]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
qemu-timer: do not include sysemu/cpus.h from util/qemu-timer.h
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/numa.h"
24 #include "sysemu/cpus.h"
25 #include "hw/hw.h"
26 #include "target/ppc/cpu.h"
27 #include "qemu/log.h"
28 #include "hw/ppc/fdt.h"
29 #include "hw/ppc/ppc.h"
30 #include "hw/ppc/pnv.h"
31 #include "hw/ppc/pnv_core.h"
32 #include "hw/loader.h"
33 #include "exec/address-spaces.h"
34 #include "qemu/cutils.h"
35 #include "qapi/visitor.h"
36
37 #include "hw/ppc/pnv_xscom.h"
38
39 #include "hw/isa/isa.h"
40 #include "hw/char/serial.h"
41 #include "hw/timer/mc146818rtc.h"
42
43 #include <libfdt.h>
44
45 #define FDT_MAX_SIZE 0x00100000
46
47 #define FW_FILE_NAME "skiboot.lid"
48 #define FW_LOAD_ADDR 0x0
49 #define FW_MAX_SIZE 0x00400000
50
51 #define KERNEL_LOAD_ADDR 0x20000000
52 #define INITRD_LOAD_ADDR 0x40000000
53
54 /*
55 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
56 * 4 * 4 sockets * 12 cores * 8 threads = 1536
57 * Let's make it 2^11
58 */
59 #define MAX_CPUS 2048
60
61 /*
62 * Memory nodes are created by hostboot, one for each range of memory
63 * that has a different "affinity". In practice, it means one range
64 * per chip.
65 */
66 static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start,
67 hwaddr size)
68 {
69 char *mem_name;
70 uint64_t mem_reg_property[2];
71 int off;
72
73 mem_reg_property[0] = cpu_to_be64(start);
74 mem_reg_property[1] = cpu_to_be64(size);
75
76 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
77 off = fdt_add_subnode(fdt, 0, mem_name);
78 g_free(mem_name);
79
80 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
81 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
82 sizeof(mem_reg_property))));
83 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
84 }
85
86 static int get_cpus_node(void *fdt)
87 {
88 int cpus_offset = fdt_path_offset(fdt, "/cpus");
89
90 if (cpus_offset < 0) {
91 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
92 "cpus");
93 if (cpus_offset) {
94 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
95 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
96 }
97 }
98 _FDT(cpus_offset);
99 return cpus_offset;
100 }
101
102 /*
103 * The PowerNV cores (and threads) need to use real HW ids and not an
104 * incremental index like it has been done on other platforms. This HW
105 * id is stored in the CPU PIR, it is used to create cpu nodes in the
106 * device tree, used in XSCOM to address cores and in interrupt
107 * servers.
108 */
109 static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt)
110 {
111 CPUState *cs = CPU(DEVICE(pc->threads));
112 DeviceClass *dc = DEVICE_GET_CLASS(cs);
113 PowerPCCPU *cpu = POWERPC_CPU(cs);
114 int smt_threads = CPU_CORE(pc)->nr_threads;
115 CPUPPCState *env = &cpu->env;
116 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
117 uint32_t servers_prop[smt_threads];
118 int i;
119 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
120 0xffffffff, 0xffffffff};
121 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
122 uint32_t cpufreq = 1000000000;
123 uint32_t page_sizes_prop[64];
124 size_t page_sizes_prop_size;
125 const uint8_t pa_features[] = { 24, 0,
126 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
127 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
128 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
129 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
130 int offset;
131 char *nodename;
132 int cpus_offset = get_cpus_node(fdt);
133
134 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
135 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
136 _FDT(offset);
137 g_free(nodename);
138
139 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
140
141 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
142 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
143 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
144
145 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
146 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
147 env->dcache_line_size)));
148 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
149 env->dcache_line_size)));
150 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
151 env->icache_line_size)));
152 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
153 env->icache_line_size)));
154
155 if (pcc->l1_dcache_size) {
156 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
157 pcc->l1_dcache_size)));
158 } else {
159 error_report("Warning: Unknown L1 dcache size for cpu");
160 }
