]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qom-2020-05-15' into staging
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "sysemu/hw_accel.h"
31 #include "target/ppc/cpu.h"
32 #include "qemu/log.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/ppc.h"
35 #include "hw/ppc/pnv.h"
36 #include "hw/ppc/pnv_core.h"
37 #include "hw/loader.h"
38 #include "hw/nmi.h"
39 #include "exec/address-spaces.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51
52 #include "hw/isa/isa.h"
53 #include "hw/boards.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56
57 #include <libfdt.h>
58
59 #define FDT_MAX_SIZE (1 * MiB)
60
61 #define FW_FILE_NAME "skiboot.lid"
62 #define FW_LOAD_ADDR 0x0
63 #define FW_MAX_SIZE (4 * MiB)
64
65 #define KERNEL_LOAD_ADDR 0x20000000
66 #define KERNEL_MAX_SIZE (256 * MiB)
67 #define INITRD_LOAD_ADDR 0x60000000
68 #define INITRD_MAX_SIZE (256 * MiB)
69
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75 const char *core_type = object_class_get_name(object_class_by_name(s));
76 g_free(s);
77 return core_type;
78 }
79
80 /*
81 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82 * 4 * 4 sockets * 12 cores * 8 threads = 1536
83 * Let's make it 2^11
84 */
85 #define MAX_CPUS 2048
86
87 /*
88 * Memory nodes are created by hostboot, one for each range of memory
89 * that has a different "affinity". In practice, it means one range
90 * per chip.
91 */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94 char *mem_name;
95 uint64_t mem_reg_property[2];
96 int off;
97
98 mem_reg_property[0] = cpu_to_be64(start);
99 mem_reg_property[1] = cpu_to_be64(size);
100
101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102 off = fdt_add_subnode(fdt, 0, mem_name);
103 g_free(mem_name);
104
105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107 sizeof(mem_reg_property))));
108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110
111 static int get_cpus_node(void *fdt)
112 {
113 int cpus_offset = fdt_path_offset(fdt, "/cpus");
114
115 if (cpus_offset < 0) {
116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117 if (cpus_offset) {
118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120 }
121 }
122 _FDT(cpus_offset);
123 return cpus_offset;
124 }
125
126 /*
127 * The PowerNV cores (and threads) need to use real HW ids and not an
128 * incremental index like it has been done on other platforms. This HW
129 * id is stored in the CPU PIR, it is used to create cpu nodes in the
130 * device tree, used in XSCOM to address cores and in interrupt
131 * servers.
132 */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135 PowerPCCPU *cpu = pc->threads[0];
136 CPUState *cs = CPU(cpu);
137 DeviceClass *dc = DEVICE_GET_CLASS(cs);
138 int smt_threads = CPU_CORE(pc)->nr_threads;
139 CPUPPCState *env = &cpu->env;
140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141 uint32_t servers_prop[smt_threads];
142 int i;
143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144 0xffffffff, 0xffffffff};
145 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146 uint32_t cpufreq = 1000000000;
147 uint32_t page_sizes_prop[64];
148 size_t page_sizes_prop_size;
149 const uint8_t pa_features[] = { 24, 0,
150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154 int offset;
155 char *nodename;
156 int cpus_offset = get_cpus_node(fdt);
157
158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160 _FDT(offset);
161 g_free(nodename);
162
163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164
165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168
169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171 env->dcache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173 env->dcache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175 env->icache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177 env->icache_line_size)));
178
179 if (pcc->l1_dcache_size) {
180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181 pcc->l1_dcache_size)));
182 } else {
183 warn_report("Unknown L1 dcache size for cpu");
184 }
185 if (pcc->l1_icache_size) {
186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187 pcc->l1_icache_size)));
188 } else {
189 warn_report("Unknown L1 icache size for cpu");
190 }
191
192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195 cpu->hash64_opts->slb_size)));
196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198
199 if (env->spr_cb[SPR_PURR].oea_read) {
200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201 }
202
203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205 segs, sizeof(segs))));
206 }
207
208 /*
209 * Advertise VMX/VSX (vector extensions) if available
210 * 0 / no property == no vector extensions
211 * 1 == VMX / Altivec available
212 * 2 == VSX available
213 */
214 if (env->insns_flags & PPC_ALTIVEC) {
215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216
217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218 }
219
220 /*
221 * Advertise DFP (Decimal Floating Point) if available
222 * 0 / no property == no DFP
223 * 1 == DFP available
224 */
225 if (env->insns_flags2 & PPC2_DFP) {
226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227 }
228
229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230 sizeof(page_sizes_prop));
231 if (page_sizes_prop_size) {
232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233 page_sizes_prop, page_sizes_prop_size)));
234 }
235
236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237 pa_features, sizeof(pa_features))));
