_MASK:
570 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
571 return;
572 case PHB_LEM_FIR_OR_MASK:
573 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
574 return;
575 case PHB_LEM_ERROR_AND_MASK:
576 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
577 return;
578 case PHB_LEM_ERROR_OR_MASK:
579 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
580 return;
581 case PHB_LEM_WOF:
582 val = 0;
583 break;
584 /* TODO: More regs ..., maybe create a table with masks... */
585
586 /* Read only registers */
587 case PHB_CPU_LOADSTORE_STATUS:
588 case PHB_ETU_ERR_SUMMARY:
589 case PHB_PHB4_GEN_CAP:
590 case PHB_PHB4_TCE_CAP:
591 case PHB_PHB4_IRQ_CAP:
592 case PHB_PHB4_EEH_CAP:
593 return;
594 }
595
596 /* Record whether it changed */
597 changed = phb->regs[off >> 3] != val;
598
599 /* Store in register cache first */
600 phb->regs[off >> 3] = val;
601
602 /* Handle side effects */
603 switch (off) {
604 case PHB_PHB4_CONFIG:
605 if (changed) {
606 pnv_phb4_update_all_msi_regions(phb);
607 }
608 break;
609 case PHB_M32_START_ADDR:
610 case PHB_M64_UPPER_BITS:
611 if (changed) {
612 pnv_phb4_check_all_mbt(phb);
613 }
614 break;
615
616 /* IODA table accesses */
617 case PHB_IODA_DATA0:
618 pnv_phb4_ioda_write(phb, val);
619 break;
620
621 /* RTC invalidation */
622 case PHB_RTC_INVALIDATE:
623 pnv_phb4_rtc_invalidate(phb, val);
624 break;
625
626 /* PHB Control (Affects XIVE source) */
627 case PHB_CTRLR:
628 case PHB_LSI_SOURCE_ID:
629 pnv_phb4_update_xsrc(phb);
630 break;
631
632 /* Silent simple writes */
633 case PHB_ASN_CMPM:
634 case PHB_CONFIG_ADDRESS:
635 case PHB_IODA_ADDR:
636 case PHB_TCE_KILL:
637 case PHB_TCE_SPEC_CTL:
638 case PHB_PEST_BAR:
639 case PHB_PELTV_BAR:
640 case PHB_RTT_BAR:
641 case PHB_LEM_FIR_ACCUM:
642 case PHB_LEM_ERROR_MASK:
643 case PHB_LEM_ACTION0:
644 case PHB_LEM_ACTION1:
645 case PHB_TCE_TAG_ENABLE:
646 case PHB_INT_NOTIFY_ADDR:
647 case PHB_INT_NOTIFY_INDEX:
648 case PHB_DMARD_SYNC:
649 break;
650
651 /* Noise on anything else */
652 default:
653 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
654 off, val);
655 }
656 }
657
658 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
659 {
660 PnvPHB4 *phb = PNV_PHB4(opaque);
661 uint64_t val;
662
663 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
664 return pnv_phb4_config_read(phb, off & 0x3, size);
665 }
666
667 /* Special case RC configuration space */
668 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
669 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
670 }
671
672 /* Other registers are 64-bit only */
673 if (size != 8 || off & 0x7) {
674 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
675 off, size);
676 return ~0ull;
677 }
678
679 /* Default read from cache */
680 val = phb->regs[off >> 3];
681
682 switch (off) {
683 case PHB_VERSION:
684 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
685
686 /* Read-only */
687 case PHB_PHB4_GEN_CAP:
688 return 0xe4b8000000000000ull;
689 case PHB_PHB4_TCE_CAP:
690 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
691 case PHB_PHB4_IRQ_CAP:
692 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
693 case PHB_PHB4_EEH_CAP:
694 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
695
696 /* IODA table accesses */
697 case PHB_IODA_DATA0:
698 return pnv_phb4_ioda_read(phb);
699
700 /* Link training always appears trained */
701 case PHB_PCIE_DLP_TRAIN_CTL:
702 /* TODO: Do something sensible with speed ? */
703 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
704
705 /* DMA read sync: make it look like it's complete */
706 case PHB_DMARD_SYNC:
707 return PHB_DMARD_SYNC_COMPLETE;
708
709 /* Silent simple reads */
710 case PHB_LSI_SOURCE_ID:
711 case PHB_CPU_LOADSTORE_STATUS:
712 case PHB_ASN_CMPM:
713 case PHB_PHB4_CONFIG:
714 case PHB_M32_START_ADDR:
715 case PHB_CONFIG_ADDRESS:
716 case PHB_IODA_ADDR:
717 case PHB_RTC_INVALIDATE:
718 case PHB_TCE_KILL:
719 case PHB_TCE_SPEC_CTL:
720 case PHB_PEST_BAR:
721 case PHB_PELTV_BAR:
722 case PHB_RTT_BAR:
723 case PHB_M64_UPPER_BITS:
724 case PHB_CTRLR:
725 case PHB_LEM_FIR_ACCUM:
726 case PHB_LEM_ERROR_MASK:
727 case PHB_LEM_ACTION0:
728 case PHB_LEM_ACTION1:
729 case PHB_TCE_TAG_ENABLE:
730 case PHB_INT_NOTIFY_ADDR:
731 case PHB_INT_NOTIFY_INDEX:
732 case PHB_Q_DMA_R:
733 case PHB_ETU_ERR_SUMMARY:
734 break;
735
736 /* Noise on anything else */
737 default:
738 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
