]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
hw/ppc/pnv_occ: add sram device model for occ common area
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47
48 #include "hw/isa/isa.h"
49 #include "hw/boards.h"
50 #include "hw/char/serial.h"
51 #include "hw/timer/mc146818rtc.h"
52
53 #include <libfdt.h>
54
55 #define FDT_MAX_SIZE (1 * MiB)
56
57 #define FW_FILE_NAME "skiboot.lid"
58 #define FW_LOAD_ADDR 0x0
59 #define FW_MAX_SIZE (4 * MiB)
60
61 #define KERNEL_LOAD_ADDR 0x20000000
62 #define KERNEL_MAX_SIZE (256 * MiB)
63 #define INITRD_LOAD_ADDR 0x60000000
64 #define INITRD_MAX_SIZE (256 * MiB)
65
66 static const char *pnv_chip_core_typename(const PnvChip *o)
67 {
68 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
69 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
70 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
71 const char *core_type = object_class_get_name(object_class_by_name(s));
72 g_free(s);
73 return core_type;
74 }
75
76 /*
77 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
78 * 4 * 4 sockets * 12 cores * 8 threads = 1536
79 * Let's make it 2^11
80 */
81 #define MAX_CPUS 2048
82
83 /*
84 * Memory nodes are created by hostboot, one for each range of memory
85 * that has a different "affinity". In practice, it means one range
86 * per chip.
87 */
88 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
89 {
90 char *mem_name;
91 uint64_t mem_reg_property[2];
92 int off;
93
94 mem_reg_property[0] = cpu_to_be64(start);
95 mem_reg_property[1] = cpu_to_be64(size);
96
97 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
98 off = fdt_add_subnode(fdt, 0, mem_name);
99 g_free(mem_name);
100
101 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
102 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
103 sizeof(mem_reg_property))));
104 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
105 }
106
107 static int get_cpus_node(void *fdt)
108 {
109 int cpus_offset = fdt_path_offset(fdt, "/cpus");
110
111 if (cpus_offset < 0) {
112 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
113 if (cpus_offset) {
114 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
115 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
116 }
117 }
118 _FDT(cpus_offset);
119 return cpus_offset;
120 }
121
122 /*
123 * The PowerNV cores (and threads) need to use real HW ids and not an
124 * incremental index like it has been done on other platforms. This HW
125 * id is stored in the CPU PIR, it is used to create cpu nodes in the
126 * device tree, used in XSCOM to address cores and in interrupt
127 * servers.
128 */
129 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
130 {
131 PowerPCCPU *cpu = pc->threads[0];
132 CPUState *cs = CPU(cpu);
133 DeviceClass *dc = DEVICE_GET_CLASS(cs);
134 int smt_threads = CPU_CORE(pc)->nr_threads;
135 CPUPPCState *env = &cpu->env;
136 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
137 uint32_t servers_prop[smt_threads];
138 int i;
139 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
140 0xffffffff, 0xffffffff};
141 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
142 uint32_t cpufreq = 1000000000;
143 uint32_t page_sizes_prop[64];
144 size_t page_sizes_prop_size;
145 const uint8_t pa_features[] = { 24, 0,
146 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
147 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
148 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
149 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
150 int offset;
151 char *nodename;
152 int cpus_offset = get_cpus_node(fdt);
153
154 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
155 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
156 _FDT(offset);
157 g_free(nodename);
158
159 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
160
161 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
162 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
163 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
164
165 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
166 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
167 env->dcache_line_size)));
168 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
169 env->dcache_line_size)));
170 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
171 env->icache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
173 env->icache_line_size)));
174
175 if (pcc->l1_dcache_size) {
176 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
177 pcc->l1_dcache_size)));
178 } else {
179 warn_report("Unknown L1 dcache size for cpu");
180 }
181 if (pcc->l1_icache_size) {
182 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
183 pcc->l1_icache_size)));
184 } else {
185 warn_report("Unknown L1 icache size for cpu");
186 }
187
188 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
189 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
190 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
191 cpu->hash64_opts->slb_size)));
192 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
193 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
194
195 if (env->spr_cb[SPR_PURR].oea_read) {
196 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
197 }
198
199 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
200 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
201 segs, sizeof(segs))));
202 }
203
204 /*
205 * Advertise VMX/VSX (vector extensions) if available
206 * 0 / no property == no vector extensions
207 * 1 == VMX / Altivec available
208 * 2 == VSX available
209 */
210 if (env->insns_flags & PPC_ALTIVEC) {
211 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
212
213 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
214 }
215
216 /*
217 * Advertise DFP (Decimal Floating Point) if available
218 * 0 / no property == no DFP
219 * 1 == DFP available
220 */
221 if (env->insns_flags2 & PPC2_DFP) {
222 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
223 }
224
225 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
226 sizeof(page_sizes_prop));
227 if (page_sizes_prop_size) {
228 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
229 page_sizes_prop, page_sizes_prop_size)));