161 if (pcc->l1_icache_size) {
162 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
163 pcc->l1_icache_size)));
164 } else {
165 error_report("Warning: Unknown L1 icache size for cpu");
166 }
167
168 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
169 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
170 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
171 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
172 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
173
174 if (env->spr_cb[SPR_PURR].oea_read) {
175 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
176 }
177
178 if (env->mmu_model & POWERPC_MMU_1TSEG) {
179 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
180 segs, sizeof(segs))));
181 }
182
183 /* Advertise VMX/VSX (vector extensions) if available
184 * 0 / no property == no vector extensions
185 * 1 == VMX / Altivec available
186 * 2 == VSX available */
187 if (env->insns_flags & PPC_ALTIVEC) {
188 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
189
190 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
191 }
192
193 /* Advertise DFP (Decimal Floating Point) if available
194 * 0 / no property == no DFP
195 * 1 == DFP available */
196 if (env->insns_flags2 & PPC2_DFP) {
197 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
198 }
199
200 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
201 sizeof(page_sizes_prop));
202 if (page_sizes_prop_size) {
203 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
204 page_sizes_prop, page_sizes_prop_size)));
205 }
206
207 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
208 pa_features, sizeof(pa_features))));
209
210 /* Build interrupt servers properties */
211 for (i = 0; i < smt_threads; i++) {
212 servers_prop[i] = cpu_to_be32(pc->pir + i);
213 }
214 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
215 servers_prop, sizeof(servers_prop))));
216 }
217
218 static void powernv_populate_chip(PnvChip *chip, void *fdt)
219 {
220 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
221 char *typename = pnv_core_typename(pcc->cpu_model);
222 size_t typesize = object_type_get_instance_size(typename);
223 int i;
224
225 pnv_xscom_populate(chip, fdt, 0);
226
227 for (i = 0; i < chip->nr_cores; i++) {
228 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
229
230 powernv_create_core_node(chip, pnv_core, fdt);
231 }
232
233 if (chip->ram_size) {
234 powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start,
235 chip->ram_size);
236 }
237 g_free(typename);
238 }
239
240 static void *powernv_create_fdt(MachineState *machine)
241 {
242 const char plat_compat[] = "qemu,powernv\0ibm,powernv";
243 PnvMachineState *pnv = POWERNV_MACHINE(machine);
244 void *fdt;
245 char *buf;
246 int off;
247 int i;
248
249 fdt = g_malloc0(FDT_MAX_SIZE);
250 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
251
252 /* Root node */
253 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
254 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
255 _FDT((fdt_setprop_string(fdt, 0, "model",
256 "IBM PowerNV (emulated by qemu)")));
257 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
258 sizeof(plat_compat))));
259
260 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
261 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
262 if (qemu_uuid_set) {
263 _FDT((fdt_property_string(fdt, "system-id", buf)));
264 }
265 g_free(buf);
266
267 off = fdt_add_subnode(fdt, 0, "chosen");
268 if (machine->kernel_cmdline) {
269 _FDT((fdt_setprop_string(fdt, off, "bootargs",
270 machine->kernel_cmdline)));
271 }
272
273 if (pnv->initrd_size) {
274 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
275 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
276
277 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
278 &start_prop, sizeof(start_prop))));
279 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
280 &end_prop, sizeof(end_prop))));
281 }
282
283 /* Populate device tree for each chip */
284 for (i = 0; i < pnv->num_chips; i++) {
285 powernv_populate_chip(pnv->chips[i], fdt);
286 }
287 return fdt;
288 }
289
290 static void ppc_powernv_reset(void)
291 {
292 MachineState *machine = MACHINE(qdev_get_machine());
293 void *fdt;
294
295 qemu_devices_reset();
296
297 fdt = powernv_create_fdt(machine);
298
299 /* Pack resulting tree */
300 _FDT((fdt_pack(fdt)));
301
302 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
303 }
304
305 /* If we don't use the built-in LPC interrupt deserializer, we need
306 * to provide a set of qirqs for the ISA bus or things will go bad.