739 off, val);
740 }
741 return val;
742 }
743
744 static const MemoryRegionOps pnv_phb4_reg_ops = {
745 .read = pnv_phb4_reg_read,
746 .write = pnv_phb4_reg_write,
747 .valid.min_access_size = 1,
748 .valid.max_access_size = 8,
749 .impl.min_access_size = 1,
750 .impl.max_access_size = 8,
751 .endianness = DEVICE_BIG_ENDIAN,
752 };
753
754 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
755 {
756 PnvPHB4 *phb = PNV_PHB4(opaque);
757 uint32_t reg = addr >> 3;
758 uint64_t val;
759 hwaddr offset;
760
761 switch (reg) {
762 case PHB_SCOM_HV_IND_ADDR:
763 return phb->scom_hv_ind_addr_reg;
764
765 case PHB_SCOM_HV_IND_DATA:
766 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
767 phb_error(phb, "Invalid indirect address");
768 return ~0ull;
769 }
770 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
771 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
772 val = pnv_phb4_reg_read(phb, offset, size);
773 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
774 offset += size;
775 offset &= 0x3fff;
776 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
777 phb->scom_hv_ind_addr_reg,
778 offset);
779 }
780 return val;
781 case PHB_SCOM_ETU_LEM_FIR:
782 case PHB_SCOM_ETU_LEM_FIR_AND:
783 case PHB_SCOM_ETU_LEM_FIR_OR:
784 case PHB_SCOM_ETU_LEM_FIR_MSK:
785 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
786 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
787 case PHB_SCOM_ETU_LEM_ACT0:
788 case PHB_SCOM_ETU_LEM_ACT1:
789 case PHB_SCOM_ETU_LEM_WOF:
790 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
791 return pnv_phb4_reg_read(phb, offset, size);
792 case PHB_SCOM_ETU_PMON_CONFIG:
793 case PHB_SCOM_ETU_PMON_CTR0:
794 case PHB_SCOM_ETU_PMON_CTR1:
795 case PHB_SCOM_ETU_PMON_CTR2:
796 case PHB_SCOM_ETU_PMON_CTR3:
797 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
798 return pnv_phb4_reg_read(phb, offset, size);
799
800 default:
801 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
802 return ~0ull;
803 }
804 }
805
806 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
807 uint64_t val, unsigned size)
808 {
809 PnvPHB4 *phb = PNV_PHB4(opaque);
810 uint32_t reg = addr >> 3;
811 hwaddr offset;
812
813 switch (reg) {
814 case PHB_SCOM_HV_IND_ADDR:
815 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
816 break;
817 case PHB_SCOM_HV_IND_DATA:
818 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
819 phb_error(phb, "Invalid indirect address");
820 break;
821 }
822 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
823 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
824 pnv_phb4_reg_write(phb, offset, val, size);
825 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
826 offset += size;
827 offset &= 0x3fff;
828 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
829 phb->scom_hv_ind_addr_reg,
830 offset);
831 }
832 break;
833 case PHB_SCOM_ETU_LEM_FIR:
834 case PHB_SCOM_ETU_LEM_FIR_AND:
835 case PHB_SCOM_ETU_LEM_FIR_OR:
836 case PHB_SCOM_ETU_LEM_FIR_MSK:
837 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
838 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
839 case PHB_SCOM_ETU_LEM_ACT0:
840 case PHB_SCOM_ETU_LEM_ACT1:
841 case PHB_SCOM_ETU_LEM_WOF:
842 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
843 pnv_phb4_reg_write(phb, offset, val, size);
844 break;
845 case PHB_SCOM_ETU_PMON_CONFIG:
846 case PHB_SCOM_ETU_PMON_CTR0:
847 case PHB_SCOM_ETU_PMON_CTR1:
848 case PHB_SCOM_ETU_PMON_CTR2:
849 case PHB_SCOM_ETU_PMON_CTR3:
850 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
851 pnv_phb4_reg_write(phb, offset, val, size);
852 break;
853 default:
854 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
855 "=%"PRIx64"\n", addr, val);
856 }
857 }
858
859 const MemoryRegionOps pnv_phb4_xscom_ops = {
860 .read = pnv_phb4_xscom_read,
861 .write = pnv_phb4_xscom_write,
862 .valid.min_access_size = 8,
863 .valid.max_access_size = 8,
864 .impl.min_access_size = 8,
865 .impl.max_access_size = 8,
866 .endianness = DEVICE_BIG_ENDIAN,
867 };
868
869 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
870 unsigned size)
871 {
872 PnvPHB4 *phb = PNV_PHB4(opaque);
873 uint32_t reg = addr >> 3;
874
875 /* TODO: add list of allowed registers and error out if not */
876 return phb->nest_regs[reg];
877 }
878
879 /*
880 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
881 * the PHB4 occupies in the PEC. This is the reverse of what
882 * pnv_phb4_pec_get_phb_id() does.
