]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
machine: Refactor smp-related call chains to pass MachineState
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/device_tree.h"
28 #include "hw/hw.h"
29 #include "target/ppc/cpu.h"
30 #include "qemu/log.h"
31 #include "hw/ppc/fdt.h"
32 #include "hw/ppc/ppc.h"
33 #include "hw/ppc/pnv.h"
34 #include "hw/ppc/pnv_core.h"
35 #include "hw/loader.h"
36 #include "exec/address-spaces.h"
37 #include "qapi/visitor.h"
38 #include "monitor/monitor.h"
39 #include "hw/intc/intc.h"
40 #include "hw/ipmi/ipmi.h"
41 #include "target/ppc/mmu-hash64.h"
42
43 #include "hw/ppc/xics.h"
44 #include "hw/ppc/pnv_xscom.h"
45
46 #include "hw/isa/isa.h"
47 #include "hw/char/serial.h"
48 #include "hw/timer/mc146818rtc.h"
49
50 #include <libfdt.h>
51
52 #define FDT_MAX_SIZE (1 * MiB)
53
54 #define FW_FILE_NAME "skiboot.lid"
55 #define FW_LOAD_ADDR 0x0
56 #define FW_MAX_SIZE (4 * MiB)
57
58 #define KERNEL_LOAD_ADDR 0x20000000
59 #define KERNEL_MAX_SIZE (256 * MiB)
60 #define INITRD_LOAD_ADDR 0x60000000
61 #define INITRD_MAX_SIZE (256 * MiB)
62
63 static const char *pnv_chip_core_typename(const PnvChip *o)
64 {
65 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
66 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
67 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
68 const char *core_type = object_class_get_name(object_class_by_name(s));
69 g_free(s);
70 return core_type;
71 }
72
73 /*
74 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
75 * 4 * 4 sockets * 12 cores * 8 threads = 1536
76 * Let's make it 2^11
77 */
78 #define MAX_CPUS 2048
79
80 /*
81 * Memory nodes are created by hostboot, one for each range of memory
82 * that has a different "affinity". In practice, it means one range
83 * per chip.
84 */
85 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
86 {
87 char *mem_name;
88 uint64_t mem_reg_property[2];
89 int off;
90
91 mem_reg_property[0] = cpu_to_be64(start);
92 mem_reg_property[1] = cpu_to_be64(size);
93
94 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
95 off = fdt_add_subnode(fdt, 0, mem_name);
96 g_free(mem_name);
97
98 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
99 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
100 sizeof(mem_reg_property))));
101 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
102 }
103
104 static int get_cpus_node(void *fdt)
105 {
106 int cpus_offset = fdt_path_offset(fdt, "/cpus");
107
108 if (cpus_offset < 0) {
109 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
110 if (cpus_offset) {
111 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
112 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
113 }
114 }
115 _FDT(cpus_offset);
116 return cpus_offset;
117 }
118
119 /*
120 * The PowerNV cores (and threads) need to use real HW ids and not an
121 * incremental index like it has been done on other platforms. This HW
122 * id is stored in the CPU PIR, it is used to create cpu nodes in the
123 * device tree, used in XSCOM to address cores and in interrupt
124 * servers.
125 */
126 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
127 {
128 PowerPCCPU *cpu = pc->threads[0];
129 CPUState *cs = CPU(cpu);
130 DeviceClass *dc = DEVICE_GET_CLASS(cs);
131 int smt_threads = CPU_CORE(pc)->nr_threads;
132 CPUPPCState *env = &cpu->env;
133 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
134 uint32_t servers_prop[smt_threads];
135 int i;
136 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
137 0xffffffff, 0xffffffff};
138 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
139 uint32_t cpufreq = 1000000000;
140 uint32_t page_sizes_prop[64];
141 size_t page_sizes_prop_size;
142 const uint8_t pa_features[] = { 24, 0,
143 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
144 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
145 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
146 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
147 int offset;
148 char *nodename;
149 int cpus_offset = get_cpus_node(fdt);
150
151 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
152 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
153 _FDT(offset);
154 g_free(nodename);
155
156 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
157
158 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
159 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
160 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
161
162 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
163 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
164 env->dcache_line_size)));
165 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
166 env->dcache_line_size)));
167 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
168 env->icache_line_size)));
169 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
170 env->icache_line_size)));
171
172 if (pcc->l1_dcache_size) {
173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
174 pcc->l1_dcache_size)));
175 } else {
176 warn_report("Unknown L1 dcache size for cpu");
177 }
178 if (pcc->l1_icache_size) {
179 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
180 pcc->l1_icache_size)));
181 } else {
182 warn_report("Unknown L1 icache size for cpu");
183 }
184
185 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
186 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
187 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
188 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
189 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
190
191 if (env->spr_cb[SPR_PURR].oea_read) {
192 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
193 }
194
195 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
196 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
197 segs, sizeof(segs))));
198 }
199
200 /* Advertise VMX/VSX (vector extensions) if available
201 * 0 / no property == no vector extensions
202 * 1 == VMX / Altivec available
203 * 2 == VSX available */
204 if (env->insns_flags & PPC_ALTIVEC) {
205 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
206
207 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
208 }
209
210 /* Advertise DFP (Decimal Floating Point) if available
211 * 0 / no property == no DFP
212 * 1 == DFP available */
213 if (env->insns_flags2 & PPC2_DFP) {