230 }
231
232 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
233 pa_features, sizeof(pa_features))));
234
235 /* Build interrupt servers properties */
236 for (i = 0; i < smt_threads; i++) {
237 servers_prop[i] = cpu_to_be32(pc->pir + i);
238 }
239 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
240 servers_prop, sizeof(servers_prop))));
241 }
242
243 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
244 uint32_t nr_threads)
245 {
246 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
247 char *name;
248 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
249 uint32_t irange[2], i, rsize;
250 uint64_t *reg;
251 int offset;
252
253 irange[0] = cpu_to_be32(pir);
254 irange[1] = cpu_to_be32(nr_threads);
255
256 rsize = sizeof(uint64_t) * 2 * nr_threads;
257 reg = g_malloc(rsize);
258 for (i = 0; i < nr_threads; i++) {
259 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
260 reg[i * 2 + 1] = cpu_to_be64(0x1000);
261 }
262
263 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
264 offset = fdt_add_subnode(fdt, 0, name);
265 _FDT(offset);
266 g_free(name);
267
268 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
269 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
270 _FDT((fdt_setprop_string(fdt, offset, "device_type",
271 "PowerPC-External-Interrupt-Presentation")));
272 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
273 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
274 irange, sizeof(irange))));
275 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
276 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
277 g_free(reg);
278 }
279
280 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
281 {
282 const char *typename = pnv_chip_core_typename(chip);
283 size_t typesize = object_type_get_instance_size(typename);
284 int i;
285
286 pnv_dt_xscom(chip, fdt, 0);
287
288 for (i = 0; i < chip->nr_cores; i++) {
289 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
290
291 pnv_dt_core(chip, pnv_core, fdt);
292
293 /* Interrupt Control Presenters (ICP). One per core. */
294 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
295 }
296
297 if (chip->ram_size) {
298 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
299 }
300 }
301
302 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
303 {
304 const char *typename = pnv_chip_core_typename(chip);
305 size_t typesize = object_type_get_instance_size(typename);
306 int i;
307
308 pnv_dt_xscom(chip, fdt, 0);
309
310 for (i = 0; i < chip->nr_cores; i++) {
311 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
312
313 pnv_dt_core(chip, pnv_core, fdt);
314 }
315
316 if (chip->ram_size) {
317 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
318 }
319
320 pnv_dt_lpc(chip, fdt, 0);
321 }
322
323 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
324 {
325 uint32_t io_base = d->ioport_id;
326 uint32_t io_regs[] = {
327 cpu_to_be32(1),
328 cpu_to_be32(io_base),
329 cpu_to_be32(2)
330 };
331 char *name;
332 int node;
333
334 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
335 node = fdt_add_subnode(fdt, lpc_off, name);
336 _FDT(node);
337 g_free(name);
338
339 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
340 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
341 }
342
343 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
344 {
345 const char compatible[] = "ns16550\0pnpPNP,501";
346 uint32_t io_base = d->ioport_id;
347 uint32_t io_regs[] = {
348 cpu_to_be32(1),
349 cpu_to_be32(io_base),
350 cpu_to_be32(8)
351 };
352 char *name;
353 int node;
354
355 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
356 node = fdt_add_subnode(fdt, lpc_off, name);
357 _FDT(node);
358 g_free(name);
359
360 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
361 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
362 sizeof(compatible))));
363
364 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
365 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
366 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
367 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
368 fdt_get_phandle(fdt, lpc_off))));
369
370 /* This is needed by Linux */
371 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
372 }
373
374 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
375 {
376 const char compatible[] = "bt\0ipmi-bt";
377 uint32_t io_base;
378 uint32_t io_regs[] = {
379 cpu_to_be32(1),
380 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
381 cpu_to_be32(3)
382 };
383 uint32_t irq;
384 char *name;
385 int node;
386
387 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
388 io_regs[1] = cpu_to_be32(io_base);
389
390 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
391
392 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
393 node = fdt_add_subnode(fdt, lpc_off, name);
394 _FDT(node);
395 g_free(name);
396
397 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
398 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
399 sizeof(compatible))));
400
401 /* Mark it as reserved to avoid Linux trying to claim it */
402 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
403 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
404 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
405 fdt_get_phandle(fdt, lpc_off))));
406 }
407
408 typedef struct ForeachPopulateArgs {
409 void *fdt;
410 int offset;
411 } ForeachPopulateArgs;
412
413 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
414 {
415 ForeachPopulateArgs *args = opaque;
416 ISADevice *d = ISA_DEVICE(dev);
417
418 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
419 pnv_dt_rtc(d, args->fdt, args->offset);
420 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
421 pnv_dt_serial(d, args->fdt, args->offset);
422 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
423 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
424 } else {
425 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
426 d->ioport_id);
427 }
428
429 return 0;
430 }
431
432 /*
433 * The default LPC bus of a multichip system is on chip 0. It's
434 * recognized by the firmware (skiboot) using a "primary" property.