883 *
884 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
885 * be the second phb (stack_no = 1) of the PEC.
886 */
887 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
888 {
889 PnvPhb4PecState *pec = phb->pec;
890 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
891 int index = pec->index;
892 int stack_no = phb->phb_id;
893
894 while (index--) {
895 stack_no -= pecc->num_phbs[index];
896 }
897
898 return stack_no;
899 }
900
901 static void pnv_phb4_update_regions(PnvPHB4 *phb)
902 {
903 /* Unmap first always */
904 if (memory_region_is_mapped(&phb->mr_regs)) {
905 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
906 }
907 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
908 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
909 }
910
911 /* Map registers if enabled */
912 if (memory_region_is_mapped(&phb->phbbar)) {
913 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
914 }
915
916 /* Map ESB if enabled */
917 if (memory_region_is_mapped(&phb->intbar)) {
918 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
919 }
920
921 /* Check/update m32 */
922 pnv_phb4_check_all_mbt(phb);
923 }
924
925 static void pnv_pec_phb_update_map(PnvPHB4 *phb)
926 {
927 PnvPhb4PecState *pec = phb->pec;
928 MemoryRegion *sysmem = get_system_memory();
929 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
930 int stack_no = pnv_phb4_get_phb_stack_no(phb);
931 uint64_t bar, mask, size;
932 char name[64];
933
934 /*
935 * NOTE: This will really not work well if those are remapped
936 * after the PHB has created its sub regions. We could do better
937 * if we had a way to resize regions but we don't really care
938 * that much in practice as the stuff below really only happens
939 * once early during boot
940 */
941
942 /* Handle unmaps */
943 if (memory_region_is_mapped(&phb->mmbar0) &&
944 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
945 memory_region_del_subregion(sysmem, &phb->mmbar0);
946 }
947 if (memory_region_is_mapped(&phb->mmbar1) &&
948 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
949 memory_region_del_subregion(sysmem, &phb->mmbar1);
950 }
951 if (memory_region_is_mapped(&phb->phbbar) &&
952 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
953 memory_region_del_subregion(sysmem, &phb->phbbar);
954 }
955 if (memory_region_is_mapped(&phb->intbar) &&
956 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
957 memory_region_del_subregion(sysmem, &phb->intbar);
958 }
959
960 /* Update PHB */
961 pnv_phb4_update_regions(phb);
962
963 /* Handle maps */
964 if (!memory_region_is_mapped(&phb->mmbar0) &&
965 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
966 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
967 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
968 size = ((~mask) >> 8) + 1;
969 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
970 pec->chip_id, pec->index, stack_no);
971 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
972 memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
973 phb->mmio0_base = bar;
974 phb->mmio0_size = size;
975 }
976 if (!memory_region_is_mapped(&phb->mmbar1) &&
977 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
978 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
979 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
980 size = ((~mask) >> 8) + 1;
981 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
982 pec->chip_id, pec->index, stack_no);
983 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
984 memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
985 phb->mmio1_base = bar;
986 phb->mmio1_size = size;
987 }
988 if (!memory_region_is_mapped(&phb->phbbar) &&
989 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
990 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
991 size = PNV_PHB4_NUM_REGS << 3;
992 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
993 pec->chip_id, pec->index, stack_no);
994 memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
995 memory_region_add_subregion(sysmem, bar, &phb->phbbar);
996 }
997 if (!memory_region_is_mapped(&phb->intbar) &&
998 (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
999 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
1000 size = PNV_PHB4_MAX_INTs << 16;
1001 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
1002 phb->pec->chip_id, phb->pec->index, stack_no);
1003 memory_region_init(&phb->intbar, OBJECT(phb), name, size);
1004 memory_region_add_subregion(sysmem, bar, &phb->intbar);
1005 }
1006
1007 /* Update PHB */
1008 pnv_phb4_update_regions(phb);
1009 }
1010
1011 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
1012 uint64_t val, unsigned size)
1013 {
1014 PnvPHB4 *phb = PNV_PHB4(opaque);
1015 PnvPhb4PecState *pec = phb->pec;
1016 uint32_t reg = addr >> 3;
1017
1018 switch (reg) {
1019 case PEC_NEST_STK_PCI_NEST_FIR:
1020 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
1021 break;
1022 case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1023 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1024 break;
1025 case PEC_NEST_STK_PCI_NEST_FIR_SET:
1026 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1027 break;
1028 case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1029 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
1030 break;
1031 case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1032 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1033 break;
