]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
smbus: Fix spd_data_generate() error API violation
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54
55 #include <libfdt.h>
56
57 #define FDT_MAX_SIZE (1 * MiB)
58
59 #define FW_FILE_NAME "skiboot.lid"
60 #define FW_LOAD_ADDR 0x0
61 #define FW_MAX_SIZE (4 * MiB)
62
63 #define KERNEL_LOAD_ADDR 0x20000000
64 #define KERNEL_MAX_SIZE (256 * MiB)
65 #define INITRD_LOAD_ADDR 0x60000000
66 #define INITRD_MAX_SIZE (256 * MiB)
67
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73 const char *core_type = object_class_get_name(object_class_by_name(s));
74 g_free(s);
75 return core_type;
76 }
77
78 /*
79 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80 * 4 * 4 sockets * 12 cores * 8 threads = 1536
81 * Let's make it 2^11
82 */
83 #define MAX_CPUS 2048
84
85 /*
86 * Memory nodes are created by hostboot, one for each range of memory
87 * that has a different "affinity". In practice, it means one range
88 * per chip.
89 */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92 char *mem_name;
93 uint64_t mem_reg_property[2];
94 int off;
95
96 mem_reg_property[0] = cpu_to_be64(start);
97 mem_reg_property[1] = cpu_to_be64(size);
98
99 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100 off = fdt_add_subnode(fdt, 0, mem_name);
101 g_free(mem_name);
102
103 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105 sizeof(mem_reg_property))));
106 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108
109 static int get_cpus_node(void *fdt)
110 {
111 int cpus_offset = fdt_path_offset(fdt, "/cpus");
112
113 if (cpus_offset < 0) {
114 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115 if (cpus_offset) {
116 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118 }
119 }
120 _FDT(cpus_offset);
121 return cpus_offset;
122 }
123
124 /*
125 * The PowerNV cores (and threads) need to use real HW ids and not an
126 * incremental index like it has been done on other platforms. This HW
127 * id is stored in the CPU PIR, it is used to create cpu nodes in the
128 * device tree, used in XSCOM to address cores and in interrupt
129 * servers.
130 */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133 PowerPCCPU *cpu = pc->threads[0];
134 CPUState *cs = CPU(cpu);
135 DeviceClass *dc = DEVICE_GET_CLASS(cs);
136 int smt_threads = CPU_CORE(pc)->nr_threads;
137 CPUPPCState *env = &cpu->env;
138 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139 uint32_t servers_prop[smt_threads];
140 int i;
141 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142 0xffffffff, 0xffffffff};
143 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144 uint32_t cpufreq = 1000000000;
145 uint32_t page_sizes_prop[64];
146 size_t page_sizes_prop_size;
147 const uint8_t pa_features[] = { 24, 0,
148 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152 int offset;
153 char *nodename;
154 int cpus_offset = get_cpus_node(fdt);
155
156 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158 _FDT(offset);
159 g_free(nodename);
160
161 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162
163 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166
167 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169 env->dcache_line_size)));
170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171 env->dcache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173 env->icache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175 env->icache_line_size)));
176
177 if (pcc->l1_dcache_size) {
178 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179 pcc->l1_dcache_size)));
180 } else {
181 warn_report("Unknown L1 dcache size for cpu");
182 }
183 if (pcc->l1_icache_size) {
184 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185 pcc->l1_icache_size)));
186 } else {
187 warn_report("Unknown L1 icache size for cpu");
188 }
189
190 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193 cpu->hash64_opts->slb_size)));
194 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196
197 if (env->spr_cb[SPR_PURR].oea_read) {
198 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199 }
200
201 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203 segs, sizeof(segs))));
204 }
205
206 /*
207 * Advertise VMX/VSX (vector extensions) if available
208 * 0 / no property == no vector extensions
209 * 1 == VMX / Altivec available
210 * 2 == VSX available
211 */
212 if (env->insns_flags & PPC_ALTIVEC) {
213 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214
215 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216 }
217
218 /*
219 * Advertise DFP (Decimal Floating Point) if available
220 * 0 / no property == no DFP
221 * 1 == DFP available
222 */
223 if (env->insns_flags2 & PPC2_DFP) {
224 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225 }
226
227 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228 sizeof(page_sizes_prop));
229 if (page_sizes_prop_size) {
230 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231 page_sizes_prop, page_sizes_prop_size)));
232 }
233
234 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235 pa_features, sizeof(pa_features))));
236
237 /* Build interrupt servers properties */
238 for (i = 0; i < smt_threads; i++) {
239 servers_prop[i] = cpu_to_be32(pc->pir + i);
240 }
241 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242 servers_prop, sizeof(servers_prop))));
243 }
244
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246 uint32_t nr_threads)
247 {
248 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249 char *name;
250 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251 uint32_t irange[2], i, rsize;
252 uint64_t *reg;
253 int offset;
254
255 irange[0] = cpu_to_be32(pir);
256 irange[1] = cpu_to_be32(nr_threads);
257
258 rsize = sizeof(uint64_t) * 2 * nr_threads;
259 reg = g_malloc(rsize);
260 for (i = 0; i < nr_threads; i++) {
261 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262 reg[i * 2 + 1] = cpu_to_be64(0x1000);
263 }
264
265 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266 offset = fdt_add_subnode(fdt, 0, name);
267 _FDT(offset);
268 g_free(name);
269
270 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272 _FDT((fdt_setprop_string(fdt, offset, "device_type",
273 "PowerPC-External-Interrupt-Presentation")));
274 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276 irange, sizeof(irange))));
277 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279 g_free(reg);
280 }
281
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285 int i;
286
287 pnv_dt_xscom(chip, fdt, 0,
288 cpu_to_be64(PNV_XSCOM_BASE(chip)),
289 cpu_to_be64(PNV_XSCOM_SIZE),
290 compat, sizeof(compat));
291
292 for (i = 0; i < chip->nr_cores; i++) {
293 PnvCore *pnv_core = chip->cores[i];
294
295 pnv_dt_core(chip, pnv_core, fdt);
296
297 /* Interrupt Control Presenters (ICP). One per core. */