214 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
215 }
216
217 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
218 sizeof(page_sizes_prop));
219 if (page_sizes_prop_size) {
220 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
221 page_sizes_prop, page_sizes_prop_size)));
222 }
223
224 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
225 pa_features, sizeof(pa_features))));
226
227 /* Build interrupt servers properties */
228 for (i = 0; i < smt_threads; i++) {
229 servers_prop[i] = cpu_to_be32(pc->pir + i);
230 }
231 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
232 servers_prop, sizeof(servers_prop))));
233 }
234
235 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
236 uint32_t nr_threads)
237 {
238 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
239 char *name;
240 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
241 uint32_t irange[2], i, rsize;
242 uint64_t *reg;
243 int offset;
244
245 irange[0] = cpu_to_be32(pir);
246 irange[1] = cpu_to_be32(nr_threads);
247
248 rsize = sizeof(uint64_t) * 2 * nr_threads;
249 reg = g_malloc(rsize);
250 for (i = 0; i < nr_threads; i++) {
251 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
252 reg[i * 2 + 1] = cpu_to_be64(0x1000);
253 }
254
255 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
256 offset = fdt_add_subnode(fdt, 0, name);
257 _FDT(offset);
258 g_free(name);
259
260 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
261 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
262 _FDT((fdt_setprop_string(fdt, offset, "device_type",
263 "PowerPC-External-Interrupt-Presentation")));
264 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
265 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
266 irange, sizeof(irange))));
267 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
268 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
269 g_free(reg);
270 }
271
272 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
273 {
274 const char *typename = pnv_chip_core_typename(chip);
275 size_t typesize = object_type_get_instance_size(typename);
276 int i;
277
278 pnv_dt_xscom(chip, fdt, 0);
279
280 for (i = 0; i < chip->nr_cores; i++) {
281 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
282
283 pnv_dt_core(chip, pnv_core, fdt);
284
285 /* Interrupt Control Presenters (ICP). One per core. */
286 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
287 }
288
289 if (chip->ram_size) {
290 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
291 }
292 }
293
294 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
295 {
296 const char *typename = pnv_chip_core_typename(chip);
297 size_t typesize = object_type_get_instance_size(typename);
298 int i;
299
300 pnv_dt_xscom(chip, fdt, 0);
301
302 for (i = 0; i < chip->nr_cores; i++) {
303 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
304
305 pnv_dt_core(chip, pnv_core, fdt);
306 }
307
308 if (chip->ram_size) {
309 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
310 }
311
312 pnv_dt_lpc(chip, fdt, 0);
313 }
314
315 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
316 {
317 uint32_t io_base = d->ioport_id;
318 uint32_t io_regs[] = {
319 cpu_to_be32(1),
320 cpu_to_be32(io_base),
321 cpu_to_be32(2)
322 };
323 char *name;
324 int node;
325
326 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
327 node = fdt_add_subnode(fdt, lpc_off, name);
328 _FDT(node);
329 g_free(name);
330
331 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
332 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
333 }
334
335 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
336 {
337 const char compatible[] = "ns16550\0pnpPNP,501";
338 uint32_t io_base = d->ioport_id;
339 uint32_t io_regs[] = {
340 cpu_to_be32(1),
341 cpu_to_be32(io_base),
342 cpu_to_be32(8)
343 };
344 char *name;
345 int node;
346
347 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
348 node = fdt_add_subnode(fdt, lpc_off, name);
349 _FDT(node);
350 g_free(name);
351
352 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
353 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
354 sizeof(compatible))));
355
356 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
357 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
358 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
359 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
360 fdt_get_phandle(fdt, lpc_off))));
361
362 /* This is needed by Linux */
363 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
364 }
365
366 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
367 {
368 const char compatible[] = "bt\0ipmi-bt";
369 uint32_t io_base;
370 uint32_t io_regs[] = {
371 cpu_to_be32(1),
372 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
373 cpu_to_be32(3)
374 };
375 uint32_t irq;
376 char *name;
377 int node;
378
379 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
380 io_regs[1] = cpu_to_be32(io_base);
381
382 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
383
384 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385 node = fdt_add_subnode(fdt, lpc_off, name);
386 _FDT(node);
387 g_free(name);
388
389 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391 sizeof(compatible))));
392
393 /* Mark it as reserved to avoid Linux trying to claim it */
394 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
395 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
396 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397 fdt_get_phandle(fdt, lpc_off))));
398 }
399
400 typedef struct ForeachPopulateArgs {
401 void *fdt;
402 int offset;
403 } ForeachPopulateArgs;
404
405 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
406 {
407 ForeachPopulateArgs *args = opaque;
408 ISADevice *d = ISA_DEVICE(dev);
409
410 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
411 pnv_dt_rtc(d, args->fdt, args->offset);
412 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
413 pnv_dt_serial(d, args->fdt, args->offset);
414 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
415 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
416 } else {
417 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
418 d->ioport_id);
419 }
420
421 return 0;
422 }
423
424 /* The default LPC bus of a multichip system is on chip 0. It's
425 * recognized by the firmware (skiboot) using a "primary" property.
