]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
9df7b25315afd2bdb457ae40d8d40eb845091660
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/numa.h"
24 #include "hw/hw.h"
25 #include "target-ppc/cpu.h"
26 #include "qemu/log.h"
27 #include "hw/ppc/fdt.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/pnv.h"
30 #include "hw/ppc/pnv_core.h"
31 #include "hw/loader.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/cutils.h"
34 #include "qapi/visitor.h"
35
36 #include "hw/ppc/pnv_xscom.h"
37
38 #include "hw/isa/isa.h"
39 #include "hw/char/serial.h"
40 #include "hw/timer/mc146818rtc.h"
41
42 #include <libfdt.h>
43
44 #define FDT_MAX_SIZE 0x00100000
45
46 #define FW_FILE_NAME "skiboot.lid"
47 #define FW_LOAD_ADDR 0x0
48 #define FW_MAX_SIZE 0x00400000
49
50 #define KERNEL_LOAD_ADDR 0x20000000
51 #define INITRD_LOAD_ADDR 0x40000000
52
53 /*
54 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
55 * 4 * 4 sockets * 12 cores * 8 threads = 1536
56 * Let's make it 2^11
57 */
58 #define MAX_CPUS 2048
59
60 /*
61 * Memory nodes are created by hostboot, one for each range of memory
62 * that has a different "affinity". In practice, it means one range
63 * per chip.
64 */
65 static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start,
66 hwaddr size)
67 {
68 char *mem_name;
69 uint64_t mem_reg_property[2];
70 int off;
71
72 mem_reg_property[0] = cpu_to_be64(start);
73 mem_reg_property[1] = cpu_to_be64(size);
74
75 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
76 off = fdt_add_subnode(fdt, 0, mem_name);
77 g_free(mem_name);
78
79 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
80 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
81 sizeof(mem_reg_property))));
82 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
83 }
84
85 static int get_cpus_node(void *fdt)
86 {
87 int cpus_offset = fdt_path_offset(fdt, "/cpus");
88
89 if (cpus_offset < 0) {
90 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
91 "cpus");
92 if (cpus_offset) {
93 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
94 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
95 }
96 }
97 _FDT(cpus_offset);
98 return cpus_offset;
99 }
100
101 /*
102 * The PowerNV cores (and threads) need to use real HW ids and not an
103 * incremental index like it has been done on other platforms. This HW
104 * id is stored in the CPU PIR, it is used to create cpu nodes in the
105 * device tree, used in XSCOM to address cores and in interrupt
106 * servers.
107 */
108 static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt)
109 {
110 CPUState *cs = CPU(DEVICE(pc->threads));
111 DeviceClass *dc = DEVICE_GET_CLASS(cs);
112 PowerPCCPU *cpu = POWERPC_CPU(cs);
113 int smt_threads = CPU_CORE(pc)->nr_threads;
114 CPUPPCState *env = &cpu->env;
115 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
116 uint32_t servers_prop[smt_threads];
117 int i;
118 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
119 0xffffffff, 0xffffffff};
120 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
121 uint32_t cpufreq = 1000000000;
122 uint32_t page_sizes_prop[64];
123 size_t page_sizes_prop_size;
124 const uint8_t pa_features[] = { 24, 0,
125 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
126 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
127 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
128 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
129 int offset;
130 char *nodename;
131 int cpus_offset = get_cpus_node(fdt);
132
133 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
134 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
135 _FDT(offset);
136 g_free(nodename);
137
138 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
139
140 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
141 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
142 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
143
144 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
145 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
146 env->dcache_line_size)));
147 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
148 env->dcache_line_size)));
149 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
150 env->icache_line_size)));
151 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
152 env->icache_line_size)));
153
154 if (pcc->l1_dcache_size) {
155 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
156 pcc->l1_dcache_size)));
157 } else {
158 error_report("Warning: Unknown L1 dcache size for cpu");
159 }
160 if (pcc->l1_icache_size) {
161 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
162 pcc->l1_icache_size)));
163 } else {