1034 case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1035 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1036 break;
1037 case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1038 case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1039 phb->nest_regs[reg] = val;
1040 break;
1041 case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1042 phb->nest_regs[reg] = 0;
1043 break;
1044 case PEC_NEST_STK_ERR_REPORT_0:
1045 case PEC_NEST_STK_ERR_REPORT_1:
1046 case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1047 /* Flag error ? */
1048 break;
1049 case PEC_NEST_STK_PBCQ_MODE:
1050 phb->nest_regs[reg] = val & 0xff00000000000000ull;
1051 break;
1052 case PEC_NEST_STK_MMIO_BAR0:
1053 case PEC_NEST_STK_MMIO_BAR0_MASK:
1054 case PEC_NEST_STK_MMIO_BAR1:
1055 case PEC_NEST_STK_MMIO_BAR1_MASK:
1056 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1057 (PEC_NEST_STK_BAR_EN_MMIO0 |
1058 PEC_NEST_STK_BAR_EN_MMIO1)) {
1059 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1060 }
1061 phb->nest_regs[reg] = val & 0xffffffffff000000ull;
1062 break;
1063 case PEC_NEST_STK_PHB_REGS_BAR:
1064 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1065 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1066 }
1067 phb->nest_regs[reg] = val & 0xffffffffffc00000ull;
1068 break;
1069 case PEC_NEST_STK_INT_BAR:
1070 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1071 phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1072 }
1073 phb->nest_regs[reg] = val & 0xfffffff000000000ull;
1074 break;
1075 case PEC_NEST_STK_BAR_EN:
1076 phb->nest_regs[reg] = val & 0xf000000000000000ull;
1077 pnv_pec_phb_update_map(phb);
1078 break;
1079 case PEC_NEST_STK_DATA_FRZ_TYPE:
1080 case PEC_NEST_STK_PBCQ_TUN_BAR:
1081 /* Not used for now */
1082 phb->nest_regs[reg] = val;
1083 break;
1084 default:
1085 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1086 "=%"PRIx64"\n", addr, val);
1087 }
1088 }
1089
1090 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1091 .read = pnv_pec_stk_nest_xscom_read,
1092 .write = pnv_pec_stk_nest_xscom_write,
1093 .valid.min_access_size = 8,
1094 .valid.max_access_size = 8,
1095 .impl.min_access_size = 8,
1096 .impl.max_access_size = 8,
1097 .endianness = DEVICE_BIG_ENDIAN,
1098 };
1099
1100 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1101 unsigned size)
1102 {
1103 PnvPHB4 *phb = PNV_PHB4(opaque);
1104 uint32_t reg = addr >> 3;
1105
1106 /* TODO: add list of allowed registers and error out if not */
1107 return phb->pci_regs[reg];
1108 }
1109
1110 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1111 uint64_t val, unsigned size)
1112 {
1113 PnvPHB4 *phb = PNV_PHB4(opaque);
1114 uint32_t reg = addr >> 3;
1115
1116 switch (reg) {
1117 case PEC_PCI_STK_PCI_FIR:
1118 phb->pci_regs[reg] = val;
1119 break;
1120 case PEC_PCI_STK_PCI_FIR_CLR:
1121 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1122 break;
1123 case PEC_PCI_STK_PCI_FIR_SET:
1124 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1125 break;
1126 case PEC_PCI_STK_PCI_FIR_MSK:
1127 phb->pci_regs[reg] = val;
1128 break;
1129 case PEC_PCI_STK_PCI_FIR_MSKC:
1130 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1131 break;
1132 case PEC_PCI_STK_PCI_FIR_MSKS:
1133 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1134 break;
1135 case PEC_PCI_STK_PCI_FIR_ACT0:
1136 case PEC_PCI_STK_PCI_FIR_ACT1:
1137 phb->pci_regs[reg] = val;
1138 break;
1139 case PEC_PCI_STK_PCI_FIR_WOF:
1140 phb->pci_regs[reg] = 0;
1141 break;
1142 case PEC_PCI_STK_ETU_RESET:
1143 phb->pci_regs[reg] = val & 0x8000000000000000ull;
1144 /* TODO: Implement reset */
1145 break;
1146 case PEC_PCI_STK_PBAIB_ERR_REPORT:
1147 break;
1148 case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1149 case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1150 phb->pci_regs[reg] = val;
1151 break;
1152 default:
1153 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1154 "=%"PRIx64"\n", addr, val);
1155 }
1156 }
1157
1158 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1159 .read = pnv_pec_stk_pci_xscom_read,
1160 .write = pnv_pec_stk_pci_xscom_write,
1161 .valid.min_access_size = 8,
1162 .valid.max_access_size = 8,
1163 .impl.min_access_size = 8,
1164 .impl.max_access_size = 8,
1165 .endianness = DEVICE_BIG_ENDIAN,
1166 };
1167
1168 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1169 {
1170 /* Check that out properly ... */
1171 return irq_num & 3;
1172 }
1173
1174 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1175 {
1176 PnvPHB4 *phb = PNV_PHB4(opaque);
1177 uint32_t lsi_base;
1178
1179 /* LSI only ... */
1180 if (irq_num > 3) {
1181 phb_error(phb, "IRQ %x is not an LSI", irq_num);
1182 }
1183 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1184 lsi_base <<= 3;
1185 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1186 }
1187
1188 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1189 {
1190 uint64_t rtt, addr;
1191 uint16_t rte;
1192 int bus_num;
1193 int num_PEs;
1194
1195 /* Already resolved ? */
1196 if (ds->pe_num != PHB_INVALID_PE) {
1197 return true;
1198 }
1199
1200 /* We need to lookup the RTT */
1201 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1202 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1203 phb_error(ds->phb, "DMA with RTT BAR disabled !");
1204 /* Set error bits ? fence ? ... */
1205 return false;
1206 }
1207
1208 /* Read RTE */
1209 bus_num = pci_bus_num(ds->bus);