426 */
427 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
428 {
429 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
430 ForeachPopulateArgs args = {
431 .fdt = fdt,
432 .offset = isa_offset,
433 };
434
435 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
436
437 /* ISA devices are not necessarily parented to the ISA bus so we
438 * can not use object_child_foreach() */
439 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
440 &args);
441 }
442
443 static void pnv_dt_power_mgt(void *fdt)
444 {
445 int off;
446
447 off = fdt_add_subnode(fdt, 0, "ibm,opal");
448 off = fdt_add_subnode(fdt, off, "power-mgt");
449
450 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
451 }
452
453 static void *pnv_dt_create(MachineState *machine)
454 {
455 const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
456 const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
457 PnvMachineState *pnv = PNV_MACHINE(machine);
458 void *fdt;
459 char *buf;
460 int off;
461 int i;
462
463 fdt = g_malloc0(FDT_MAX_SIZE);
464 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
465
466 /* Root node */
467 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
468 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
469 _FDT((fdt_setprop_string(fdt, 0, "model",
470 "IBM PowerNV (emulated by qemu)")));
471 if (pnv_is_power9(pnv)) {
472 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
473 sizeof(plat_compat9))));
474 } else {
475 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
476 sizeof(plat_compat8))));
477 }
478
479
480 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
481 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
482 if (qemu_uuid_set) {
483 _FDT((fdt_property_string(fdt, "system-id", buf)));
484 }
485 g_free(buf);
486
487 off = fdt_add_subnode(fdt, 0, "chosen");
488 if (machine->kernel_cmdline) {
489 _FDT((fdt_setprop_string(fdt, off, "bootargs",
490 machine->kernel_cmdline)));
491 }
492
493 if (pnv->initrd_size) {
494 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
495 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
496
497 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
498 &start_prop, sizeof(start_prop))));
499 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
500 &end_prop, sizeof(end_prop))));
501 }
502
503 /* Populate device tree for each chip */
504 for (i = 0; i < pnv->num_chips; i++) {
505 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
506 }
507
508 /* Populate ISA devices on chip 0 */
509 pnv_dt_isa(pnv, fdt);
510
511 if (pnv->bmc) {
512 pnv_dt_bmc_sensors(pnv->bmc, fdt);
513 }
514
515 /* Create an extra node for power management on Power9 */
516 if (pnv_is_power9(pnv)) {
517 pnv_dt_power_mgt(fdt);
518 }
519
520 return fdt;
521 }
522
523 static void pnv_powerdown_notify(Notifier *n, void *opaque)
524 {
525 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
526
527 if (pnv->bmc) {
528 pnv_bmc_powerdown(pnv->bmc);
529 }
530 }
531
532 static void pnv_reset(MachineState *machine)
533 {
534 PnvMachineState *pnv = PNV_MACHINE(machine);
535 void *fdt;
536 Object *obj;
537
538 qemu_devices_reset();
539
540 /* OpenPOWER systems have a BMC, which can be defined on the
541 * command line with:
542 *
543 * -device ipmi-bmc-sim,id=bmc0
544 *
545 * This is the internal simulator but it could also be an external
546 * BMC.