164 error_report("Warning: Unknown L1 icache size for cpu");
165 }
166
167 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
168 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
169 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
170 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
171 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
172
173 if (env->spr_cb[SPR_PURR].oea_read) {
174 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
175 }
176
177 if (env->mmu_model & POWERPC_MMU_1TSEG) {
178 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
179 segs, sizeof(segs))));
180 }
181
182 /* Advertise VMX/VSX (vector extensions) if available
183 * 0 / no property == no vector extensions
184 * 1 == VMX / Altivec available
185 * 2 == VSX available */
186 if (env->insns_flags & PPC_ALTIVEC) {
187 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
188
189 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
190 }
191
192 /* Advertise DFP (Decimal Floating Point) if available
193 * 0 / no property == no DFP
194 * 1 == DFP available */
195 if (env->insns_flags2 & PPC2_DFP) {
196 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
197 }
198
199 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
200 sizeof(page_sizes_prop));
201 if (page_sizes_prop_size) {
202 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
203 page_sizes_prop, page_sizes_prop_size)));
204 }
205
206 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
207 pa_features, sizeof(pa_features))));
208
209 /* Build interrupt servers properties */
210 for (i = 0; i < smt_threads; i++) {
211 servers_prop[i] = cpu_to_be32(pc->pir + i);
212 }
213 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
214 servers_prop, sizeof(servers_prop))));
215 }
216
217 static void powernv_populate_chip(PnvChip *chip, void *fdt)
218 {
219 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
220 char *typename = pnv_core_typename(pcc->cpu_model);
221 size_t typesize = object_type_get_instance_size(typename);
222 int i;
223
224 pnv_xscom_populate(chip, fdt, 0);
225
226 for (i = 0; i < chip->nr_cores; i++) {
227 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
228
229 powernv_create_core_node(chip, pnv_core, fdt);
230 }
231
232 if (chip->ram_size) {
233 powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start,
234 chip->ram_size);
235 }
236 g_free(typename);
237 }
238
239 static void *powernv_create_fdt(MachineState *machine)
240 {
241 const char plat_compat[] = "qemu,powernv\0ibm,powernv";
242 PnvMachineState *pnv = POWERNV_MACHINE(machine);
243 void *fdt;
244 char *buf;
245 int off;
246 int i;
247
248 fdt = g_malloc0(FDT_MAX_SIZE);
249 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
250
251 /* Root node */
252 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
253 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
254 _FDT((fdt_setprop_string(fdt, 0, "model",
255 "IBM PowerNV (emulated by qemu)")));
256 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
257 sizeof(plat_compat))));
258
259 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
260 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
261 if (qemu_uuid_set) {
262 _FDT((fdt_property_string(fdt, "system-id", buf)));
263 }
264 g_free(buf);
265
266 off = fdt_add_subnode(fdt, 0, "chosen");
267 if (machine->kernel_cmdline) {
268 _FDT((fdt_setprop_string(fdt, off, "bootargs",
269 machine->kernel_cmdline)));
270 }
271
272 if (pnv->initrd_size) {
273 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
274 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
275
276 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
277 &start_prop, sizeof(start_prop))));
278 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
279 &end_prop, sizeof(end_prop))));
280 }
281
282 /* Populate device tree for each chip */
283 for (i = 0; i < pnv->num_chips; i++) {
284 powernv_populate_chip(pnv->chips[i], fdt);
285 }
286 return fdt;
287 }
288
289 static void ppc_powernv_reset(void)
290 {
291 MachineState *machine = MACHINE(qdev_get_machine());
292 void *fdt;
293
294 qemu_devices_reset();
295
296 fdt = powernv_create_fdt(machine);
297
298 /* Pack resulting tree */
299 _FDT((fdt_pack(fdt)));
300
301 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
302 }
303
304 /* If we don't use the built-in LPC interrupt deserializer, we need
305 * to provide a set of qirqs for the ISA bus or things will go bad.
306 *
307 * Most machines using pre-Naples chips (without said deserializer)
308 * have a CPLD that will collect the SerIRQ and shoot them as a
309 * single level interrupt to the P8 chip. So let's setup a hook
310 * for doing just that.