238
239 /* Build interrupt servers properties */
240 for (i = 0; i < smt_threads; i++) {
241 servers_prop[i] = cpu_to_be32(pc->pir + i);
242 }
243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244 servers_prop, sizeof(servers_prop))));
245 }
246
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248 uint32_t nr_threads)
249 {
250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251 char *name;
252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253 uint32_t irange[2], i, rsize;
254 uint64_t *reg;
255 int offset;
256
257 irange[0] = cpu_to_be32(pir);
258 irange[1] = cpu_to_be32(nr_threads);
259
260 rsize = sizeof(uint64_t) * 2 * nr_threads;
261 reg = g_malloc(rsize);
262 for (i = 0; i < nr_threads; i++) {
263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264 reg[i * 2 + 1] = cpu_to_be64(0x1000);
265 }
266
267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268 offset = fdt_add_subnode(fdt, 0, name);
269 _FDT(offset);
270 g_free(name);
271
272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274 _FDT((fdt_setprop_string(fdt, offset, "device_type",
275 "PowerPC-External-Interrupt-Presentation")));
276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278 irange, sizeof(irange))));
279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281 g_free(reg);
282 }
283
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287 int i;
288
289 pnv_dt_xscom(chip, fdt, 0,
290 cpu_to_be64(PNV_XSCOM_BASE(chip)),
291 cpu_to_be64(PNV_XSCOM_SIZE),
292 compat, sizeof(compat));
293
294 for (i = 0; i < chip->nr_cores; i++) {
295 PnvCore *pnv_core = chip->cores[i];
296
297 pnv_dt_core(chip, pnv_core, fdt);
298
299 /* Interrupt Control Presenters (ICP). One per core. */
300 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301 }
302
303 if (chip->ram_size) {
304 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305 }
306 }
307
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311 int i;
312
313 pnv_dt_xscom(chip, fdt, 0,
314 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315 cpu_to_be64(PNV9_XSCOM_SIZE),
316 compat, sizeof(compat));
317
318 for (i = 0; i < chip->nr_cores; i++) {
319 PnvCore *pnv_core = chip->cores[i];
320
321 pnv_dt_core(chip, pnv_core, fdt);
322 }
323
324 if (chip->ram_size) {
325 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326 }
327
328 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334 int i;
335
336 pnv_dt_xscom(chip, fdt, 0,
337 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338 cpu_to_be64(PNV10_XSCOM_SIZE),
339 compat, sizeof(compat));
340
341 for (i = 0; i < chip->nr_cores; i++) {
342 PnvCore *pnv_core = chip->cores[i];
343
344 pnv_dt_core(chip, pnv_core, fdt);
345 }
346
347 if (chip->ram_size) {
348 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349 }
350
351 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356 uint32_t io_base = d->ioport_id;
357 uint32_t io_regs[] = {
358 cpu_to_be32(1),
359 cpu_to_be32(io_base),
360 cpu_to_be32(2)
361 };
362 char *name;
363 int node;
364
365 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366 node = fdt_add_subnode(fdt, lpc_off, name);
367 _FDT(node);
368 g_free(name);
369
370 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376 const char compatible[] = "ns16550\0pnpPNP,501";
377 uint32_t io_base = d->ioport_id;
378 uint32_t io_regs[] = {
379 cpu_to_be32(1),
380 cpu_to_be32(io_base),
381 cpu_to_be32(8)
382 };
383 char *name;
384 int node;
385
386 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387 node = fdt_add_subnode(fdt, lpc_off, name);
388 _FDT(node);
389 g_free(name);
390
391 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393 sizeof(compatible))));
394
395 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399 fdt_get_phandle(fdt, lpc_off))));
400
401 /* This is needed by Linux */
402 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407 const char compatible[] = "bt\0ipmi-bt";
408 uint32_t io_base;
409 uint32_t io_regs[] = {
410 cpu_to_be32(1),
411 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412 cpu_to_be32(3)
413 };
414 uint32_t irq;
415 char *name;
416 int node;
417
418 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419 io_regs[1] = cpu_to_be32(io_base);
420
421 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422
423 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424 node = fdt_add_subnode(fdt, lpc_off, name);
425 _FDT(node);
426 g_free(name);
427
428 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430 sizeof(compatible))));
431
432 /* Mark it as reserved to avoid Linux trying to claim it */
433 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436 fdt_get_phandle(fdt, lpc_off))));
437 }
438
439 typedef struct ForeachPopulateArgs {
440 void *fdt;
441 int offset;
442 } ForeachPopulateArgs;
443
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446 ForeachPopulateArgs *args = opaque;
447 ISADevice *d = ISA_DEVICE(dev);
448
449 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450 pnv_dt_rtc(d, args->fdt, args->offset);
451 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452 pnv_dt_serial(d, args->fdt, args->offset);
453 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455 } else {
456 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457 d->ioport_id);
458 }
459
460 return 0;
461 }
462
463 /*
464 * The default LPC bus of a multichip system is on chip 0. It's
465 * recognized by the firmware (skiboot) using a "primary" property.