298 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299 }
300
301 if (chip->ram_size) {
302 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303 }
304 }
305
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309 int i;
310
311 pnv_dt_xscom(chip, fdt, 0,
312 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313 cpu_to_be64(PNV9_XSCOM_SIZE),
314 compat, sizeof(compat));
315
316 for (i = 0; i < chip->nr_cores; i++) {
317 PnvCore *pnv_core = chip->cores[i];
318
319 pnv_dt_core(chip, pnv_core, fdt);
320 }
321
322 if (chip->ram_size) {
323 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324 }
325
326 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332 int i;
333
334 pnv_dt_xscom(chip, fdt, 0,
335 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336 cpu_to_be64(PNV10_XSCOM_SIZE),
337 compat, sizeof(compat));
338
339 for (i = 0; i < chip->nr_cores; i++) {
340 PnvCore *pnv_core = chip->cores[i];
341
342 pnv_dt_core(chip, pnv_core, fdt);
343 }
344
345 if (chip->ram_size) {
346 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347 }
348
349 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354 uint32_t io_base = d->ioport_id;
355 uint32_t io_regs[] = {
356 cpu_to_be32(1),
357 cpu_to_be32(io_base),
358 cpu_to_be32(2)
359 };
360 char *name;
361 int node;
362
363 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364 node = fdt_add_subnode(fdt, lpc_off, name);
365 _FDT(node);
366 g_free(name);
367
368 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374 const char compatible[] = "ns16550\0pnpPNP,501";
375 uint32_t io_base = d->ioport_id;
376 uint32_t io_regs[] = {
377 cpu_to_be32(1),
378 cpu_to_be32(io_base),
379 cpu_to_be32(8)
380 };
381 char *name;
382 int node;
383
384 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385 node = fdt_add_subnode(fdt, lpc_off, name);
386 _FDT(node);
387 g_free(name);
388
389 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391 sizeof(compatible))));
392
393 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397 fdt_get_phandle(fdt, lpc_off))));
398
399 /* This is needed by Linux */
400 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405 const char compatible[] = "bt\0ipmi-bt";
406 uint32_t io_base;
407 uint32_t io_regs[] = {
408 cpu_to_be32(1),
409 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410 cpu_to_be32(3)
411 };
412 uint32_t irq;
413 char *name;
414 int node;
415
416 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417 io_regs[1] = cpu_to_be32(io_base);
418
419 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420
421 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422 node = fdt_add_subnode(fdt, lpc_off, name);
423 _FDT(node);
424 g_free(name);
425
426 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428 sizeof(compatible))));
429
430 /* Mark it as reserved to avoid Linux trying to claim it */
431 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434 fdt_get_phandle(fdt, lpc_off))));
435 }
436
437 typedef struct ForeachPopulateArgs {
438 void *fdt;
439 int offset;
440 } ForeachPopulateArgs;
441
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444 ForeachPopulateArgs *args = opaque;
445 ISADevice *d = ISA_DEVICE(dev);
446
447 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448 pnv_dt_rtc(d, args->fdt, args->offset);
449 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450 pnv_dt_serial(d, args->fdt, args->offset);
451 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453 } else {
454 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455 d->ioport_id);
456 }
457
458 return 0;
459 }
460
461 /*
462 * The default LPC bus of a multichip system is on chip 0. It's
463 * recognized by the firmware (skiboot) using a "primary" property.
464 */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468 ForeachPopulateArgs args = {
469 .fdt = fdt,
470 .offset = isa_offset,
471 };
472 uint32_t phandle;
473
474 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475
476 phandle = qemu_fdt_alloc_phandle(fdt);
477 assert(phandle > 0);
478 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479
480 /*
481 * ISA devices are not necessarily parented to the ISA bus so we
482 * can not use object_child_foreach()
483 */
484 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485 &args);
486 }
487
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490 int off;
491
492 off = fdt_add_subnode(fdt, 0, "ibm,opal");
493 off = fdt_add_subnode(fdt, off, "power-mgt");
494
495 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497
498 static void *pnv_dt_create(MachineState *machine)
499 {
500 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501 PnvMachineState *pnv = PNV_MACHINE(machine);
502 void *fdt;
503 char *buf;
504 int off;
505 int i;
506
507 fdt = g_malloc0(FDT_MAX_SIZE);
508 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509
510 /* /qemu node */
511 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512
513 /* Root node */
514 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516 _FDT((fdt_setprop_string(fdt, 0, "model",
517 "IBM PowerNV (emulated by qemu)")));
518 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519
520 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
521 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522 if (qemu_uuid_set) {
523 _FDT((fdt_property_string(fdt, "system-id", buf)));
524 }
525 g_free(buf);
526
527 off = fdt_add_subnode(fdt, 0, "chosen");
528 if (machine->kernel_cmdline) {
529 _FDT((fdt_setprop_string(fdt, off, "bootargs",
530 machine->kernel_cmdline)));
531 }
532
533 if (pnv->initrd_size) {
534 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536
537 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538 &start_prop, sizeof(start_prop))));
539 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540 &end_prop, sizeof(end_prop))));
541 }
542
543 /* Populate device tree for each chip */
544 for (i = 0; i < pnv->num_chips; i++) {
545 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546 }
547
548 /* Populate ISA devices on chip 0 */
549 pnv_dt_isa(pnv, fdt);
550
551 if (pnv->bmc) {
552 pnv_dt_bmc_sensors(pnv->bmc, fdt);
553 }
554
555 /* Create an extra node for power management on machines that support it */
556 if (pmc->dt_power_mgt) {
557 pmc->dt_power_mgt(pnv, fdt);
558 }
559
560 return fdt;
561 }
562
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566
567 if (pnv->bmc) {
568 pnv_bmc_powerdown(pnv->bmc);
569 }
570 }
571
572 static void pnv_reset(MachineState *machine)
573 {
574 PnvMachineState *pnv = PNV_MACHINE(machine);
575 IPMIBmc *bmc;
576 void *fdt;
577
578 qemu_devices_reset();
579
580 /*
581 * The machine should provide by default an internal BMC simulator.
582 * If not, try to use the BMC device that was provided on the command
583 * line.