1210 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1211 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1212 if (dma_memory_read(&address_space_memory, addr, &rte,
1213 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1214 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1215 /* Set error bits ? fence ? ... */
1216 return false;
1217 }
1218 rte = be16_to_cpu(rte);
1219
1220 /* Fail upon reading of invalid PE# */
1221 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1222 if (rte >= num_PEs) {
1223 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1224 rte &= num_PEs - 1;
1225 }
1226 ds->pe_num = rte;
1227 return true;
1228 }
1229
1230 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1231 bool is_write, uint64_t tve,
1232 IOMMUTLBEntry *tlb)
1233 {
1234 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1235 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1236 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1237 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1238
1239 /* Invalid levels */
1240 if (lev > 4) {
1241 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1242 return;
1243 }
1244
1245 /* Invalid entry */
1246 if (tts == 0) {
1247 phb_error(ds->phb, "Access to invalid TVE");
1248 return;
1249 }
1250
1251 /* IO Page Size of 0 means untranslated, else use TCEs */
1252 if (tps == 0) {
1253 /* TODO: Handle boundaries */
1254
1255 /* Use 4k pages like q35 ... for now */
1256 tlb->iova = addr & 0xfffffffffffff000ull;
1257 tlb->translated_addr = addr & 0x0003fffffffff000ull;
1258 tlb->addr_mask = 0xfffull;
1259 tlb->perm = IOMMU_RW;
1260 } else {
1261 uint32_t tce_shift, tbl_shift, sh;
1262 uint64_t base, taddr, tce, tce_mask;
1263
1264 /* Address bits per bottom level TCE entry */
1265 tce_shift = tps + 11;
1266
1267 /* Address bits per table level */
1268 tbl_shift = tts + 8;
1269
1270 /* Top level table base address */
1271 base = tta << 12;
1272
1273 /* Total shift to first level */
1274 sh = tbl_shift * lev + tce_shift;
1275
1276 /* TODO: Limit to support IO page sizes */
1277
1278 /* TODO: Multi-level untested */
1279 do {
1280 lev--;
1281
1282 /* Grab the TCE address */
1283 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1284 if (dma_memory_read(&address_space_memory, taddr, &tce,
1285 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1286 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1287 return;
1288 }
1289 tce = be64_to_cpu(tce);
1290
1291 /* Check permission for indirect TCE */
1292 if ((lev >= 0) && !(tce & 3)) {
1293 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1294 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1295 is_write ? 'W' : 'R', tve);
1296 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1297 tta, lev, tts, tps);
1298 return;
1299 }
1300 sh -= tbl_shift;
1301 base = tce & ~0xfffull;
1302 } while (lev >= 0);
1303
1304 /* We exit the loop with TCE being the final TCE */
1305 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1306 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1307 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1308 is_write ? 'W' : 'R', tve);
1309 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1310 tta, lev, tts, tps);
1311 return;
1312 }
1313 tce_mask = ~((1ull << tce_shift) - 1);
1314 tlb->iova = addr & tce_mask;
1315 tlb->translated_addr = tce & tce_mask;
1316 tlb->addr_mask = ~tce_mask;
1317 tlb->perm = tce & 3;
1318 }
1319 }
1320
1321 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1322 hwaddr addr,
1323 IOMMUAccessFlags flag,
1324 int iommu_idx)
1325 {
1326 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1327 int tve_sel;
1328 uint64_t tve, cfg;
1329 IOMMUTLBEntry ret = {
1330 .target_as = &address_space_memory,
1331 .iova = addr,
1332 .translated_addr = 0,
1333 .addr_mask = ~(hwaddr)0,
1334 .perm = IOMMU_NONE,
1335 };
1336
1337 /* Resolve PE# */
1338 if (!pnv_phb4_resolve_pe(ds)) {
1339 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1340 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1341 return ret;
1342 }
1343
1344 /* Check top bits */
1345 switch (addr >> 60) {
1346 case 00:
1347 /* DMA or 32-bit MSI ? */
1348 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1349 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1350 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1351 phb_error(ds->phb, "xlate on 32-bit MSI region");
1352 return ret;
1353 }
1354 /* Choose TVE XXX Use PHB4 Control Register */
1355 tve_sel = (addr >> 59) & 1;
1356 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1357 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1358 break;
1359 case 01:
1360 phb_error(ds->phb, "xlate on 64-bit MSI region");
1361 break;
1362 default:
1363 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1364 }
1365 return ret;
1366 }
1367
1368 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1369 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1370 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1371
1372 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1373 void *data)
1374 {
1375 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1376
1377 imrc->translate = pnv_phb4_translate_iommu;
1378 }
1379
1380 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1381 .parent = TYPE_IOMMU_MEMORY_REGION,
1382 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1383 .class_init = pnv_phb4_iommu_memory_region_class_init,
1384 };
1385
1386 /*
1387 * Return the index/phb-id of a PHB4 that belongs to a
1388 * pec->stacks[stack_index] stack.