311 *
312 * Note: The actual interrupt input isn't emulated yet, this will
313 * come with the PSI bridge model.
314 */
315 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
316 {
317 /* We don't yet emulate the PSI bridge which provides the external
318 * interrupt, so just drop interrupts on the floor
319 */
320 }
321
322 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
323 {
324 /* XXX TODO */
325 }
326
327 static ISABus *pnv_isa_create(PnvChip *chip)
328 {
329 PnvLpcController *lpc = &chip->lpc;
330 ISABus *isa_bus;
331 qemu_irq *irqs;
332 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
333
334 /* let isa_bus_new() create its own bridge on SysBus otherwise
335 * devices speficied on the command line won't find the bus and
336 * will fail to create.
337 */
338 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
339 &error_fatal);
340
341 /* Not all variants have a working serial irq decoder. If not,
342 * handling of LPC interrupts becomes a platform issue (some
343 * platforms have a CPLD to do it).
344 */
345 if (pcc->chip_type == PNV_CHIP_POWER8NVL) {
346 irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler, chip, ISA_NUM_IRQS);
347 } else {
348 irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler_cpld, chip,
349 ISA_NUM_IRQS);
350 }
351
352 isa_bus_irqs(isa_bus, irqs);
353 return isa_bus;
354 }
355
356 static void ppc_powernv_init(MachineState *machine)
357 {
358 PnvMachineState *pnv = POWERNV_MACHINE(machine);
359 MemoryRegion *ram;
360 char *fw_filename;
361 long fw_size;
362 int i;
363 char *chip_typename;
364
365 /* allocate RAM */
366 if (machine->ram_size < (1 * G_BYTE)) {
367 error_report("Warning: skiboot may not work with < 1GB of RAM");
368 }
369
370 ram = g_new(MemoryRegion, 1);
371 memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram",
372 machine->ram_size);
373 memory_region_add_subregion(get_system_memory(), 0, ram);
374
375 /* load skiboot firmware */
376 if (bios_name == NULL) {
377 bios_name = FW_FILE_NAME;
378 }
379
380 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
381
382 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
383 if (fw_size < 0) {
384 hw_error("qemu: could not load OPAL '%s'\n", fw_filename);
385 exit(1);
386 }
387 g_free(fw_filename);
388
389 /* load kernel */
390 if (machine->kernel_filename) {
391 long kernel_size;
392
393 kernel_size = load_image_targphys(machine->kernel_filename,
394 KERNEL_LOAD_ADDR, 0x2000000);
395 if (kernel_size < 0) {
396 hw_error("qemu: could not load kernel'%s'\n",
397 machine->kernel_filename);
398 exit(1);
399 }
400 }
401
402 /* load initrd */
403 if (machine->initrd_filename) {
404 pnv->initrd_base = INITRD_LOAD_ADDR;
405 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
406 pnv->initrd_base, 0x10000000); /* 128MB max */
407 if (pnv->initrd_size < 0) {
408 error_report("qemu: could not load initial ram disk '%s'",
409 machine->initrd_filename);
410 exit(1);
411 }
412 }
413
414 /* We need some cpu model to instantiate the PnvChip class */
415 if (machine->cpu_model == NULL) {
416 machine->cpu_model = "POWER8";
417 }
418
419 /* Create the processor chips */
420 chip_typename = g_strdup_printf(TYPE_PNV_CHIP "-%s", machine->cpu_model);
421 if (!object_class_by_name(chip_typename)) {
422 error_report("qemu: invalid CPU model '%s' for %s machine",
423 machine->cpu_model, MACHINE_GET_CLASS(machine)->name);
424 exit(1);
425 }
426
427 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
428 for (i = 0; i < pnv->num_chips; i++) {
429 char chip_name[32];
430 Object *chip = object_new(chip_typename);
431
432 pnv->chips[i] = PNV_CHIP(chip);
433
434 /* TODO: put all the memory in one node on chip 0 until we find a
435 * way to specify different ranges for each chip
436 */
437 if (i == 0) {
438 object_property_set_int(chip, machine->ram_size, "ram-size",
439 &error_fatal);
440 }
441
442 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
443 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
444 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
445 &error_fatal);
446 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
447 object_property_set_bool(chip, true, "realized", &error_fatal);
448 }
449 g_free(chip_typename);
450
451 /* Instantiate ISA bus on chip 0 */
452 pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
453
454 /* Create serial port */
455 serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
456
457 /* Create an RTC ISA device too */
458 rtc_init(pnv->isa_bus, 2000, NULL);
459 }
460
461 /*
462 * 0:21 Reserved - Read as zeros
463 * 22:24 Chip ID
464 * 25:28 Core number
465 * 29:31 Thread ID
466 */
467 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
468 {
469 return (chip->chip_id << 7) | (core_id << 3);
470 }
471
472 /*
473 * 0:48 Reserved - Read as zeroes
474 * 49:52 Node ID
475 * 53:55 Chip ID
476 * 56 Reserved - Read as zero
477 * 57:61 Core number
478 * 62:63 Thread ID
479 *
480 * We only care about the lower bits. uint32_t is fine for the moment.