584 */
585 bmc = pnv_bmc_find(&error_fatal);
586 if (!pnv->bmc) {
587 if (!bmc) {
588 warn_report("machine has no BMC device. Use '-device "
589 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
590 "to define one");
591 } else {
592 pnv_bmc_set_pnor(bmc, pnv->pnor);
593 pnv->bmc = bmc;
594 }
595 }
596
597 fdt = pnv_dt_create(machine);
598
599 /* Pack resulting tree */
600 _FDT((fdt_pack(fdt)));
601
602 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
603 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
604
605 g_free(fdt);
606 }
607
608 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
609 {
610 Pnv8Chip *chip8 = PNV8_CHIP(chip);
611 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
612 }
613
614 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
615 {
616 Pnv8Chip *chip8 = PNV8_CHIP(chip);
617 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
618 }
619
620 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
621 {
622 Pnv9Chip *chip9 = PNV9_CHIP(chip);
623 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
624 }
625
626 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
627 {
628 Pnv10Chip *chip10 = PNV10_CHIP(chip);
629 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
630 }
631
632 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
633 {
634 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
635 }
636
637 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
638 {
639 Pnv8Chip *chip8 = PNV8_CHIP(chip);
640 int i;
641
642 ics_pic_print_info(&chip8->psi.ics, mon);
643 for (i = 0; i < chip->num_phbs; i++) {
644 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
645 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
646 }
647 }
648
649 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
650 {
651 Pnv9Chip *chip9 = PNV9_CHIP(chip);
652 int i, j;
653
654 pnv_xive_pic_print_info(&chip9->xive, mon);
655 pnv_psi_pic_print_info(&chip9->psi, mon);
656
657 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
658 PnvPhb4PecState *pec = &chip9->pecs[i];
659 for (j = 0; j < pec->num_stacks; j++) {
660 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
661 }
662 }
663 }
664
665 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
666 uint32_t core_id)
667 {
668 return PNV_XSCOM_EX_BASE(core_id);
669 }
670
671 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
672 uint32_t core_id)
673 {
674 return PNV9_XSCOM_EC_BASE(core_id);
675 }
676
677 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
678 uint32_t core_id)
679 {
680 return PNV10_XSCOM_EC_BASE(core_id);
681 }
682
683 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
684 {
685 PowerPCCPUClass *ppc_default =
686 POWERPC_CPU_CLASS(object_class_by_name(default_type));
687 PowerPCCPUClass *ppc =
688 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
689
690 return ppc_default->pvr_match(ppc_default, ppc->pvr);
691 }
692
693 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
694 {
695 Object *obj;
696
697 obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
698 object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
699 object_property_set_int(obj, irq, "irq", &error_fatal);
700 object_property_set_bool(obj, true, "realized", &error_fatal);
701 }
702
703 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
704 {
705 Pnv10Chip *chip10 = PNV10_CHIP(chip);
706
707 pnv_psi_pic_print_info(&chip10->psi, mon);
708 }
709
710 static void pnv_init(MachineState *machine)
711 {
712 PnvMachineState *pnv = PNV_MACHINE(machine);
713 MachineClass *mc = MACHINE_GET_CLASS(machine);
714 char *fw_filename;
715 long fw_size;
716 int i;
717 char *chip_typename;
718 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
719 DeviceState *dev;
720
721 /* allocate RAM */
722 if (machine->ram_size < (1 * GiB)) {
723 warn_report("skiboot may not work with < 1GB of RAM");
724 }
725 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
726
727 /*
728 * Create our simple PNOR device
729 */
730 dev = qdev_create(NULL, TYPE_PNV_PNOR);
731 if (pnor) {
732 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
733 &error_abort);
734 }
735 qdev_init_nofail(dev);
736 pnv->pnor = PNV_PNOR(dev);
737
738 /* load skiboot firmware */
739 if (bios_name == NULL) {
740 bios_name = FW_FILE_NAME;
741 }
742
743 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
744 if (!fw_filename) {
745 error_report("Could not find OPAL firmware '%s'", bios_name);
746 exit(1);
747 }
748
749 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
750 if (fw_size < 0) {
751 error_report("Could not load OPAL firmware '%s'", fw_filename);
752 exit(1);
753 }
754 g_free(fw_filename);
755
756 /* load kernel */
757 if (machine->kernel_filename) {
758 long kernel_size;
759
760 kernel_size = load_image_targphys(machine->kernel_filename,
761 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
762 if (kernel_size < 0) {
763 error_report("Could not load kernel '%s'",
764 machine->kernel_filename);
765 exit(1);
766 }
767 }
768
769 /* load initrd */
770 if (machine->initrd_filename) {
771 pnv->initrd_base = INITRD_LOAD_ADDR;
772 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
773 pnv->initrd_base, INITRD_MAX_SIZE);
774 if (pnv->initrd_size < 0) {
775 error_report("Could not load initial ram disk '%s'",
776 machine->initrd_filename);
777 exit(1);
778 }
779 }
780
781 /* MSIs are supported on this platform */
782 msi_nonbroken = true;
783
784 /*
785 * Check compatibility of the specified CPU with the machine
786 * default.
787 */
788 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
789 error_report("invalid CPU model '%s' for %s machine",
790 machine->cpu_type, mc->name);
791 exit(1);
792 }
793
794 /* Create the processor chips */
795 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
796 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
797 i, machine->cpu_type);
798 if (!object_class_by_name(chip_typename)) {
799 error_report("invalid chip model '%.*s' for %s machine",
800 i, machine->cpu_type, mc->name);
801 exit(1);
802 }
803
804 pnv->num_chips =
805 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
806 /*
807 * TODO: should we decide on how many chips we can create based
808 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
809 */
810 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
811 error_report("invalid number of chips: '%d'", pnv->num_chips);
812 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
813 exit(1);
814 }
815
816 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
817 for (i = 0; i < pnv->num_chips; i++) {
818 char chip_name[32];
819 Object *chip = object_new(chip_typename);
820
821 pnv->chips[i] = PNV_CHIP(chip);
822
823 /*
824 * TODO: put all the memory in one node on chip 0 until we find a
825 * way to specify different ranges for each chip
826 */
827 if (i == 0) {
828 object_property_set_int(chip, machine->ram_size, "ram-size",
829 &error_fatal);
830 }
831
832 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
833 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
834 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
835 &error_fatal);
836 object_property_set_int(chip, machine->smp.cores,
837 "nr-cores", &error_fatal);
838 object_property_set_int(chip, machine->smp.threads,
839 "nr-threads", &error_fatal);
840 /*
841 * The POWER8 machine use the XICS interrupt interface.
842 * Propagate the XICS fabric to the chip and its controllers.
843 */
844 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
845 object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
846 }
847 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
848 object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
849 &error_abort);
850 }
851 object_property_set_bool(chip, true, "realized", &error_fatal);
852 }
853 g_free(chip_typename);
854
855 /* Instantiate ISA bus on chip 0 */
856 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
857
858 /* Create serial port */
859 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
860
861 /* Create an RTC ISA device too */
862 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
863
864 /*
865 * Create the machine BMC simulator and the IPMI BT device for
866 * communication with the BMC
867 */
868 if (defaults_enabled()) {
869 pnv->bmc = pnv_bmc_create(pnv->pnor);
870 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
871 }
872
873 /*
874 * OpenPOWER systems use a IPMI SEL Event message to notify the
875 * host to powerdown
876 */
877 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
878 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
879 }
880
881 /*
882 * 0:21 Reserved - Read as zeros
883 * 22:24 Chip ID
884 * 25:28 Core number
885 * 29:31 Thread ID
886 */
887 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
888 {
889 return (chip->chip_id << 7) | (core_id << 3);
890 }
891
892 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
893 Error **errp)
894 {
895 Pnv8Chip *chip8 = PNV8_CHIP(chip);
896 Error *local_err = NULL;
897 Object *obj;
898 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
899
900 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
901 if (local_err) {
902 error_propagate(errp, local_err);
903 return;
904 }
905
906 pnv_cpu->intc = obj;
907 }
908
909
910 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
911 {
912 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
913
914 icp_reset(ICP(pnv_cpu->intc));
915 }
916
917 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
918 {
919 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
920
921 icp_destroy(ICP(pnv_cpu->intc));
922 pnv_cpu->intc = NULL;
923 }
924
925 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
926 Monitor *mon)
927 {
928 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
929 }
930
931 /*
932 * 0:48 Reserved - Read as zeroes
933 * 49:52 Node ID
934 * 53:55 Chip ID
935 * 56 Reserved - Read as zero
936 * 57:61 Core number
937 * 62:63 Thread ID
938 *
939 * We only care about the lower bits. uint32_t is fine for the moment.
