]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
49
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
55
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59
60 #include <libfdt.h>
61
62 #define FDT_MAX_SIZE (1 * MiB)
63
64 #define FW_FILE_NAME "skiboot.lid"
65 #define FW_LOAD_ADDR 0x0
66 #define FW_MAX_SIZE (16 * MiB)
67
68 #define KERNEL_LOAD_ADDR 0x20000000
69 #define KERNEL_MAX_SIZE (128 * MiB)
70 #define INITRD_LOAD_ADDR 0x28000000
71 #define INITRD_MAX_SIZE (128 * MiB)
72
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78 const char *core_type = object_class_get_name(object_class_by_name(s));
79 g_free(s);
80 return core_type;
81 }
82
83 /*
84 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85 * 4 * 4 sockets * 12 cores * 8 threads = 1536
86 * Let's make it 2^11
87 */
88 #define MAX_CPUS 2048
89
90 /*
91 * Memory nodes are created by hostboot, one for each range of memory
92 * that has a different "affinity". In practice, it means one range
93 * per chip.
94 */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97 char *mem_name;
98 uint64_t mem_reg_property[2];
99 int off;
100
101 mem_reg_property[0] = cpu_to_be64(start);
102 mem_reg_property[1] = cpu_to_be64(size);
103
104 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105 off = fdt_add_subnode(fdt, 0, mem_name);
106 g_free(mem_name);
107
108 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110 sizeof(mem_reg_property))));
111 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113
114 static int get_cpus_node(void *fdt)
115 {
116 int cpus_offset = fdt_path_offset(fdt, "/cpus");
117
118 if (cpus_offset < 0) {
119 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120 if (cpus_offset) {
121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123 }
124 }
125 _FDT(cpus_offset);
126 return cpus_offset;
127 }
128
129 /*
130 * The PowerNV cores (and threads) need to use real HW ids and not an
131 * incremental index like it has been done on other platforms. This HW
132 * id is stored in the CPU PIR, it is used to create cpu nodes in the
133 * device tree, used in XSCOM to address cores and in interrupt
134 * servers.
135 */
136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138 PowerPCCPU *cpu = pc->threads[0];
139 CPUState *cs = CPU(cpu);
140 DeviceClass *dc = DEVICE_GET_CLASS(cs);
141 int smt_threads = CPU_CORE(pc)->nr_threads;
142 CPUPPCState *env = &cpu->env;
143 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145 int i;
146 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147 0xffffffff, 0xffffffff};
148 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149 uint32_t cpufreq = 1000000000;
150 uint32_t page_sizes_prop[64];
151 size_t page_sizes_prop_size;
152 const uint8_t pa_features[] = { 24, 0,
153 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157 int offset;
158 char *nodename;
159 int cpus_offset = get_cpus_node(fdt);
160
161 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163 _FDT(offset);
164 g_free(nodename);
165
166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167
168 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171
172 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174 env->dcache_line_size)));
175 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176 env->dcache_line_size)));
177 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178 env->icache_line_size)));
179 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180 env->icache_line_size)));
181
182 if (pcc->l1_dcache_size) {
183 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184 pcc->l1_dcache_size)));
185 } else {
186 warn_report("Unknown L1 dcache size for cpu");
187 }
188 if (pcc->l1_icache_size) {
189 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190 pcc->l1_icache_size)));
191 } else {
192 warn_report("Unknown L1 icache size for cpu");
193 }
194
195 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198 cpu->hash64_opts->slb_size)));
199 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201
202 if (ppc_has_spr(cpu, SPR_PURR)) {
203 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204 }
205
206 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208 segs, sizeof(segs))));
209 }
210
211 /*
212 * Advertise VMX/VSX (vector extensions) if available
213 * 0 / no property == no vector extensions
214 * 1 == VMX / Altivec available
215 * 2 == VSX available
216 */
217 if (env->insns_flags & PPC_ALTIVEC) {
218 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219
220 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221 }
222
223 /*
224 * Advertise DFP (Decimal Floating Point) if available
225 * 0 / no property == no DFP
226 * 1 == DFP available
227 */
228 if (env->insns_flags2 & PPC2_DFP) {
229 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230 }
231
232 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233 sizeof(page_sizes_prop));
234 if (page_sizes_prop_size) {
235 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236 page_sizes_prop, page_sizes_prop_size)));
237 }
238
239 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240 pa_features, sizeof(pa_features))));
241
242 /* Build interrupt servers properties */
243 for (i = 0; i < smt_threads; i++) {
244 servers_prop[i] = cpu_to_be32(pc->pir + i);
245 }
246 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247 servers_prop, sizeof(*servers_prop) * smt_threads)));
248 }
249
250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251 uint32_t nr_threads)
252 {
253 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254 char *name;
255 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256 uint32_t irange[2], i, rsize;
257 uint64_t *reg;
258 int offset;
259
260 irange[0] = cpu_to_be32(pir);
261 irange[1] = cpu_to_be32(nr_threads);
262
263 rsize = sizeof(uint64_t) * 2 * nr_threads;
264 reg = g_malloc(rsize);
265 for (i = 0; i < nr_threads; i++) {
266 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267 reg[i * 2 + 1] = cpu_to_be64(0x1000);
268 }
269
270 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271 offset = fdt_add_subnode(fdt, 0, name);
272 _FDT(offset);
273 g_free(name);
274
275 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277 _FDT((fdt_setprop_string(fdt, offset, "device_type",
278 "PowerPC-External-Interrupt-Presentation")));
279 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281 irange, sizeof(irange))));
282 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284 g_free(reg);
285 }
286
287 /*
288 * Adds a PnvPHB to the chip on P8.