481 */
482 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
483 {
484 return (chip->chip_id << 8) | (core_id << 2);
485 }
486
487 /* Allowed core identifiers on a POWER8 Processor Chip :
488 *
489 * <EX0 reserved>
490 * EX1 - Venice only
491 * EX2 - Venice only
492 * EX3 - Venice only
493 * EX4
494 * EX5
495 * EX6
496 * <EX7,8 reserved> <reserved>
497 * EX9 - Venice only
498 * EX10 - Venice only
499 * EX11 - Venice only
500 * EX12
501 * EX13
502 * EX14
503 * <EX15 reserved>
504 */
505 #define POWER8E_CORE_MASK (0x7070ull)
506 #define POWER8_CORE_MASK (0x7e7eull)
507
508 /*
509 * POWER9 has 24 cores, ids starting at 0x20
510 */
511 #define POWER9_CORE_MASK (0xffffff00000000ull)
512
513 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
514 {
515 DeviceClass *dc = DEVICE_CLASS(klass);
516 PnvChipClass *k = PNV_CHIP_CLASS(klass);
517
518 k->cpu_model = "POWER8E";
519 k->chip_type = PNV_CHIP_POWER8E;
520 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
521 k->cores_mask = POWER8E_CORE_MASK;
522 k->core_pir = pnv_chip_core_pir_p8;
523 k->xscom_base = 0x003fc0000000000ull;
524 k->xscom_core_base = 0x10000000ull;
525 dc->desc = "PowerNV Chip POWER8E";
526 }
527
528 static const TypeInfo pnv_chip_power8e_info = {
529 .name = TYPE_PNV_CHIP_POWER8E,
530 .parent = TYPE_PNV_CHIP,
531 .instance_size = sizeof(PnvChip),
532 .class_init = pnv_chip_power8e_class_init,
533 };
534
535 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
536 {
537 DeviceClass *dc = DEVICE_CLASS(klass);
538 PnvChipClass *k = PNV_CHIP_CLASS(klass);
539
540 k->cpu_model = "POWER8";
541 k->chip_type = PNV_CHIP_POWER8;
542 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
543 k->cores_mask = POWER8_CORE_MASK;
544 k->core_pir = pnv_chip_core_pir_p8;
545 k->xscom_base = 0x003fc0000000000ull;
546 k->xscom_core_base = 0x10000000ull;
547 dc->desc = "PowerNV Chip POWER8";
548 }
549
550 static const TypeInfo pnv_chip_power8_info = {
551 .name = TYPE_PNV_CHIP_POWER8,
552 .parent = TYPE_PNV_CHIP,
553 .instance_size = sizeof(PnvChip),
554 .class_init = pnv_chip_power8_class_init,
555 };
556
557 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
558 {
559 DeviceClass *dc = DEVICE_CLASS(klass);
560 PnvChipClass *k = PNV_CHIP_CLASS(klass);
561
562 k->cpu_model = "POWER8NVL";
563 k->chip_type = PNV_CHIP_POWER8NVL;
564 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
565 k->cores_mask = POWER8_CORE_MASK;
566 k->core_pir = pnv_chip_core_pir_p8;
567 k->xscom_base = 0x003fc0000000000ull;
568 k->xscom_core_base = 0x10000000ull;
569 dc->desc = "PowerNV Chip POWER8NVL";
570 }
571
572 static const TypeInfo pnv_chip_power8nvl_info = {
573 .name = TYPE_PNV_CHIP_POWER8NVL,
574 .parent = TYPE_PNV_CHIP,
575 .instance_size = sizeof(PnvChip),
576 .class_init = pnv_chip_power8nvl_class_init,
577 };
578
579 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
580 {
581 DeviceClass *dc = DEVICE_CLASS(klass);
582 PnvChipClass *k = PNV_CHIP_CLASS(klass);
583
584 k->cpu_model = "POWER9";
585 k->chip_type = PNV_CHIP_POWER9;
586 k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */
587 k->cores_mask = POWER9_CORE_MASK;
588 k->core_pir = pnv_chip_core_pir_p9;
589 k->xscom_base = 0x00603fc00000000ull;
590 k->xscom_core_base = 0x0ull;
591 dc->desc = "PowerNV Chip POWER9";
592 }
593
594 static const TypeInfo pnv_chip_power9_info = {
595 .name = TYPE_PNV_CHIP_POWER9,