466 */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470 ForeachPopulateArgs args = {
471 .fdt = fdt,
472 .offset = isa_offset,
473 };
474 uint32_t phandle;
475
476 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477
478 phandle = qemu_fdt_alloc_phandle(fdt);
479 assert(phandle > 0);
480 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481
482 /*
483 * ISA devices are not necessarily parented to the ISA bus so we
484 * can not use object_child_foreach()
485 */
486 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487 &args);
488 }
489
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492 int off;
493
494 off = fdt_add_subnode(fdt, 0, "ibm,opal");
495 off = fdt_add_subnode(fdt, off, "power-mgt");
496
497 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499
500 static void *pnv_dt_create(MachineState *machine)
501 {
502 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503 PnvMachineState *pnv = PNV_MACHINE(machine);
504 void *fdt;
505 char *buf;
506 int off;
507 int i;
508
509 fdt = g_malloc0(FDT_MAX_SIZE);
510 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511
512 /* /qemu node */
513 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514
515 /* Root node */
516 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518 _FDT((fdt_setprop_string(fdt, 0, "model",
519 "IBM PowerNV (emulated by qemu)")));
520 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521
522 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
523 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524 if (qemu_uuid_set) {
525 _FDT((fdt_property_string(fdt, "system-id", buf)));
526 }
527 g_free(buf);
528
529 off = fdt_add_subnode(fdt, 0, "chosen");
530 if (machine->kernel_cmdline) {
531 _FDT((fdt_setprop_string(fdt, off, "bootargs",
532 machine->kernel_cmdline)));
533 }
534
535 if (pnv->initrd_size) {
536 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538
539 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540 &start_prop, sizeof(start_prop))));
541 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542 &end_prop, sizeof(end_prop))));
543 }
544
545 /* Populate device tree for each chip */
546 for (i = 0; i < pnv->num_chips; i++) {
547 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548 }
549
550 /* Populate ISA devices on chip 0 */
551 pnv_dt_isa(pnv, fdt);
552
553 if (pnv->bmc) {
554 pnv_dt_bmc_sensors(pnv->bmc, fdt);
555 }
556
557 /* Create an extra node for power management on machines that support it */
558 if (pmc->dt_power_mgt) {
559 pmc->dt_power_mgt(pnv, fdt);
560 }
561
562 return fdt;
563 }
564
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568
569 if (pnv->bmc) {
570 pnv_bmc_powerdown(pnv->bmc);
571 }
572 }
573
574 static void pnv_reset(MachineState *machine)
575 {
576 PnvMachineState *pnv = PNV_MACHINE(machine);
577 IPMIBmc *bmc;
578 void *fdt;
579
580 qemu_devices_reset();
581
582 /*
583 * The machine should provide by default an internal BMC simulator.
584 * If not, try to use the BMC device that was provided on the command
585 * line.
586 */
587 bmc = pnv_bmc_find(&error_fatal);
588 if (!pnv->bmc) {
589 if (!bmc) {
590 warn_report("machine has no BMC device. Use '-device "
591 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
592 "to define one");
593 } else {
594 pnv_bmc_set_pnor(bmc, pnv->pnor);
595 pnv->bmc = bmc;
596 }
597 }
598
599 fdt = pnv_dt_create(machine);
600
601 /* Pack resulting tree */
602 _FDT((fdt_pack(fdt)));
603
604 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
605 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
606
607 g_free(fdt);
608 }
609
610 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
611 {
612 Pnv8Chip *chip8 = PNV8_CHIP(chip);
613 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
614 }
615
616 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
617 {
618 Pnv8Chip *chip8 = PNV8_CHIP(chip);
619 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
620 }
621
622 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
623 {
624 Pnv9Chip *chip9 = PNV9_CHIP(chip);
625 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
626 }
627
628 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
629 {
630 Pnv10Chip *chip10 = PNV10_CHIP(chip);
631 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
632 }
633
634 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
635 {
636 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
637 }
638
639 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
640 {
641 Pnv8Chip *chip8 = PNV8_CHIP(chip);
642 int i;
643
644 ics_pic_print_info(&chip8->psi.ics, mon);
645 for (i = 0; i < chip->num_phbs; i++) {
646 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
647 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
648 }
649 }
650
651 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
652 {
653 Pnv9Chip *chip9 = PNV9_CHIP(chip);
654 int i, j;
655
656 pnv_xive_pic_print_info(&chip9->xive, mon);
657 pnv_psi_pic_print_info(&chip9->psi, mon);
658
659 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
660 PnvPhb4PecState *pec = &chip9->pecs[i];
661 for (j = 0; j < pec->num_stacks; j++) {
662 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
663 }
664 }
665 }
666
667 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
668 uint32_t core_id)
669 {
670 return PNV_XSCOM_EX_BASE(core_id);
671 }
672
673 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
674 uint32_t core_id)
675 {
676 return PNV9_XSCOM_EC_BASE(core_id);
677 }
678
679 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
680 uint32_t core_id)
681 {
682 return PNV10_XSCOM_EC_BASE(core_id);
683 }
684
685 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
686 {
687 PowerPCCPUClass *ppc_default =
688 POWERPC_CPU_CLASS(object_class_by_name(default_type));
689 PowerPCCPUClass *ppc =
690 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
691
692 return ppc_default->pvr_match(ppc_default, ppc->pvr);
693 }
694
695 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
696 {
697 Object *obj;
698
699 obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
700 object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
701 object_property_set_int(obj, irq, "irq", &error_fatal);
702 object_property_set_bool(obj, true, "realized", &error_fatal);
703 }
704
705 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
706 {
707 Pnv10Chip *chip10 = PNV10_CHIP(chip);
708
709 pnv_psi_pic_print_info(&chip10->psi, mon);
710 }
711
712 static void pnv_init(MachineState *machine)
713 {