940 */
941 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
942 {
943 return (chip->chip_id << 8) | (core_id << 2);
944 }
945
946 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
947 {
948 return (chip->chip_id << 8) | (core_id << 2);
949 }
950
951 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
952 Error **errp)
953 {
954 Pnv9Chip *chip9 = PNV9_CHIP(chip);
955 Error *local_err = NULL;
956 Object *obj;
957 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
958
959 /*
960 * The core creates its interrupt presenter but the XIVE interrupt
961 * controller object is initialized afterwards. Hopefully, it's
962 * only used at runtime.
963 */
964 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
965 &local_err);
966 if (local_err) {
967 error_propagate(errp, local_err);
968 return;
969 }
970
971 pnv_cpu->intc = obj;
972 }
973
974 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
975 {
976 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
977
978 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
979 }
980
981 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
982 {
983 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
984
985 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
986 pnv_cpu->intc = NULL;
987 }
988
989 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
990 Monitor *mon)
991 {
992 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
993 }
994
995 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
996 Error **errp)
997 {
998 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
999
1000 /* Will be defined when the interrupt controller is */
1001 pnv_cpu->intc = NULL;
1002 }
1003
1004 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1005 {
1006 ;
1007 }
1008
1009 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1010 {
1011 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1012
1013 pnv_cpu->intc = NULL;
1014 }
1015
1016 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1017 Monitor *mon)
1018 {
1019 }
1020
1021 /*
1022 * Allowed core identifiers on a POWER8 Processor Chip :
1023 *
1024 * <EX0 reserved>
1025 * EX1 - Venice only
1026 * EX2 - Venice only
1027 * EX3 - Venice only
1028 * EX4
1029 * EX5
1030 * EX6
1031 * <EX7,8 reserved> <reserved>
1032 * EX9 - Venice only
1033 * EX10 - Venice only
1034 * EX11 - Venice only
1035 * EX12
1036 * EX13
1037 * EX14
1038 * <EX15 reserved>
1039 */
1040 #define POWER8E_CORE_MASK (0x7070ull)
1041 #define POWER8_CORE_MASK (0x7e7eull)
1042
1043 /*
1044 * POWER9 has 24 cores, ids starting at 0x0
1045 */
1046 #define POWER9_CORE_MASK (0xffffffffffffffull)
1047
1048
1049 #define POWER10_CORE_MASK (0xffffffffffffffull)
1050
1051 static void pnv_chip_power8_instance_init(Object *obj)
1052 {
1053 PnvChip *chip = PNV_CHIP(obj);
1054 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1055 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1056 int i;
1057
1058 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1059 (Object **)&chip8->xics,
1060 object_property_allow_set_link,
1061 OBJ_PROP_LINK_STRONG,
1062 &error_abort);
1063
1064 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
1065 TYPE_PNV8_PSI, &error_abort, NULL);
1066
1067 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
1068 TYPE_PNV8_LPC, &error_abort, NULL);
1069
1070 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
1071 TYPE_PNV8_OCC, &error_abort, NULL);
1072
1073 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer),
1074 TYPE_PNV8_HOMER, &error_abort, NULL);
1075
1076 for (i = 0; i < pcc->num_phbs; i++) {
1077 object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1078 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1079 &error_abort, NULL);
1080 }
1081
1082 /*
1083 * Number of PHBs is the chip default
1084 */
1085 chip->num_phbs = pcc->num_phbs;
1086 }
1087
1088 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1089 {
1090 PnvChip *chip = PNV_CHIP(chip8);
1091 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1092 int i, j;
1093 char *name;
1094
1095 name = g_strdup_printf("icp-%x", chip->chip_id);
1096 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1097 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1098 g_free(name);
1099
1100 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1101
1102 /* Map the ICP registers for each thread */
1103 for (i = 0; i < chip->nr_cores; i++) {
1104 PnvCore *pnv_core = chip->cores[i];
1105 int core_hwid = CPU_CORE(pnv_core)->core_id;
1106
1107 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1108 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1109 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1110
1111 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1112 &icp->mmio);
1113 }
1114 }
1115 }
1116
1117 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1118 {
1119 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1120 PnvChip *chip = PNV_CHIP(dev);
1121 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1122 Pnv8Psi *psi8 = &chip8->psi;
1123 Error *local_err = NULL;
1124 int i;
1125
1126 assert(chip8->xics);
1127
1128 /* XSCOM bridge is first */
1129 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1130 if (local_err) {
1131 error_propagate(errp, local_err);
1132 return;
1133 }
1134 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1135
1136 pcc->parent_realize(dev, &local_err);
1137 if (local_err) {
1138 error_propagate(errp, local_err);
1139 return;
1140 }
1141
1142 /* Processor Service Interface (PSI) Host Bridge */
1143 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1144 "bar", &error_fatal);
1145 object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1146 ICS_PROP_XICS, &error_abort);
1147 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1148 if (local_err) {
1149 error_propagate(errp, local_err);
1150 return;
1151 }
1152 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1153 &PNV_PSI(psi8)->xscom_regs);
1154
1155 /* Create LPC controller */
1156 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1157 &error_abort);
1158 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1159 &error_fatal);
1160 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161
1162 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1163 (uint64_t) PNV_XSCOM_BASE(chip),
1164 PNV_XSCOM_LPC_BASE);
1165
1166 /*
1167 * Interrupt Management Area. This is the memory region holding
1168 * all the Interrupt Control Presenter (ICP) registers
1169 */
1170 pnv_chip_icp_realize(chip8, &local_err);
1171 if (local_err) {
1172 error_propagate(errp, local_err);
1173 return;
1174 }
1175
1176 /* Create the simplified OCC model */
1177 object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1178 &error_abort);
1179 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1180 if (local_err) {
1181 error_propagate(errp, local_err);
1182 return;
1183 }
1184 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1185
1186 /* OCC SRAM model */
1187 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1188 &chip8->occ.sram_regs);
1189
1190 /* HOMER */
1191 object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1192 &error_abort);
1193 object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1194 &local_err);
