]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
ppc/pnv: Use skiboot addresses to load kernel and ramfs
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "qemu/log.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "exec/address-spaces.h"
42 #include "qapi/visitor.h"
43 #include "monitor/monitor.h"
44 #include "hw/intc/intc.h"
45 #include "hw/ipmi/ipmi.h"
46 #include "target/ppc/mmu-hash64.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_xscom.h"
52 #include "hw/ppc/pnv_pnor.h"
53
54 #include "hw/isa/isa.h"
55 #include "hw/boards.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58
59 #include <libfdt.h>
60
61 #define FDT_MAX_SIZE (1 * MiB)
62
63 #define FW_FILE_NAME "skiboot.lid"
64 #define FW_LOAD_ADDR 0x0
65 #define FW_MAX_SIZE (16 * MiB)
66
67 #define KERNEL_LOAD_ADDR 0x20000000
68 #define KERNEL_MAX_SIZE (128 * MiB)
69 #define INITRD_LOAD_ADDR 0x28000000
70 #define INITRD_MAX_SIZE (128 * MiB)
71
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77 const char *core_type = object_class_get_name(object_class_by_name(s));
78 g_free(s);
79 return core_type;
80 }
81
82 /*
83 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84 * 4 * 4 sockets * 12 cores * 8 threads = 1536
85 * Let's make it 2^11
86 */
87 #define MAX_CPUS 2048
88
89 /*
90 * Memory nodes are created by hostboot, one for each range of memory
91 * that has a different "affinity". In practice, it means one range
92 * per chip.
93 */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96 char *mem_name;
97 uint64_t mem_reg_property[2];
98 int off;
99
100 mem_reg_property[0] = cpu_to_be64(start);
101 mem_reg_property[1] = cpu_to_be64(size);
102
103 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104 off = fdt_add_subnode(fdt, 0, mem_name);
105 g_free(mem_name);
106
107 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109 sizeof(mem_reg_property))));
110 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112
113 static int get_cpus_node(void *fdt)
114 {
115 int cpus_offset = fdt_path_offset(fdt, "/cpus");
116
117 if (cpus_offset < 0) {
118 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119 if (cpus_offset) {
120 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122 }
123 }
124 _FDT(cpus_offset);
125 return cpus_offset;
126 }
127
128 /*
129 * The PowerNV cores (and threads) need to use real HW ids and not an
130 * incremental index like it has been done on other platforms. This HW
131 * id is stored in the CPU PIR, it is used to create cpu nodes in the
132 * device tree, used in XSCOM to address cores and in interrupt
133 * servers.
134 */
135 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137 PowerPCCPU *cpu = pc->threads[0];
138 CPUState *cs = CPU(cpu);
139 DeviceClass *dc = DEVICE_GET_CLASS(cs);
140 int smt_threads = CPU_CORE(pc)->nr_threads;
141 CPUPPCState *env = &cpu->env;
142 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143 uint32_t servers_prop[smt_threads];
144 int i;
145 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
146 0xffffffff, 0xffffffff};
147 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
148 uint32_t cpufreq = 1000000000;
149 uint32_t page_sizes_prop[64];
150 size_t page_sizes_prop_size;
151 const uint8_t pa_features[] = { 24, 0,
152 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
153 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
154 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
155 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
156 int offset;
157 char *nodename;
158 int cpus_offset = get_cpus_node(fdt);
159
160 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
161 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
162 _FDT(offset);
163 g_free(nodename);
164
165 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
166
167 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
168 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
169 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
170
171 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
173 env->dcache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
175 env->dcache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
177 env->icache_line_size)));
178 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
179 env->icache_line_size)));
180
181 if (pcc->l1_dcache_size) {
182 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
183 pcc->l1_dcache_size)));
184 } else {
185 warn_report("Unknown L1 dcache size for cpu");
186 }
187 if (pcc->l1_icache_size) {
188 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
189 pcc->l1_icache_size)));
190 } else {
191 warn_report("Unknown L1 icache size for cpu");
192 }
193
194 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
195 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
196 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
197 cpu->hash64_opts->slb_size)));
198 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
199 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
200
201 if (env->spr_cb[SPR_PURR].oea_read) {
202 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
203 }
204
205 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
206 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
207 segs, sizeof(segs))));
208 }
209
210 /*
211 * Advertise VMX/VSX (vector extensions) if available
212 * 0 / no property == no vector extensions
213 * 1 == VMX / Altivec available
214 * 2 == VSX available
215 */
216 if (env->insns_flags & PPC_ALTIVEC) {
217 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
218
219 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
220 }
221
222 /*
223 * Advertise DFP (Decimal Floating Point) if available
224 * 0 / no property == no DFP
225 * 1 == DFP available
226 */
227 if (env->insns_flags2 & PPC2_DFP) {
228 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
229 }
230
231 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
232 sizeof(page_sizes_prop));
233 if (page_sizes_prop_size) {
234 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
235 page_sizes_prop, page_sizes_prop_size)));
236 }
237
238 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
239 pa_features, sizeof(pa_features))));
240
241 /* Build interrupt servers properties */
242 for (i = 0; i < smt_threads; i++) {
243 servers_prop[i] = cpu_to_be32(pc->pir + i);
244 }
245 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
246 servers_prop, sizeof(servers_prop))));
247 }
248
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
250 uint32_t nr_threads)
251 {
252 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
253 char *name;
254 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
255 uint32_t irange[2], i, rsize;
256 uint64_t *reg;
257 int offset;
258
259 irange[0] = cpu_to_be32(pir);
260 irange[1] = cpu_to_be32(nr_threads);
261
262 rsize = sizeof(uint64_t) * 2 * nr_threads;
263 reg = g_malloc(rsize);
264 for (i = 0; i < nr_threads; i++) {
265 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
266 reg[i * 2 + 1] = cpu_to_be64(0x1000);
267 }
268
269 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
270 offset = fdt_add_subnode(fdt, 0, name);
271 _FDT(offset);
272 g_free(name);
273
274 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
275 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
276 _FDT((fdt_setprop_string(fdt, offset, "device_type",
277 "PowerPC-External-Interrupt-Presentation")));
278 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
279 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
280 irange, sizeof(irange))));
281 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
282 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
283 g_free(reg);
284 }
285
286 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
287 {
288 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
289 int i;
290
291 pnv_dt_xscom(chip, fdt, 0,
292 cpu_to_be64(PNV_XSCOM_BASE(chip)),
293 cpu_to_be64(PNV_XSCOM_SIZE),
294 compat, sizeof(compat));
295
296 for (i = 0; i < chip->nr_cores; i++) {
297 PnvCore *pnv_core = chip->cores[i];
298