714 PnvMachineState *pnv = PNV_MACHINE(machine);
715 MachineClass *mc = MACHINE_GET_CLASS(machine);
716 char *fw_filename;
717 long fw_size;
718 int i;
719 char *chip_typename;
720 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
721 DeviceState *dev;
722
723 /* allocate RAM */
724 if (machine->ram_size < (1 * GiB)) {
725 warn_report("skiboot may not work with < 1GB of RAM");
726 }
727 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
728
729 /*
730 * Create our simple PNOR device
731 */
732 dev = qdev_create(NULL, TYPE_PNV_PNOR);
733 if (pnor) {
734 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
735 &error_abort);
736 }
737 qdev_init_nofail(dev);
738 pnv->pnor = PNV_PNOR(dev);
739
740 /* load skiboot firmware */
741 if (bios_name == NULL) {
742 bios_name = FW_FILE_NAME;
743 }
744
745 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
746 if (!fw_filename) {
747 error_report("Could not find OPAL firmware '%s'", bios_name);
748 exit(1);
749 }
750
751 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
752 if (fw_size < 0) {
753 error_report("Could not load OPAL firmware '%s'", fw_filename);
754 exit(1);
755 }
756 g_free(fw_filename);
757
758 /* load kernel */
759 if (machine->kernel_filename) {
760 long kernel_size;
761
762 kernel_size = load_image_targphys(machine->kernel_filename,
763 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
764 if (kernel_size < 0) {
765 error_report("Could not load kernel '%s'",
766 machine->kernel_filename);
767 exit(1);
768 }
769 }
770
771 /* load initrd */
772 if (machine->initrd_filename) {
773 pnv->initrd_base = INITRD_LOAD_ADDR;
774 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
775 pnv->initrd_base, INITRD_MAX_SIZE);
776 if (pnv->initrd_size < 0) {
777 error_report("Could not load initial ram disk '%s'",
778 machine->initrd_filename);
779 exit(1);
780 }
781 }
782
783 /* MSIs are supported on this platform */
784 msi_nonbroken = true;
785
786 /*
787 * Check compatibility of the specified CPU with the machine
788 * default.
789 */
790 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
791 error_report("invalid CPU model '%s' for %s machine",
792 machine->cpu_type, mc->name);
793 exit(1);
794 }
795
796 /* Create the processor chips */
797 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
798 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
799 i, machine->cpu_type);
800 if (!object_class_by_name(chip_typename)) {
801 error_report("invalid chip model '%.*s' for %s machine",
802 i, machine->cpu_type, mc->name);
803 exit(1);
804 }
805
806 pnv->num_chips =
807 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
808 /*
809 * TODO: should we decide on how many chips we can create based
810 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
811 */
812 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
813 error_report("invalid number of chips: '%d'", pnv->num_chips);
814 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
815 exit(1);
816 }
817
818 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
819 for (i = 0; i < pnv->num_chips; i++) {
820 char chip_name[32];
821 Object *chip = object_new(chip_typename);
822
823 pnv->chips[i] = PNV_CHIP(chip);
824
825 /*
826 * TODO: put all the memory in one node on chip 0 until we find a
827 * way to specify different ranges for each chip
828 */
829 if (i == 0) {
830 object_property_set_int(chip, machine->ram_size, "ram-size",
831 &error_fatal);
832 }
833
834 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
835 object_property_add_child(OBJECT(pnv), chip_name, chip);
836 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
837 &error_fatal);
838 object_property_set_int(chip, machine->smp.cores,
839 "nr-cores", &error_fatal);
840 object_property_set_int(chip, machine->smp.threads,
841 "nr-threads", &error_fatal);
842 /*
843 * The POWER8 machine use the XICS interrupt interface.
844 * Propagate the XICS fabric to the chip and its controllers.
845 */
846 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
847 object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
848 }
849 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
850 object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
851 &error_abort);
852 }
853 object_property_set_bool(chip, true, "realized", &error_fatal);
854 }
855 g_free(chip_typename);
856
857 /* Instantiate ISA bus on chip 0 */
858 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
859
860 /* Create serial port */
861 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
862
863 /* Create an RTC ISA device too */
864 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
865
866 /*
867 * Create the machine BMC simulator and the IPMI BT device for
868 * communication with the BMC
869 */
870 if (defaults_enabled()) {
871 pnv->bmc = pnv_bmc_create(pnv->pnor);
872 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
873 }
874
875 /*
876 * OpenPOWER systems use a IPMI SEL Event message to notify the
877 * host to powerdown
878 */
879 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
880 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
881 }
882
883 /*
884 * 0:21 Reserved - Read as zeros
885 * 22:24 Chip ID
886 * 25:28 Core number
887 * 29:31 Thread ID
888 */
889 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
890 {
891 return (chip->chip_id << 7) | (core_id << 3);
892 }
893
894 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
895 Error **errp)
896 {
897 Pnv8Chip *chip8 = PNV8_CHIP(chip);
898 Error *local_err = NULL;
899 Object *obj;
900 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
901
902 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
903 if (local_err) {
904 error_propagate(errp, local_err);
905 return;
906 }
907
908 pnv_cpu->intc = obj;
909 }
910
911
912 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
913 {
914 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
915
916 icp_reset(ICP(pnv_cpu->intc));
917 }
918
919 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
920 {
921 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
922
923 icp_destroy(ICP(pnv_cpu->intc));
924 pnv_cpu->intc = NULL;
925 }
926
927 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
928 Monitor *mon)
929 {
930 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
931 }
932
933 /*
934 * 0:48 Reserved - Read as zeroes
935 * 49:52 Node ID
936 * 53:55 Chip ID
937 * 56 Reserved - Read as zero
938 * 57:61 Core number
939 * 62:63 Thread ID
940 *
941 * We only care about the lower bits. uint32_t is fine for the moment.