307 *
308 * Most machines using pre-Naples chips (without said deserializer)
309 * have a CPLD that will collect the SerIRQ and shoot them as a
310 * single level interrupt to the P8 chip. So let's setup a hook
311 * for doing just that.
312 *
313 * Note: The actual interrupt input isn't emulated yet, this will
314 * come with the PSI bridge model.
315 */
316 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
317 {
318 /* We don't yet emulate the PSI bridge which provides the external
319 * interrupt, so just drop interrupts on the floor
320 */
321 }
322
323 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
324 {
325 /* XXX TODO */
326 }
327
328 static ISABus *pnv_isa_create(PnvChip *chip)
329 {
330 PnvLpcController *lpc = &chip->lpc;
331 ISABus *isa_bus;
332 qemu_irq *irqs;
333 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
334
335 /* let isa_bus_new() create its own bridge on SysBus otherwise
336 * devices speficied on the command line won't find the bus and
337 * will fail to create.
338 */
339 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
340 &error_fatal);
341
342 /* Not all variants have a working serial irq decoder. If not,
343 * handling of LPC interrupts becomes a platform issue (some
344 * platforms have a CPLD to do it).
345 */
346 if (pcc->chip_type == PNV_CHIP_POWER8NVL) {
347 irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler, chip, ISA_NUM_IRQS);
348 } else {
349 irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler_cpld, chip,
350 ISA_NUM_IRQS);
351 }
352
353 isa_bus_irqs(isa_bus, irqs);
354 return isa_bus;
355 }
356
357 static void ppc_powernv_init(MachineState *machine)
358 {
359 PnvMachineState *pnv = POWERNV_MACHINE(machine);
360 MemoryRegion *ram;
361 char *fw_filename;
362 long fw_size;
363 int i;
364 char *chip_typename;
365
366 /* allocate RAM */
367 if (machine->ram_size < (1 * G_BYTE)) {
368 error_report("Warning: skiboot may not work with < 1GB of RAM");
369 }
370
371 ram = g_new(MemoryRegion, 1);
372 memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram",
373 machine->ram_size);
374 memory_region_add_subregion(get_system_memory(), 0, ram);
375
376 /* load skiboot firmware */
377 if (bios_name == NULL) {
378 bios_name = FW_FILE_NAME;
379 }
380
381 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
382
383 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
384 if (fw_size < 0) {
385 error_report("Could not load OPAL '%s'", fw_filename);
386 exit(1);
387 }
388 g_free(fw_filename);
389
390 /* load kernel */
391 if (machine->kernel_filename) {
392 long kernel_size;
393
394 kernel_size = load_image_targphys(machine->kernel_filename,
395 KERNEL_LOAD_ADDR, 0x2000000);
396 if (kernel_size < 0) {
397 error_report("Could not load kernel '%s'",
398 machine->kernel_filename);
399 exit(1);
400 }
401 }
402
403 /* load initrd */
404 if (machine->initrd_filename) {
405 pnv->initrd_base = INITRD_LOAD_ADDR;
406 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
407 pnv->initrd_base, 0x10000000); /* 128MB max */
408 if (pnv->initrd_size < 0) {
409 error_report("Could not load initial ram disk '%s'",
410 machine->initrd_filename);
411 exit(1);
412 }
413 }
414
415 /* We need some cpu model to instantiate the PnvChip class */
416 if (machine->cpu_model == NULL) {
417 machine->cpu_model = "POWER8";
418 }
419
420 /* Create the processor chips */
421 chip_typename = g_strdup_printf(TYPE_PNV_CHIP "-%s", machine->cpu_model);
422 if (!object_class_by_name(chip_typename)) {
423 error_report("qemu: invalid CPU model '%s' for %s machine",
424 machine->cpu_model, MACHINE_GET_CLASS(machine)->name);
425 exit(1);
426 }
427
428 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
429 for (i = 0; i < pnv->num_chips; i++) {
430 char chip_name[32];
431 Object *chip = object_new(chip_typename);
432
433 pnv->chips[i] = PNV_CHIP(chip);
434
435 /* TODO: put all the memory in one node on chip 0 until we find a
436 * way to specify different ranges for each chip
437 */
438 if (i == 0) {
439 object_property_set_int(chip, machine->ram_size, "ram-size",
440 &error_fatal);
441 }
442
443 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
444 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
445 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
446 &error_fatal);
447 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
448 object_property_set_bool(chip, true, "realized", &error_fatal);
449 }
450 g_free(chip_typename);
451
452 /* Instantiate ISA bus on chip 0 */
453 pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
454
455 /* Create serial port */
456 serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
457
458 /* Create an RTC ISA device too */
459 rtc_init(pnv->isa_bus, 2000, NULL);
460 }
461
462 /*
463 * 0:21 Reserved - Read as zeros
464 * 22:24 Chip ID
465 * 25:28 Core number
466 * 29:31 Thread ID
467 */
468 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
469 {
470 return (chip->chip_id << 7) | (core_id << 3);
471 }
472
473 /*
474 * 0:48 Reserved - Read as zeroes
475 * 49:52 Node ID
476 * 53:55 Chip ID
477 * 56 Reserved - Read as zero
478 * 57:61 Core number
479 * 62:63 Thread ID
480 *
481 * We only care about the lower bits. uint32_t is fine for the moment.