1389 */
1390 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1391 {
1392 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1393 int index = pec->index;
1394 int offset = 0;
1395
1396 while (index--) {
1397 offset += pecc->num_phbs[index];
1398 }
1399
1400 return offset + stack_index;
1401 }
1402
1403 /*
1404 * MSI/MSIX memory region implementation.
1405 * The handler handles both MSI and MSIX.
1406 */
1407 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1408 uint64_t data, unsigned size)
1409 {
1410 PnvPhb4DMASpace *ds = opaque;
1411 PnvPHB4 *phb = ds->phb;
1412
1413 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1414
1415 /* Resolve PE# */
1416 if (!pnv_phb4_resolve_pe(ds)) {
1417 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1418 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1419 return;
1420 }
1421
1422 /* TODO: Check it doesn't collide with LSIs */
1423 if (src >= phb->xsrc.nr_irqs) {
1424 phb_error(phb, "MSI %d out of bounds", src);
1425 return;
1426 }
1427
1428 /* TODO: check PE/MSI assignement */
1429
1430 qemu_irq_pulse(phb->qirqs[src]);
1431 }
1432
1433 /* There is no .read as the read result is undefined by PCI spec */
1434 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1435 {
1436 PnvPhb4DMASpace *ds = opaque;
1437
1438 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1439 return -1;
1440 }
1441
1442 static const MemoryRegionOps pnv_phb4_msi_ops = {
1443 .read = pnv_phb4_msi_read,
1444 .write = pnv_phb4_msi_write,
1445 .endianness = DEVICE_LITTLE_ENDIAN
1446 };
1447
1448 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1449 {
1450 PnvPhb4DMASpace *ds;
1451
1452 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1453 if (ds->bus == bus && ds->devfn == devfn) {
1454 break;
1455 }
1456 }
1457 return ds;
1458 }
1459
1460 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1461 {
1462 PnvPHB4 *phb = opaque;
1463 PnvPhb4DMASpace *ds;
1464 char name[32];
1465
1466 ds = pnv_phb4_dma_find(phb, bus, devfn);
1467
1468 if (ds == NULL) {
1469 ds = g_malloc0(sizeof(PnvPhb4DMASpace));
1470 ds->bus = bus;
1471 ds->devfn = devfn;
1472 ds->pe_num = PHB_INVALID_PE;
1473 ds->phb = phb;
1474 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1475 phb->phb_id);
1476 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1477 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1478 OBJECT(phb), name, UINT64_MAX);
1479 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1480 name);
1481 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1482 ds, "msi32", 0x10000);
1483 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1484 ds, "msi64", 0x100000);
1485 pnv_phb4_update_msi_regions(ds);
1486
1487 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1488 }
1489 return &ds->dma_as;
1490 }
1491
1492 static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1493 {
1494 PnvPhb4PecState *pec = phb->pec;
1495 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1496 int stack_no = pnv_phb4_get_phb_stack_no(phb);
1497 uint32_t pec_nest_base;
1498 uint32_t pec_pci_base;
1499 char name[64];
1500
1501 assert(pec);
1502
1503 /* Initialize the XSCOM regions for the stack registers */
1504 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1505 pec->chip_id, pec->index, stack_no);
1506 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1507 &pnv_pec_stk_nest_xscom_ops, phb, name,
1508 PHB4_PEC_NEST_STK_REGS_COUNT);
1509
1510 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1511 pec->chip_id, pec->index, stack_no);
1512 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1513 &pnv_pec_stk_pci_xscom_ops, phb, name,
1514 PHB4_PEC_PCI_STK_REGS_COUNT);
1515
1516 /* PHB pass-through */
1517 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1518 pec->chip_id, pec->index, stack_no);
1519 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1520 &pnv_phb4_xscom_ops, phb, name, 0x40);
1521
1522 pec_nest_base = pecc->xscom_nest_base(pec);
1523 pec_pci_base = pecc->xscom_pci_base(pec);
1524
1525 /* Populate the XSCOM address space. */
1526 pnv_xscom_add_subregion(pec->chip,
1527 pec_nest_base + 0x40 * (stack_no + 1),
1528 &phb->nest_regs_mr);
1529 pnv_xscom_add_subregion(pec->chip,
1530 pec_pci_base + 0x40 * (stack_no + 1),
1531 &phb->pci_regs_mr);
1532 pnv_xscom_add_subregion(pec->chip,
1533 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1534 0x40 * stack_no,
1535 &phb->phb_regs_mr);
1536 }
1537
1538 static void pnv_phb4_instance_init(Object *obj)
1539 {
1540 PnvPHB4 *phb = PNV_PHB4(obj);
1541
1542 QLIST_INIT(&phb->dma_spaces);
1543
1544 /* XIVE interrupt source object */
1545 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1546 }
1547
1548 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1549 {
1550 PnvPHB4 *phb = PNV_PHB4(dev);
1551 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1552 XiveSource *xsrc = &phb->xsrc;
1553 int nr_irqs;
1554 char name[32];
1555
1556 /* Set the "big_phb" flag */
1557 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1558