435 */
436 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
437 {
438 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
439 ForeachPopulateArgs args = {
440 .fdt = fdt,
441 .offset = isa_offset,
442 };
443 uint32_t phandle;
444
445 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
446
447 phandle = qemu_fdt_alloc_phandle(fdt);
448 assert(phandle > 0);
449 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
450
451 /*
452 * ISA devices are not necessarily parented to the ISA bus so we
453 * can not use object_child_foreach()
454 */
455 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
456 &args);
457 }
458
459 static void pnv_dt_power_mgt(void *fdt)
460 {
461 int off;
462
463 off = fdt_add_subnode(fdt, 0, "ibm,opal");
464 off = fdt_add_subnode(fdt, off, "power-mgt");
465
466 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
467 }
468
469 static void *pnv_dt_create(MachineState *machine)
470 {
471 const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
472 const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
473 PnvMachineState *pnv = PNV_MACHINE(machine);
474 void *fdt;
475 char *buf;
476 int off;
477 int i;
478
479 fdt = g_malloc0(FDT_MAX_SIZE);
480 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
481
482 /* Root node */
483 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
484 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
485 _FDT((fdt_setprop_string(fdt, 0, "model",
486 "IBM PowerNV (emulated by qemu)")));
487 if (pnv_is_power9(pnv)) {
488 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
489 sizeof(plat_compat9))));
490 } else {
491 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
492 sizeof(plat_compat8))));
493 }
494
495
496 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
497 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
498 if (qemu_uuid_set) {
499 _FDT((fdt_property_string(fdt, "system-id", buf)));
500 }
501 g_free(buf);
502
503 off = fdt_add_subnode(fdt, 0, "chosen");
504 if (machine->kernel_cmdline) {
505 _FDT((fdt_setprop_string(fdt, off, "bootargs",
506 machine->kernel_cmdline)));
507 }
508
509 if (pnv->initrd_size) {
510 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
511 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
512
513 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
514 &start_prop, sizeof(start_prop))));
515 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
516 &end_prop, sizeof(end_prop))));
517 }
518
519 /* Populate device tree for each chip */
520 for (i = 0; i < pnv->num_chips; i++) {
521 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
522 }
523
524 /* Populate ISA devices on chip 0 */
525 pnv_dt_isa(pnv, fdt);
526
527 if (pnv->bmc) {
528 pnv_dt_bmc_sensors(pnv->bmc, fdt);
529 }
530
531 /* Create an extra node for power management on Power9 */
532 if (pnv_is_power9(pnv)) {
533 pnv_dt_power_mgt(fdt);
534 }
535
536 return fdt;
537 }
538
539 static void pnv_powerdown_notify(Notifier *n, void *opaque)
540 {
541 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
542
543 if (pnv->bmc) {
544 pnv_bmc_powerdown(pnv->bmc);
545 }
546 }
547
548 static void pnv_reset(MachineState *machine)
549 {
550 PnvMachineState *pnv = PNV_MACHINE(machine);
551 void *fdt;
552 Object *obj;
553
554 qemu_devices_reset();
555
556 /*
557 * OpenPOWER systems have a BMC, which can be defined on the
558 * command line with:
559 *
560 * -device ipmi-bmc-sim,id=bmc0
561 *
562 * This is the internal simulator but it could also be an external
563 * BMC.
564 */
565 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
566 if (obj) {
567 pnv->bmc = IPMI_BMC(obj);
568 }
569
570 fdt = pnv_dt_create(machine);
571
572 /* Pack resulting tree */
573 _FDT((fdt_pack(fdt)));
574
575 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
576 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
577 }
578
579 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
580 {
581 Pnv8Chip *chip8 = PNV8_CHIP(chip);
582 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
583 }
584
585 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
586 {
587 Pnv8Chip *chip8 = PNV8_CHIP(chip);
588 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
589 }
590
591 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
592 {
593 Pnv9Chip *chip9 = PNV9_CHIP(chip);
594 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
595 }
596
597 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
598 {
599 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
600 }
601
602 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
603 {
604 Pnv8Chip *chip8 = PNV8_CHIP(chip);
605
606 ics_pic_print_info(&chip8->psi.ics, mon);
607 }
608
609 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
610 {
611 Pnv9Chip *chip9 = PNV9_CHIP(chip);
612
613 pnv_xive_pic_print_info(&chip9->xive, mon);
614 pnv_psi_pic_print_info(&chip9->psi, mon);
615 }
616
617 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
618 {
619 PowerPCCPUClass *ppc_default =
620 POWERPC_CPU_CLASS(object_class_by_name(default_type));
621 PowerPCCPUClass *ppc =
622 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
623
624 return ppc_default->pvr_match(ppc_default, ppc->pvr);
625 }
626
627 static void pnv_init(MachineState *machine)
628 {
629 PnvMachineState *pnv = PNV_MACHINE(machine);
630 MachineClass *mc = MACHINE_GET_CLASS(machine);
631 MemoryRegion *ram;
632 char *fw_filename;
633 long fw_size;
634 int i;
635 char *chip_typename;
636
637 /* allocate RAM */
638 if (machine->ram_size < (1 * GiB)) {
639 warn_report("skiboot may not work with < 1GB of RAM");
640 }
641
642 ram = g_new(MemoryRegion, 1);
643 memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
644 machine->ram_size);
645 memory_region_add_subregion(get_system_memory(), 0, ram);
646
647 /* load skiboot firmware */
648 if (bios_name == NULL) {
649 bios_name = FW_FILE_NAME;
650 }
651
652 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
653 if (!fw_filename) {
654 error_report("Could not find OPAL firmware '%s'", bios_name);
655 exit(1);
656 }
657
658 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
659 if (fw_size < 0) {
660 error_report("Could not load OPAL firmware '%s'", fw_filename);
661 exit(1);
662 }
663 g_free(fw_filename);
664
665 /* load kernel */
666 if (machine->kernel_filename) {
667 long kernel_size;
668
669 kernel_size = load_image_targphys(machine->kernel_filename,
670 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
671 if (kernel_size < 0) {
672 error_report("Could not load kernel '%s'",
673 machine->kernel_filename);
674 exit(1);
675 }
676 }
677
678 /* load initrd */
679 if (machine->initrd_filename) {
680 pnv->initrd_base = INITRD_LOAD_ADDR;
681 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
682 pnv->initrd_base, INITRD_MAX_SIZE);
683 if (pnv->initrd_size < 0) {
684 error_report("Could not load initial ram disk '%s'",
685 machine->initrd_filename);
686 exit(1);
687 }
688 }
689
690 /*
691 * Check compatibility of the specified CPU with the machine
692 * default.