547 */
548 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
549 if (obj) {
550 pnv->bmc = IPMI_BMC(obj);
551 }
552
553 fdt = pnv_dt_create(machine);
554
555 /* Pack resulting tree */
556 _FDT((fdt_pack(fdt)));
557
558 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
559 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
560 }
561
562 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
563 {
564 Pnv8Chip *chip8 = PNV8_CHIP(chip);
565 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
566 }
567
568 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
569 {
570 Pnv8Chip *chip8 = PNV8_CHIP(chip);
571 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
572 }
573
574 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
575 {
576 Pnv9Chip *chip9 = PNV9_CHIP(chip);
577 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
578 }
579
580 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
581 {
582 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
583 }
584
585 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
586 {
587 Pnv8Chip *chip8 = PNV8_CHIP(chip);
588
589 ics_pic_print_info(&chip8->psi.ics, mon);
590 }
591
592 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
593 {
594 Pnv9Chip *chip9 = PNV9_CHIP(chip);
595
596 pnv_xive_pic_print_info(&chip9->xive, mon);
597 pnv_psi_pic_print_info(&chip9->psi, mon);
598 }
599
600 static void pnv_init(MachineState *machine)
601 {
602 PnvMachineState *pnv = PNV_MACHINE(machine);
603 MemoryRegion *ram;
604 char *fw_filename;
605 long fw_size;
606 int i;
607 char *chip_typename;
608
609 /* allocate RAM */
610 if (machine->ram_size < (1 * GiB)) {
611 warn_report("skiboot may not work with < 1GB of RAM");
612 }
613
614 ram = g_new(MemoryRegion, 1);
615 memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
616 machine->ram_size);
617 memory_region_add_subregion(get_system_memory(), 0, ram);
618
619 /* load skiboot firmware */
620 if (bios_name == NULL) {
621 bios_name = FW_FILE_NAME;
622 }
623
624 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
625 if (!fw_filename) {
626 error_report("Could not find OPAL firmware '%s'", bios_name);
627 exit(1);
628 }
629
630 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
631 if (fw_size < 0) {
632 error_report("Could not load OPAL firmware '%s'", fw_filename);
633 exit(1);
634 }
635 g_free(fw_filename);
636
637 /* load kernel */
638 if (machine->kernel_filename) {
639 long kernel_size;
640
641 kernel_size = load_image_targphys(machine->kernel_filename,
642 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
643 if (kernel_size < 0) {
644 error_report("Could not load kernel '%s'",
645 machine->kernel_filename);
646 exit(1);
647 }
648 }
649
650 /* load initrd */
651 if (machine->initrd_filename) {
652 pnv->initrd_base = INITRD_LOAD_ADDR;
653 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
654 pnv->initrd_base, INITRD_MAX_SIZE);
655 if (pnv->initrd_size < 0) {
656 error_report("Could not load initial ram disk '%s'",
657 machine->initrd_filename);
658 exit(1);
659 }
660 }
661
662 /* Create the processor chips */
663 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
664 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
665 i, machine->cpu_type);
666 if (!object_class_by_name(chip_typename)) {
667 error_report("invalid CPU model '%.*s' for %s machine",
668 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
669 exit(1);
670 }
671
672 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
673 for (i = 0; i < pnv->num_chips; i++) {
674 char chip_name[32];
675 Object *chip = object_new(chip_typename);
676
677 pnv->chips[i] = PNV_CHIP(chip);
678
679 /* TODO: put all the memory in one node on chip 0 until we find a
680 * way to specify different ranges for each chip
681 */
682 if (i == 0) {
683 object_property_set_int(chip, machine->ram_size, "ram-size",
684 &error_fatal);
685 }
686
687 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
688 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
689 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
690 &error_fatal);
691 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
692 object_property_set_bool(chip, true, "realized", &error_fatal);
693 }
694 g_free(chip_typename);
695
696 /* Instantiate ISA bus on chip 0 */
697 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
698
699 /* Create serial port */
700 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
701
702 /* Create an RTC ISA device too */
703 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
704
705 /* OpenPOWER systems use a IPMI SEL Event message to notify the
706 * host to powerdown */
707 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
708 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
709 }
710
711 /*
712 * 0:21 Reserved - Read as zeros
713 * 22:24 Chip ID
714 * 25:28 Core number
715 * 29:31 Thread ID
716 */
717 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
718 {
719 return (chip->chip_id << 7) | (core_id << 3);
720 }
721
722 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
723 Error **errp)
724 {
725 Error *local_err = NULL;
726 Object *obj;
727 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
728
729 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
730 &local_err);
731 if (local_err) {
732 error_propagate(errp, local_err);
733 return;
734 }
735
736 pnv_cpu->intc = obj;
737 }
738
739 /*
740 * 0:48 Reserved - Read as zeroes
741 * 49:52 Node ID
742 * 53:55 Chip ID
743 * 56 Reserved - Read as zero
744 * 57:61 Core number
745 * 62:63 Thread ID
746 *
747 * We only care about the lower bits. uint32_t is fine for the moment.
748 */
749 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
750 {
751 return (chip->chip_id << 8) | (core_id << 2);
752 }
753
754 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
755 Error **errp)
756 {
757 Pnv9Chip *chip9 = PNV9_CHIP(chip);
758 Error *local_err = NULL;
759 Object *obj;
760 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
761
762 /*
763 * The core creates its interrupt presenter but the XIVE interrupt
764 * controller object is initialized afterwards. Hopefully, it's
765 * only used at runtime.