289 * Implemented here, like for defaults PHBs
290 */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293 Pnv8Chip *chip8 = PNV8_CHIP(chip);
294
295 phb->chip = chip;
296
297 chip8->phbs[chip8->num_phbs] = phb;
298 chip8->num_phbs++;
299 return chip;
300 }
301
302 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
303 {
304 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
305 int i;
306
307 pnv_dt_xscom(chip, fdt, 0,
308 cpu_to_be64(PNV_XSCOM_BASE(chip)),
309 cpu_to_be64(PNV_XSCOM_SIZE),
310 compat, sizeof(compat));
311
312 for (i = 0; i < chip->nr_cores; i++) {
313 PnvCore *pnv_core = chip->cores[i];
314
315 pnv_dt_core(chip, pnv_core, fdt);
316
317 /* Interrupt Control Presenters (ICP). One per core. */
318 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
319 }
320
321 if (chip->ram_size) {
322 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323 }
324 }
325
326 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
327 {
328 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
329 int i;
330
331 pnv_dt_xscom(chip, fdt, 0,
332 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
333 cpu_to_be64(PNV9_XSCOM_SIZE),
334 compat, sizeof(compat));
335
336 for (i = 0; i < chip->nr_cores; i++) {
337 PnvCore *pnv_core = chip->cores[i];
338
339 pnv_dt_core(chip, pnv_core, fdt);
340 }
341
342 if (chip->ram_size) {
343 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
344 }
345
346 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
347 }
348
349 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
350 {
351 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
352 int i;
353
354 pnv_dt_xscom(chip, fdt, 0,
355 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
356 cpu_to_be64(PNV10_XSCOM_SIZE),
357 compat, sizeof(compat));
358
359 for (i = 0; i < chip->nr_cores; i++) {
360 PnvCore *pnv_core = chip->cores[i];
361
362 pnv_dt_core(chip, pnv_core, fdt);
363 }
364
365 if (chip->ram_size) {
366 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
367 }
368
369 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
370 }
371
372 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
373 {
374 uint32_t io_base = d->ioport_id;
375 uint32_t io_regs[] = {
376 cpu_to_be32(1),
377 cpu_to_be32(io_base),
378 cpu_to_be32(2)
379 };
380 char *name;
381 int node;
382
383 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384 node = fdt_add_subnode(fdt, lpc_off, name);
385 _FDT(node);
386 g_free(name);
387
388 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
390 }
391
392 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
393 {
394 const char compatible[] = "ns16550\0pnpPNP,501";
395 uint32_t io_base = d->ioport_id;
396 uint32_t io_regs[] = {
397 cpu_to_be32(1),
398 cpu_to_be32(io_base),
399 cpu_to_be32(8)
400 };
401 uint32_t irq;
402 char *name;
403 int node;
404
405 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
406
407 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
408 node = fdt_add_subnode(fdt, lpc_off, name);
409 _FDT(node);
410 g_free(name);
411
412 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
413 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
414 sizeof(compatible))));
415
416 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
417 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
418 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
419 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
420 fdt_get_phandle(fdt, lpc_off))));
421
422 /* This is needed by Linux */
423 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
424 }
425
426 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
427 {
428 const char compatible[] = "bt\0ipmi-bt";
429 uint32_t io_base;
430 uint32_t io_regs[] = {
431 cpu_to_be32(1),
432 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
433 cpu_to_be32(3)
434 };
435 uint32_t irq;
436 char *name;
437 int node;
438
439 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
440 io_regs[1] = cpu_to_be32(io_base);
441
442 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
443
444 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
445 node = fdt_add_subnode(fdt, lpc_off, name);
446 _FDT(node);
447 g_free(name);
448
449 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
450 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
451 sizeof(compatible))));
452
453 /* Mark it as reserved to avoid Linux trying to claim it */
454 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
455 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
456 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
457 fdt_get_phandle(fdt, lpc_off))));
458 }
459
460 typedef struct ForeachPopulateArgs {
461 void *fdt;
462 int offset;
463 } ForeachPopulateArgs;
464
465 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
466 {
467 ForeachPopulateArgs *args = opaque;
468 ISADevice *d = ISA_DEVICE(dev);
469
470 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
471 pnv_dt_rtc(d, args->fdt, args->offset);
472 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
473 pnv_dt_serial(d, args->fdt, args->offset);
474 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
475 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
476 } else {
477 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
478 d->ioport_id);
479 }
480
481 return 0;
482 }
483
484 /*
485 * The default LPC bus of a multichip system is on chip 0. It's
486 * recognized by the firmware (skiboot) using a "primary" property.
487 */
488 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
489 {
490 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
491 ForeachPopulateArgs args = {
492 .fdt = fdt,
493 .offset = isa_offset,
494 };
495 uint32_t phandle;
496
497 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
498
499 phandle = qemu_fdt_alloc_phandle(fdt);
500 assert(phandle > 0);
501 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
502
503 /*
504 * ISA devices are not necessarily parented to the ISA bus so we
505 * can not use object_child_foreach()
506 */
507 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
508 &args);
509 }
510
511 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
512 {
513 int off;
514
515 off = fdt_add_subnode(fdt, 0, "ibm,opal");
516 off = fdt_add_subnode(fdt, off, "power-mgt");
517
518 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
519 }
520
521 static void *pnv_dt_create(MachineState *machine)
522 {
523 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
524 PnvMachineState *pnv = PNV_MACHINE(machine);
525 void *fdt;
526 char *buf;
527 int off;
528 int i;
529
530 fdt = g_malloc0(FDT_MAX_SIZE);
531 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
532
533 /* /qemu node */
534 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
535
536 /* Root node */
537 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
538 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
539 _FDT((fdt_setprop_string(fdt, 0, "model",
540 "IBM PowerNV (emulated by qemu)")));
541 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
542
543 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
544 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
545 if (qemu_uuid_set) {
546 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
547 }
548 g_free(buf);
549
550 off = fdt_add_subnode(fdt, 0, "chosen");
551 if (machine->kernel_cmdline) {
552 _FDT((fdt_setprop_string(fdt, off, "bootargs",
553 machine->kernel_cmdline)));
554 }
555
556 if (pnv->initrd_size) {
557 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
558 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
559
560 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
561 &start_prop, sizeof(start_prop))));
562 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
563 &end_prop, sizeof(end_prop))));
564 }
565
566 /* Populate device tree for each chip */
567 for (i = 0; i < pnv->num_chips; i++) {
568 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
569 }
570
571 /* Populate ISA devices on chip 0 */
572 pnv_dt_isa(pnv, fdt);
573
574 if (pnv->bmc) {
575 pnv_dt_bmc_sensors(pnv->bmc, fdt);
576 }
577
578 /* Create an extra node for power management on machines that support it */
579 if (pmc->dt_power_mgt) {
580 pmc->dt_power_mgt(pnv, fdt);
581 }
582
583 return fdt;
584 }
585
586 static void pnv_powerdown_notify(Notifier *n, void *opaque)
587 {
588 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
589
590 if (pnv->bmc) {
591 pnv_bmc_powerdown(pnv->bmc);
592 }
593 }
594
595 static void pnv_reset(MachineState *machine, ShutdownCause reason)
596 {
597 PnvMachineState *pnv = PNV_MACHINE(machine);
598 IPMIBmc *bmc;
599 void *fdt;
600
601 qemu_devices_reset(reason);
602
603 /*
604 * The machine should provide by default an internal BMC simulator.
605 * If not, try to use the BMC device that was provided on the command
606 * line.
607 */
608 bmc = pnv_bmc_find(&error_fatal);
609 if (!pnv->bmc) {
610 if (!bmc) {
611 if (!qtest_enabled()) {
612 warn_report("machine has no BMC device. Use '-device "
613 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
614 "to define one");
615 }
616 } else {
617 pnv_bmc_set_pnor(bmc, pnv->pnor);
618 pnv->bmc = bmc;
619 }
620 }
621
622 fdt = pnv_dt_create(machine);
623
624 /* Pack resulting tree */
625 _FDT((fdt_pack(fdt)));
626
627 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
628 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
629
630 /*
631 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
632 * the existing machine->fdt to avoid leaking it during
633 * a reset.