596 .parent = TYPE_PNV_CHIP,
597 .instance_size = sizeof(PnvChip),
598 .class_init = pnv_chip_power9_class_init,
599 };
600
601 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
602 {
603 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
604 int cores_max;
605
606 /*
607 * No custom mask for this chip, let's use the default one from *
608 * the chip class
609 */
610 if (!chip->cores_mask) {
611 chip->cores_mask = pcc->cores_mask;
612 }
613
614 /* filter alien core ids ! some are reserved */
615 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
616 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
617 chip->cores_mask);
618 return;
619 }
620 chip->cores_mask &= pcc->cores_mask;
621
622 /* now that we have a sane layout, let check the number of cores */
623 cores_max = ctpop64(chip->cores_mask);
624 if (chip->nr_cores > cores_max) {
625 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
626 cores_max);
627 return;
628 }
629 }
630
631 static void pnv_chip_init(Object *obj)
632 {
633 PnvChip *chip = PNV_CHIP(obj);
634 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
635
636 chip->xscom_base = pcc->xscom_base;
637
638 object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
639 object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
640 }
641
642 static void pnv_chip_realize(DeviceState *dev, Error **errp)
643 {
644 PnvChip *chip = PNV_CHIP(dev);
645 Error *error = NULL;
646 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
647 char *typename = pnv_core_typename(pcc->cpu_model);
648 size_t typesize = object_type_get_instance_size(typename);
649 int i, core_hwid;
650
651 if (!object_class_by_name(typename)) {
652 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
653 return;
654 }
655
656 /* XSCOM bridge */
657 pnv_xscom_realize(chip, &error);
658 if (error) {
659 error_propagate(errp, error);
660 return;
661 }
662 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
663
664 /* Cores */
665 pnv_chip_core_sanitize(chip, &error);
666 if (error) {
667 error_propagate(errp, error);
668 return;
669 }
670
671 chip->cores = g_malloc0(typesize * chip->nr_cores);
672
673 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
674 && (i < chip->nr_cores); core_hwid++) {
675 char core_name[32];
676 void *pnv_core = chip->cores + i * typesize;
677
678 if (!(chip->cores_mask & (1ull << core_hwid))) {
679 continue;
680 }
681
682 object_initialize(pnv_core, typesize, typename);
683 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
684 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
685 &error_fatal);
686 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
687 &error_fatal);
688 object_property_set_int(OBJECT(pnv_core), core_hwid,
689 CPU_CORE_PROP_CORE_ID, &error_fatal);
690 object_property_set_int(OBJECT(pnv_core),
691 pcc->core_pir(chip, core_hwid),
692 "pir", &error_fatal);
693 object_property_set_bool(OBJECT(pnv_core), true, "realized",
694 &error_fatal);
695 object_unref(OBJECT(pnv_core));
696
697 /* Each core has an XSCOM MMIO region */
698 pnv_xscom_add_subregion(chip,
699 PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base,
700 core_hwid),
701 &PNV_CORE(pnv_core)->xscom_regs);
702 i++;
703 }
704 g_free(typename);
705
706 /* Create LPC controller */
707 object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
708 &error_fatal);