1559 /* Controller Registers */
1560 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1561 phb->phb_id);
1562 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1563 name, 0x2000);
1564
1565 /*
1566 * PHB4 doesn't support IO space. However, qemu gets very upset if
1567 * we don't have an IO region to anchor IO BARs onto so we just
1568 * initialize one which we never hook up to anything
1569 */
1570
1571 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1572 phb->phb_id);
1573 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1574
1575 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1576 phb->phb_id);
1577 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1578 PCI_MMIO_TOTAL_SIZE);
1579
1580 pci->bus = pci_register_root_bus(dev, dev->id,
1581 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1582 &phb->pci_mmio, &phb->pci_io,
1583 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1584 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1585 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1586
1587 /* Setup XIVE Source */
1588 if (phb->big_phb) {
1589 nr_irqs = PNV_PHB4_MAX_INTs;
1590 } else {
1591 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1592 }
1593 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1594 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1595 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1596 return;
1597 }
1598
1599 pnv_phb4_update_xsrc(phb);
1600
1601 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1602
1603 pnv_phb4_xscom_realize(phb);
1604 }
1605
1606 static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1607 PCIBus *rootbus)
1608 {
1609 PnvPHB4 *phb = PNV_PHB4(host_bridge);
1610
1611 snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1612 phb->chip_id, phb->phb_id);
1613 return phb->bus_path;
1614 }
1615
1616 /*
1617 * Address base trigger mode (POWER10)
1618 *
1619 * Trigger directly the IC ESB page
1620 */
1621 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1622 bool pq_checked)
1623 {
1624 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1625 uint64_t data = 0; /* trigger data : don't care */
1626 hwaddr addr;
1627 MemTxResult result;
1628 int esb_shift;
1629
1630 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1631 esb_shift = 16;
1632 } else {
1633 esb_shift = 12;
1634 }
1635
1636 /* Compute the address of the IC ESB management page */
1637 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1638 addr |= (1ull << (esb_shift + 1)) * srcno;
1639 addr |= (1ull << esb_shift);
1640
1641 /*
1642 * When the PQ state bits are checked on the PHB, the associated
1643 * PQ state bits on the IC should be ignored. Use the unconditional
1644 * trigger offset to inject a trigger on the IC. This is always
1645 * the case for LSIs
1646 */
1647 if (pq_checked) {
1648 addr |= XIVE_ESB_INJECT;
1649 }
1650
1651 trace_pnv_phb4_xive_notify_ic(addr, data);
1652
1653 address_space_stq_be(&address_space_memory, addr, data,
1654 MEMTXATTRS_UNSPECIFIED, &result);
1655 if (result != MEMTX_OK) {
1656 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1657 return;
1658 }
1659 }
1660
1661 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1662 bool pq_checked)
1663 {
1664 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1665 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1666 uint64_t data = offset | srcno;
1667 MemTxResult result;
1668
1669 if (pq_checked) {
1670 data |= XIVE_TRIGGER_PQ;
1671 }
1672
1673 trace_pnv_phb4_xive_notify_ic(notif_port, data);
1674
1675 address_space_stq_be(&address_space_memory, notif_port, data,
1676 MEMTXATTRS_UNSPECIFIED, &result);
1677 if (result != MEMTX_OK) {
1678 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1679 return;
1680 }
1681 }
1682
1683 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1684 bool pq_checked)
1685 {
1686 PnvPHB4 *phb = PNV_PHB4(xf);
1687
1688 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1689 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1690 } else {
1691 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1692 }
1693 }
1694
1695 static Property pnv_phb4_properties[] = {
1696 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1697 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1698 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1699 PnvPhb4PecState *),
1700 DEFINE_PROP_END_OF_LIST(),
1701 };
1702
1703 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1704 {
1705 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1706 DeviceClass *dc = DEVICE_CLASS(klass);
1707 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1708
1709 hc->root_bus_path = pnv_phb4_root_bus_path;
1710 dc->realize = pnv_phb4_realize;
1711 device_class_set_props(dc, pnv_phb4_properties);
1712 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1713 dc->user_creatable = false;
1714
1715 xfc->notify = pnv_phb4_xive_notify;
1716 }
1717
1718 static const TypeInfo pnv_phb4_type_info = {
1719 .name = TYPE_PNV_PHB4,
1720 .parent = TYPE_PCIE_HOST_BRIDGE,