1195 if (local_err) {
1196 error_propagate(errp, local_err);
1197 return;
1198 }
1199 /* Homer Xscom region */
1200 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1201
1202 /* Homer mmio region */
1203 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1204 &chip8->homer.regs);
1205
1206 /* PHB3 controllers */
1207 for (i = 0; i < chip->num_phbs; i++) {
1208 PnvPHB3 *phb = &chip8->phbs[i];
1209 PnvPBCQState *pbcq = &phb->pbcq;
1210
1211 object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1212 object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1213 &error_fatal);
1214 object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1215 if (local_err) {
1216 error_propagate(errp, local_err);
1217 return;
1218 }
1219 qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1220
1221 /* Populate the XSCOM address space. */
1222 pnv_xscom_add_subregion(chip,
1223 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1224 &pbcq->xscom_nest_regs);
1225 pnv_xscom_add_subregion(chip,
1226 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1227 &pbcq->xscom_pci_regs);
1228 pnv_xscom_add_subregion(chip,
1229 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1230 &pbcq->xscom_spci_regs);
1231 }
1232 }
1233
1234 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1235 {
1236 addr &= (PNV_XSCOM_SIZE - 1);
1237 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1238 }
1239
1240 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1241 {
1242 DeviceClass *dc = DEVICE_CLASS(klass);
1243 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1244
1245 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1246 k->cores_mask = POWER8E_CORE_MASK;
1247 k->num_phbs = 3;
1248 k->core_pir = pnv_chip_core_pir_p8;
1249 k->intc_create = pnv_chip_power8_intc_create;
1250 k->intc_reset = pnv_chip_power8_intc_reset;
1251 k->intc_destroy = pnv_chip_power8_intc_destroy;
1252 k->intc_print_info = pnv_chip_power8_intc_print_info;
1253 k->isa_create = pnv_chip_power8_isa_create;
1254 k->dt_populate = pnv_chip_power8_dt_populate;
1255 k->pic_print_info = pnv_chip_power8_pic_print_info;
1256 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1257 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1258 dc->desc = "PowerNV Chip POWER8E";
1259
1260 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1261 &k->parent_realize);
1262 }
1263
1264 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1265 {
1266 DeviceClass *dc = DEVICE_CLASS(klass);
1267 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1268
1269 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1270 k->cores_mask = POWER8_CORE_MASK;
1271 k->num_phbs = 3;
1272 k->core_pir = pnv_chip_core_pir_p8;
1273 k->intc_create = pnv_chip_power8_intc_create;
1274 k->intc_reset = pnv_chip_power8_intc_reset;
1275 k->intc_destroy = pnv_chip_power8_intc_destroy;
1276 k->intc_print_info = pnv_chip_power8_intc_print_info;
1277 k->isa_create = pnv_chip_power8_isa_create;
1278 k->dt_populate = pnv_chip_power8_dt_populate;
1279 k->pic_print_info = pnv_chip_power8_pic_print_info;
1280 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1281 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1282 dc->desc = "PowerNV Chip POWER8";
1283
1284 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1285 &k->parent_realize);
1286 }
1287
1288 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1289 {
1290 DeviceClass *dc = DEVICE_CLASS(klass);
1291 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1292
1293 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1294 k->cores_mask = POWER8_CORE_MASK;
1295 k->num_phbs = 3;
1296 k->core_pir = pnv_chip_core_pir_p8;
1297 k->intc_create = pnv_chip_power8_intc_create;
1298 k->intc_reset = pnv_chip_power8_intc_reset;
1299 k->intc_destroy = pnv_chip_power8_intc_destroy;
1300 k->intc_print_info = pnv_chip_power8_intc_print_info;
1301 k->isa_create = pnv_chip_power8nvl_isa_create;
1302 k->dt_populate = pnv_chip_power8_dt_populate;
1303 k->pic_print_info = pnv_chip_power8_pic_print_info;
1304 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1305 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1306 dc->desc = "PowerNV Chip POWER8NVL";
1307
1308 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1309 &k->parent_realize);
1310 }
1311
1312 static void pnv_chip_power9_instance_init(Object *obj)
1313 {
1314 PnvChip *chip = PNV_CHIP(obj);
1315 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1316 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1317 int i;
1318
1319 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1320 TYPE_PNV_XIVE, &error_abort, NULL);
1321 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1322 "xive-fabric", &error_abort);
1323
1324 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1325 TYPE_PNV9_PSI, &error_abort, NULL);
1326
1327 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1328 TYPE_PNV9_LPC, &error_abort, NULL);
1329
1330 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1331 TYPE_PNV9_OCC, &error_abort, NULL);
1332
1333 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer),
1334 TYPE_PNV9_HOMER, &error_abort, NULL);
1335
1336 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1337 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1338 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1339 &error_abort, NULL);
1340 }
1341
1342 /*
1343 * Number of PHBs is the chip default
1344 */
1345 chip->num_phbs = pcc->num_phbs;
1346 }
1347
1348 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1349 {
1350 PnvChip *chip = PNV_CHIP(chip9);
1351 int i;
1352
1353 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1354 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1355
1356 for (i = 0; i < chip9->nr_quads; i++) {
1357 char eq_name[32];
1358 PnvQuad *eq = &chip9->quads[i];
1359 PnvCore *pnv_core = chip->cores[i * 4];
1360 int core_id = CPU_CORE(pnv_core)->core_id;
1361
1362 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1363 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1364 TYPE_PNV_QUAD, &error_fatal, NULL);
1365
1366 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1367 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1368
1369 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1370 &eq->xscom_regs);
1371 }
1372 }
1373
1374 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1375 {
1376 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1377 Error *local_err = NULL;
1378 int i, j;
1379 int phb_id = 0;
1380
1381 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1382 PnvPhb4PecState *pec = &chip9->pecs[i];
1383 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1384 uint32_t pec_nest_base;
1385 uint32_t pec_pci_base;
1386
1387 object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1388 /*
1389 * PEC0 -> 1 stack
1390 * PEC1 -> 2 stacks
1391 * PEC2 -> 3 stacks
1392 */
1393 object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1394 &error_fatal);
1395 object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1396 &error_fatal);
1397 object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1398 "system-memory", &error_abort);