299 pnv_dt_core(chip, pnv_core, fdt);
300
301 /* Interrupt Control Presenters (ICP). One per core. */
302 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
303 }
304
305 if (chip->ram_size) {
306 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
307 }
308 }
309
310 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
311 {
312 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
313 int i;
314
315 pnv_dt_xscom(chip, fdt, 0,
316 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
317 cpu_to_be64(PNV9_XSCOM_SIZE),
318 compat, sizeof(compat));
319
320 for (i = 0; i < chip->nr_cores; i++) {
321 PnvCore *pnv_core = chip->cores[i];
322
323 pnv_dt_core(chip, pnv_core, fdt);
324 }
325
326 if (chip->ram_size) {
327 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
328 }
329
330 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
331 }
332
333 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
334 {
335 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
336 int i;
337
338 pnv_dt_xscom(chip, fdt, 0,
339 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
340 cpu_to_be64(PNV10_XSCOM_SIZE),
341 compat, sizeof(compat));
342
343 for (i = 0; i < chip->nr_cores; i++) {
344 PnvCore *pnv_core = chip->cores[i];
345
346 pnv_dt_core(chip, pnv_core, fdt);
347 }
348
349 if (chip->ram_size) {
350 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
351 }
352
353 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
354 }
355
356 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
357 {
358 uint32_t io_base = d->ioport_id;
359 uint32_t io_regs[] = {
360 cpu_to_be32(1),
361 cpu_to_be32(io_base),
362 cpu_to_be32(2)
363 };
364 char *name;
365 int node;
366
367 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
368 node = fdt_add_subnode(fdt, lpc_off, name);
369 _FDT(node);
370 g_free(name);
371
372 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
373 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
374 }
375
376 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
377 {
378 const char compatible[] = "ns16550\0pnpPNP,501";
379 uint32_t io_base = d->ioport_id;
380 uint32_t io_regs[] = {
381 cpu_to_be32(1),
382 cpu_to_be32(io_base),
383 cpu_to_be32(8)
384 };
385 char *name;
386 int node;
387
388 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
389 node = fdt_add_subnode(fdt, lpc_off, name);
390 _FDT(node);
391 g_free(name);
392
393 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
394 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
395 sizeof(compatible))));
396
397 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
398 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
399 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
400 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
401 fdt_get_phandle(fdt, lpc_off))));
402
403 /* This is needed by Linux */
404 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
405 }
406
407 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
408 {
409 const char compatible[] = "bt\0ipmi-bt";
410 uint32_t io_base;
411 uint32_t io_regs[] = {
412 cpu_to_be32(1),
413 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
414 cpu_to_be32(3)
415 };
416 uint32_t irq;
417 char *name;
418 int node;
419
420 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
421 io_regs[1] = cpu_to_be32(io_base);
422
423 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
424
425 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
426 node = fdt_add_subnode(fdt, lpc_off, name);
427 _FDT(node);
428 g_free(name);
429
430 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
431 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
432 sizeof(compatible))));
433
434 /* Mark it as reserved to avoid Linux trying to claim it */
435 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
436 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
437 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
438 fdt_get_phandle(fdt, lpc_off))));
439 }
440
441 typedef struct ForeachPopulateArgs {
442 void *fdt;
443 int offset;
444 } ForeachPopulateArgs;
445
446 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
447 {
448 ForeachPopulateArgs *args = opaque;
449 ISADevice *d = ISA_DEVICE(dev);
450
451 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
452 pnv_dt_rtc(d, args->fdt, args->offset);
453 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
454 pnv_dt_serial(d, args->fdt, args->offset);
455 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
456 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
457 } else {
458 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
459 d->ioport_id);
460 }
461
462 return 0;
463 }
464
465 /*
466 * The default LPC bus of a multichip system is on chip 0. It's
467 * recognized by the firmware (skiboot) using a "primary" property.
468 */
469 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
470 {
471 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
472 ForeachPopulateArgs args = {
473 .fdt = fdt,
474 .offset = isa_offset,
475 };
476 uint32_t phandle;
477
478 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
479
480 phandle = qemu_fdt_alloc_phandle(fdt);
481 assert(phandle > 0);
482 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
483
484 /*
485 * ISA devices are not necessarily parented to the ISA bus so we
486 * can not use object_child_foreach()
487 */
488 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
489 &args);
490 }
491
492 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
493 {
494 int off;
495
496 off = fdt_add_subnode(fdt, 0, "ibm,opal");
497 off = fdt_add_subnode(fdt, off, "power-mgt");
498
499 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
500 }
501
502 static void *pnv_dt_create(MachineState *machine)
503 {
504 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
505 PnvMachineState *pnv = PNV_MACHINE(machine);
506 void *fdt;
507 char *buf;
508 int off;
509 int i;
510
511 fdt = g_malloc0(FDT_MAX_SIZE);
512 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
513
514 /* /qemu node */
515 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
516
517 /* Root node */
518 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
519 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
520 _FDT((fdt_setprop_string(fdt, 0, "model",
521 "IBM PowerNV (emulated by qemu)")));
522 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
523
524 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
525 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
526 if (qemu_uuid_set) {
527 _FDT((fdt_property_string(fdt, "system-id", buf)));
528 }
529 g_free(buf);
530
531 off = fdt_add_subnode(fdt, 0, "chosen");
532 if (machine->kernel_cmdline) {
533 _FDT((fdt_setprop_string(fdt, off, "bootargs",
534 machine->kernel_cmdline)));
535 }
536
537 if (pnv->initrd_size) {
538 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
539 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
540
541 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
542 &start_prop, sizeof(start_prop))));
543 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
544 &end_prop, sizeof(end_prop))));
545 }
546
547 /* Populate device tree for each chip */
548 for (i = 0; i < pnv->num_chips; i++) {
549 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
550 }
551
552 /* Populate ISA devices on chip 0 */
553 pnv_dt_isa(pnv, fdt);
554
555 if (pnv->bmc) {
556 pnv_dt_bmc_sensors(pnv->bmc, fdt);
557 }
558
559 /* Create an extra node for power management on machines that support it */
560 if (pmc->dt_power_mgt) {
561 pmc->dt_power_mgt(pnv, fdt);
562 }
563
564 return fdt;
565 }
566
567 static void pnv_powerdown_notify(Notifier *n, void *opaque)
568 {
569 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
570
571 if (pnv->bmc) {
572 pnv_bmc_powerdown(pnv->bmc);
573 }
574 }
575
576 static void pnv_reset(MachineState *machine)
577 {
578 PnvMachineState *pnv = PNV_MACHINE(machine);
579 IPMIBmc *bmc;
580 void *fdt;
581
582 qemu_devices_reset();
583
584 /*
585 * The machine should provide by default an internal BMC simulator.