634 */
635 g_free(machine->fdt);
636 machine->fdt = fdt;
637 }
638
639 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
640 {
641 Pnv8Chip *chip8 = PNV8_CHIP(chip);
642 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
643
644 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
645 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
646 }
647
648 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
649 {
650 Pnv8Chip *chip8 = PNV8_CHIP(chip);
651 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
652
653 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
654 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
655 }
656
657 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
658 {
659 Pnv9Chip *chip9 = PNV9_CHIP(chip);
660 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
661
662 qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
663 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
664 }
665
666 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
667 {
668 Pnv10Chip *chip10 = PNV10_CHIP(chip);
669 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
670
671 qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
672 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
673 }
674
675 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
676 {
677 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
678 }
679
680 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
681 {
682 Pnv8Chip *chip8 = PNV8_CHIP(chip);
683 int i;
684
685 ics_pic_print_info(&chip8->psi.ics, mon);
686
687 for (i = 0; i < chip8->num_phbs; i++) {
688 PnvPHB *phb = chip8->phbs[i];
689 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
690
691 pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
692 ics_pic_print_info(&phb3->lsis, mon);
693 }
694 }
695
696 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
697 {
698 Monitor *mon = opaque;
699 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
700
701 if (!phb) {
702 return 0;
703 }
704
705 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
706
707 return 0;
708 }
709
710 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
711 {
712 Pnv9Chip *chip9 = PNV9_CHIP(chip);
713
714 pnv_xive_pic_print_info(&chip9->xive, mon);
715 pnv_psi_pic_print_info(&chip9->psi, mon);
716
717 object_child_foreach_recursive(OBJECT(chip),
718 pnv_chip_power9_pic_print_info_child, mon);
719 }
720
721 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
722 uint32_t core_id)
723 {
724 return PNV_XSCOM_EX_BASE(core_id);
725 }
726
727 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
728 uint32_t core_id)
729 {
730 return PNV9_XSCOM_EC_BASE(core_id);
731 }
732
733 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
734 uint32_t core_id)
735 {
736 return PNV10_XSCOM_EC_BASE(core_id);
737 }
738
739 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
740 {
741 PowerPCCPUClass *ppc_default =
742 POWERPC_CPU_CLASS(object_class_by_name(default_type));
743 PowerPCCPUClass *ppc =
744 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
745
746 return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
747 }
748
749 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
750 {
751 ISADevice *dev = isa_new("isa-ipmi-bt");
752
753 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
754 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
755 isa_realize_and_unref(dev, bus, &error_fatal);
756 }
757
758 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
759 {
760 Pnv10Chip *chip10 = PNV10_CHIP(chip);
761
762 pnv_xive2_pic_print_info(&chip10->xive, mon);
763 pnv_psi_pic_print_info(&chip10->psi, mon);
764
765 object_child_foreach_recursive(OBJECT(chip),
766 pnv_chip_power9_pic_print_info_child, mon);
767 }
768
769 /* Always give the first 1GB to chip 0 else we won't boot */
770 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
771 {
772 MachineState *machine = MACHINE(pnv);
773 uint64_t ram_per_chip;
774
775 assert(machine->ram_size >= 1 * GiB);
776
777 ram_per_chip = machine->ram_size / pnv->num_chips;
778 if (ram_per_chip >= 1 * GiB) {
779 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
780 }
781
782 assert(pnv->num_chips > 1);
783
784 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
785 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
786 }
787
788 static void pnv_init(MachineState *machine)
789 {
790 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
791 PnvMachineState *pnv = PNV_MACHINE(machine);
792 MachineClass *mc = MACHINE_GET_CLASS(machine);
793 char *fw_filename;
794 long fw_size;
795 uint64_t chip_ram_start = 0;
796 int i;
797 char *chip_typename;
798 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
799 DeviceState *dev;
800
801 if (kvm_enabled()) {
802 error_report("machine %s does not support the KVM accelerator",
803 mc->name);
804 exit(EXIT_FAILURE);
805 }
806
807 /* allocate RAM */
808 if (machine->ram_size < mc->default_ram_size) {
809 char *sz = size_to_str(mc->default_ram_size);
810 error_report("Invalid RAM size, should be bigger than %s", sz);
811 g_free(sz);
812 exit(EXIT_FAILURE);
813 }
814 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
815
816 /*
817 * Create our simple PNOR device
818 */
819 dev = qdev_new(TYPE_PNV_PNOR);
820 if (pnor) {
821 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
822 }
823 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
824 pnv->pnor = PNV_PNOR(dev);
825
826 /* load skiboot firmware */
827 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
828 if (!fw_filename) {
829 error_report("Could not find OPAL firmware '%s'", bios_name);
830 exit(1);
831 }
832
833 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
834 if (fw_size < 0) {
835 error_report("Could not load OPAL firmware '%s'", fw_filename);
836 exit(1);
837 }
838 g_free(fw_filename);
839
840 /* load kernel */
841 if (machine->kernel_filename) {
842 long kernel_size;
843
844 kernel_size = load_image_targphys(machine->kernel_filename,
845 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
846 if (kernel_size < 0) {
847 error_report("Could not load kernel '%s'",
848 machine->kernel_filename);
849 exit(1);
850 }
851 }
852
853 /* load initrd */
854 if (machine->initrd_filename) {
855 pnv->initrd_base = INITRD_LOAD_ADDR;
856 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
857 pnv->initrd_base, INITRD_MAX_SIZE);
858 if (pnv->initrd_size < 0) {
859 error_report("Could not load initial ram disk '%s'",
860 machine->initrd_filename);
861 exit(1);
862 }
863 }
864
865 /* MSIs are supported on this platform */
866 msi_nonbroken = true;
867
868 /*
869 * Check compatibility of the specified CPU with the machine
870 * default.
871 */
872 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
873 error_report("invalid CPU model '%s' for %s machine",
874 machine->cpu_type, mc->name);
875 exit(1);
876 }
877
878 /* Create the processor chips */
879 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
880 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
881 i, machine->cpu_type);
882 if (!object_class_by_name(chip_typename)) {
883 error_report("invalid chip model '%.*s' for %s machine",
884 i, machine->cpu_type, mc->name);
885 exit(1);
886 }
887
888 pnv->num_chips =
889 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
890 /*
891 * TODO: should we decide on how many chips we can create based
892 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
893 */
894 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
895 error_report("invalid number of chips: '%d'", pnv->num_chips);
896 error_printf(
897 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
898 exit(1);
899 }
900
901 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
902 for (i = 0; i < pnv->num_chips; i++) {
903 char chip_name[32];
904 Object *chip = OBJECT(qdev_new(chip_typename));
905 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
906
907 pnv->chips[i] = PNV_CHIP(chip);
908
909 /* Distribute RAM among the chips */
910 object_property_set_int(chip, "ram-start", chip_ram_start,
911 &error_fatal);
912 object_property_set_int(chip, "ram-size", chip_ram_size,
913 &error_fatal);
914 chip_ram_start += chip_ram_size;
915
916 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
917 object_property_add_child(OBJECT(pnv), chip_name, chip);
918 object_property_set_int(chip, "chip-id", i, &error_fatal);
919 object_property_set_int(chip, "nr-cores", machine->smp.cores,
920 &error_fatal);
921 object_property_set_int(chip, "nr-threads", machine->smp.threads,
922 &error_fatal);
923 /*
924 * The POWER8 machine use the XICS interrupt interface.
925 * Propagate the XICS fabric to the chip and its controllers.
926 */
927 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
928 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
929 }
930 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
931 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
932 &error_abort);
933 }
934 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
935 }
936 g_free(chip_typename);
937
938 /* Instantiate ISA bus on chip 0 */
939 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
940
941 /* Create serial port */
942 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
943
944 /* Create an RTC ISA device too */
945 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
946
947 /*
948 * Create the machine BMC simulator and the IPMI BT device for
949 * communication with the BMC
950 */
951 if (defaults_enabled()) {
952 pnv->bmc = pnv_bmc_create(pnv->pnor);
953 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
954 }
955
956 /*
957 * The PNOR is mapped on the LPC FW address space by the BMC.
958 * Since we can not reach the remote BMC machine with LPC memops,
959 * map it always for now.