693 */
694 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
695 error_report("invalid CPU model '%s' for %s machine",
696 machine->cpu_type, mc->name);
697 exit(1);
698 }
699
700 /* Create the processor chips */
701 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
702 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
703 i, machine->cpu_type);
704 if (!object_class_by_name(chip_typename)) {
705 error_report("invalid chip model '%.*s' for %s machine",
706 i, machine->cpu_type, mc->name);
707 exit(1);
708 }
709
710 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
711 for (i = 0; i < pnv->num_chips; i++) {
712 char chip_name[32];
713 Object *chip = object_new(chip_typename);
714
715 pnv->chips[i] = PNV_CHIP(chip);
716
717 /*
718 * TODO: put all the memory in one node on chip 0 until we find a
719 * way to specify different ranges for each chip
720 */
721 if (i == 0) {
722 object_property_set_int(chip, machine->ram_size, "ram-size",
723 &error_fatal);
724 }
725
726 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
727 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
728 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
729 &error_fatal);
730 object_property_set_int(chip, machine->smp.cores,
731 "nr-cores", &error_fatal);
732 object_property_set_bool(chip, true, "realized", &error_fatal);
733 }
734 g_free(chip_typename);
735
736 /* Instantiate ISA bus on chip 0 */
737 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
738
739 /* Create serial port */
740 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
741
742 /* Create an RTC ISA device too */
743 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
744
745 /*
746 * OpenPOWER systems use a IPMI SEL Event message to notify the
747 * host to powerdown
748 */
749 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
750 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
751 }
752
753 /*
754 * 0:21 Reserved - Read as zeros
755 * 22:24 Chip ID
756 * 25:28 Core number
757 * 29:31 Thread ID
758 */
759 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
760 {
761 return (chip->chip_id << 7) | (core_id << 3);
762 }
763
764 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
765 Error **errp)
766 {
767 Error *local_err = NULL;
768 Object *obj;
769 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
770
771 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
772 &local_err);
773 if (local_err) {
774 error_propagate(errp, local_err);
775 return;
776 }
777
778 pnv_cpu->intc = obj;
779 }
780
781 /*
782 * 0:48 Reserved - Read as zeroes
783 * 49:52 Node ID
784 * 53:55 Chip ID
785 * 56 Reserved - Read as zero
786 * 57:61 Core number
787 * 62:63 Thread ID
788 *
789 * We only care about the lower bits. uint32_t is fine for the moment.
790 */
791 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
792 {
793 return (chip->chip_id << 8) | (core_id << 2);
794 }
795
796 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
797 Error **errp)
798 {
799 Pnv9Chip *chip9 = PNV9_CHIP(chip);
800 Error *local_err = NULL;
801 Object *obj;
802 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
803
804 /*
805 * The core creates its interrupt presenter but the XIVE interrupt
806 * controller object is initialized afterwards. Hopefully, it's
807 * only used at runtime.