586 * If not, try to use the BMC device that was provided on the command
587 * line.
588 */
589 bmc = pnv_bmc_find(&error_fatal);
590 if (!pnv->bmc) {
591 if (!bmc) {
592 if (!qtest_enabled()) {
593 warn_report("machine has no BMC device. Use '-device "
594 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
595 "to define one");
596 }
597 } else {
598 pnv_bmc_set_pnor(bmc, pnv->pnor);
599 pnv->bmc = bmc;
600 }
601 }
602
603 fdt = pnv_dt_create(machine);
604
605 /* Pack resulting tree */
606 _FDT((fdt_pack(fdt)));
607
608 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
609 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
610
611 g_free(fdt);
612 }
613
614 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
615 {
616 Pnv8Chip *chip8 = PNV8_CHIP(chip);
617 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
618 }
619
620 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
621 {
622 Pnv8Chip *chip8 = PNV8_CHIP(chip);
623 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
624 }
625
626 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
627 {
628 Pnv9Chip *chip9 = PNV9_CHIP(chip);
629 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
630 }
631
632 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
633 {
634 Pnv10Chip *chip10 = PNV10_CHIP(chip);
635 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
636 }
637
638 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
639 {
640 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
641 }
642
643 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
644 {
645 Pnv8Chip *chip8 = PNV8_CHIP(chip);
646 int i;
647
648 ics_pic_print_info(&chip8->psi.ics, mon);
649 for (i = 0; i < chip->num_phbs; i++) {
650 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
651 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
652 }
653 }
654
655 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
656 {
657 Pnv9Chip *chip9 = PNV9_CHIP(chip);
658 int i, j;
659
660 pnv_xive_pic_print_info(&chip9->xive, mon);
661 pnv_psi_pic_print_info(&chip9->psi, mon);
662
663 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
664 PnvPhb4PecState *pec = &chip9->pecs[i];
665 for (j = 0; j < pec->num_stacks; j++) {
666 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
667 }
668 }
669 }
670
671 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
672 uint32_t core_id)
673 {
674 return PNV_XSCOM_EX_BASE(core_id);
675 }
676
677 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
678 uint32_t core_id)
679 {
680 return PNV9_XSCOM_EC_BASE(core_id);
681 }
682
683 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
684 uint32_t core_id)
685 {
686 return PNV10_XSCOM_EC_BASE(core_id);
687 }
688
689 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
690 {
691 PowerPCCPUClass *ppc_default =
692 POWERPC_CPU_CLASS(object_class_by_name(default_type));
693 PowerPCCPUClass *ppc =
694 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
695
696 return ppc_default->pvr_match(ppc_default, ppc->pvr);
697 }
698
699 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
700 {
701 ISADevice *dev = isa_new("isa-ipmi-bt");
702
703 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
704 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
705 isa_realize_and_unref(dev, bus, &error_fatal);
706 }
707
708 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
709 {
710 Pnv10Chip *chip10 = PNV10_CHIP(chip);
711
712 pnv_psi_pic_print_info(&chip10->psi, mon);
713 }
714
715 static void pnv_init(MachineState *machine)
716 {
717 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
718 PnvMachineState *pnv = PNV_MACHINE(machine);
719 MachineClass *mc = MACHINE_GET_CLASS(machine);
720 char *fw_filename;
721 long fw_size;
722 int i;
723 char *chip_typename;
724 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
725 DeviceState *dev;
726
727 /* allocate RAM */
728 if (machine->ram_size < (1 * GiB)) {
729 warn_report("skiboot may not work with < 1GB of RAM");
730 }
731 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
732
733 /*
734 * Create our simple PNOR device
735 */
736 dev = qdev_new(TYPE_PNV_PNOR);
737 if (pnor) {
738 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
739 }
740 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
741 pnv->pnor = PNV_PNOR(dev);
742
743 /* load skiboot firmware */
744 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
745 if (!fw_filename) {
746 error_report("Could not find OPAL firmware '%s'", bios_name);
747 exit(1);
748 }
749
750 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
751 if (fw_size < 0) {
752 error_report("Could not load OPAL firmware '%s'", fw_filename);
753 exit(1);
754 }
755 g_free(fw_filename);
756
757 /* load kernel */
758 if (machine->kernel_filename) {
759 long kernel_size;
760
761 kernel_size = load_image_targphys(machine->kernel_filename,
762 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
763 if (kernel_size < 0) {
764 error_report("Could not load kernel '%s'",
765 machine->kernel_filename);
766 exit(1);
767 }
768 }
769
770 /* load initrd */
771 if (machine->initrd_filename) {
772 pnv->initrd_base = INITRD_LOAD_ADDR;
773 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
774 pnv->initrd_base, INITRD_MAX_SIZE);
775 if (pnv->initrd_size < 0) {
776 error_report("Could not load initial ram disk '%s'",
777 machine->initrd_filename);
778 exit(1);
779 }
780 }
781
782 /* MSIs are supported on this platform */
783 msi_nonbroken = true;
784
785 /*
786 * Check compatibility of the specified CPU with the machine
787 * default.
788 */
789 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
790 error_report("invalid CPU model '%s' for %s machine",
791 machine->cpu_type, mc->name);
792 exit(1);
793 }
794
795 /* Create the processor chips */
796 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
797 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
798 i, machine->cpu_type);
799 if (!object_class_by_name(chip_typename)) {
800 error_report("invalid chip model '%.*s' for %s machine",
801 i, machine->cpu_type, mc->name);
802 exit(1);
803 }
804
805 pnv->num_chips =
806 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
807 /*
808 * TODO: should we decide on how many chips we can create based
809 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
810 */
811 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
812 error_report("invalid number of chips: '%d'", pnv->num_chips);
813 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
814 exit(1);
815 }
816
817 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
818 for (i = 0; i < pnv->num_chips; i++) {
819 char chip_name[32];
820 Object *chip = OBJECT(qdev_new(chip_typename));
821
822 pnv->chips[i] = PNV_CHIP(chip);
823
824 /*
825 * TODO: put all the memory in one node on chip 0 until we find a
826 * way to specify different ranges for each chip
827 */
828 if (i == 0) {
829 object_property_set_int(chip, "ram-size", machine->ram_size,
830 &error_fatal);
831 }
832
833 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
834 object_property_add_child(OBJECT(pnv), chip_name, chip);
835 object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
836 &error_fatal);
837 object_property_set_int(chip, "nr-cores", machine->smp.cores,
838 &error_fatal);
839 object_property_set_int(chip, "nr-threads", machine->smp.threads,
840 &error_fatal);
841 /*
842 * The POWER8 machine use the XICS interrupt interface.