942 */
943 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
944 {
945 return (chip->chip_id << 8) | (core_id << 2);
946 }
947
948 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
949 {
950 return (chip->chip_id << 8) | (core_id << 2);
951 }
952
953 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
954 Error **errp)
955 {
956 Pnv9Chip *chip9 = PNV9_CHIP(chip);
957 Error *local_err = NULL;
958 Object *obj;
959 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960
961 /*
962 * The core creates its interrupt presenter but the XIVE interrupt
963 * controller object is initialized afterwards. Hopefully, it's
964 * only used at runtime.
965 */
966 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
967 &local_err);
968 if (local_err) {
969 error_propagate(errp, local_err);
970 return;
971 }
972
973 pnv_cpu->intc = obj;
974 }
975
976 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
977 {
978 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
979
980 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
981 }
982
983 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
984 {
985 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
986
987 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
988 pnv_cpu->intc = NULL;
989 }
990
991 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
992 Monitor *mon)
993 {
994 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
995 }
996
997 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
998 Error **errp)
999 {
1000 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1001
1002 /* Will be defined when the interrupt controller is */
1003 pnv_cpu->intc = NULL;
1004 }
1005
1006 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1007 {
1008 ;
1009 }
1010
1011 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1012 {
1013 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1014
1015 pnv_cpu->intc = NULL;
1016 }
1017
1018 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1019 Monitor *mon)
1020 {
1021 }
1022
1023 /*
1024 * Allowed core identifiers on a POWER8 Processor Chip :
1025 *
1026 * <EX0 reserved>
1027 * EX1 - Venice only
1028 * EX2 - Venice only
1029 * EX3 - Venice only
1030 * EX4
1031 * EX5
1032 * EX6
1033 * <EX7,8 reserved> <reserved>
1034 * EX9 - Venice only
1035 * EX10 - Venice only
1036 * EX11 - Venice only
1037 * EX12
1038 * EX13
1039 * EX14
1040 * <EX15 reserved>
1041 */
1042 #define POWER8E_CORE_MASK (0x7070ull)
1043 #define POWER8_CORE_MASK (0x7e7eull)
1044
1045 /*
1046 * POWER9 has 24 cores, ids starting at 0x0
1047 */
1048 #define POWER9_CORE_MASK (0xffffffffffffffull)
1049
1050
1051 #define POWER10_CORE_MASK (0xffffffffffffffull)
1052
1053 static void pnv_chip_power8_instance_init(Object *obj)
1054 {
1055 PnvChip *chip = PNV_CHIP(obj);
1056 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1057 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1058 int i;
1059
1060 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1061 (Object **)&chip8->xics,
1062 object_property_allow_set_link,
1063 OBJ_PROP_LINK_STRONG);
1064
1065 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
1066 TYPE_PNV8_PSI, &error_abort, NULL);
1067
1068 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
1069 TYPE_PNV8_LPC, &error_abort, NULL);
1070
1071 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
1072 TYPE_PNV8_OCC, &error_abort, NULL);
1073
1074 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer),
1075 TYPE_PNV8_HOMER, &error_abort, NULL);
1076
1077 for (i = 0; i < pcc->num_phbs; i++) {
1078 object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1079 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1080 &error_abort, NULL);
1081 }
1082
1083 /*
1084 * Number of PHBs is the chip default
1085 */
1086 chip->num_phbs = pcc->num_phbs;
1087 }
1088
1089 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1090 {
1091 PnvChip *chip = PNV_CHIP(chip8);
1092 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1093 int i, j;
1094 char *name;
1095
1096 name = g_strdup_printf("icp-%x", chip->chip_id);
1097 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1098 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1099 g_free(name);
1100
1101 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1102
1103 /* Map the ICP registers for each thread */
1104 for (i = 0; i < chip->nr_cores; i++) {
1105 PnvCore *pnv_core = chip->cores[i];
1106 int core_hwid = CPU_CORE(pnv_core)->core_id;
1107
1108 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1109 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1110 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1111
1112 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1113 &icp->mmio);
1114 }
1115 }
1116 }
1117
1118 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1119 {
1120 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1121 PnvChip *chip = PNV_CHIP(dev);
1122 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1123 Pnv8Psi *psi8 = &chip8->psi;
1124 Error *local_err = NULL;
1125 int i;
1126
1127 assert(chip8->xics);
1128
1129 /* XSCOM bridge is first */
1130 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1131 if (local_err) {
1132 error_propagate(errp, local_err);
1133 return;
1134 }
1135 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1136
1137 pcc->parent_realize(dev, &local_err);
1138 if (local_err) {
1139 error_propagate(errp, local_err);
1140 return;
1141 }
1142
1143 /* Processor Service Interface (PSI) Host Bridge */
1144 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1145 "bar", &error_fatal);
1146 object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1147 ICS_PROP_XICS, &error_abort);
1148 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1149 if (local_err) {
1150 error_propagate(errp, local_err);
1151 return;
1152 }
1153 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1154 &PNV_PSI(psi8)->xscom_regs);
1155
1156 /* Create LPC controller */