808 */
809 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
810 if (local_err) {
811 error_propagate(errp, local_err);
812 return;
813 }
814
815 pnv_cpu->intc = obj;
816 }
817
818 /*
819 * Allowed core identifiers on a POWER8 Processor Chip :
820 *
821 * <EX0 reserved>
822 * EX1 - Venice only
823 * EX2 - Venice only
824 * EX3 - Venice only
825 * EX4
826 * EX5
827 * EX6
828 * <EX7,8 reserved> <reserved>
829 * EX9 - Venice only
830 * EX10 - Venice only
831 * EX11 - Venice only
832 * EX12
833 * EX13
834 * EX14
835 * <EX15 reserved>
836 */
837 #define POWER8E_CORE_MASK (0x7070ull)
838 #define POWER8_CORE_MASK (0x7e7eull)
839
840 /*
841 * POWER9 has 24 cores, ids starting at 0x0
842 */
843 #define POWER9_CORE_MASK (0xffffffffffffffull)
844
845 static void pnv_chip_power8_instance_init(Object *obj)
846 {
847 Pnv8Chip *chip8 = PNV8_CHIP(obj);
848
849 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
850 TYPE_PNV8_PSI, &error_abort, NULL);
851 object_property_add_const_link(OBJECT(&chip8->psi), "xics",
852 OBJECT(qdev_get_machine()), &error_abort);
853
854 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
855 TYPE_PNV8_LPC, &error_abort, NULL);
856 object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
857 OBJECT(&chip8->psi), &error_abort);
858
859 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
860 TYPE_PNV8_OCC, &error_abort, NULL);
861 object_property_add_const_link(OBJECT(&chip8->occ), "psi",
862 OBJECT(&chip8->psi), &error_abort);
863 }
864
865 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
866 {
867 PnvChip *chip = PNV_CHIP(chip8);
868 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
869 const char *typename = pnv_chip_core_typename(chip);
870 size_t typesize = object_type_get_instance_size(typename);
871 int i, j;
872 char *name;
873 XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
874
875 name = g_strdup_printf("icp-%x", chip->chip_id);
876 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
877 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
878 g_free(name);
879
880 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
881
882 /* Map the ICP registers for each thread */
883 for (i = 0; i < chip->nr_cores; i++) {
884 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
885 int core_hwid = CPU_CORE(pnv_core)->core_id;
886
887 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
888 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
889 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
890
891 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
892 &icp->mmio);
893 }
894 }
895 }
896
897 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
898 {
899 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
900 PnvChip *chip = PNV_CHIP(dev);
901 Pnv8Chip *chip8 = PNV8_CHIP(dev);
902 Pnv8Psi *psi8 = &chip8->psi;
903 Error *local_err = NULL;
904
905 /* XSCOM bridge is first */
906 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
907 if (local_err) {
908 error_propagate(errp, local_err);
909 return;
910 }
911 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
912
913 pcc->parent_realize(dev, &local_err);
914 if (local_err) {
915 error_propagate(errp, local_err);
916 return;
917 }
918
919 /* Processor Service Interface (PSI) Host Bridge */
920 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
921 "bar", &error_fatal);
922 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
923 if (local_err) {
924 error_propagate(errp, local_err);
925 return;
926 }
927 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
928 &PNV_PSI(psi8)->xscom_regs);
929
930 /* Create LPC controller */
931 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
932 &error_fatal);
933 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
934
935 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
936 (uint64_t) PNV_XSCOM_BASE(chip),
937 PNV_XSCOM_LPC_BASE);
938
939 /*
940 * Interrupt Management Area. This is the memory region holding
941 * all the Interrupt Control Presenter (ICP) registers
942 */
943 pnv_chip_icp_realize(chip8, &local_err);
944 if (local_err) {
945 error_propagate(errp, local_err);
946 return;
947 }
948
949 /* Create the simplified OCC model */
950 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
951 if (local_err) {
952 error_propagate(errp, local_err);
953 return;
954 }
955 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
956
957 /* OCC SRAM model */
958 memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
959 &chip8->occ.sram_regs);
960 }
961
962 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
963 {
964 DeviceClass *dc = DEVICE_CLASS(klass);
965 PnvChipClass *k = PNV_CHIP_CLASS(klass);
966
967 k->chip_type = PNV_CHIP_POWER8E;
968 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
969 k->cores_mask = POWER8E_CORE_MASK;
970 k->core_pir = pnv_chip_core_pir_p8;
971 k->intc_create = pnv_chip_power8_intc_create;
972 k->isa_create = pnv_chip_power8_isa_create;
973 k->dt_populate = pnv_chip_power8_dt_populate;
974 k->pic_print_info = pnv_chip_power8_pic_print_info;
975 dc->desc = "PowerNV Chip POWER8E";
976
977 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
978 &k->parent_realize);
979 }
980
981 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
982 {
983 DeviceClass *dc = DEVICE_CLASS(klass);
984 PnvChipClass *k = PNV_CHIP_CLASS(klass);
985
986 k->chip_type = PNV_CHIP_POWER8;
987 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
988 k->cores_mask = POWER8_CORE_MASK;