843 * Propagate the XICS fabric to the chip and its controllers.
844 */
845 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
846 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
847 }
848 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
849 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
850 &error_abort);
851 }
852 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
853 }
854 g_free(chip_typename);
855
856 /* Instantiate ISA bus on chip 0 */
857 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
858
859 /* Create serial port */
860 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
861
862 /* Create an RTC ISA device too */
863 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
864
865 /*
866 * Create the machine BMC simulator and the IPMI BT device for
867 * communication with the BMC
868 */
869 if (defaults_enabled()) {
870 pnv->bmc = pnv_bmc_create(pnv->pnor);
871 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
872 }
873
874 /*
875 * OpenPOWER systems use a IPMI SEL Event message to notify the
876 * host to powerdown
877 */
878 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
879 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
880 }
881
882 /*
883 * 0:21 Reserved - Read as zeros
884 * 22:24 Chip ID
885 * 25:28 Core number
886 * 29:31 Thread ID
887 */
888 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
889 {
890 return (chip->chip_id << 7) | (core_id << 3);
891 }
892
893 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
894 Error **errp)
895 {
896 Pnv8Chip *chip8 = PNV8_CHIP(chip);
897 Error *local_err = NULL;
898 Object *obj;
899 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
900
901 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
902 if (local_err) {
903 error_propagate(errp, local_err);
904 return;
905 }
906
907 pnv_cpu->intc = obj;
908 }
909
910
911 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
912 {
913 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
914
915 icp_reset(ICP(pnv_cpu->intc));
916 }
917
918 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
919 {
920 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
921
922 icp_destroy(ICP(pnv_cpu->intc));
923 pnv_cpu->intc = NULL;
924 }
925
926 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
927 Monitor *mon)
928 {
929 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
930 }
931
932 /*
933 * 0:48 Reserved - Read as zeroes
934 * 49:52 Node ID
935 * 53:55 Chip ID
936 * 56 Reserved - Read as zero
937 * 57:61 Core number
938 * 62:63 Thread ID
939 *
940 * We only care about the lower bits. uint32_t is fine for the moment.
941 */
942 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
943 {
944 return (chip->chip_id << 8) | (core_id << 2);
945 }
946
947 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
948 {
949 return (chip->chip_id << 8) | (core_id << 2);
950 }
951
952 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953 Error **errp)
954 {
955 Pnv9Chip *chip9 = PNV9_CHIP(chip);
956 Error *local_err = NULL;
957 Object *obj;
958 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
959
960 /*
961 * The core creates its interrupt presenter but the XIVE interrupt
962 * controller object is initialized afterwards. Hopefully, it's
963 * only used at runtime.
964 */
965 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
966 &local_err);
967 if (local_err) {
968 error_propagate(errp, local_err);
969 return;
970 }
971
972 pnv_cpu->intc = obj;
973 }
974
975 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
976 {
977 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
978
979 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
980 }
981
982 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
983 {
984 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
985
986 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
987 pnv_cpu->intc = NULL;
988 }
989
990 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
991 Monitor *mon)
992 {
993 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
994 }
995
996 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
997 Error **errp)
998 {
999 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1000
1001 /* Will be defined when the interrupt controller is */
1002 pnv_cpu->intc = NULL;
1003 }
1004
1005 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1006 {
1007 ;
1008 }
1009
1010 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011 {
1012 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013
1014 pnv_cpu->intc = NULL;
1015 }
1016
1017 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018 Monitor *mon)
1019 {
1020 }
1021
1022 /*
1023 * Allowed core identifiers on a POWER8 Processor Chip :
1024 *
1025 * <EX0 reserved>
1026 * EX1 - Venice only
1027 * EX2 - Venice only
1028 * EX3 - Venice only
1029 * EX4
1030 * EX5
1031 * EX6
1032 * <EX7,8 reserved> <reserved>
1033 * EX9 - Venice only
1034 * EX10 - Venice only
1035 * EX11 - Venice only
1036 * EX12
1037 * EX13
1038 * EX14
1039 * <EX15 reserved>
1040 */
1041 #define POWER8E_CORE_MASK (0x7070ull)
1042 #define POWER8_CORE_MASK (0x7e7eull)
1043
1044 /*
1045 * POWER9 has 24 cores, ids starting at 0x0
1046 */
1047 #define POWER9_CORE_MASK (0xffffffffffffffull)
1048
1049
1050 #define POWER10_CORE_MASK (0xffffffffffffffull)
1051
1052 static void pnv_chip_power8_instance_init(Object *obj)
1053 {
1054 PnvChip *chip = PNV_CHIP(obj);
1055 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1056 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1057 int i;
1058
1059 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1060 (Object **)&chip8->xics,
1061 object_property_allow_set_link,
1062 OBJ_PROP_LINK_STRONG);
1063
1064 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1065
1066 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1067
1068 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1069
1070 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1071
1072 for (i = 0; i < pcc->num_phbs; i++) {
1073 object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1074 }
1075
1076 /*
1077 * Number of PHBs is the chip default
1078 */
1079 chip->num_phbs = pcc->num_phbs;
1080 }
1081
1082 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1083 {
1084 PnvChip *chip = PNV_CHIP(chip8);
1085 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1086 int i, j;
1087 char *name;
1088
1089 name = g_strdup_printf("icp-%x", chip->chip_id);
1090 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1091 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1092 g_free(name);
1093
1094 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1095
1096 /* Map the ICP registers for each thread */
1097 for (i = 0; i < chip->nr_cores; i++) {
1098 PnvCore *pnv_core = chip->cores[i];
1099 int core_hwid = CPU_CORE(pnv_core)->core_id;
1100
1101 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1102 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1103 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1104
1105 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1106 &icp->mmio);
1107 }
1108 }
1109 }
1110
1111 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1112 {
1113 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1114 PnvChip *chip = PNV_CHIP(dev);
1115 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1116 Pnv8Psi *psi8 = &chip8->psi;
1117 Error *local_err = NULL;
1118 int i;
1119
1120 assert(chip8->xics);
1121
1122 /* XSCOM bridge is first */
1123 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1124 if (local_err) {
1125 error_propagate(errp, local_err);
1126 return;
1127 }
1128 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1129
1130 pcc->parent_realize(dev, &local_err);
1131 if (local_err) {
1132 error_propagate(errp, local_err);
1133 return;
1134 }
1135
1136 /* Processor Service Interface (PSI) Host Bridge */
1137 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1138 &error_fatal);
1139 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1140 OBJECT(chip8->xics), &error_abort);
1141 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1142 return;
1143 }
1144 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1145 &PNV_PSI(psi8)->xscom_regs);
1146
1147 /* Create LPC controller */
1148 object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1149 &error_abort);
1150 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1151 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1152