766 */
767 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
768 if (local_err) {
769 error_propagate(errp, local_err);
770 return;
771 }
772
773 pnv_cpu->intc = obj;
774 }
775
776 /* Allowed core identifiers on a POWER8 Processor Chip :
777 *
778 * <EX0 reserved>
779 * EX1 - Venice only
780 * EX2 - Venice only
781 * EX3 - Venice only
782 * EX4
783 * EX5
784 * EX6
785 * <EX7,8 reserved> <reserved>
786 * EX9 - Venice only
787 * EX10 - Venice only
788 * EX11 - Venice only
789 * EX12
790 * EX13
791 * EX14
792 * <EX15 reserved>
793 */
794 #define POWER8E_CORE_MASK (0x7070ull)
795 #define POWER8_CORE_MASK (0x7e7eull)
796
797 /*
798 * POWER9 has 24 cores, ids starting at 0x0
799 */
800 #define POWER9_CORE_MASK (0xffffffffffffffull)
801
802 static void pnv_chip_power8_instance_init(Object *obj)
803 {
804 Pnv8Chip *chip8 = PNV8_CHIP(obj);
805
806 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
807 TYPE_PNV8_PSI, &error_abort, NULL);
808 object_property_add_const_link(OBJECT(&chip8->psi), "xics",
809 OBJECT(qdev_get_machine()), &error_abort);
810
811 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
812 TYPE_PNV8_LPC, &error_abort, NULL);
813 object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
814 OBJECT(&chip8->psi), &error_abort);
815
816 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
817 TYPE_PNV8_OCC, &error_abort, NULL);
818 object_property_add_const_link(OBJECT(&chip8->occ), "psi",
819 OBJECT(&chip8->psi), &error_abort);
820 }
821
822 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
823 {
824 PnvChip *chip = PNV_CHIP(chip8);
825 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
826 const char *typename = pnv_chip_core_typename(chip);
827 size_t typesize = object_type_get_instance_size(typename);
828 int i, j;
829 char *name;
830 XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
831
832 name = g_strdup_printf("icp-%x", chip->chip_id);
833 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
834 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
835 g_free(name);
836
837 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
838
839 /* Map the ICP registers for each thread */
840 for (i = 0; i < chip->nr_cores; i++) {
841 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
842 int core_hwid = CPU_CORE(pnv_core)->core_id;
843
844 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
845 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
846 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
847
848 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
849 &icp->mmio);
850 }
851 }
852 }
853
854 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
855 {
856 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
857 PnvChip *chip = PNV_CHIP(dev);
858 Pnv8Chip *chip8 = PNV8_CHIP(dev);
859 Pnv8Psi *psi8 = &chip8->psi;
860 Error *local_err = NULL;
861
862 /* XSCOM bridge is first */
863 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
864 if (local_err) {
865 error_propagate(errp, local_err);
866 return;
867 }
868 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
869
870 pcc->parent_realize(dev, &local_err);
871 if (local_err) {
872 error_propagate(errp, local_err);
873 return;
874 }
875
876 /* Processor Service Interface (PSI) Host Bridge */
877 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
878 "bar", &error_fatal);
879 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
880 if (local_err) {
881 error_propagate(errp, local_err);
882 return;
883 }
884 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
885 &PNV_PSI(psi8)->xscom_regs);
886
887 /* Create LPC controller */
888 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
889 &error_fatal);
890 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
891
892 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
893 (uint64_t) PNV_XSCOM_BASE(chip),
894 PNV_XSCOM_LPC_BASE);
895
896 /* Interrupt Management Area. This is the memory region holding
897 * all the Interrupt Control Presenter (ICP) registers */
898 pnv_chip_icp_realize(chip8, &local_err);
899 if (local_err) {
900 error_propagate(errp, local_err);
901 return;
902 }
903
904 /* Create the simplified OCC model */
905 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
906 if (local_err) {
907 error_propagate(errp, local_err);
908 return;
909 }
910 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
911 }
912
913 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
914 {
915 DeviceClass *dc = DEVICE_CLASS(klass);
916 PnvChipClass *k = PNV_CHIP_CLASS(klass);
917
918 k->chip_type = PNV_CHIP_POWER8E;
919 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
920 k->cores_mask = POWER8E_CORE_MASK;
921 k->core_pir = pnv_chip_core_pir_p8;
922 k->intc_create = pnv_chip_power8_intc_create;
923 k->isa_create = pnv_chip_power8_isa_create;
924 k->dt_populate = pnv_chip_power8_dt_populate;
925 k->pic_print_info = pnv_chip_power8_pic_print_info;
926 dc->desc = "PowerNV Chip POWER8E";
927
928 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
929 &k->parent_realize);
930 }
931