1399 object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1400 if (local_err) {
1401 error_propagate(errp, local_err);
1402 return;
1403 }
1404
1405 pec_nest_base = pecc->xscom_nest_base(pec);
1406 pec_pci_base = pecc->xscom_pci_base(pec);
1407
1408 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1409 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1410
1411 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1412 j++, phb_id++) {
1413 PnvPhb4PecStack *stack = &pec->stacks[j];
1414 Object *obj = OBJECT(&stack->phb);
1415
1416 object_property_set_int(obj, phb_id, "index", &error_fatal);
1417 object_property_set_int(obj, chip->chip_id, "chip-id",
1418 &error_fatal);
1419 object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1420 &error_fatal);
1421 object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1422 &error_fatal);
1423 object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1424 object_property_set_bool(obj, true, "realized", &local_err);
1425 if (local_err) {
1426 error_propagate(errp, local_err);
1427 return;
1428 }
1429 qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1430
1431 /* Populate the XSCOM address space. */
1432 pnv_xscom_add_subregion(chip,
1433 pec_nest_base + 0x40 * (stack->stack_no + 1),
1434 &stack->nest_regs_mr);
1435 pnv_xscom_add_subregion(chip,
1436 pec_pci_base + 0x40 * (stack->stack_no + 1),
1437 &stack->pci_regs_mr);
1438 pnv_xscom_add_subregion(chip,
1439 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1440 0x40 * stack->stack_no,
1441 &stack->phb_regs_mr);
1442 }
1443 }
1444 }
1445
1446 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1447 {
1448 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1449 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1450 PnvChip *chip = PNV_CHIP(dev);
1451 Pnv9Psi *psi9 = &chip9->psi;
1452 Error *local_err = NULL;
1453
1454 /* XSCOM bridge is first */
1455 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1456 if (local_err) {
1457 error_propagate(errp, local_err);
1458 return;
1459 }
1460 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1461
1462 pcc->parent_realize(dev, &local_err);
1463 if (local_err) {
1464 error_propagate(errp, local_err);
1465 return;
1466 }
1467
1468 pnv_chip_quad_realize(chip9, &local_err);
1469 if (local_err) {
1470 error_propagate(errp, local_err);
1471 return;
1472 }
1473
1474 /* XIVE interrupt controller (POWER9) */
1475 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1476 "ic-bar", &error_fatal);
1477 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1478 "vc-bar", &error_fatal);
1479 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1480 "pc-bar", &error_fatal);
1481 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1482 "tm-bar", &error_fatal);
1483 object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1484 &error_abort);
1485 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1486 &local_err);
1487 if (local_err) {
1488 error_propagate(errp, local_err);
1489 return;
1490 }
1491 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1492 &chip9->xive.xscom_regs);
1493
1494 /* Processor Service Interface (PSI) Host Bridge */
1495 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1496 "bar", &error_fatal);
1497 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1498 if (local_err) {
1499 error_propagate(errp, local_err);
1500 return;
1501 }
1502 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1503 &PNV_PSI(psi9)->xscom_regs);
1504
1505 /* LPC */
1506 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1507 &error_abort);
1508 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1509 if (local_err) {
1510 error_propagate(errp, local_err);
1511 return;
1512 }
1513 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1514 &chip9->lpc.xscom_regs);
1515
1516 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1517 (uint64_t) PNV9_LPCM_BASE(chip));
1518
1519 /* Create the simplified OCC model */
1520 object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1521 &error_abort);
1522 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1523 if (local_err) {
1524 error_propagate(errp, local_err);
1525 return;
1526 }
1527 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1528
1529 /* OCC SRAM model */
1530 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1531 &chip9->occ.sram_regs);
1532
1533 /* HOMER */
1534 object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1535 &error_abort);
1536 object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1537 &local_err);
1538 if (local_err) {
1539 error_propagate(errp, local_err);
1540 return;
1541 }
1542 /* Homer Xscom region */
1543 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1544
1545 /* Homer mmio region */
1546 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1547 &chip9->homer.regs);
1548
1549 /* PHBs */
1550 pnv_chip_power9_phb_realize(chip, &local_err);
1551 if (local_err) {
1552 error_propagate(errp, local_err);
1553 return;
1554 }
1555 }
1556
1557 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1558 {
1559 addr &= (PNV9_XSCOM_SIZE - 1);
1560 return addr >> 3;
1561 }
1562
1563 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1564 {
1565 DeviceClass *dc = DEVICE_CLASS(klass);
1566 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1567
1568 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1569 k->cores_mask = POWER9_CORE_MASK;
1570 k->core_pir = pnv_chip_core_pir_p9;
1571 k->intc_create = pnv_chip_power9_intc_create;
1572 k->intc_reset = pnv_chip_power9_intc_reset;
1573 k->intc_destroy = pnv_chip_power9_intc_destroy;
1574 k->intc_print_info = pnv_chip_power9_intc_print_info;
1575 k->isa_create = pnv_chip_power9_isa_create;
1576 k->dt_populate = pnv_chip_power9_dt_populate;
1577 k->pic_print_info = pnv_chip_power9_pic_print_info;
1578 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1579 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1580 dc->desc = "PowerNV Chip POWER9";
1581 k->num_phbs = 6;
1582
1583 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1584 &k->parent_realize);
1585 }
1586
1587 static void pnv_chip_power10_instance_init(Object *obj)
1588 {
1589 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1590
1591 object_initialize_child(obj, "psi", &chip10->psi, sizeof(chip10->psi),
1592 TYPE_PNV10_PSI, &error_abort, NULL);
1593 object_initialize_child(obj, "lpc", &chip10->lpc, sizeof(chip10->lpc),
1594 TYPE_PNV10_LPC, &error_abort, NULL);
1595 }
1596
1597 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1598 {
1599 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1600 PnvChip *chip = PNV_CHIP(dev);
1601 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1602 Error *local_err = NULL;
1603
1604 /* XSCOM bridge is first */
1605 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1606 if (local_err) {
1607 error_propagate(errp, local_err);
1608 return;
1609 }
1610 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1611
1612 pcc->parent_realize(dev, &local_err);
1613 if (local_err) {
1614 error_propagate(errp, local_err);
1615 return;
1616 }
1617
1618 /* Processor Service Interface (PSI) Host Bridge */
1619 object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1620 "bar", &error_fatal);