1153 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1154 (uint64_t) PNV_XSCOM_BASE(chip),
1155 PNV_XSCOM_LPC_BASE);
1156
1157 /*
1158 * Interrupt Management Area. This is the memory region holding
1159 * all the Interrupt Control Presenter (ICP) registers
1160 */
1161 pnv_chip_icp_realize(chip8, &local_err);
1162 if (local_err) {
1163 error_propagate(errp, local_err);
1164 return;
1165 }
1166
1167 /* Create the simplified OCC model */
1168 object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1169 &error_abort);
1170 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1171 return;
1172 }
1173 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1174
1175 /* OCC SRAM model */
1176 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1177 &chip8->occ.sram_regs);
1178
1179 /* HOMER */
1180 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1181 &error_abort);
1182 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1183 return;
1184 }
1185 /* Homer Xscom region */
1186 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1187
1188 /* Homer mmio region */
1189 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1190 &chip8->homer.regs);
1191
1192 /* PHB3 controllers */
1193 for (i = 0; i < chip->num_phbs; i++) {
1194 PnvPHB3 *phb = &chip8->phbs[i];
1195 PnvPBCQState *pbcq = &phb->pbcq;
1196
1197 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1198 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1199 &error_fatal);
1200 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1201 return;
1202 }
1203
1204 /* Populate the XSCOM address space. */
1205 pnv_xscom_add_subregion(chip,
1206 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1207 &pbcq->xscom_nest_regs);
1208 pnv_xscom_add_subregion(chip,
1209 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1210 &pbcq->xscom_pci_regs);
1211 pnv_xscom_add_subregion(chip,
1212 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1213 &pbcq->xscom_spci_regs);
1214 }
1215 }
1216
1217 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1218 {
1219 addr &= (PNV_XSCOM_SIZE - 1);
1220 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1221 }
1222
1223 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1224 {
1225 DeviceClass *dc = DEVICE_CLASS(klass);
1226 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1227
1228 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1229 k->cores_mask = POWER8E_CORE_MASK;
1230 k->num_phbs = 3;
1231 k->core_pir = pnv_chip_core_pir_p8;
1232 k->intc_create = pnv_chip_power8_intc_create;
1233 k->intc_reset = pnv_chip_power8_intc_reset;
1234 k->intc_destroy = pnv_chip_power8_intc_destroy;
1235 k->intc_print_info = pnv_chip_power8_intc_print_info;
1236 k->isa_create = pnv_chip_power8_isa_create;
1237 k->dt_populate = pnv_chip_power8_dt_populate;
1238 k->pic_print_info = pnv_chip_power8_pic_print_info;
1239 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1240 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1241 dc->desc = "PowerNV Chip POWER8E";
1242
1243 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1244 &k->parent_realize);
1245 }
1246
1247 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1248 {
1249 DeviceClass *dc = DEVICE_CLASS(klass);
1250 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1251
1252 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1253 k->cores_mask = POWER8_CORE_MASK;
1254 k->num_phbs = 3;
1255 k->core_pir = pnv_chip_core_pir_p8;
1256 k->intc_create = pnv_chip_power8_intc_create;
1257 k->intc_reset = pnv_chip_power8_intc_reset;
1258 k->intc_destroy = pnv_chip_power8_intc_destroy;
1259 k->intc_print_info = pnv_chip_power8_intc_print_info;
1260 k->isa_create = pnv_chip_power8_isa_create;
1261 k->dt_populate = pnv_chip_power8_dt_populate;
1262 k->pic_print_info = pnv_chip_power8_pic_print_info;
1263 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1264 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1265 dc->desc = "PowerNV Chip POWER8";
1266
1267 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1268 &k->parent_realize);
1269 }
1270
1271 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1272 {
1273 DeviceClass *dc = DEVICE_CLASS(klass);
1274 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1275
1276 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1277 k->cores_mask = POWER8_CORE_MASK;
1278 k->num_phbs = 3;
1279 k->core_pir = pnv_chip_core_pir_p8;
1280 k->intc_create = pnv_chip_power8_intc_create;
1281 k->intc_reset = pnv_chip_power8_intc_reset;
1282 k->intc_destroy = pnv_chip_power8_intc_destroy;
1283 k->intc_print_info = pnv_chip_power8_intc_print_info;
1284 k->isa_create = pnv_chip_power8nvl_isa_create;
1285 k->dt_populate = pnv_chip_power8_dt_populate;
1286 k->pic_print_info = pnv_chip_power8_pic_print_info;
1287 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1288 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1289 dc->desc = "PowerNV Chip POWER8NVL";
1290
1291 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1292 &k->parent_realize);
1293 }
1294
1295 static void pnv_chip_power9_instance_init(Object *obj)
1296 {
1297 PnvChip *chip = PNV_CHIP(obj);
1298 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1299 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1300 int i;
1301
1302 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1303 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1304 "xive-fabric");
1305
1306 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1307
1308 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1309
1310 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1311
1312 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1313
1314 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1315 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1316 TYPE_PNV_PHB4_PEC);
1317 }
1318
1319 /*
1320 * Number of PHBs is the chip default
1321 */
1322 chip->num_phbs = pcc->num_phbs;
1323 }
1324
1325 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1326 {
1327 PnvChip *chip = PNV_CHIP(chip9);
1328 int i;
1329
1330 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1331 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1332
1333 for (i = 0; i < chip9->nr_quads; i++) {
1334 char eq_name[32];
1335 PnvQuad *eq = &chip9->quads[i];
1336 PnvCore *pnv_core = chip->cores[i * 4];
1337 int core_id = CPU_CORE(pnv_core)->core_id;
1338
1339 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1340 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1341 sizeof(*eq), TYPE_PNV_QUAD,
1342 &error_fatal, NULL);
1343
1344 object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1345 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1346
1347 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1348 &eq->xscom_regs);
1349 }
1350 }
1351
1352 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1353 {
1354 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1355 int i, j;
1356 int phb_id = 0;
1357
1358 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1359 PnvPhb4PecState *pec = &chip9->pecs[i];
1360 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1361 uint32_t pec_nest_base;
1362 uint32_t pec_pci_base;
1363
1364 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1365 /*
1366 * PEC0 -> 1 stack
1367 * PEC1 -> 2 stacks
1368 * PEC2 -> 3 stacks
1369 */
1370 object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1371 &error_fatal);
1372 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1373 &error_fatal);
1374 object_property_set_link(OBJECT(pec), "system-memory",
1375 OBJECT(get_system_memory()), &error_abort);
1376 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1377 return;
1378 }
1379
1380 pec_nest_base = pecc->xscom_nest_base(pec);
1381 pec_pci_base = pecc->xscom_pci_base(pec);
1382
1383 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1384 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1385
1386 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1387 j++, phb_id++) {
1388 PnvPhb4PecStack *stack = &pec->stacks[j];
1389 Object *obj = OBJECT(&stack->phb);
1390
1391 object_property_set_int(obj, "index", phb_id, &error_fatal);
1392 object_property_set_int(obj, "chip-id", chip->chip_id,
1393 &error_fatal);
1394 object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1395 &error_fatal);