709 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
710 }
711
712 static Property pnv_chip_properties[] = {
713 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
714 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
715 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
716 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
717 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
718 DEFINE_PROP_END_OF_LIST(),
719 };
720
721 static void pnv_chip_class_init(ObjectClass *klass, void *data)
722 {
723 DeviceClass *dc = DEVICE_CLASS(klass);
724
725 dc->realize = pnv_chip_realize;
726 dc->props = pnv_chip_properties;
727 dc->desc = "PowerNV Chip";
728 }
729
730 static const TypeInfo pnv_chip_info = {
731 .name = TYPE_PNV_CHIP,
732 .parent = TYPE_SYS_BUS_DEVICE,
733 .class_init = pnv_chip_class_init,
734 .instance_init = pnv_chip_init,
735 .class_size = sizeof(PnvChipClass),
736 .abstract = true,
737 };
738
739 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
740 void *opaque, Error **errp)
741 {
742 visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp);
743 }
744
745 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
746 void *opaque, Error **errp)
747 {
748 PnvMachineState *pnv = POWERNV_MACHINE(obj);
749 uint32_t num_chips;
750 Error *local_err = NULL;
751
752 visit_type_uint32(v, name, &num_chips, &local_err);
753 if (local_err) {
754 error_propagate(errp, local_err);
755 return;
756 }
757
758 /*
759 * TODO: should we decide on how many chips we can create based
760 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
761 */
762 if (!is_power_of_2(num_chips) || num_chips > 4) {
763 error_setg(errp, "invalid number of chips: '%d'", num_chips);
764 return;
765 }
766
767 pnv->num_chips = num_chips;
768 }
769
770 static void powernv_machine_initfn(Object *obj)
771 {
772 PnvMachineState *pnv = POWERNV_MACHINE(obj);
773 pnv->num_chips = 1;
774 }
775
776 static void powernv_machine_class_props_init(ObjectClass *oc)
777 {
778 object_class_property_add(oc, "num-chips", "uint32_t",
779 pnv_get_num_chips, pnv_set_num_chips,
780 NULL, NULL, NULL);
781 object_class_property_set_description(oc, "num-chips",
782 "Specifies the number of processor chips",
783 NULL);
784 }
785
786 static void powernv_machine_class_init(ObjectClass *oc, void *data)
787 {
788 MachineClass *mc = MACHINE_CLASS(oc);
789
790 mc->desc = "IBM PowerNV (Non-Virtualized)";
791 mc->init = ppc_powernv_init;
792 mc->reset = ppc_powernv_reset;
793 mc->max_cpus = MAX_CPUS;
794 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
795 * storage */
796 mc->no_parallel = 1;
797 mc->default_boot_order = NULL;
798 mc->default_ram_size = 1 * G_BYTE;
799
800 powernv_machine_class_props_init(oc);
801 }
802
803 static const TypeInfo powernv_machine_info = {
804 .name = TYPE_POWERNV_MACHINE,
805 .parent = TYPE_MACHINE,
806 .instance_size = sizeof(PnvMachineState),
807 .instance_init = powernv_machine_initfn,
808 .class_init = powernv_machine_class_init,
809 };
810
811 static void powernv_machine_register_types(void)
812 {
813 type_register_static(&powernv_machine_info);
814 type_register_static(&pnv_chip_info);
815 type_register_static(&pnv_chip_power8e_info);
816 type_register_static(&pnv_chip_power8_info);
817 type_register_static(&pnv_chip_power8nvl_info);
818 type_register_static(&pnv_chip_power9_info);
819 }
820
821 type_init(powernv_machine_register_types)