482 */
483 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
484 {
485 return (chip->chip_id << 8) | (core_id << 2);
486 }
487
488 /* Allowed core identifiers on a POWER8 Processor Chip :
489 *
490 * <EX0 reserved>
491 * EX1 - Venice only
492 * EX2 - Venice only
493 * EX3 - Venice only
494 * EX4
495 * EX5
496 * EX6
497 * <EX7,8 reserved> <reserved>
498 * EX9 - Venice only
499 * EX10 - Venice only
500 * EX11 - Venice only
501 * EX12
502 * EX13
503 * EX14
504 * <EX15 reserved>
505 */
506 #define POWER8E_CORE_MASK (0x7070ull)
507 #define POWER8_CORE_MASK (0x7e7eull)
508
509 /*
510 * POWER9 has 24 cores, ids starting at 0x20
511 */
512 #define POWER9_CORE_MASK (0xffffff00000000ull)
513
514 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
515 {
516 DeviceClass *dc = DEVICE_CLASS(klass);
517 PnvChipClass *k = PNV_CHIP_CLASS(klass);
518
519 k->cpu_model = "POWER8E";
520 k->chip_type = PNV_CHIP_POWER8E;
521 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
522 k->cores_mask = POWER8E_CORE_MASK;
523 k->core_pir = pnv_chip_core_pir_p8;
524 k->xscom_base = 0x003fc0000000000ull;
525 k->xscom_core_base = 0x10000000ull;
526 dc->desc = "PowerNV Chip POWER8E";
527 }
528
529 static const TypeInfo pnv_chip_power8e_info = {
530 .name = TYPE_PNV_CHIP_POWER8E,
531 .parent = TYPE_PNV_CHIP,
532 .instance_size = sizeof(PnvChip),
533 .class_init = pnv_chip_power8e_class_init,
534 };
535
536 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
537 {
538 DeviceClass *dc = DEVICE_CLASS(klass);
539 PnvChipClass *k = PNV_CHIP_CLASS(klass);
540
541 k->cpu_model = "POWER8";
542 k->chip_type = PNV_CHIP_POWER8;
543 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
544 k->cores_mask = POWER8_CORE_MASK;
545 k->core_pir = pnv_chip_core_pir_p8;
546 k->xscom_base = 0x003fc0000000000ull;
547 k->xscom_core_base = 0x10000000ull;
548 dc->desc = "PowerNV Chip POWER8";
549 }
550
551 static const TypeInfo pnv_chip_power8_info = {
552 .name = TYPE_PNV_CHIP_POWER8,
553 .parent = TYPE_PNV_CHIP,
554 .instance_size = sizeof(PnvChip),
555 .class_init = pnv_chip_power8_class_init,
556 };
557
558 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
559 {
560 DeviceClass *dc = DEVICE_CLASS(klass);
561 PnvChipClass *k = PNV_CHIP_CLASS(klass);
562
563 k->cpu_model = "POWER8NVL";
564 k->chip_type = PNV_CHIP_POWER8NVL;
565 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
566 k->cores_mask = POWER8_CORE_MASK;
567 k->core_pir = pnv_chip_core_pir_p8;
568 k->xscom_base = 0x003fc0000000000ull;
569 k->xscom_core_base = 0x10000000ull;
570 dc->desc = "PowerNV Chip POWER8NVL";
571 }
572
573 static const TypeInfo pnv_chip_power8nvl_info = {
574 .name = TYPE_PNV_CHIP_POWER8NVL,
575 .parent = TYPE_PNV_CHIP,
576 .instance_size = sizeof(PnvChip),
577 .class_init = pnv_chip_power8nvl_class_init,
578 };
579
580 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
581 {
582 DeviceClass *dc = DEVICE_CLASS(klass);
583 PnvChipClass *k = PNV_CHIP_CLASS(klass);
584
585 k->cpu_model = "POWER9";
586 k->chip_type = PNV_CHIP_POWER9;
587 k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */
588 k->cores_mask = POWER9_CORE_MASK;
589 k->core_pir = pnv_chip_core_pir_p9;
590 k->xscom_base = 0x00603fc00000000ull;
591 k->xscom_core_base = 0x0ull;
592 dc->desc = "PowerNV Chip POWER9";
593 }
594
595 static const TypeInfo pnv_chip_power9_info = {
596 .name = TYPE_PNV_CHIP_POWER9,