1157 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1158 &error_abort);
1159 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1160 &error_fatal);
1161 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1162
1163 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1164 (uint64_t) PNV_XSCOM_BASE(chip),
1165 PNV_XSCOM_LPC_BASE);
1166
1167 /*
1168 * Interrupt Management Area. This is the memory region holding
1169 * all the Interrupt Control Presenter (ICP) registers
1170 */
1171 pnv_chip_icp_realize(chip8, &local_err);
1172 if (local_err) {
1173 error_propagate(errp, local_err);
1174 return;
1175 }
1176
1177 /* Create the simplified OCC model */
1178 object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1179 &error_abort);
1180 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1181 if (local_err) {
1182 error_propagate(errp, local_err);
1183 return;
1184 }
1185 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1186
1187 /* OCC SRAM model */
1188 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1189 &chip8->occ.sram_regs);
1190
1191 /* HOMER */
1192 object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1193 &error_abort);
1194 object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1195 &local_err);
1196 if (local_err) {
1197 error_propagate(errp, local_err);
1198 return;
1199 }
1200 /* Homer Xscom region */
1201 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1202
1203 /* Homer mmio region */
1204 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1205 &chip8->homer.regs);
1206
1207 /* PHB3 controllers */
1208 for (i = 0; i < chip->num_phbs; i++) {
1209 PnvPHB3 *phb = &chip8->phbs[i];
1210 PnvPBCQState *pbcq = &phb->pbcq;
1211
1212 object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1213 object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1214 &error_fatal);
1215 object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1216 if (local_err) {
1217 error_propagate(errp, local_err);
1218 return;
1219 }
1220 qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1221
1222 /* Populate the XSCOM address space. */
1223 pnv_xscom_add_subregion(chip,
1224 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1225 &pbcq->xscom_nest_regs);
1226 pnv_xscom_add_subregion(chip,
1227 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1228 &pbcq->xscom_pci_regs);
1229 pnv_xscom_add_subregion(chip,
1230 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1231 &pbcq->xscom_spci_regs);
1232 }
1233 }
1234
1235 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1236 {
1237 addr &= (PNV_XSCOM_SIZE - 1);
1238 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1239 }
1240
1241 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1242 {
1243 DeviceClass *dc = DEVICE_CLASS(klass);
1244 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1245
1246 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1247 k->cores_mask = POWER8E_CORE_MASK;
1248 k->num_phbs = 3;
1249 k->core_pir = pnv_chip_core_pir_p8;
1250 k->intc_create = pnv_chip_power8_intc_create;
1251 k->intc_reset = pnv_chip_power8_intc_reset;
1252 k->intc_destroy = pnv_chip_power8_intc_destroy;
1253 k->intc_print_info = pnv_chip_power8_intc_print_info;
1254 k->isa_create = pnv_chip_power8_isa_create;
1255 k->dt_populate = pnv_chip_power8_dt_populate;
1256 k->pic_print_info = pnv_chip_power8_pic_print_info;
1257 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1258 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1259 dc->desc = "PowerNV Chip POWER8E";
1260
1261 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1262 &k->parent_realize);
1263 }
1264
1265 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1266 {
1267 DeviceClass *dc = DEVICE_CLASS(klass);
1268 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1269
1270 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1271 k->cores_mask = POWER8_CORE_MASK;
1272 k->num_phbs = 3;
1273 k->core_pir = pnv_chip_core_pir_p8;
1274 k->intc_create = pnv_chip_power8_intc_create;
1275 k->intc_reset = pnv_chip_power8_intc_reset;
1276 k->intc_destroy = pnv_chip_power8_intc_destroy;
1277 k->intc_print_info = pnv_chip_power8_intc_print_info;
1278 k->isa_create = pnv_chip_power8_isa_create;
1279 k->dt_populate = pnv_chip_power8_dt_populate;
1280 k->pic_print_info = pnv_chip_power8_pic_print_info;
1281 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1282 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1283 dc->desc = "PowerNV Chip POWER8";
1284
1285 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1286 &k->parent_realize);
1287 }
1288
1289 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1290 {
1291 DeviceClass *dc = DEVICE_CLASS(klass);
1292 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1293
1294 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1295 k->cores_mask = POWER8_CORE_MASK;
1296 k->num_phbs = 3;
1297 k->core_pir = pnv_chip_core_pir_p8;
1298 k->intc_create = pnv_chip_power8_intc_create;
1299 k->intc_reset = pnv_chip_power8_intc_reset;
1300 k->intc_destroy = pnv_chip_power8_intc_destroy;
1301 k->intc_print_info = pnv_chip_power8_intc_print_info;
1302 k->isa_create = pnv_chip_power8nvl_isa_create;
1303 k->dt_populate = pnv_chip_power8_dt_populate;
1304 k->pic_print_info = pnv_chip_power8_pic_print_info;
1305 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1306 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1307 dc->desc = "PowerNV Chip POWER8NVL";
1308
1309 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1310 &k->parent_realize);
1311 }
1312
1313 static void pnv_chip_power9_instance_init(Object *obj)
1314 {
1315 PnvChip *chip = PNV_CHIP(obj);
1316 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1317 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1318 int i;
1319
1320 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1321 TYPE_PNV_XIVE, &error_abort, NULL);
1322 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1323 "xive-fabric");
1324