1721 .instance_init = pnv_phb4_instance_init,
1722 .instance_size = sizeof(PnvPHB4),
1723 .class_init = pnv_phb4_class_init,
1724 .interfaces = (InterfaceInfo[]) {
1725 { TYPE_XIVE_NOTIFIER },
1726 { },
1727 }
1728 };
1729
1730 static const TypeInfo pnv_phb5_type_info = {
1731 .name = TYPE_PNV_PHB5,
1732 .parent = TYPE_PNV_PHB4,
1733 .instance_size = sizeof(PnvPHB4),
1734 };
1735
1736 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1737 {
1738 BusClass *k = BUS_CLASS(klass);
1739
1740 /*
1741 * PHB4 has only a single root complex. Enforce the limit on the
1742 * parent bus
1743 */
1744 k->max_dev = 1;
1745 }
1746
1747 static const TypeInfo pnv_phb4_root_bus_info = {
1748 .name = TYPE_PNV_PHB4_ROOT_BUS,
1749 .parent = TYPE_PCIE_BUS,
1750 .class_init = pnv_phb4_root_bus_class_init,
1751 .interfaces = (InterfaceInfo[]) {
1752 { INTERFACE_PCIE_DEVICE },
1753 { }
1754 },
1755 };
1756
1757 static void pnv_phb4_root_port_reset(DeviceState *dev)
1758 {
1759 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1760 PCIDevice *d = PCI_DEVICE(dev);
1761 uint8_t *conf = d->config;
1762
1763 rpc->parent_reset(dev);
1764
1765 pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1766 PCI_IO_RANGE_MASK & 0xff);
1767 pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1768 PCI_IO_RANGE_MASK & 0xff);
1769 pci_set_word(conf + PCI_MEMORY_BASE, 0);
1770 pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1771 pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1772 pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1773 pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1774 pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1775 }
1776
1777 static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1778 {
1779 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1780 PCIDevice *pci = PCI_DEVICE(dev);
1781 PCIBus *bus = pci_get_bus(pci);
1782 PnvPHB4 *phb = NULL;
1783 Error *local_err = NULL;
1784
1785 phb = (PnvPHB4 *) object_dynamic_cast(OBJECT(bus->qbus.parent),
1786 TYPE_PNV_PHB4);
1787
1788 if (!phb) {
1789 error_setg(errp, "%s must be connected to pnv-phb4 buses", dev->id);
1790 return;
1791 }
1792
1793 /* Set unique chassis/slot values for the root port */
1794 qdev_prop_set_uint8(&pci->qdev, "chassis", phb->chip_id);
1795 qdev_prop_set_uint16(&pci->qdev, "slot", phb->phb_id);
1796
1797 rpc->parent_realize(dev, &local_err);
1798 if (local_err) {
1799 error_propagate(errp, local_err);
1800 return;
1801 }
1802 }
1803
1804 static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1805 {
1806 DeviceClass *dc = DEVICE_CLASS(klass);
1807 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1808 PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1809
1810 dc->desc = "IBM PHB4 PCIE Root Port";
1811 dc->user_creatable = false;
1812
1813 device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1814 &rpc->parent_realize);
1815 device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1816 &rpc->parent_reset);
1817
1818 k->vendor_id = PCI_VENDOR_ID_IBM;
1819 k->device_id = PNV_PHB4_DEVICE_ID;
1820 k->revision = 0;
1821
1822 rpc->exp_offset = 0x48;
1823 rpc->aer_offset = 0x100;
1824
1825 dc->reset = &pnv_phb4_root_port_reset;
1826 }
1827
1828 static const TypeInfo pnv_phb4_root_port_info = {
1829 .name = TYPE_PNV_PHB4_ROOT_PORT,
1830 .parent = TYPE_PCIE_ROOT_PORT,
1831 .instance_size = sizeof(PnvPHB4RootPort),
1832 .class_init = pnv_phb4_root_port_class_init,
1833 };
1834
1835 static void pnv_phb5_root_port_class_init(ObjectClass *klass, void *data)
1836 {
1837 DeviceClass *dc = DEVICE_CLASS(klass);
1838 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1839
1840 dc->desc = "IBM PHB5 PCIE Root Port";
1841 dc->user_creatable = false;
1842
1843 k->vendor_id = PCI_VENDOR_ID_IBM;
1844 k->device_id = PNV_PHB5_DEVICE_ID;
1845 }
1846
1847 static const TypeInfo pnv_phb5_root_port_info = {
1848 .name = TYPE_PNV_PHB5_ROOT_PORT,
1849 .parent = TYPE_PNV_PHB4_ROOT_PORT,
1850 .instance_size = sizeof(PnvPHB4RootPort),
1851 .class_init = pnv_phb5_root_port_class_init,
1852 };
1853
1854 static void pnv_phb4_register_types(void)
1855 {
1856 type_register_static(&pnv_phb4_root_bus_info);
1857 type_register_static(&pnv_phb5_root_port_info);
1858 type_register_static(&pnv_phb4_root_port_info);
1859 type_register_static(&pnv_phb4_type_info);
1860 type_register_static(&pnv_phb5_type_info);
1861 type_register_static(&pnv_phb4_iommu_memory_region_info);
1862 }
1863
1864 type_init(pnv_phb4_register_types);
1865
1866 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1867 {
1868 uint64_t notif_port =
1869 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1870 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1871 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1872
1873 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n",
1874 phb->chip_id, phb->phb_id,
1875 offset, offset + phb->xsrc.nr_irqs - 1,
1876 abt ? "ABT" : "",
1877 notif_port);
1878 xive_source_pic_print_info(&phb->xsrc, 0, mon);
1879 }