1396 object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1397 &error_fatal);
1398 object_property_set_link(obj, "stack", OBJECT(stack),
1399 &error_abort);
1400 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1401 return;
1402 }
1403
1404 /* Populate the XSCOM address space. */
1405 pnv_xscom_add_subregion(chip,
1406 pec_nest_base + 0x40 * (stack->stack_no + 1),
1407 &stack->nest_regs_mr);
1408 pnv_xscom_add_subregion(chip,
1409 pec_pci_base + 0x40 * (stack->stack_no + 1),
1410 &stack->pci_regs_mr);
1411 pnv_xscom_add_subregion(chip,
1412 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1413 0x40 * stack->stack_no,
1414 &stack->phb_regs_mr);
1415 }
1416 }
1417 }
1418
1419 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1420 {
1421 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1422 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1423 PnvChip *chip = PNV_CHIP(dev);
1424 Pnv9Psi *psi9 = &chip9->psi;
1425 Error *local_err = NULL;
1426
1427 /* XSCOM bridge is first */
1428 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1429 if (local_err) {
1430 error_propagate(errp, local_err);
1431 return;
1432 }
1433 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1434
1435 pcc->parent_realize(dev, &local_err);
1436 if (local_err) {
1437 error_propagate(errp, local_err);
1438 return;
1439 }
1440
1441 pnv_chip_quad_realize(chip9, &local_err);
1442 if (local_err) {
1443 error_propagate(errp, local_err);
1444 return;
1445 }
1446
1447 /* XIVE interrupt controller (POWER9) */
1448 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1449 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1450 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1451 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1452 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1453 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1454 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1455 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1456 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1457 &error_abort);
1458 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1459 return;
1460 }
1461 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1462 &chip9->xive.xscom_regs);
1463
1464 /* Processor Service Interface (PSI) Host Bridge */
1465 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1466 &error_fatal);
1467 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1468 return;
1469 }
1470 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1471 &PNV_PSI(psi9)->xscom_regs);
1472
1473 /* LPC */
1474 object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1475 &error_abort);
1476 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1477 return;
1478 }
1479 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1480 &chip9->lpc.xscom_regs);
1481
1482 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1483 (uint64_t) PNV9_LPCM_BASE(chip));
1484
1485 /* Create the simplified OCC model */
1486 object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1487 &error_abort);
1488 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1489 return;
1490 }
1491 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1492
1493 /* OCC SRAM model */
1494 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1495 &chip9->occ.sram_regs);
1496
1497 /* HOMER */
1498 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1499 &error_abort);
1500 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1501 return;
1502 }
1503 /* Homer Xscom region */
1504 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1505
1506 /* Homer mmio region */
1507 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1508 &chip9->homer.regs);
1509
1510 /* PHBs */
1511 pnv_chip_power9_phb_realize(chip, &local_err);
1512 if (local_err) {
1513 error_propagate(errp, local_err);
1514 return;
1515 }
1516 }
1517
1518 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1519 {
1520 addr &= (PNV9_XSCOM_SIZE - 1);
1521 return addr >> 3;
1522 }
1523
1524 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1525 {
1526 DeviceClass *dc = DEVICE_CLASS(klass);
1527 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1528
1529 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1530 k->cores_mask = POWER9_CORE_MASK;
1531 k->core_pir = pnv_chip_core_pir_p9;
1532 k->intc_create = pnv_chip_power9_intc_create;
1533 k->intc_reset = pnv_chip_power9_intc_reset;
1534 k->intc_destroy = pnv_chip_power9_intc_destroy;
1535 k->intc_print_info = pnv_chip_power9_intc_print_info;
1536 k->isa_create = pnv_chip_power9_isa_create;
1537 k->dt_populate = pnv_chip_power9_dt_populate;
1538 k->pic_print_info = pnv_chip_power9_pic_print_info;
1539 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1540 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1541 dc->desc = "PowerNV Chip POWER9";
1542 k->num_phbs = 6;
1543
1544 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1545 &k->parent_realize);
1546 }
1547
1548 static void pnv_chip_power10_instance_init(Object *obj)
1549 {
1550 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1551
1552 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1553 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1554 }
1555
1556 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1557 {
1558 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1559 PnvChip *chip = PNV_CHIP(dev);
1560 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1561 Error *local_err = NULL;
1562
1563 /* XSCOM bridge is first */
1564 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1565 if (local_err) {
1566 error_propagate(errp, local_err);
1567 return;
1568 }
1569 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1570
1571 pcc->parent_realize(dev, &local_err);
1572 if (local_err) {
1573 error_propagate(errp, local_err);
1574 return;
1575 }
1576
1577 /* Processor Service Interface (PSI) Host Bridge */
1578 object_property_set_int(OBJECT(&chip10->psi), "bar",
1579 PNV10_PSIHB_BASE(chip), &error_fatal);
1580 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1581 return;
1582 }
1583 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1584 &PNV_PSI(&chip10->psi)->xscom_regs);
1585
1586 /* LPC */
1587 object_property_set_link(OBJECT(&chip10->lpc), "psi",
1588 OBJECT(&chip10->psi), &error_abort);
1589 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1590 return;
1591 }
1592 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1593 &chip10->lpc.xscom_regs);
1594
1595 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1596 (uint64_t) PNV10_LPCM_BASE(chip));
1597 }
1598
1599 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1600 {
1601 addr &= (PNV10_XSCOM_SIZE - 1);
1602 return addr >> 3;
1603 }
1604
1605 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1606 {
1607 DeviceClass *dc = DEVICE_CLASS(klass);
1608 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609
1610 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1611 k->cores_mask = POWER10_CORE_MASK;
1612 k->core_pir = pnv_chip_core_pir_p10;
1613 k->intc_create = pnv_chip_power10_intc_create;
1614 k->intc_reset = pnv_chip_power10_intc_reset;
1615 k->intc_destroy = pnv_chip_power10_intc_destroy;
1616 k->intc_print_info = pnv_chip_power10_intc_print_info;
1617 k->isa_create = pnv_chip_power10_isa_create;
1618 k->dt_populate = pnv_chip_power10_dt_populate;
1619 k->pic_print_info = pnv_chip_power10_pic_print_info;
1620 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1621 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1622 dc->desc = "PowerNV Chip POWER10";
1623
1624 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1625 &k->parent_realize);
1626 }
1627
1628 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1629 {
1630 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1631 int cores_max;
1632
1633 /*
1634 * No custom mask for this chip, let's use the default one from *
1635 * the chip class
1636 */
1637 if (!chip->cores_mask) {
1638 chip->cores_mask = pcc->cores_mask;
1639 }
1640
1641 /* filter alien core ids ! some are reserved */
1642 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1643 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1644 chip->cores_mask);
1645 return;
1646 }
1647 chip->cores_mask &= pcc->cores_mask;
1648
1649 /* now that we have a sane layout, let check the number of cores */
1650 cores_max = ctpop64(chip->cores_mask);
1651 if (chip->nr_cores > cores_max) {