960 */
961 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
962 &pnv->pnor->mmio);
963
964 /*
965 * OpenPOWER systems use a IPMI SEL Event message to notify the
966 * host to powerdown
967 */
968 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
969 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
970 }
971
972 /*
973 * 0:21 Reserved - Read as zeros
974 * 22:24 Chip ID
975 * 25:28 Core number
976 * 29:31 Thread ID
977 */
978 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
979 {
980 return (chip->chip_id << 7) | (core_id << 3);
981 }
982
983 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
984 Error **errp)
985 {
986 Pnv8Chip *chip8 = PNV8_CHIP(chip);
987 Error *local_err = NULL;
988 Object *obj;
989 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
990
991 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
992 if (local_err) {
993 error_propagate(errp, local_err);
994 return;
995 }
996
997 pnv_cpu->intc = obj;
998 }
999
1000
1001 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1002 {
1003 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1004
1005 icp_reset(ICP(pnv_cpu->intc));
1006 }
1007
1008 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1009 {
1010 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1011
1012 icp_destroy(ICP(pnv_cpu->intc));
1013 pnv_cpu->intc = NULL;
1014 }
1015
1016 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1017 Monitor *mon)
1018 {
1019 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1020 }
1021
1022 /*
1023 * 0:48 Reserved - Read as zeroes
1024 * 49:52 Node ID
1025 * 53:55 Chip ID
1026 * 56 Reserved - Read as zero
1027 * 57:61 Core number
1028 * 62:63 Thread ID
1029 *
1030 * We only care about the lower bits. uint32_t is fine for the moment.
1031 */
1032 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1033 {
1034 return (chip->chip_id << 8) | (core_id << 2);
1035 }
1036
1037 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1038 {
1039 return (chip->chip_id << 8) | (core_id << 2);
1040 }
1041
1042 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1043 Error **errp)
1044 {
1045 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1046 Error *local_err = NULL;
1047 Object *obj;
1048 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1049
1050 /*
1051 * The core creates its interrupt presenter but the XIVE interrupt
1052 * controller object is initialized afterwards. Hopefully, it's
1053 * only used at runtime.
1054 */
1055 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1056 &local_err);
1057 if (local_err) {
1058 error_propagate(errp, local_err);
1059 return;
1060 }
1061
1062 pnv_cpu->intc = obj;
1063 }
1064
1065 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1066 {
1067 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1068
1069 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1070 }
1071
1072 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1073 {
1074 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1075
1076 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1077 pnv_cpu->intc = NULL;
1078 }
1079
1080 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1081 Monitor *mon)
1082 {
1083 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1084 }
1085
1086 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1087 Error **errp)
1088 {
1089 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1090 Error *local_err = NULL;
1091 Object *obj;
1092 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1093
1094 /*
1095 * The core creates its interrupt presenter but the XIVE2 interrupt
1096 * controller object is initialized afterwards. Hopefully, it's
1097 * only used at runtime.
1098 */
1099 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1100 &local_err);
1101 if (local_err) {
1102 error_propagate(errp, local_err);
1103 return;
1104 }
1105
1106 pnv_cpu->intc = obj;
1107 }
1108
1109 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1110 {
1111 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1112
1113 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1114 }
1115
1116 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1117 {
1118 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119
1120 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1121 pnv_cpu->intc = NULL;
1122 }
1123
1124 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1125 Monitor *mon)
1126 {
1127 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1128 }
1129
1130 /*
1131 * Allowed core identifiers on a POWER8 Processor Chip :
1132 *
1133 * <EX0 reserved>
1134 * EX1 - Venice only
1135 * EX2 - Venice only
1136 * EX3 - Venice only
1137 * EX4
1138 * EX5
1139 * EX6
1140 * <EX7,8 reserved> <reserved>
1141 * EX9 - Venice only
1142 * EX10 - Venice only
1143 * EX11 - Venice only
1144 * EX12
1145 * EX13
1146 * EX14
1147 * <EX15 reserved>
1148 */
1149 #define POWER8E_CORE_MASK (0x7070ull)
1150 #define POWER8_CORE_MASK (0x7e7eull)
1151
1152 /*
1153 * POWER9 has 24 cores, ids starting at 0x0
1154 */
1155 #define POWER9_CORE_MASK (0xffffffffffffffull)
1156
1157
1158 #define POWER10_CORE_MASK (0xffffffffffffffull)
1159
1160 static void pnv_chip_power8_instance_init(Object *obj)
1161 {
1162 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1163 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1164 int i;
1165
1166 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1167 (Object **)&chip8->xics,
1168 object_property_allow_set_link,
1169 OBJ_PROP_LINK_STRONG);
1170
1171 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1172
1173 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1174
1175 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1176
1177 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1178
1179 if (defaults_enabled()) {
1180 chip8->num_phbs = pcc->num_phbs;
1181
1182 for (i = 0; i < chip8->num_phbs; i++) {
1183 Object *phb = object_new(TYPE_PNV_PHB);
1184
1185 /*
1186 * We need the chip to parent the PHB to allow the DT
1187 * to build correctly (via pnv_xscom_dt()).
1188 *
1189 * TODO: the PHB should be parented by a PEC device that, at
1190 * this moment, is not modelled powernv8/phb3.
1191 */
1192 object_property_add_child(obj, "phb[*]", phb);
1193 chip8->phbs[i] = PNV_PHB(phb);
1194 }
1195 }
1196
1197 }
1198
1199 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1200 {
1201 PnvChip *chip = PNV_CHIP(chip8);
1202 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1203 int i, j;
1204 char *name;
1205
1206 name = g_strdup_printf("icp-%x", chip->chip_id);
1207 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1208 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1209 g_free(name);
1210
1211 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1212
1213 /* Map the ICP registers for each thread */
1214 for (i = 0; i < chip->nr_cores; i++) {
1215 PnvCore *pnv_core = chip->cores[i];
1216 int core_hwid = CPU_CORE(pnv_core)->core_id;
1217
1218 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1219 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1220 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1221
1222 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1223 &icp->mmio);
1224 }
1225 }
1226 }
1227
1228 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1229 {
1230 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1231 PnvChip *chip = PNV_CHIP(dev);
1232 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1233 Pnv8Psi *psi8 = &chip8->psi;
1234 Error *local_err = NULL;
1235 int i;
1236
1237 assert(chip8->xics);
1238
1239 /* XSCOM bridge is first */
1240 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1241 if (local_err) {
1242 error_propagate(errp, local_err);
1243 return;
1244 }
1245 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1246
1247 pcc->parent_realize(dev, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
1250 return;
1251 }
1252
1253 /* Processor Service Interface (PSI) Host Bridge */
1254 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1255 &error_fatal);
1256 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1257 OBJECT(chip8->xics), &error_abort);
1258 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1259 return;
1260 }
1261 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1262 &PNV_PSI(psi8)->xscom_regs);
1263
1264 /* Create LPC controller */
1265 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1266 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1267
1268 chip->fw_mr = &chip8->lpc.isa_fw;
1269 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1270 (uint64_t) PNV_XSCOM_BASE(chip),
1271 PNV_XSCOM_LPC_BASE);
1272
1273 /*
1274 * Interrupt Management Area. This is the memory region holding
1275 * all the Interrupt Control Presenter (ICP) registers
1276 */
1277 pnv_chip_icp_realize(chip8, &local_err);
1278 if (local_err) {
1279 error_propagate(errp, local_err);
1280 return;
1281 }
1282
1283 /* Create the simplified OCC model */
1284 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1285 return;
1286 }
1287 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1288 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1289 qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1290
1291 /* OCC SRAM model */
1292 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1293 &chip8->occ.sram_regs);
1294
1295 /* HOMER */
1296 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1297 &error_abort);
1298 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1299 return;
1300 }
1301 /* Homer Xscom region */
1302 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1303
1304 /* Homer mmio region */
1305 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1306 &chip8->homer.regs);
1307
1308 /* PHB controllers */
1309 for (i = 0; i < chip8->num_phbs; i++) {
1310 PnvPHB *phb = chip8->phbs[i];
1311