989 k->core_pir = pnv_chip_core_pir_p8;
990 k->intc_create = pnv_chip_power8_intc_create;
991 k->isa_create = pnv_chip_power8_isa_create;
992 k->dt_populate = pnv_chip_power8_dt_populate;
993 k->pic_print_info = pnv_chip_power8_pic_print_info;
994 dc->desc = "PowerNV Chip POWER8";
995
996 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
997 &k->parent_realize);
998 }
999
1000 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1001 {
1002 DeviceClass *dc = DEVICE_CLASS(klass);
1003 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1004
1005 k->chip_type = PNV_CHIP_POWER8NVL;
1006 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1007 k->cores_mask = POWER8_CORE_MASK;
1008 k->core_pir = pnv_chip_core_pir_p8;
1009 k->intc_create = pnv_chip_power8_intc_create;
1010 k->isa_create = pnv_chip_power8nvl_isa_create;
1011 k->dt_populate = pnv_chip_power8_dt_populate;
1012 k->pic_print_info = pnv_chip_power8_pic_print_info;
1013 dc->desc = "PowerNV Chip POWER8NVL";
1014
1015 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1016 &k->parent_realize);
1017 }
1018
1019 static void pnv_chip_power9_instance_init(Object *obj)
1020 {
1021 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1022
1023 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1024 TYPE_PNV_XIVE, &error_abort, NULL);
1025 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
1026 &error_abort);
1027
1028 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1029 TYPE_PNV9_PSI, &error_abort, NULL);
1030 object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
1031 &error_abort);
1032
1033 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1034 TYPE_PNV9_LPC, &error_abort, NULL);
1035 object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
1036 OBJECT(&chip9->psi), &error_abort);
1037
1038 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1039 TYPE_PNV9_OCC, &error_abort, NULL);
1040 object_property_add_const_link(OBJECT(&chip9->occ), "psi",
1041 OBJECT(&chip9->psi), &error_abort);
1042 }
1043
1044 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1045 {
1046 PnvChip *chip = PNV_CHIP(chip9);
1047 const char *typename = pnv_chip_core_typename(chip);
1048 size_t typesize = object_type_get_instance_size(typename);
1049 int i;
1050
1051 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1052 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1053
1054 for (i = 0; i < chip9->nr_quads; i++) {
1055 char eq_name[32];
1056 PnvQuad *eq = &chip9->quads[i];
1057 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1058 int core_id = CPU_CORE(pnv_core)->core_id;
1059
1060 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1061 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1062 TYPE_PNV_QUAD, &error_fatal, NULL);
1063
1064 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1065 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1066
1067 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1068 &eq->xscom_regs);
1069 }
1070 }
1071
1072 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1073 {
1074 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1075 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1076 PnvChip *chip = PNV_CHIP(dev);
1077 Pnv9Psi *psi9 = &chip9->psi;
1078 Error *local_err = NULL;
1079
1080 /* XSCOM bridge is first */
1081 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1082 if (local_err) {
1083 error_propagate(errp, local_err);
1084 return;
1085 }
1086 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1087
1088 pcc->parent_realize(dev, &local_err);
1089 if (local_err) {
1090 error_propagate(errp, local_err);
1091 return;
1092 }
1093
1094 pnv_chip_quad_realize(chip9, &local_err);
1095 if (local_err) {
1096 error_propagate(errp, local_err);
1097 return;
1098 }
1099
1100 /* XIVE interrupt controller (POWER9) */
1101 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1102 "ic-bar", &error_fatal);
1103 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1104 "vc-bar", &error_fatal);
1105 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1106 "pc-bar", &error_fatal);
1107 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1108 "tm-bar", &error_fatal);
1109 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1110 &local_err);
1111 if (local_err) {
1112 error_propagate(errp, local_err);
1113 return;
1114 }
1115 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1116 &chip9->xive.xscom_regs);
1117
1118 /* Processor Service Interface (PSI) Host Bridge */
1119 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1120 "bar", &error_fatal);
1121 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1122 if (local_err) {
1123 error_propagate(errp, local_err);
1124 return;
1125 }
1126 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1127 &PNV_PSI(psi9)->xscom_regs);
1128
1129 /* LPC */
1130 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1131 if (local_err) {
1132 error_propagate(errp, local_err);
1133 return;
1134 }
1135 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1136 &chip9->lpc.xscom_regs);
1137
1138 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1139 (uint64_t) PNV9_LPCM_BASE(chip));
1140
1141 /* Create the simplified OCC model */
1142 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1143 if (local_err) {
1144 error_propagate(errp, local_err);
1145 return;
1146 }
1147 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1148
1149 /* OCC SRAM model */
1150 memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1151 &chip9->occ.sram_regs);