1652 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1653 cores_max);
1654 return;
1655 }
1656 }
1657
1658 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1659 {
1660 Error *error = NULL;
1661 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662 const char *typename = pnv_chip_core_typename(chip);
1663 int i, core_hwid;
1664 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1665
1666 if (!object_class_by_name(typename)) {
1667 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1668 return;
1669 }
1670
1671 /* Cores */
1672 pnv_chip_core_sanitize(chip, &error);
1673 if (error) {
1674 error_propagate(errp, error);
1675 return;
1676 }
1677
1678 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1679
1680 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1681 && (i < chip->nr_cores); core_hwid++) {
1682 char core_name[32];
1683 PnvCore *pnv_core;
1684 uint64_t xscom_core_base;
1685
1686 if (!(chip->cores_mask & (1ull << core_hwid))) {
1687 continue;
1688 }
1689
1690 pnv_core = PNV_CORE(object_new(typename));
1691
1692 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1693 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1694 chip->cores[i] = pnv_core;
1695 object_property_set_int(OBJECT(pnv_core), "nr-threads",
1696 chip->nr_threads, &error_fatal);
1697 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1698 core_hwid, &error_fatal);
1699 object_property_set_int(OBJECT(pnv_core), "pir",
1700 pcc->core_pir(chip, core_hwid), &error_fatal);
1701 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1702 &error_fatal);
1703 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1704 &error_abort);
1705 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1706
1707 /* Each core has an XSCOM MMIO region */
1708 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1709
1710 pnv_xscom_add_subregion(chip, xscom_core_base,
1711 &pnv_core->xscom_regs);
1712 i++;
1713 }
1714 }
1715
1716 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1717 {
1718 PnvChip *chip = PNV_CHIP(dev);
1719 Error *error = NULL;
1720
1721 /* Cores */
1722 pnv_chip_core_realize(chip, &error);
1723 if (error) {
1724 error_propagate(errp, error);
1725 return;
1726 }
1727 }
1728
1729 static Property pnv_chip_properties[] = {
1730 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1731 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1732 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1733 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1734 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1735 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1736 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1737 DEFINE_PROP_END_OF_LIST(),
1738 };
1739
1740 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1741 {
1742 DeviceClass *dc = DEVICE_CLASS(klass);
1743
1744 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1745 dc->realize = pnv_chip_realize;
1746 device_class_set_props(dc, pnv_chip_properties);
1747 dc->desc = "PowerNV Chip";
1748 }
1749
1750 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1751 {
1752 int i, j;
1753
1754 for (i = 0; i < chip->nr_cores; i++) {
1755 PnvCore *pc = chip->cores[i];
1756 CPUCore *cc = CPU_CORE(pc);
1757
1758 for (j = 0; j < cc->nr_threads; j++) {
1759 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1760 return pc->threads[j];
1761 }
1762 }
1763 }
1764 return NULL;
1765 }
1766
1767 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1768 {
1769 PnvMachineState *pnv = PNV_MACHINE(xi);
1770 int i, j;
1771
1772 for (i = 0; i < pnv->num_chips; i++) {
1773 PnvChip *chip = pnv->chips[i];
1774 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1775
1776 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1777 return &chip8->psi.ics;
1778 }
1779 for (j = 0; j < chip->num_phbs; j++) {
1780 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1781 return &chip8->phbs[j].lsis;
1782 }
1783 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1784 return ICS(&chip8->phbs[j].msis);
1785 }
1786 }
1787 }
1788 return NULL;
1789 }
1790
1791 static void pnv_ics_resend(XICSFabric *xi)
1792 {
1793 PnvMachineState *pnv = PNV_MACHINE(xi);
1794 int i, j;
1795
1796 for (i = 0; i < pnv->num_chips; i++) {
1797 PnvChip *chip = pnv->chips[i];
1798 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1799
1800 ics_resend(&chip8->psi.ics);
1801 for (j = 0; j < chip->num_phbs; j++) {
1802 ics_resend(&chip8->phbs[j].lsis);
1803 ics_resend(ICS(&chip8->phbs[j].msis));
1804 }
1805 }
1806 }
1807
1808 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1809 {
1810 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1811
1812 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1813 }
1814
1815 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1816 Monitor *mon)
1817 {
1818 PnvMachineState *pnv = PNV_MACHINE(obj);
1819 int i;
1820 CPUState *cs;
1821
1822 CPU_FOREACH(cs) {
1823 PowerPCCPU *cpu = POWERPC_CPU(cs);
1824
1825 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1826 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1827 mon);
1828 }
1829
1830 for (i = 0; i < pnv->num_chips; i++) {
1831 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1832 }
1833 }
1834
1835 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1836 uint8_t nvt_blk, uint32_t nvt_idx,
1837 bool cam_ignore, uint8_t priority,
1838 uint32_t logic_serv,
1839 XiveTCTXMatch *match)
1840 {
1841 PnvMachineState *pnv = PNV_MACHINE(xfb);
1842 int total_count = 0;
1843 int i;
1844
1845 for (i = 0; i < pnv->num_chips; i++) {
1846 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1847 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1848 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1849 int count;
1850
1851 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1852 priority, logic_serv, match);
1853
1854 if (count < 0) {
1855 return count;
1856 }
1857
1858 total_count += count;
1859 }
1860
1861 return total_count;
1862 }
1863
1864 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1865 {
1866 MachineClass *mc = MACHINE_CLASS(oc);
1867 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1868 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1869 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1870
1871 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1872 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1873
1874 xic->icp_get = pnv_icp_get;
1875 xic->ics_get = pnv_ics_get;
1876 xic->ics_resend = pnv_ics_resend;
1877
1878 pmc->compat = compat;
1879 pmc->compat_size = sizeof(compat);
1880 }
1881
1882 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1883 {
1884 MachineClass *mc = MACHINE_CLASS(oc);
1885 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1886 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1887 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1888
1889 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1890 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1891 xfc->match_nvt = pnv_match_nvt;
1892
1893 mc->alias = "powernv";
1894
1895 pmc->compat = compat;
1896 pmc->compat_size = sizeof(compat);
1897 pmc->dt_power_mgt = pnv_dt_power_mgt;
1898 }
1899
1900 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1901 {
1902 MachineClass *mc = MACHINE_CLASS(oc);
1903 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1904 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1905
1906 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1907 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1908
1909 pmc->compat = compat;
1910 pmc->compat_size = sizeof(compat);
1911 pmc->dt_power_mgt = pnv_dt_power_mgt;
1912 }
1913
1914 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1915 {
1916 PnvMachineState *pnv = PNV_MACHINE(obj);
1917
1918 return !!pnv->fw_load_addr;
1919 }
1920
1921 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1922 {
1923 PnvMachineState *pnv = PNV_MACHINE(obj);
1924
1925 if (value) {
1926 pnv->fw_load_addr = 0x8000000;
1927 }
1928 }
1929
1930 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1931 {
1932 PowerPCCPU *cpu = POWERPC_CPU(cs);
1933 CPUPPCState *env = &cpu->env;
1934
1935 cpu_synchronize_state(cs);
1936 ppc_cpu_do_system_reset(cs);
1937 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1938 /*
1939 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1940 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1941 * (PPC_BIT(43)).