932 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
933 {
934 DeviceClass *dc = DEVICE_CLASS(klass);
935 PnvChipClass *k = PNV_CHIP_CLASS(klass);
936
937 k->chip_type = PNV_CHIP_POWER8;
938 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
939 k->cores_mask = POWER8_CORE_MASK;
940 k->core_pir = pnv_chip_core_pir_p8;
941 k->intc_create = pnv_chip_power8_intc_create;
942 k->isa_create = pnv_chip_power8_isa_create;
943 k->dt_populate = pnv_chip_power8_dt_populate;
944 k->pic_print_info = pnv_chip_power8_pic_print_info;
945 dc->desc = "PowerNV Chip POWER8";
946
947 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
948 &k->parent_realize);
949 }
950
951 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
952 {
953 DeviceClass *dc = DEVICE_CLASS(klass);
954 PnvChipClass *k = PNV_CHIP_CLASS(klass);
955
956 k->chip_type = PNV_CHIP_POWER8NVL;
957 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
958 k->cores_mask = POWER8_CORE_MASK;
959 k->core_pir = pnv_chip_core_pir_p8;
960 k->intc_create = pnv_chip_power8_intc_create;
961 k->isa_create = pnv_chip_power8nvl_isa_create;
962 k->dt_populate = pnv_chip_power8_dt_populate;
963 k->pic_print_info = pnv_chip_power8_pic_print_info;
964 dc->desc = "PowerNV Chip POWER8NVL";
965
966 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
967 &k->parent_realize);
968 }
969
970 static void pnv_chip_power9_instance_init(Object *obj)
971 {
972 Pnv9Chip *chip9 = PNV9_CHIP(obj);
973
974 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
975 TYPE_PNV_XIVE, &error_abort, NULL);
976 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
977 &error_abort);
978
979 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
980 TYPE_PNV9_PSI, &error_abort, NULL);
981 object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
982 &error_abort);
983
984 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
985 TYPE_PNV9_LPC, &error_abort, NULL);
986 object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
987 OBJECT(&chip9->psi), &error_abort);
988
989 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
990 TYPE_PNV9_OCC, &error_abort, NULL);
991 object_property_add_const_link(OBJECT(&chip9->occ), "psi",
992 OBJECT(&chip9->psi), &error_abort);
993 }
994
995 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
996 {
997 PnvChip *chip = PNV_CHIP(chip9);
998 const char *typename = pnv_chip_core_typename(chip);
999 size_t typesize = object_type_get_instance_size(typename);
1000 int i;
1001
1002 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1003 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1004
1005 for (i = 0; i < chip9->nr_quads; i++) {
1006 char eq_name[32];
1007 PnvQuad *eq = &chip9->quads[i];
1008 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1009 int core_id = CPU_CORE(pnv_core)->core_id;
1010
1011 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1012 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1013 TYPE_PNV_QUAD, &error_fatal, NULL);
1014
1015 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1016 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1017
1018 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1019 &eq->xscom_regs);
1020 }
1021 }
1022
1023 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1024 {
1025 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1026 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1027 PnvChip *chip = PNV_CHIP(dev);
1028 Pnv9Psi *psi9 = &chip9->psi;
1029 Error *local_err = NULL;
1030
1031 /* XSCOM bridge is first */
1032 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1033 if (local_err) {
1034 error_propagate(errp, local_err);
1035 return;
1036 }
1037 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1038
1039 pcc->parent_realize(dev, &local_err);
1040 if (local_err) {
1041 error_propagate(errp, local_err);
1042 return;
1043 }
1044
1045 pnv_chip_quad_realize(chip9, &local_err);
1046 if (local_err) {
1047 error_propagate(errp, local_err);
1048 return;
1049 }
1050
1051 /* XIVE interrupt controller (POWER9) */
1052 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1053 "ic-bar", &error_fatal);
1054 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1055 "vc-bar", &error_fatal);
1056 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1057 "pc-bar", &error_fatal);
1058 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1059 "tm-bar", &error_fatal);
1060 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1061 &local_err);
1062 if (local_err) {
1063 error_propagate(errp, local_err);
1064 return;
1065 }
1066 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1067 &chip9->xive.xscom_regs);
1068
1069 /* Processor Service Interface (PSI) Host Bridge */
1070 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1071 "bar", &error_fatal);
1072 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1073 if (local_err) {
1074 error_propagate(errp, local_err);
1075 return;
1076 }
1077 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1078 &PNV_PSI(psi9)->xscom_regs);
1079
1080 /* LPC */
1081 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1082 if (local_err) {