1621 object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1622 &local_err);
1623 if (local_err) {
1624 error_propagate(errp, local_err);
1625 return;
1626 }
1627 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1628 &PNV_PSI(&chip10->psi)->xscom_regs);
1629
1630 /* LPC */
1631 object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1632 &error_abort);
1633 object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1634 &local_err);
1635 if (local_err) {
1636 error_propagate(errp, local_err);
1637 return;
1638 }
1639 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1640 &chip10->lpc.xscom_regs);
1641
1642 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1643 (uint64_t) PNV10_LPCM_BASE(chip));
1644 }
1645
1646 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1647 {
1648 addr &= (PNV10_XSCOM_SIZE - 1);
1649 return addr >> 3;
1650 }
1651
1652 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1653 {
1654 DeviceClass *dc = DEVICE_CLASS(klass);
1655 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1656
1657 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1658 k->cores_mask = POWER10_CORE_MASK;
1659 k->core_pir = pnv_chip_core_pir_p10;
1660 k->intc_create = pnv_chip_power10_intc_create;
1661 k->intc_reset = pnv_chip_power10_intc_reset;
1662 k->intc_destroy = pnv_chip_power10_intc_destroy;
1663 k->intc_print_info = pnv_chip_power10_intc_print_info;
1664 k->isa_create = pnv_chip_power10_isa_create;
1665 k->dt_populate = pnv_chip_power10_dt_populate;
1666 k->pic_print_info = pnv_chip_power10_pic_print_info;
1667 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1668 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1669 dc->desc = "PowerNV Chip POWER10";
1670
1671 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1672 &k->parent_realize);
1673 }
1674
1675 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1676 {
1677 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1678 int cores_max;
1679
1680 /*
1681 * No custom mask for this chip, let's use the default one from *
1682 * the chip class
1683 */
1684 if (!chip->cores_mask) {
1685 chip->cores_mask = pcc->cores_mask;
1686 }
1687
1688 /* filter alien core ids ! some are reserved */
1689 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1690 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1691 chip->cores_mask);
1692 return;
1693 }
1694 chip->cores_mask &= pcc->cores_mask;
1695
1696 /* now that we have a sane layout, let check the number of cores */
1697 cores_max = ctpop64(chip->cores_mask);
1698 if (chip->nr_cores > cores_max) {
1699 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1700 cores_max);
1701 return;
1702 }
1703 }
1704
1705 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1706 {
1707 Error *error = NULL;
1708 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1709 const char *typename = pnv_chip_core_typename(chip);
1710 int i, core_hwid;
1711 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1712
1713 if (!object_class_by_name(typename)) {
1714 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1715 return;
1716 }
1717
1718 /* Cores */
1719 pnv_chip_core_sanitize(chip, &error);
1720 if (error) {
1721 error_propagate(errp, error);
1722 return;
1723 }
1724
1725 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1726
1727 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1728 && (i < chip->nr_cores); core_hwid++) {
1729 char core_name[32];
1730 PnvCore *pnv_core;
1731 uint64_t xscom_core_base;
1732
1733 if (!(chip->cores_mask & (1ull << core_hwid))) {
1734 continue;
1735 }
1736
1737 pnv_core = PNV_CORE(object_new(typename));
1738
1739 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1740 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1741 &error_abort);
1742 chip->cores[i] = pnv_core;
1743 object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1744 "nr-threads", &error_fatal);
1745 object_property_set_int(OBJECT(pnv_core), core_hwid,
1746 CPU_CORE_PROP_CORE_ID, &error_fatal);
1747 object_property_set_int(OBJECT(pnv_core),
1748 pcc->core_pir(chip, core_hwid),
1749 "pir", &error_fatal);
1750 object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1751 "hrmor", &error_fatal);
1752 object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1753 &error_abort);
1754 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1755 &error_fatal);
1756
1757 /* Each core has an XSCOM MMIO region */
1758 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1759
1760 pnv_xscom_add_subregion(chip, xscom_core_base,
1761 &pnv_core->xscom_regs);
1762 i++;
1763 }
1764 }
1765
1766 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1767 {
1768 PnvChip *chip = PNV_CHIP(dev);
1769 Error *error = NULL;
1770
1771 /* Cores */
1772 pnv_chip_core_realize(chip, &error);
1773 if (error) {
1774 error_propagate(errp, error);
1775 return;
1776 }
1777 }
1778
1779 static Property pnv_chip_properties[] = {
1780 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1781 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1782 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1783 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1784 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1785 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1786 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1787 DEFINE_PROP_END_OF_LIST(),
1788 };
1789
1790 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1791 {
1792 DeviceClass *dc = DEVICE_CLASS(klass);
1793
1794 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1795 dc->realize = pnv_chip_realize;
1796 device_class_set_props(dc, pnv_chip_properties);
1797 dc->desc = "PowerNV Chip";
1798 }
1799
1800 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1801 {
1802 int i, j;
1803
1804 for (i = 0; i < chip->nr_cores; i++) {
1805 PnvCore *pc = chip->cores[i];
1806 CPUCore *cc = CPU_CORE(pc);
1807
1808 for (j = 0; j < cc->nr_threads; j++) {
1809 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1810 return pc->threads[j];
1811 }
1812 }
1813 }
1814 return NULL;
1815 }
1816
1817 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1818 {
1819 PnvMachineState *pnv = PNV_MACHINE(xi);
1820 int i, j;
1821
1822 for (i = 0; i < pnv->num_chips; i++) {
1823 PnvChip *chip = pnv->chips[i];
1824 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825
1826 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1827 return &chip8->psi.ics;
1828 }
1829 for (j = 0; j < chip->num_phbs; j++) {
1830 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1831 return &chip8->phbs[j].lsis;
1832 }
1833 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1834 return ICS(&chip8->phbs[j].msis);
1835 }
1836 }
1837 }
1838 return NULL;
1839 }
1840
1841 static void pnv_ics_resend(XICSFabric *xi)
1842 {
1843 PnvMachineState *pnv = PNV_MACHINE(xi);
1844 int i, j;
1845
1846 for (i = 0; i < pnv->num_chips; i++) {
1847 PnvChip *chip = pnv->chips[i];
1848 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1849
1850 ics_resend(&chip8->psi.ics);
1851 for (j = 0; j < chip->num_phbs; j++) {
1852 ics_resend(&chip8->phbs[j].lsis);
1853 ics_resend(ICS(&chip8->phbs[j].msis));
1854 }
1855 }