1325 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1326 TYPE_PNV9_PSI, &error_abort, NULL);
1327
1328 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1329 TYPE_PNV9_LPC, &error_abort, NULL);
1330
1331 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1332 TYPE_PNV9_OCC, &error_abort, NULL);
1333
1334 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer),
1335 TYPE_PNV9_HOMER, &error_abort, NULL);
1336
1337 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1338 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1339 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1340 &error_abort, NULL);
1341 }
1342
1343 /*
1344 * Number of PHBs is the chip default
1345 */
1346 chip->num_phbs = pcc->num_phbs;
1347 }
1348
1349 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1350 {
1351 PnvChip *chip = PNV_CHIP(chip9);
1352 int i;
1353
1354 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1355 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1356
1357 for (i = 0; i < chip9->nr_quads; i++) {
1358 char eq_name[32];
1359 PnvQuad *eq = &chip9->quads[i];
1360 PnvCore *pnv_core = chip->cores[i * 4];
1361 int core_id = CPU_CORE(pnv_core)->core_id;
1362
1363 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1364 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1365 TYPE_PNV_QUAD, &error_fatal, NULL);
1366
1367 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1368 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1369
1370 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1371 &eq->xscom_regs);
1372 }
1373 }
1374
1375 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1376 {
1377 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1378 Error *local_err = NULL;
1379 int i, j;
1380 int phb_id = 0;
1381
1382 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1383 PnvPhb4PecState *pec = &chip9->pecs[i];
1384 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1385 uint32_t pec_nest_base;
1386 uint32_t pec_pci_base;
1387
1388 object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1389 /*
1390 * PEC0 -> 1 stack
1391 * PEC1 -> 2 stacks
1392 * PEC2 -> 3 stacks
1393 */
1394 object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1395 &error_fatal);
1396 object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1397 &error_fatal);
1398 object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1399 "system-memory", &error_abort);
1400 object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1401 if (local_err) {
1402 error_propagate(errp, local_err);
1403 return;
1404 }
1405
1406 pec_nest_base = pecc->xscom_nest_base(pec);
1407 pec_pci_base = pecc->xscom_pci_base(pec);
1408
1409 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1410 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1411
1412 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1413 j++, phb_id++) {
1414 PnvPhb4PecStack *stack = &pec->stacks[j];
1415 Object *obj = OBJECT(&stack->phb);
1416
1417 object_property_set_int(obj, phb_id, "index", &error_fatal);
1418 object_property_set_int(obj, chip->chip_id, "chip-id",
1419 &error_fatal);
1420 object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1421 &error_fatal);
1422 object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1423 &error_fatal);
1424 object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1425 object_property_set_bool(obj, true, "realized", &local_err);
1426 if (local_err) {
1427 error_propagate(errp, local_err);
1428 return;
1429 }
1430 qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1431
1432 /* Populate the XSCOM address space. */
1433 pnv_xscom_add_subregion(chip,
1434 pec_nest_base + 0x40 * (stack->stack_no + 1),
1435 &stack->nest_regs_mr);
1436 pnv_xscom_add_subregion(chip,
1437 pec_pci_base + 0x40 * (stack->stack_no + 1),
1438 &stack->pci_regs_mr);
1439 pnv_xscom_add_subregion(chip,
1440 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1441 0x40 * stack->stack_no,
1442 &stack->phb_regs_mr);
1443 }
1444 }
1445 }
1446
1447 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1448 {
1449 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1450 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1451 PnvChip *chip = PNV_CHIP(dev);
1452 Pnv9Psi *psi9 = &chip9->psi;
1453 Error *local_err = NULL;
1454
1455 /* XSCOM bridge is first */
1456 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1457 if (local_err) {
1458 error_propagate(errp, local_err);
1459 return;
1460 }
1461 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1462
1463 pcc->parent_realize(dev, &local_err);
1464 if (local_err) {
1465 error_propagate(errp, local_err);
1466 return;
1467 }
1468
1469 pnv_chip_quad_realize(chip9, &local_err);
1470 if (local_err) {
1471 error_propagate(errp, local_err);
1472 return;
1473 }
1474
1475 /* XIVE interrupt controller (POWER9) */
1476 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1477 "ic-bar", &error_fatal);
1478 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1479 "vc-bar", &error_fatal);
1480 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1481 "pc-bar", &error_fatal);
1482 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1483 "tm-bar", &error_fatal);
1484 object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1485 &error_abort);
1486 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1487 &local_err);
1488 if (local_err) {
1489 error_propagate(errp, local_err);
1490 return;
1491 }
1492 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1493 &chip9->xive.xscom_regs);
1494
1495 /* Processor Service Interface (PSI) Host Bridge */
1496 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1497 "bar", &error_fatal);
1498 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1499 if (local_err) {
1500 error_propagate(errp, local_err);
1501 return;
1502 }
1503 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1504 &PNV_PSI(psi9)->xscom_regs);
1505
1506 /* LPC */
1507 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1508 &error_abort);