1083 error_propagate(errp, local_err);
1084 return;
1085 }
1086 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1087 &chip9->lpc.xscom_regs);
1088
1089 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1090 (uint64_t) PNV9_LPCM_BASE(chip));
1091
1092 /* Create the simplified OCC model */
1093 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1094 if (local_err) {
1095 error_propagate(errp, local_err);
1096 return;
1097 }
1098 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1099 }
1100
1101 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1102 {
1103 DeviceClass *dc = DEVICE_CLASS(klass);
1104 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1105
1106 k->chip_type = PNV_CHIP_POWER9;
1107 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1108 k->cores_mask = POWER9_CORE_MASK;
1109 k->core_pir = pnv_chip_core_pir_p9;
1110 k->intc_create = pnv_chip_power9_intc_create;
1111 k->isa_create = pnv_chip_power9_isa_create;
1112 k->dt_populate = pnv_chip_power9_dt_populate;
1113 k->pic_print_info = pnv_chip_power9_pic_print_info;
1114 dc->desc = "PowerNV Chip POWER9";
1115
1116 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1117 &k->parent_realize);
1118 }
1119
1120 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1121 {
1122 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1123 int cores_max;
1124
1125 /*
1126 * No custom mask for this chip, let's use the default one from *
1127 * the chip class
1128 */
1129 if (!chip->cores_mask) {
1130 chip->cores_mask = pcc->cores_mask;
1131 }
1132
1133 /* filter alien core ids ! some are reserved */
1134 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1135 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1136 chip->cores_mask);
1137 return;
1138 }
1139 chip->cores_mask &= pcc->cores_mask;
1140
1141 /* now that we have a sane layout, let check the number of cores */
1142 cores_max = ctpop64(chip->cores_mask);
1143 if (chip->nr_cores > cores_max) {
1144 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1145 cores_max);
1146 return;
1147 }
1148 }
1149
1150 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1151 {
1152 Error *error = NULL;
1153 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1154 const char *typename = pnv_chip_core_typename(chip);
1155 size_t typesize = object_type_get_instance_size(typename);
1156 int i, core_hwid;
1157
1158 if (!object_class_by_name(typename)) {
1159 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1160 return;
1161 }
1162
1163 /* Cores */
1164 pnv_chip_core_sanitize(chip, &error);
1165 if (error) {
1166 error_propagate(errp, error);
1167 return;
1168 }
1169
1170 chip->cores = g_malloc0(typesize * chip->nr_cores);
1171
1172 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1173 && (i < chip->nr_cores); core_hwid++) {
1174 char core_name[32];
1175 void *pnv_core = chip->cores + i * typesize;
1176 uint64_t xscom_core_base;
1177
1178 if (!(chip->cores_mask & (1ull << core_hwid))) {
1179 continue;
1180 }
1181
1182 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1183 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1184 typename, &error_fatal, NULL);
1185 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
1186 &error_fatal);
1187 object_property_set_int(OBJECT(pnv_core), core_hwid,
1188 CPU_CORE_PROP_CORE_ID, &error_fatal);
1189 object_property_set_int(OBJECT(pnv_core),
1190 pcc->core_pir(chip, core_hwid),
1191 "pir", &error_fatal);
1192 object_property_add_const_link(OBJECT(pnv_core), "chip",
1193 OBJECT(chip), &error_fatal);
1194 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1195 &error_fatal);
1196
1197 /* Each core has an XSCOM MMIO region */
1198 if (!pnv_chip_is_power9(chip)) {
1199 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1200 } else {
1201 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1202 }
1203
1204 pnv_xscom_add_subregion(chip, xscom_core_base,
1205 &PNV_CORE(pnv_core)->xscom_regs);
1206 i++;
1207 }
1208 }
1209
1210 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1211 {
1212 PnvChip *chip = PNV_CHIP(dev);
1213 Error *error = NULL;
1214
1215 /* Cores */
1216 pnv_chip_core_realize(chip, &error);
1217 if (error) {
1218 error_propagate(errp, error);
1219 return;
1220 }
1221 }
1222
1223 static Property pnv_chip_properties[] = {
1224 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1225 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1226 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1227 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1228 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1229 DEFINE_PROP_END_OF_LIST(),
1230 };
1231
1232 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1233 {
1234 DeviceClass *dc = DEVICE_CLASS(klass);
1235
1236 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1237 dc->realize = pnv_chip_realize;
1238 dc->props = pnv_chip_properties;
1239 dc->desc = "PowerNV Chip";
1240 }
1241
1242 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1243 {
1244 PnvMachineState *pnv = PNV_MACHINE(xi);
1245 int i;
1246