597 .parent = TYPE_PNV_CHIP,
598 .instance_size = sizeof(PnvChip),
599 .class_init = pnv_chip_power9_class_init,
600 };
601
602 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
603 {
604 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
605 int cores_max;
606
607 /*
608 * No custom mask for this chip, let's use the default one from *
609 * the chip class
610 */
611 if (!chip->cores_mask) {
612 chip->cores_mask = pcc->cores_mask;
613 }
614
615 /* filter alien core ids ! some are reserved */
616 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
617 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
618 chip->cores_mask);
619 return;
620 }
621 chip->cores_mask &= pcc->cores_mask;
622
623 /* now that we have a sane layout, let check the number of cores */
624 cores_max = ctpop64(chip->cores_mask);
625 if (chip->nr_cores > cores_max) {
626 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
627 cores_max);
628 return;
629 }
630 }
631
632 static void pnv_chip_init(Object *obj)
633 {
634 PnvChip *chip = PNV_CHIP(obj);
635 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
636
637 chip->xscom_base = pcc->xscom_base;
638
639 object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
640 object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
641 }
642
643 static void pnv_chip_realize(DeviceState *dev, Error **errp)
644 {
645 PnvChip *chip = PNV_CHIP(dev);
646 Error *error = NULL;
647 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
648 char *typename = pnv_core_typename(pcc->cpu_model);
649 size_t typesize = object_type_get_instance_size(typename);
650 int i, core_hwid;
651
652 if (!object_class_by_name(typename)) {
653 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
654 return;
655 }
656
657 /* XSCOM bridge */
658 pnv_xscom_realize(chip, &error);
659 if (error) {
660 error_propagate(errp, error);
661 return;
662 }
663 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
664
665 /* Cores */
666 pnv_chip_core_sanitize(chip, &error);
667 if (error) {
668 error_propagate(errp, error);
669 return;
670 }
671
672 chip->cores = g_malloc0(typesize * chip->nr_cores);
673
674 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
675 && (i < chip->nr_cores); core_hwid++) {
676 char core_name[32];
677 void *pnv_core = chip->cores + i * typesize;
678
679 if (!(chip->cores_mask & (1ull << core_hwid))) {
680 continue;
681 }
682
683 object_initialize(pnv_core, typesize, typename);
684 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
685 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
686 &error_fatal);
687 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
688 &error_fatal);
689 object_property_set_int(OBJECT(pnv_core), core_hwid,
690 CPU_CORE_PROP_CORE_ID, &error_fatal);
691 object_property_set_int(OBJECT(pnv_core),
692 pcc->core_pir(chip, core_hwid),
693 "pir", &error_fatal);
694 object_property_set_bool(OBJECT(pnv_core), true, "realized",
695 &error_fatal);
696 object_unref(OBJECT(pnv_core));
697
698 /* Each core has an XSCOM MMIO region */
699 pnv_xscom_add_subregion(chip,
700 PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base,
701 core_hwid),
702 &PNV_CORE(pnv_core)->xscom_regs);
703 i++;
704 }
705 g_free(typename);
706
707 /* Create LPC controller */
708 object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
709 &error_fatal);