1312 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1313 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1314 &error_fatal);
1315 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1316 &error_fatal);
1317 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1318 return;
1319 }
1320 }
1321 }
1322
1323 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1324 {
1325 addr &= (PNV_XSCOM_SIZE - 1);
1326 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1327 }
1328
1329 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1330 {
1331 DeviceClass *dc = DEVICE_CLASS(klass);
1332 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1333
1334 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1335 k->cores_mask = POWER8E_CORE_MASK;
1336 k->num_phbs = 3;
1337 k->core_pir = pnv_chip_core_pir_p8;
1338 k->intc_create = pnv_chip_power8_intc_create;
1339 k->intc_reset = pnv_chip_power8_intc_reset;
1340 k->intc_destroy = pnv_chip_power8_intc_destroy;
1341 k->intc_print_info = pnv_chip_power8_intc_print_info;
1342 k->isa_create = pnv_chip_power8_isa_create;
1343 k->dt_populate = pnv_chip_power8_dt_populate;
1344 k->pic_print_info = pnv_chip_power8_pic_print_info;
1345 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1346 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1347 dc->desc = "PowerNV Chip POWER8E";
1348
1349 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1350 &k->parent_realize);
1351 }
1352
1353 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1354 {
1355 DeviceClass *dc = DEVICE_CLASS(klass);
1356 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1357
1358 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1359 k->cores_mask = POWER8_CORE_MASK;
1360 k->num_phbs = 3;
1361 k->core_pir = pnv_chip_core_pir_p8;
1362 k->intc_create = pnv_chip_power8_intc_create;
1363 k->intc_reset = pnv_chip_power8_intc_reset;
1364 k->intc_destroy = pnv_chip_power8_intc_destroy;
1365 k->intc_print_info = pnv_chip_power8_intc_print_info;
1366 k->isa_create = pnv_chip_power8_isa_create;
1367 k->dt_populate = pnv_chip_power8_dt_populate;
1368 k->pic_print_info = pnv_chip_power8_pic_print_info;
1369 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1370 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1371 dc->desc = "PowerNV Chip POWER8";
1372
1373 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1374 &k->parent_realize);
1375 }
1376
1377 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1378 {
1379 DeviceClass *dc = DEVICE_CLASS(klass);
1380 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1381
1382 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1383 k->cores_mask = POWER8_CORE_MASK;
1384 k->num_phbs = 4;
1385 k->core_pir = pnv_chip_core_pir_p8;
1386 k->intc_create = pnv_chip_power8_intc_create;
1387 k->intc_reset = pnv_chip_power8_intc_reset;
1388 k->intc_destroy = pnv_chip_power8_intc_destroy;
1389 k->intc_print_info = pnv_chip_power8_intc_print_info;
1390 k->isa_create = pnv_chip_power8nvl_isa_create;
1391 k->dt_populate = pnv_chip_power8_dt_populate;
1392 k->pic_print_info = pnv_chip_power8_pic_print_info;
1393 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1394 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1395 dc->desc = "PowerNV Chip POWER8NVL";
1396
1397 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1398 &k->parent_realize);
1399 }
1400
1401 static void pnv_chip_power9_instance_init(Object *obj)
1402 {
1403 PnvChip *chip = PNV_CHIP(obj);
1404 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1405 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1406 int i;
1407
1408 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1409 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1410 "xive-fabric");
1411
1412 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1413
1414 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1415
1416 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1417
1418 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1419
1420 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1421
1422 /* Number of PECs is the chip default */
1423 chip->num_pecs = pcc->num_pecs;
1424
1425 for (i = 0; i < chip->num_pecs; i++) {
1426 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1427 TYPE_PNV_PHB4_PEC);
1428 }
1429 }
1430
1431 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1432 PnvCore *pnv_core)
1433 {
1434 char eq_name[32];
1435 int core_id = CPU_CORE(pnv_core)->core_id;
1436
1437 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1438 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1439 sizeof(*eq), TYPE_PNV_QUAD,
1440 &error_fatal, NULL);
1441
1442 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1443 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1444 }
1445
1446 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1447 {
1448 PnvChip *chip = PNV_CHIP(chip9);
1449 int i;
1450
1451 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1452 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1453
1454 for (i = 0; i < chip9->nr_quads; i++) {
1455 PnvQuad *eq = &chip9->quads[i];
1456
1457 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1458
1459 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1460 &eq->xscom_regs);
1461 }
1462 }
1463
1464 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1465 {
1466 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1467 int i;
1468
1469 for (i = 0; i < chip->num_pecs; i++) {
1470 PnvPhb4PecState *pec = &chip9->pecs[i];
1471 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1472 uint32_t pec_nest_base;
1473 uint32_t pec_pci_base;
1474
1475 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1476 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1477 &error_fatal);
1478 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1479 &error_fatal);
1480 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1481 return;
1482 }
1483
1484 pec_nest_base = pecc->xscom_nest_base(pec);
1485 pec_pci_base = pecc->xscom_pci_base(pec);
1486
1487 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1488 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1489 }
1490 }
1491
1492 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1493 {
1494 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1495 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1496 PnvChip *chip = PNV_CHIP(dev);
1497 Pnv9Psi *psi9 = &chip9->psi;
1498 Error *local_err = NULL;
1499
1500 /* XSCOM bridge is first */
1501 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1502 if (local_err) {
1503 error_propagate(errp, local_err);
1504 return;
1505 }
1506 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1507
1508 pcc->parent_realize(dev, &local_err);
1509 if (local_err) {
1510 error_propagate(errp, local_err);
1511 return;
1512 }
1513
1514 pnv_chip_quad_realize(chip9, &local_err);
1515 if (local_err) {
1516 error_propagate(errp, local_err);
1517 return;
1518 }
1519
1520 /* XIVE interrupt controller (POWER9) */
1521 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1522 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1523 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1524 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1525 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1526 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1527 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1528 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1529 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1530 &error_abort);
1531 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1532 return;
1533 }
1534 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1535 &chip9->xive.xscom_regs);
1536
1537 /* Processor Service Interface (PSI) Host Bridge */
1538 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1539 &error_fatal);
1540 /* This is the only device with 4k ESB pages */
1541 object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1542 &error_fatal);
1543 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1544 return;
1545 }
1546 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1547 &PNV_PSI(psi9)->xscom_regs);
1548
1549 /* LPC */
1550 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1551 return;
1552 }
1553 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1554 &chip9->lpc.xscom_regs);
1555
1556 chip->fw_mr = &chip9->lpc.isa_fw;
1557 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1558 (uint64_t) PNV9_LPCM_BASE(chip));
1559
1560 /* Create the simplified OCC model */
1561 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1562 return;
1563 }
1564 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1565 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1566 DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1567
1568 /* OCC SRAM model */
1569 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1570 &chip9->occ.sram_regs);
1571
1572 /* SBE */
1573 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1574 return;
1575 }
1576 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1577 &chip9->sbe.xscom_ctrl_regs);
1578 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1579 &chip9->sbe.xscom_mbox_regs);
1580 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1581 DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1582
1583 /* HOMER */
1584 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1585 &error_abort);
1586 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1587 return;
1588 }
1589 /* Homer Xscom region */
1590 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1591
1592 /* Homer mmio region */
1593 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1594 &chip9->homer.regs);
1595
1596 /* PEC PHBs */
1597 pnv_chip_power9_pec_realize(chip, &local_err);
1598 if (local_err) {
1599 error_propagate(errp, local_err);
1600 return;
1601 }
1602 }
1603
1604 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1605 {