1152 }
1153
1154 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1155 {
1156 DeviceClass *dc = DEVICE_CLASS(klass);
1157 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1158
1159 k->chip_type = PNV_CHIP_POWER9;
1160 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1161 k->cores_mask = POWER9_CORE_MASK;
1162 k->core_pir = pnv_chip_core_pir_p9;
1163 k->intc_create = pnv_chip_power9_intc_create;
1164 k->isa_create = pnv_chip_power9_isa_create;
1165 k->dt_populate = pnv_chip_power9_dt_populate;
1166 k->pic_print_info = pnv_chip_power9_pic_print_info;
1167 dc->desc = "PowerNV Chip POWER9";
1168
1169 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1170 &k->parent_realize);
1171 }
1172
1173 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1174 {
1175 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1176 int cores_max;
1177
1178 /*
1179 * No custom mask for this chip, let's use the default one from *
1180 * the chip class
1181 */
1182 if (!chip->cores_mask) {
1183 chip->cores_mask = pcc->cores_mask;
1184 }
1185
1186 /* filter alien core ids ! some are reserved */
1187 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1188 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1189 chip->cores_mask);
1190 return;
1191 }
1192 chip->cores_mask &= pcc->cores_mask;
1193
1194 /* now that we have a sane layout, let check the number of cores */
1195 cores_max = ctpop64(chip->cores_mask);
1196 if (chip->nr_cores > cores_max) {
1197 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1198 cores_max);
1199 return;
1200 }
1201 }
1202
1203 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1204 {
1205 MachineState *ms = MACHINE(qdev_get_machine());
1206 Error *error = NULL;
1207 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1208 const char *typename = pnv_chip_core_typename(chip);
1209 size_t typesize = object_type_get_instance_size(typename);
1210 int i, core_hwid;
1211
1212 if (!object_class_by_name(typename)) {
1213 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1214 return;
1215 }
1216
1217 /* Cores */
1218 pnv_chip_core_sanitize(chip, &error);
1219 if (error) {
1220 error_propagate(errp, error);
1221 return;
1222 }
1223
1224 chip->cores = g_malloc0(typesize * chip->nr_cores);
1225
1226 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1227 && (i < chip->nr_cores); core_hwid++) {
1228 char core_name[32];
1229 void *pnv_core = chip->cores + i * typesize;
1230 uint64_t xscom_core_base;
1231
1232 if (!(chip->cores_mask & (1ull << core_hwid))) {
1233 continue;
1234 }
1235
1236 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1237 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1238 typename, &error_fatal, NULL);
1239 object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1240 &error_fatal);
1241 object_property_set_int(OBJECT(pnv_core), core_hwid,
1242 CPU_CORE_PROP_CORE_ID, &error_fatal);
1243 object_property_set_int(OBJECT(pnv_core),
1244 pcc->core_pir(chip, core_hwid),
1245 "pir", &error_fatal);
1246 object_property_add_const_link(OBJECT(pnv_core), "chip",
1247 OBJECT(chip), &error_fatal);
1248 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1249 &error_fatal);
1250
1251 /* Each core has an XSCOM MMIO region */
1252 if (!pnv_chip_is_power9(chip)) {
1253 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1254 } else {
1255 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1256 }
1257
1258 pnv_xscom_add_subregion(chip, xscom_core_base,
1259 &PNV_CORE(pnv_core)->xscom_regs);
1260 i++;
1261 }
1262 }
1263
1264 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1265 {
1266 PnvChip *chip = PNV_CHIP(dev);
1267 Error *error = NULL;
1268
1269 /* Cores */
1270 pnv_chip_core_realize(chip, &error);
1271 if (error) {
1272 error_propagate(errp, error);
1273 return;
1274 }
1275 }
1276
1277 static Property pnv_chip_properties[] = {
1278 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1279 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1280 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1281 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1282 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1283 DEFINE_PROP_END_OF_LIST(),
1284 };
1285
1286 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1287 {
1288 DeviceClass *dc = DEVICE_CLASS(klass);
1289
1290 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1291 dc->realize = pnv_chip_realize;
1292 dc->props = pnv_chip_properties;
1293 dc->desc = "PowerNV Chip";
1294 }
1295
1296 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1297 {
1298 PnvMachineState *pnv = PNV_MACHINE(xi);
1299 int i;
1300
1301 for (i = 0; i < pnv->num_chips; i++) {
1302 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1303
1304 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1305 return &chip8->psi.ics;
1306 }
1307 }
1308 return NULL;
1309 }
1310
1311 static void pnv_ics_resend(XICSFabric *xi)
1312 {
1313 PnvMachineState *pnv = PNV_MACHINE(xi);
1314 int i;
1315
1316 for (i = 0; i < pnv->num_chips; i++) {
1317 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1318 ics_resend(&chip8->psi.ics);
1319 }
1320 }
1321
1322 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1323 {
1324 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1325
1326 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1327 }
1328
1329 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1330 Monitor *mon)
1331 {
1332 PnvMachineState *pnv = PNV_MACHINE(obj);