1942 */
1943 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1944 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1945 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1946 }
1947 } else {
1948 /*
1949 * For non-powersave system resets, SRR1[42:45] are defined to be
1950 * implementation-dependent. The POWER9 User Manual specifies that
1951 * an external (SCOM driven, which may come from a BMC nmi command or
1952 * another CPU requesting a NMI IPI) system reset exception should be
1953 * 0b0010 (PPC_BIT(44)).
1954 */
1955 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1956 }
1957 }
1958
1959 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1960 {
1961 CPUState *cs;
1962
1963 CPU_FOREACH(cs) {
1964 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1965 }
1966 }
1967
1968 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1969 {
1970 MachineClass *mc = MACHINE_CLASS(oc);
1971 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1972 NMIClass *nc = NMI_CLASS(oc);
1973
1974 mc->desc = "IBM PowerNV (Non-Virtualized)";
1975 mc->init = pnv_init;
1976 mc->reset = pnv_reset;
1977 mc->max_cpus = MAX_CPUS;
1978 /* Pnv provides a AHCI device for storage */
1979 mc->block_default_type = IF_IDE;
1980 mc->no_parallel = 1;
1981 mc->default_boot_order = NULL;
1982 /*
1983 * RAM defaults to less than 2048 for 32-bit hosts, and large
1984 * enough to fit the maximum initrd size at it's load address
1985 */
1986 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1987 mc->default_ram_id = "pnv.ram";
1988 ispc->print_info = pnv_pic_print_info;
1989 nc->nmi_monitor_handler = pnv_nmi;
1990
1991 object_class_property_add_bool(oc, "hb-mode",
1992 pnv_machine_get_hb, pnv_machine_set_hb);
1993 object_class_property_set_description(oc, "hb-mode",
1994 "Use a hostboot like boot loader");
1995 }
1996
1997 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1998 { \
1999 .name = type, \
2000 .class_init = class_initfn, \
2001 .parent = TYPE_PNV8_CHIP, \
2002 }
2003
2004 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2005 { \
2006 .name = type, \
2007 .class_init = class_initfn, \
2008 .parent = TYPE_PNV9_CHIP, \
2009 }
2010
2011 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2012 { \
2013 .name = type, \
2014 .class_init = class_initfn, \
2015 .parent = TYPE_PNV10_CHIP, \
2016 }
2017
2018 static const TypeInfo types[] = {
2019 {
2020 .name = MACHINE_TYPE_NAME("powernv10"),
2021 .parent = TYPE_PNV_MACHINE,
2022 .class_init = pnv_machine_power10_class_init,
2023 },
2024 {
2025 .name = MACHINE_TYPE_NAME("powernv9"),
2026 .parent = TYPE_PNV_MACHINE,
2027 .class_init = pnv_machine_power9_class_init,
2028 .interfaces = (InterfaceInfo[]) {
2029 { TYPE_XIVE_FABRIC },
2030 { },
2031 },
2032 },
2033 {
2034 .name = MACHINE_TYPE_NAME("powernv8"),
2035 .parent = TYPE_PNV_MACHINE,
2036 .class_init = pnv_machine_power8_class_init,
2037 .interfaces = (InterfaceInfo[]) {
2038 { TYPE_XICS_FABRIC },
2039 { },
2040 },
2041 },
2042 {
2043 .name = TYPE_PNV_MACHINE,
2044 .parent = TYPE_MACHINE,
2045 .abstract = true,
2046 .instance_size = sizeof(PnvMachineState),
2047 .class_init = pnv_machine_class_init,
2048 .class_size = sizeof(PnvMachineClass),
2049 .interfaces = (InterfaceInfo[]) {
2050 { TYPE_INTERRUPT_STATS_PROVIDER },
2051 { TYPE_NMI },
2052 { },
2053 },
2054 },
2055 {
2056 .name = TYPE_PNV_CHIP,
2057 .parent = TYPE_SYS_BUS_DEVICE,
2058 .class_init = pnv_chip_class_init,
2059 .instance_size = sizeof(PnvChip),
2060 .class_size = sizeof(PnvChipClass),
2061 .abstract = true,
2062 },
2063
2064 /*
2065 * P10 chip and variants
2066 */
2067 {
2068 .name = TYPE_PNV10_CHIP,
2069 .parent = TYPE_PNV_CHIP,
2070 .instance_init = pnv_chip_power10_instance_init,
2071 .instance_size = sizeof(Pnv10Chip),
2072 },
2073 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2074
2075 /*
2076 * P9 chip and variants
2077 */
2078 {
2079 .name = TYPE_PNV9_CHIP,
2080 .parent = TYPE_PNV_CHIP,
2081 .instance_init = pnv_chip_power9_instance_init,
2082 .instance_size = sizeof(Pnv9Chip),
2083 },
2084 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2085
2086 /*
2087 * P8 chip and variants
2088 */
2089 {
2090 .name = TYPE_PNV8_CHIP,
2091 .parent = TYPE_PNV_CHIP,
2092 .instance_init = pnv_chip_power8_instance_init,
2093 .instance_size = sizeof(Pnv8Chip),
2094 },
2095 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2096 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2097 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2098 pnv_chip_power8nvl_class_init),
2099 };
2100
2101 DEFINE_TYPES(types)