710 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
711 }
712
713 static Property pnv_chip_properties[] = {
714 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
715 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
716 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
717 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
718 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
719 DEFINE_PROP_END_OF_LIST(),
720 };
721
722 static void pnv_chip_class_init(ObjectClass *klass, void *data)
723 {
724 DeviceClass *dc = DEVICE_CLASS(klass);
725
726 dc->realize = pnv_chip_realize;
727 dc->props = pnv_chip_properties;
728 dc->desc = "PowerNV Chip";
729 }
730
731 static const TypeInfo pnv_chip_info = {
732 .name = TYPE_PNV_CHIP,
733 .parent = TYPE_SYS_BUS_DEVICE,
734 .class_init = pnv_chip_class_init,
735 .instance_init = pnv_chip_init,
736 .class_size = sizeof(PnvChipClass),
737 .abstract = true,
738 };
739
740 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
741 void *opaque, Error **errp)
742 {
743 visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp);
744 }
745
746 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
747 void *opaque, Error **errp)
748 {
749 PnvMachineState *pnv = POWERNV_MACHINE(obj);
750 uint32_t num_chips;
751 Error *local_err = NULL;
752
753 visit_type_uint32(v, name, &num_chips, &local_err);
754 if (local_err) {
755 error_propagate(errp, local_err);
756 return;
757 }
758
759 /*
760 * TODO: should we decide on how many chips we can create based
761 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
762 */
763 if (!is_power_of_2(num_chips) || num_chips > 4) {
764 error_setg(errp, "invalid number of chips: '%d'", num_chips);
765 return;
766 }
767
768 pnv->num_chips = num_chips;
769 }
770
771 static void powernv_machine_initfn(Object *obj)
772 {
773 PnvMachineState *pnv = POWERNV_MACHINE(obj);
774 pnv->num_chips = 1;
775 }
776
777 static void powernv_machine_class_props_init(ObjectClass *oc)
778 {
779 object_class_property_add(oc, "num-chips", "uint32_t",
780 pnv_get_num_chips, pnv_set_num_chips,
781 NULL, NULL, NULL);
782 object_class_property_set_description(oc, "num-chips",
783 "Specifies the number of processor chips",
784 NULL);
785 }
786
787 static void powernv_machine_class_init(ObjectClass *oc, void *data)
788 {
789 MachineClass *mc = MACHINE_CLASS(oc);
790
791 mc->desc = "IBM PowerNV (Non-Virtualized)";
792 mc->init = ppc_powernv_init;
793 mc->reset = ppc_powernv_reset;
794 mc->max_cpus = MAX_CPUS;
795 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
796 * storage */
797 mc->no_parallel = 1;
798 mc->default_boot_order = NULL;
799 mc->default_ram_size = 1 * G_BYTE;
800
801 powernv_machine_class_props_init(oc);
802 }
803
804 static const TypeInfo powernv_machine_info = {
805 .name = TYPE_POWERNV_MACHINE,
806 .parent = TYPE_MACHINE,
807 .instance_size = sizeof(PnvMachineState),
808 .instance_init = powernv_machine_initfn,
809 .class_init = powernv_machine_class_init,
810 };
811
812 static void powernv_machine_register_types(void)
813 {
814 type_register_static(&powernv_machine_info);
815 type_register_static(&pnv_chip_info);
816 type_register_static(&pnv_chip_power8e_info);
817 type_register_static(&pnv_chip_power8_info);
818 type_register_static(&pnv_chip_power8nvl_info);
819 type_register_static(&pnv_chip_power9_info);
820 }
821
822 type_init(powernv_machine_register_types)