1606 addr &= (PNV9_XSCOM_SIZE - 1);
1607 return addr >> 3;
1608 }
1609
1610 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1611 {
1612 DeviceClass *dc = DEVICE_CLASS(klass);
1613 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1614
1615 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1616 k->cores_mask = POWER9_CORE_MASK;
1617 k->core_pir = pnv_chip_core_pir_p9;
1618 k->intc_create = pnv_chip_power9_intc_create;
1619 k->intc_reset = pnv_chip_power9_intc_reset;
1620 k->intc_destroy = pnv_chip_power9_intc_destroy;
1621 k->intc_print_info = pnv_chip_power9_intc_print_info;
1622 k->isa_create = pnv_chip_power9_isa_create;
1623 k->dt_populate = pnv_chip_power9_dt_populate;
1624 k->pic_print_info = pnv_chip_power9_pic_print_info;
1625 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1626 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1627 dc->desc = "PowerNV Chip POWER9";
1628 k->num_pecs = PNV9_CHIP_MAX_PEC;
1629
1630 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1631 &k->parent_realize);
1632 }
1633
1634 static void pnv_chip_power10_instance_init(Object *obj)
1635 {
1636 PnvChip *chip = PNV_CHIP(obj);
1637 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1638 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1639 int i;
1640
1641 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1642 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1643 "xive-fabric");
1644 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1645 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1646 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
1647 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
1648 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1649
1650 chip->num_pecs = pcc->num_pecs;
1651
1652 for (i = 0; i < chip->num_pecs; i++) {
1653 object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1654 TYPE_PNV_PHB5_PEC);
1655 }
1656 }
1657
1658 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1659 {
1660 PnvChip *chip = PNV_CHIP(chip10);
1661 int i;
1662
1663 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1664 chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1665
1666 for (i = 0; i < chip10->nr_quads; i++) {
1667 PnvQuad *eq = &chip10->quads[i];
1668
1669 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1670
1671 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1672 &eq->xscom_regs);
1673 }
1674 }
1675
1676 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1677 {
1678 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1679 int i;
1680
1681 for (i = 0; i < chip->num_pecs; i++) {
1682 PnvPhb4PecState *pec = &chip10->pecs[i];
1683 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1684 uint32_t pec_nest_base;
1685 uint32_t pec_pci_base;
1686
1687 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1688 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1689 &error_fatal);
1690 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1691 &error_fatal);
1692 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1693 return;
1694 }
1695
1696 pec_nest_base = pecc->xscom_nest_base(pec);
1697 pec_pci_base = pecc->xscom_pci_base(pec);
1698
1699 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1700 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1701 }
1702 }
1703
1704 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1705 {
1706 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1707 PnvChip *chip = PNV_CHIP(dev);
1708 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1709 Error *local_err = NULL;
1710
1711 /* XSCOM bridge is first */
1712 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1713 if (local_err) {
1714 error_propagate(errp, local_err);
1715 return;
1716 }
1717 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1718
1719 pcc->parent_realize(dev, &local_err);
1720 if (local_err) {
1721 error_propagate(errp, local_err);
1722 return;
1723 }
1724
1725 pnv_chip_power10_quad_realize(chip10, &local_err);
1726 if (local_err) {
1727 error_propagate(errp, local_err);
1728 return;
1729 }
1730
1731 /* XIVE2 interrupt controller (POWER10) */
1732 object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1733 PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1734 object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1735 PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1736 object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1737 PNV10_XIVE2_END_BASE(chip), &error_fatal);
1738 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1739 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1740 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1741 PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1742 object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1743 PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1744 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1745 &error_abort);
1746 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1747 return;
1748 }
1749 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1750 &chip10->xive.xscom_regs);
1751
1752 /* Processor Service Interface (PSI) Host Bridge */
1753 object_property_set_int(OBJECT(&chip10->psi), "bar",
1754 PNV10_PSIHB_BASE(chip), &error_fatal);
1755 /* PSI can now be configured to use 64k ESB pages on POWER10 */
1756 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1757 &error_fatal);
1758 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1759 return;
1760 }
1761 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1762 &PNV_PSI(&chip10->psi)->xscom_regs);
1763
1764 /* LPC */
1765 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1766 return;
1767 }
1768 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1769 &chip10->lpc.xscom_regs);
1770
1771 chip->fw_mr = &chip10->lpc.isa_fw;
1772 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1773 (uint64_t) PNV10_LPCM_BASE(chip));
1774
1775 /* Create the simplified OCC model */
1776 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1777 return;
1778 }
1779 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1780 &chip10->occ.xscom_regs);
1781 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1782 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1783
1784 /* OCC SRAM model */
1785 memory_region_add_subregion(get_system_memory(),
1786 PNV10_OCC_SENSOR_BASE(chip),
1787 &chip10->occ.sram_regs);
1788
1789 /* SBE */
1790 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1791 return;
1792 }
1793 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1794 &chip10->sbe.xscom_ctrl_regs);
1795 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1796 &chip10->sbe.xscom_mbox_regs);
1797 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1798 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1799
1800 /* HOMER */
1801 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1802 &error_abort);
1803 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1804 return;
1805 }
1806 /* Homer Xscom region */
1807 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1808 &chip10->homer.pba_regs);
1809
1810 /* Homer mmio region */
1811 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1812 &chip10->homer.regs);
1813
1814 /* PHBs */
1815 pnv_chip_power10_phb_realize(chip, &local_err);
1816 if (local_err) {
1817 error_propagate(errp, local_err);
1818 return;
1819 }
1820 }
1821
1822 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1823 {
1824 addr &= (PNV10_XSCOM_SIZE - 1);
1825 return addr >> 3;
1826 }
1827
1828 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1829 {
1830 DeviceClass *dc = DEVICE_CLASS(klass);
1831 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1832
1833 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1834 k->cores_mask = POWER10_CORE_MASK;
1835 k->core_pir = pnv_chip_core_pir_p10;
1836 k->intc_create = pnv_chip_power10_intc_create;
1837 k->intc_reset = pnv_chip_power10_intc_reset;
1838 k->intc_destroy = pnv_chip_power10_intc_destroy;
1839 k->intc_print_info = pnv_chip_power10_intc_print_info;
1840 k->isa_create = pnv_chip_power10_isa_create;
1841 k->dt_populate = pnv_chip_power10_dt_populate;
1842 k->pic_print_info = pnv_chip_power10_pic_print_info;
1843 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1844 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1845 dc->desc = "PowerNV Chip POWER10";
1846 k->num_pecs = PNV10_CHIP_MAX_PEC;
1847
1848 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1849 &k->parent_realize);
1850 }
1851
1852 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1853 {
1854 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1855 int cores_max;
1856
1857 /*
1858 * No custom mask for this chip, let's use the default one from *
1859 * the chip class
1860 */
1861 if (!chip->cores_mask) {
1862 chip->cores_mask = pcc->cores_mask;
1863 }
1864
1865 /* filter alien core ids ! some are reserved */
1866 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1867 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1868 chip->cores_mask);
1869 return;
1870 }
1871 chip->cores_mask &= pcc->cores_mask;
1872
1873 /* now that we have a sane layout, let check the number of cores */
1874 cores_max = ctpop64(chip->cores_mask);
1875 if (chip->nr_cores > cores_max) {
1876 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1877 cores_max);
1878 return;
1879 }
1880 }
1881
1882 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1883 {
1884 Error *error = NULL;
1885 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1886 const char *typename = pnv_chip_core_typename(chip);
1887 int i, core_hwid;
1888 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1889
1890 if (!object_class_by_name(typename)) {
1891 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1892 return;
1893 }
1894
1895 /* Cores */
1896 pnv_chip_core_sanitize(chip, &error);