1333 int i;
1334 CPUState *cs;
1335
1336 CPU_FOREACH(cs) {
1337 PowerPCCPU *cpu = POWERPC_CPU(cs);
1338
1339 if (pnv_chip_is_power9(pnv->chips[0])) {
1340 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1341 } else {
1342 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1343 }
1344 }
1345
1346 for (i = 0; i < pnv->num_chips; i++) {
1347 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1348 }
1349 }
1350
1351 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1352 void *opaque, Error **errp)
1353 {
1354 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1355 }
1356
1357 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1358 void *opaque, Error **errp)
1359 {
1360 PnvMachineState *pnv = PNV_MACHINE(obj);
1361 uint32_t num_chips;
1362 Error *local_err = NULL;
1363
1364 visit_type_uint32(v, name, &num_chips, &local_err);
1365 if (local_err) {
1366 error_propagate(errp, local_err);
1367 return;
1368 }
1369
1370 /*
1371 * TODO: should we decide on how many chips we can create based
1372 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1373 */
1374 if (!is_power_of_2(num_chips) || num_chips > 4) {
1375 error_setg(errp, "invalid number of chips: '%d'", num_chips);
1376 return;
1377 }
1378
1379 pnv->num_chips = num_chips;
1380 }
1381
1382 static void pnv_machine_instance_init(Object *obj)
1383 {
1384 PnvMachineState *pnv = PNV_MACHINE(obj);
1385 pnv->num_chips = 1;
1386 }
1387
1388 static void pnv_machine_class_props_init(ObjectClass *oc)
1389 {
1390 object_class_property_add(oc, "num-chips", "uint32",
1391 pnv_get_num_chips, pnv_set_num_chips,
1392 NULL, NULL, NULL);
1393 object_class_property_set_description(oc, "num-chips",
1394 "Specifies the number of processor chips",
1395 NULL);
1396 }
1397
1398 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1399 {
1400 MachineClass *mc = MACHINE_CLASS(oc);
1401 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1402
1403 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1404 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1405
1406 xic->icp_get = pnv_icp_get;
1407 xic->ics_get = pnv_ics_get;
1408 xic->ics_resend = pnv_ics_resend;
1409 }
1410
1411 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1412 {
1413 MachineClass *mc = MACHINE_CLASS(oc);
1414
1415 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1416 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1417
1418 mc->alias = "powernv";
1419 }
1420
1421 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1422 {
1423 MachineClass *mc = MACHINE_CLASS(oc);
1424 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1425
1426 mc->desc = "IBM PowerNV (Non-Virtualized)";
1427 mc->init = pnv_init;
1428 mc->reset = pnv_reset;
1429 mc->max_cpus = MAX_CPUS;
1430 /* Pnv provides a AHCI device for storage */
1431 mc->block_default_type = IF_IDE;
1432 mc->no_parallel = 1;
1433 mc->default_boot_order = NULL;
1434 /*
1435 * RAM defaults to less than 2048 for 32-bit hosts, and large
1436 * enough to fit the maximum initrd size at it's load address
1437 */
1438 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1439 ispc->print_info = pnv_pic_print_info;
1440
1441 pnv_machine_class_props_init(oc);
1442 }
1443
1444 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1445 { \
1446 .name = type, \
1447 .class_init = class_initfn, \
1448 .parent = TYPE_PNV8_CHIP, \
1449 }
1450
1451 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1452 { \
1453 .name = type, \
1454 .class_init = class_initfn, \
1455 .parent = TYPE_PNV9_CHIP, \
1456 }
1457
1458 #define DEFINE_PNV_MACHINE_TYPE(cpu, class_initfn) \
1459 { \
1460 .name = MACHINE_TYPE_NAME(cpu), \
1461 .parent = TYPE_PNV_MACHINE, \
1462 .instance_size = sizeof(PnvMachineState), \
1463 .instance_init = pnv_machine_instance_init, \
1464 .class_init = class_initfn, \
1465 .interfaces = (InterfaceInfo[]) { \
1466 { TYPE_XICS_FABRIC }, \
1467 { TYPE_INTERRUPT_STATS_PROVIDER }, \
1468 { }, \
1469 }, \
1470 }
1471
1472 static const TypeInfo types[] = {
1473 DEFINE_PNV_MACHINE_TYPE("powernv8", pnv_machine_power8_class_init),
1474 DEFINE_PNV_MACHINE_TYPE("powernv9", pnv_machine_power9_class_init),
1475 {
1476 .name = TYPE_PNV_MACHINE,
1477 .parent = TYPE_MACHINE,
1478 .abstract = true,
1479 .instance_size = sizeof(PnvMachineState),
1480 .instance_init = pnv_machine_instance_init,
1481 .class_init = pnv_machine_class_init,
1482 .interfaces = (InterfaceInfo[]) {
1483 { TYPE_XICS_FABRIC },
1484 { TYPE_INTERRUPT_STATS_PROVIDER },
1485 { },
1486 },
1487 },
1488 {
1489 .name = TYPE_PNV_CHIP,
1490 .parent = TYPE_SYS_BUS_DEVICE,
1491 .class_init = pnv_chip_class_init,
1492 .instance_size = sizeof(PnvChip),
1493 .class_size = sizeof(PnvChipClass),
1494 .abstract = true,
1495 },
1496
1497 /*
1498 * P9 chip and variants
1499 */
1500 {
1501 .name = TYPE_PNV9_CHIP,
1502 .parent = TYPE_PNV_CHIP,
1503 .instance_init = pnv_chip_power9_instance_init,
1504 .instance_size = sizeof(Pnv9Chip),
1505 },
1506 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1507
1508 /*
1509 * P8 chip and variants
1510 */
1511 {
1512 .name = TYPE_PNV8_CHIP,
1513 .parent = TYPE_PNV_CHIP,
1514 .instance_init = pnv_chip_power8_instance_init,
1515 .instance_size = sizeof(Pnv8Chip),
1516 },
1517 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1518 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1519 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1520 pnv_chip_power8nvl_class_init),
1521 };
1522
1523 DEFINE_TYPES(types)