1247 for (i = 0; i < pnv->num_chips; i++) {
1248 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1249
1250 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1251 return &chip8->psi.ics;
1252 }
1253 }
1254 return NULL;
1255 }
1256
1257 static void pnv_ics_resend(XICSFabric *xi)
1258 {
1259 PnvMachineState *pnv = PNV_MACHINE(xi);
1260 int i;
1261
1262 for (i = 0; i < pnv->num_chips; i++) {
1263 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1264 ics_resend(&chip8->psi.ics);
1265 }
1266 }
1267
1268 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1269 {
1270 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1271
1272 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1273 }
1274
1275 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1276 Monitor *mon)
1277 {
1278 PnvMachineState *pnv = PNV_MACHINE(obj);
1279 int i;
1280 CPUState *cs;
1281
1282 CPU_FOREACH(cs) {
1283 PowerPCCPU *cpu = POWERPC_CPU(cs);
1284
1285 if (pnv_chip_is_power9(pnv->chips[0])) {
1286 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1287 } else {
1288 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1289 }
1290 }
1291
1292 for (i = 0; i < pnv->num_chips; i++) {
1293 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1294 }
1295 }
1296
1297 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1298 void *opaque, Error **errp)
1299 {
1300 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1301 }
1302
1303 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1304 void *opaque, Error **errp)
1305 {
1306 PnvMachineState *pnv = PNV_MACHINE(obj);
1307 uint32_t num_chips;
1308 Error *local_err = NULL;
1309
1310 visit_type_uint32(v, name, &num_chips, &local_err);
1311 if (local_err) {
1312 error_propagate(errp, local_err);
1313 return;
1314 }
1315
1316 /*
1317 * TODO: should we decide on how many chips we can create based
1318 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1319 */
1320 if (!is_power_of_2(num_chips) || num_chips > 4) {
1321 error_setg(errp, "invalid number of chips: '%d'", num_chips);
1322 return;
1323 }
1324
1325 pnv->num_chips = num_chips;
1326 }
1327
1328 static void pnv_machine_instance_init(Object *obj)
1329 {
1330 PnvMachineState *pnv = PNV_MACHINE(obj);
1331 pnv->num_chips = 1;
1332 }
1333
1334 static void pnv_machine_class_props_init(ObjectClass *oc)
1335 {
1336 object_class_property_add(oc, "num-chips", "uint32",
1337 pnv_get_num_chips, pnv_set_num_chips,
1338 NULL, NULL, NULL);
1339 object_class_property_set_description(oc, "num-chips",
1340 "Specifies the number of processor chips",
1341 NULL);
1342 }
1343
1344 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1345 {
1346 MachineClass *mc = MACHINE_CLASS(oc);
1347 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1348 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1349
1350 mc->desc = "IBM PowerNV (Non-Virtualized)";
1351 mc->init = pnv_init;
1352 mc->reset = pnv_reset;
1353 mc->max_cpus = MAX_CPUS;
1354 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1355 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1356 * storage */
1357 mc->no_parallel = 1;
1358 mc->default_boot_order = NULL;
1359 mc->default_ram_size = 1 * GiB;
1360 xic->icp_get = pnv_icp_get;
1361 xic->ics_get = pnv_ics_get;
1362 xic->ics_resend = pnv_ics_resend;
1363 ispc->print_info = pnv_pic_print_info;
1364
1365 pnv_machine_class_props_init(oc);
1366 }
1367
1368 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1369 { \
1370 .name = type, \
1371 .class_init = class_initfn, \
1372 .parent = TYPE_PNV8_CHIP, \
1373 }
1374
1375 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1376 { \
1377 .name = type, \
1378 .class_init = class_initfn, \
1379 .parent = TYPE_PNV9_CHIP, \
1380 }
1381
1382 static const TypeInfo types[] = {
1383 {
1384 .name = TYPE_PNV_MACHINE,
1385 .parent = TYPE_MACHINE,
1386 .instance_size = sizeof(PnvMachineState),
1387 .instance_init = pnv_machine_instance_init,
1388 .class_init = pnv_machine_class_init,
1389 .interfaces = (InterfaceInfo[]) {
1390 { TYPE_XICS_FABRIC },
1391 { TYPE_INTERRUPT_STATS_PROVIDER },
1392 { },
1393 },
1394 },
1395 {
1396 .name = TYPE_PNV_CHIP,
1397 .parent = TYPE_SYS_BUS_DEVICE,
1398 .class_init = pnv_chip_class_init,
1399 .instance_size = sizeof(PnvChip),
1400 .class_size = sizeof(PnvChipClass),
1401 .abstract = true,
1402 },
1403
1404 /*
1405 * P9 chip and variants
1406 */
1407 {
1408 .name = TYPE_PNV9_CHIP,
1409 .parent = TYPE_PNV_CHIP,
1410 .instance_init = pnv_chip_power9_instance_init,
1411 .instance_size = sizeof(Pnv9Chip),
1412 },
1413 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1414
1415 /*
1416 * P8 chip and variants
1417 */
1418 {
1419 .name = TYPE_PNV8_CHIP,
1420 .parent = TYPE_PNV_CHIP,
1421 .instance_init = pnv_chip_power8_instance_init,
1422 .instance_size = sizeof(Pnv8Chip),
1423 },
1424 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1425 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1426 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1427 pnv_chip_power8nvl_class_init),
1428 };
1429
1430 DEFINE_TYPES(types)