1897 if (error) {
1898 error_propagate(errp, error);
1899 return;
1900 }
1901
1902 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1903
1904 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1905 && (i < chip->nr_cores); core_hwid++) {
1906 char core_name[32];
1907 PnvCore *pnv_core;
1908 uint64_t xscom_core_base;
1909
1910 if (!(chip->cores_mask & (1ull << core_hwid))) {
1911 continue;
1912 }
1913
1914 pnv_core = PNV_CORE(object_new(typename));
1915
1916 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1917 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1918 chip->cores[i] = pnv_core;
1919 object_property_set_int(OBJECT(pnv_core), "nr-threads",
1920 chip->nr_threads, &error_fatal);
1921 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1922 core_hwid, &error_fatal);
1923 object_property_set_int(OBJECT(pnv_core), "pir",
1924 pcc->core_pir(chip, core_hwid), &error_fatal);
1925 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1926 &error_fatal);
1927 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1928 &error_abort);
1929 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1930
1931 /* Each core has an XSCOM MMIO region */
1932 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1933
1934 pnv_xscom_add_subregion(chip, xscom_core_base,
1935 &pnv_core->xscom_regs);
1936 i++;
1937 }
1938 }
1939
1940 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1941 {
1942 PnvChip *chip = PNV_CHIP(dev);
1943 Error *error = NULL;
1944
1945 /* Cores */
1946 pnv_chip_core_realize(chip, &error);
1947 if (error) {
1948 error_propagate(errp, error);
1949 return;
1950 }
1951 }
1952
1953 static Property pnv_chip_properties[] = {
1954 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1955 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1956 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1957 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1958 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1959 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1960 DEFINE_PROP_END_OF_LIST(),
1961 };
1962
1963 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1964 {
1965 DeviceClass *dc = DEVICE_CLASS(klass);
1966
1967 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1968 dc->realize = pnv_chip_realize;
1969 device_class_set_props(dc, pnv_chip_properties);
1970 dc->desc = "PowerNV Chip";
1971 }
1972
1973 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1974 {
1975 int i, j;
1976
1977 for (i = 0; i < chip->nr_cores; i++) {
1978 PnvCore *pc = chip->cores[i];
1979 CPUCore *cc = CPU_CORE(pc);
1980
1981 for (j = 0; j < cc->nr_threads; j++) {
1982 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1983 return pc->threads[j];
1984 }
1985 }
1986 }
1987 return NULL;
1988 }
1989
1990 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1991 {
1992 PnvMachineState *pnv = PNV_MACHINE(xi);
1993 int i, j;
1994
1995 for (i = 0; i < pnv->num_chips; i++) {
1996 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1997
1998 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1999 return &chip8->psi.ics;
2000 }
2001
2002 for (j = 0; j < chip8->num_phbs; j++) {
2003 PnvPHB *phb = chip8->phbs[j];
2004 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2005
2006 if (ics_valid_irq(&phb3->lsis, irq)) {
2007 return &phb3->lsis;
2008 }
2009
2010 if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2011 return ICS(&phb3->msis);
2012 }
2013 }
2014 }
2015 return NULL;
2016 }
2017
2018 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2019 {
2020 int i;
2021
2022 for (i = 0; i < pnv->num_chips; i++) {
2023 PnvChip *chip = pnv->chips[i];
2024 if (chip->chip_id == chip_id) {
2025 return chip;
2026 }
2027 }
2028 return NULL;
2029 }
2030
2031 static void pnv_ics_resend(XICSFabric *xi)
2032 {
2033 PnvMachineState *pnv = PNV_MACHINE(xi);
2034 int i, j;
2035
2036 for (i = 0; i < pnv->num_chips; i++) {
2037 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2038
2039 ics_resend(&chip8->psi.ics);
2040
2041 for (j = 0; j < chip8->num_phbs; j++) {
2042 PnvPHB *phb = chip8->phbs[j];
2043 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2044
2045 ics_resend(&phb3->lsis);
2046 ics_resend(ICS(&phb3->msis));
2047 }
2048 }
2049 }
2050
2051 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2052 {
2053 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2054
2055 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2056 }
2057
2058 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2059 Monitor *mon)
2060 {
2061 PnvMachineState *pnv = PNV_MACHINE(obj);
2062 int i;
2063 CPUState *cs;
2064
2065 CPU_FOREACH(cs) {
2066 PowerPCCPU *cpu = POWERPC_CPU(cs);
2067
2068 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2069 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2070 mon);
2071 }
2072
2073 for (i = 0; i < pnv->num_chips; i++) {
2074 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2075 }
2076 }
2077
2078 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2079 uint8_t nvt_blk, uint32_t nvt_idx,
2080 bool cam_ignore, uint8_t priority,
2081 uint32_t logic_serv,
2082 XiveTCTXMatch *match)
2083 {
2084 PnvMachineState *pnv = PNV_MACHINE(xfb);
2085 int total_count = 0;
2086 int i;
2087
2088 for (i = 0; i < pnv->num_chips; i++) {
2089 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2090 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2091 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2092 int count;
2093
2094 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2095 priority, logic_serv, match);
2096
2097 if (count < 0) {
2098 return count;
2099 }
2100
2101 total_count += count;
2102 }
2103
2104 return total_count;
2105 }
2106
2107 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2108 uint8_t nvt_blk, uint32_t nvt_idx,
2109 bool cam_ignore, uint8_t priority,
2110 uint32_t logic_serv,
2111 XiveTCTXMatch *match)
2112 {
2113 PnvMachineState *pnv = PNV_MACHINE(xfb);
2114 int total_count = 0;
2115 int i;
2116
2117 for (i = 0; i < pnv->num_chips; i++) {
2118 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2119 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2120 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2121 int count;
2122
2123 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2124 priority, logic_serv, match);
2125
2126 if (count < 0) {
2127 return count;
2128 }
2129
2130 total_count += count;
2131 }
2132
2133 return total_count;
2134 }
2135
2136 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2137 {
2138 MachineClass *mc = MACHINE_CLASS(oc);
2139 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2140 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2141 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2142
2143 static GlobalProperty phb_compat[] = {
2144 { TYPE_PNV_PHB, "version", "3" },
2145 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2146 };
2147
2148 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2149 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2150 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2151
2152 xic->icp_get = pnv_icp_get;
2153 xic->ics_get = pnv_ics_get;
2154 xic->ics_resend = pnv_ics_resend;
2155
2156 pmc->compat = compat;
2157 pmc->compat_size = sizeof(compat);
2158
2159 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2160 }
2161
2162 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2163 {
2164 MachineClass *mc = MACHINE_CLASS(oc);
2165 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2166 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2167 static const char compat[] = "qemu,powernv9\0ibm,powernv";
2168
2169 static GlobalProperty phb_compat[] = {
2170 { TYPE_PNV_PHB, "version", "4" },
2171 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2172 };
2173
2174 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2175 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2176 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2177
2178 xfc->match_nvt = pnv_match_nvt;
2179
2180 mc->alias = "powernv";
2181
2182 pmc->compat = compat;
2183 pmc->compat_size = sizeof(compat);
2184 pmc->dt_power_mgt = pnv_dt_power_mgt;
2185
2186 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2187 }
2188
2189 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2190 {
2191 MachineClass *mc = MACHINE_CLASS(oc);
2192 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2193 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2194 static const char compat[] = "qemu,powernv10\0ibm,powernv";
2195
2196 static GlobalProperty phb_compat[] = {
2197 { TYPE_PNV_PHB, "version", "5" },
2198 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2199 };
2200
2201 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2202 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2203 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2204
2205 pmc->compat = compat;
2206 pmc->compat_size = sizeof(compat);
2207 pmc->dt_power_mgt = pnv_dt_power_mgt;
2208
2209 xfc->match_nvt = pnv10_xive_match_nvt;
2210
2211 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2212 }
2213
2214 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2215 {
2216 PnvMachineState *pnv = PNV_MACHINE(obj);
2217
2218 return !!pnv->fw_load_addr;
2219 }
2220
2221 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2222 {
2223 PnvMachineState *pnv = PNV_MACHINE(obj);
2224
2225 if (value) {
2226 pnv->fw_load_addr = 0x8000000;
2227 }
2228 }
2229
2230 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2231 {
2232 PowerPCCPU *cpu = POWERPC_CPU(cs);
2233 CPUPPCState *env = &cpu->env;
2234
2235 cpu_synchronize_state(cs);
2236 ppc_cpu_do_system_reset(cs);
2237 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2238 /*
2239 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2240 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2241 * (PPC_BIT(43)).