1856 }
1857
1858 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1859 {
1860 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1861
1862 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1863 }
1864
1865 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1866 Monitor *mon)
1867 {
1868 PnvMachineState *pnv = PNV_MACHINE(obj);
1869 int i;
1870 CPUState *cs;
1871
1872 CPU_FOREACH(cs) {
1873 PowerPCCPU *cpu = POWERPC_CPU(cs);
1874
1875 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1876 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1877 mon);
1878 }
1879
1880 for (i = 0; i < pnv->num_chips; i++) {
1881 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1882 }
1883 }
1884
1885 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1886 uint8_t nvt_blk, uint32_t nvt_idx,
1887 bool cam_ignore, uint8_t priority,
1888 uint32_t logic_serv,
1889 XiveTCTXMatch *match)
1890 {
1891 PnvMachineState *pnv = PNV_MACHINE(xfb);
1892 int total_count = 0;
1893 int i;
1894
1895 for (i = 0; i < pnv->num_chips; i++) {
1896 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1897 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1898 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1899 int count;
1900
1901 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1902 priority, logic_serv, match);
1903
1904 if (count < 0) {
1905 return count;
1906 }
1907
1908 total_count += count;
1909 }
1910
1911 return total_count;
1912 }
1913
1914 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1915 {
1916 MachineClass *mc = MACHINE_CLASS(oc);
1917 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1918 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1919 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1920
1921 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1922 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1923
1924 xic->icp_get = pnv_icp_get;
1925 xic->ics_get = pnv_ics_get;
1926 xic->ics_resend = pnv_ics_resend;
1927
1928 pmc->compat = compat;
1929 pmc->compat_size = sizeof(compat);
1930 }
1931
1932 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1933 {
1934 MachineClass *mc = MACHINE_CLASS(oc);
1935 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1936 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1937 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1938
1939 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1940 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1941 xfc->match_nvt = pnv_match_nvt;
1942
1943 mc->alias = "powernv";
1944
1945 pmc->compat = compat;
1946 pmc->compat_size = sizeof(compat);
1947 pmc->dt_power_mgt = pnv_dt_power_mgt;
1948 }
1949
1950 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1951 {
1952 MachineClass *mc = MACHINE_CLASS(oc);
1953 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1954 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1955
1956 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1957 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1958
1959 pmc->compat = compat;
1960 pmc->compat_size = sizeof(compat);
1961 pmc->dt_power_mgt = pnv_dt_power_mgt;
1962 }
1963
1964 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1965 {
1966 PnvMachineState *pnv = PNV_MACHINE(obj);
1967
1968 return !!pnv->fw_load_addr;
1969 }
1970
1971 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1972 {
1973 PnvMachineState *pnv = PNV_MACHINE(obj);
1974
1975 if (value) {
1976 pnv->fw_load_addr = 0x8000000;
1977 }
1978 }
1979
1980 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1981 {
1982 MachineClass *mc = MACHINE_CLASS(oc);
1983 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1984
1985 mc->desc = "IBM PowerNV (Non-Virtualized)";
1986 mc->init = pnv_init;
1987 mc->reset = pnv_reset;
1988 mc->max_cpus = MAX_CPUS;
1989 /* Pnv provides a AHCI device for storage */
1990 mc->block_default_type = IF_IDE;
1991 mc->no_parallel = 1;
1992 mc->default_boot_order = NULL;
1993 /*
1994 * RAM defaults to less than 2048 for 32-bit hosts, and large
1995 * enough to fit the maximum initrd size at it's load address
1996 */
1997 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1998 mc->default_ram_id = "pnv.ram";
1999 ispc->print_info = pnv_pic_print_info;
2000
2001 object_class_property_add_bool(oc, "hb-mode",
2002 pnv_machine_get_hb, pnv_machine_set_hb,
2003 &error_abort);
2004 object_class_property_set_description(oc, "hb-mode",
2005 "Use a hostboot like boot loader",
2006 NULL);
2007 }
2008
2009 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2010 { \
2011 .name = type, \
2012 .class_init = class_initfn, \
2013 .parent = TYPE_PNV8_CHIP, \
2014 }
2015
2016 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2017 { \
2018 .name = type, \
2019 .class_init = class_initfn, \
2020 .parent = TYPE_PNV9_CHIP, \
2021 }
2022
2023 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2024 { \
2025 .name = type, \
2026 .class_init = class_initfn, \
2027 .parent = TYPE_PNV10_CHIP, \
2028 }
2029
2030 static const TypeInfo types[] = {
2031 {
2032 .name = MACHINE_TYPE_NAME("powernv10"),
2033 .parent = TYPE_PNV_MACHINE,
2034 .class_init = pnv_machine_power10_class_init,
2035 },
2036 {
2037 .name = MACHINE_TYPE_NAME("powernv9"),
2038 .parent = TYPE_PNV_MACHINE,
2039 .class_init = pnv_machine_power9_class_init,
2040 .interfaces = (InterfaceInfo[]) {
2041 { TYPE_XIVE_FABRIC },
2042 { },
2043 },
2044 },
2045 {
2046 .name = MACHINE_TYPE_NAME("powernv8"),
2047 .parent = TYPE_PNV_MACHINE,
2048 .class_init = pnv_machine_power8_class_init,
2049 .interfaces = (InterfaceInfo[]) {
2050 { TYPE_XICS_FABRIC },
2051 { },
2052 },
2053 },
2054 {
2055 .name = TYPE_PNV_MACHINE,
2056 .parent = TYPE_MACHINE,
2057 .abstract = true,
2058 .instance_size = sizeof(PnvMachineState),
2059 .class_init = pnv_machine_class_init,
2060 .class_size = sizeof(PnvMachineClass),
2061 .interfaces = (InterfaceInfo[]) {
2062 { TYPE_INTERRUPT_STATS_PROVIDER },
2063 { },
2064 },
2065 },
2066 {
2067 .name = TYPE_PNV_CHIP,
2068 .parent = TYPE_SYS_BUS_DEVICE,
2069 .class_init = pnv_chip_class_init,
2070 .instance_size = sizeof(PnvChip),
2071 .class_size = sizeof(PnvChipClass),
2072 .abstract = true,
2073 },
2074
2075 /*
2076 * P10 chip and variants
2077 */
2078 {
2079 .name = TYPE_PNV10_CHIP,
2080 .parent = TYPE_PNV_CHIP,
2081 .instance_init = pnv_chip_power10_instance_init,
2082 .instance_size = sizeof(Pnv10Chip),
2083 },
2084 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2085
2086 /*
2087 * P9 chip and variants
2088 */
2089 {
2090 .name = TYPE_PNV9_CHIP,
2091 .parent = TYPE_PNV_CHIP,
2092 .instance_init = pnv_chip_power9_instance_init,
2093 .instance_size = sizeof(Pnv9Chip),
2094 },
2095 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2096
2097 /*
2098 * P8 chip and variants
2099 */
2100 {
2101 .name = TYPE_PNV8_CHIP,
2102 .parent = TYPE_PNV_CHIP,
2103 .instance_init = pnv_chip_power8_instance_init,
2104 .instance_size = sizeof(Pnv8Chip),
2105 },
2106 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2107 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2108 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2109 pnv_chip_power8nvl_class_init),
2110 };
2111
2112 DEFINE_TYPES(types)