2242 */
2243 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2244 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2245 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2246 }
2247 } else {
2248 /*
2249 * For non-powersave system resets, SRR1[42:45] are defined to be
2250 * implementation-dependent. The POWER9 User Manual specifies that
2251 * an external (SCOM driven, which may come from a BMC nmi command or
2252 * another CPU requesting a NMI IPI) system reset exception should be
2253 * 0b0010 (PPC_BIT(44)).
2254 */
2255 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2256 }
2257 }
2258
2259 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2260 {
2261 CPUState *cs;
2262
2263 CPU_FOREACH(cs) {
2264 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2265 }
2266 }
2267
2268 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2269 {
2270 MachineClass *mc = MACHINE_CLASS(oc);
2271 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2272 NMIClass *nc = NMI_CLASS(oc);
2273
2274 mc->desc = "IBM PowerNV (Non-Virtualized)";
2275 mc->init = pnv_init;
2276 mc->reset = pnv_reset;
2277 mc->max_cpus = MAX_CPUS;
2278 /* Pnv provides a AHCI device for storage */
2279 mc->block_default_type = IF_IDE;
2280 mc->no_parallel = 1;
2281 mc->default_boot_order = NULL;
2282 /*
2283 * RAM defaults to less than 2048 for 32-bit hosts, and large
2284 * enough to fit the maximum initrd size at it's load address
2285 */
2286 mc->default_ram_size = 1 * GiB;
2287 mc->default_ram_id = "pnv.ram";
2288 ispc->print_info = pnv_pic_print_info;
2289 nc->nmi_monitor_handler = pnv_nmi;
2290
2291 object_class_property_add_bool(oc, "hb-mode",
2292 pnv_machine_get_hb, pnv_machine_set_hb);
2293 object_class_property_set_description(oc, "hb-mode",
2294 "Use a hostboot like boot loader");
2295 }
2296
2297 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2298 { \
2299 .name = type, \
2300 .class_init = class_initfn, \
2301 .parent = TYPE_PNV8_CHIP, \
2302 }
2303
2304 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2305 { \
2306 .name = type, \
2307 .class_init = class_initfn, \
2308 .parent = TYPE_PNV9_CHIP, \
2309 }
2310
2311 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2312 { \
2313 .name = type, \
2314 .class_init = class_initfn, \
2315 .parent = TYPE_PNV10_CHIP, \
2316 }
2317
2318 static const TypeInfo types[] = {
2319 {
2320 .name = MACHINE_TYPE_NAME("powernv10"),
2321 .parent = TYPE_PNV_MACHINE,
2322 .class_init = pnv_machine_power10_class_init,
2323 .interfaces = (InterfaceInfo[]) {
2324 { TYPE_XIVE_FABRIC },
2325 { },
2326 },
2327 },
2328 {
2329 .name = MACHINE_TYPE_NAME("powernv9"),
2330 .parent = TYPE_PNV_MACHINE,
2331 .class_init = pnv_machine_power9_class_init,
2332 .interfaces = (InterfaceInfo[]) {
2333 { TYPE_XIVE_FABRIC },
2334 { },
2335 },
2336 },
2337 {
2338 .name = MACHINE_TYPE_NAME("powernv8"),
2339 .parent = TYPE_PNV_MACHINE,
2340 .class_init = pnv_machine_power8_class_init,
2341 .interfaces = (InterfaceInfo[]) {
2342 { TYPE_XICS_FABRIC },
2343 { },
2344 },
2345 },
2346 {
2347 .name = TYPE_PNV_MACHINE,
2348 .parent = TYPE_MACHINE,
2349 .abstract = true,
2350 .instance_size = sizeof(PnvMachineState),
2351 .class_init = pnv_machine_class_init,
2352 .class_size = sizeof(PnvMachineClass),
2353 .interfaces = (InterfaceInfo[]) {
2354 { TYPE_INTERRUPT_STATS_PROVIDER },
2355 { TYPE_NMI },
2356 { },
2357 },
2358 },
2359 {
2360 .name = TYPE_PNV_CHIP,
2361 .parent = TYPE_SYS_BUS_DEVICE,
2362 .class_init = pnv_chip_class_init,
2363 .instance_size = sizeof(PnvChip),
2364 .class_size = sizeof(PnvChipClass),
2365 .abstract = true,
2366 },
2367
2368 /*
2369 * P10 chip and variants
2370 */
2371 {
2372 .name = TYPE_PNV10_CHIP,
2373 .parent = TYPE_PNV_CHIP,
2374 .instance_init = pnv_chip_power10_instance_init,
2375 .instance_size = sizeof(Pnv10Chip),
2376 },
2377 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2378
2379 /*
2380 * P9 chip and variants
2381 */
2382 {
2383 .name = TYPE_PNV9_CHIP,
2384 .parent = TYPE_PNV_CHIP,
2385 .instance_init = pnv_chip_power9_instance_init,
2386 .instance_size = sizeof(Pnv9Chip),
2387 },
2388 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2389
2390 /*
2391 * P8 chip and variants
2392 */
2393 {
2394 .name = TYPE_PNV8_CHIP,
2395 .parent = TYPE_PNV_CHIP,
2396 .instance_init = pnv_chip_power8_instance_init,
2397 .instance_size = sizeof(Pnv8Chip),
2398 },
2399 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2400 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2401 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2402 pnv_chip_power8nvl_class_init),
2403 };
2404
2405 DEFINE_TYPES(types)