1509 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1510 if (local_err) {
1511 error_propagate(errp, local_err);
1512 return;
1513 }
1514 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1515 &chip9->lpc.xscom_regs);
1516
1517 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1518 (uint64_t) PNV9_LPCM_BASE(chip));
1519
1520 /* Create the simplified OCC model */
1521 object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1522 &error_abort);
1523 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1524 if (local_err) {
1525 error_propagate(errp, local_err);
1526 return;
1527 }
1528 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1529
1530 /* OCC SRAM model */
1531 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1532 &chip9->occ.sram_regs);
1533
1534 /* HOMER */
1535 object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1536 &error_abort);
1537 object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1538 &local_err);
1539 if (local_err) {
1540 error_propagate(errp, local_err);
1541 return;
1542 }
1543 /* Homer Xscom region */
1544 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1545
1546 /* Homer mmio region */
1547 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1548 &chip9->homer.regs);
1549
1550 /* PHBs */
1551 pnv_chip_power9_phb_realize(chip, &local_err);
1552 if (local_err) {
1553 error_propagate(errp, local_err);
1554 return;
1555 }
1556 }
1557
1558 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1559 {
1560 addr &= (PNV9_XSCOM_SIZE - 1);
1561 return addr >> 3;
1562 }
1563
1564 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1565 {
1566 DeviceClass *dc = DEVICE_CLASS(klass);
1567 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1568
1569 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1570 k->cores_mask = POWER9_CORE_MASK;
1571 k->core_pir = pnv_chip_core_pir_p9;
1572 k->intc_create = pnv_chip_power9_intc_create;
1573 k->intc_reset = pnv_chip_power9_intc_reset;
1574 k->intc_destroy = pnv_chip_power9_intc_destroy;
1575 k->intc_print_info = pnv_chip_power9_intc_print_info;
1576 k->isa_create = pnv_chip_power9_isa_create;
1577 k->dt_populate = pnv_chip_power9_dt_populate;
1578 k->pic_print_info = pnv_chip_power9_pic_print_info;
1579 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1580 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1581 dc->desc = "PowerNV Chip POWER9";
1582 k->num_phbs = 6;
1583
1584 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1585 &k->parent_realize);
1586 }
1587
1588 static void pnv_chip_power10_instance_init(Object *obj)
1589 {
1590 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1591
1592 object_initialize_child(obj, "psi", &chip10->psi, sizeof(chip10->psi),
1593 TYPE_PNV10_PSI, &error_abort, NULL);
1594 object_initialize_child(obj, "lpc", &chip10->lpc, sizeof(chip10->lpc),
1595 TYPE_PNV10_LPC, &error_abort, NULL);
1596 }
1597
1598 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1599 {
1600 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1601 PnvChip *chip = PNV_CHIP(dev);
1602 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1603 Error *local_err = NULL;
1604
1605 /* XSCOM bridge is first */
1606 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1607 if (local_err) {
1608 error_propagate(errp, local_err);
1609 return;
1610 }
1611 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1612
1613 pcc->parent_realize(dev, &local_err);
1614 if (local_err) {
1615 error_propagate(errp, local_err);
1616 return;
1617 }
1618
1619 /* Processor Service Interface (PSI) Host Bridge */
1620 object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1621 "bar", &error_fatal);
1622 object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1623 &local_err);
1624 if (local_err) {
1625 error_propagate(errp, local_err);
1626 return;
1627 }
1628 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1629 &PNV_PSI(&chip10->psi)->xscom_regs);
1630
1631 /* LPC */
1632 object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1633 &error_abort);
1634 object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1635 &local_err);
1636 if (local_err) {
1637 error_propagate(errp, local_err);
1638 return;
1639 }
1640 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1641 &chip10->lpc.xscom_regs);
1642
1643 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1644 (uint64_t) PNV10_LPCM_BASE(chip));
1645 }
1646
1647 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1648 {
1649 addr &= (PNV10_XSCOM_SIZE - 1);
1650 return addr >> 3;
1651 }
1652
1653 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1654 {
1655 DeviceClass *dc = DEVICE_CLASS(klass);
1656 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1657
1658 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1659 k->cores_mask = POWER10_CORE_MASK;
1660 k->core_pir = pnv_chip_core_pir_p10;
1661 k->intc_create = pnv_chip_power10_intc_create;
1662 k->intc_reset = pnv_chip_power10_intc_reset;
1663 k->intc_destroy = pnv_chip_power10_intc_destroy;
1664 k->intc_print_info = pnv_chip_power10_intc_print_info;
1665 k->isa_create = pnv_chip_power10_isa_create;
1666 k->dt_populate = pnv_chip_power10_dt_populate;
1667 k->pic_print_info = pnv_chip_power10_pic_print_info;
1668 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1669 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1670 dc->desc = "PowerNV Chip POWER10";
1671
1672 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1673 &k->parent_realize);
1674 }
1675
1676 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1677 {
1678 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1679 int cores_max;
1680
1681 /*
1682 * No custom mask for this chip, let's use the default one from *
1683 * the chip class
1684 */
1685 if (!chip->cores_mask) {
1686 chip->cores_mask = pcc->cores_mask;
1687 }
1688
1689 /* filter alien core ids ! some are reserved */
1690 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1691 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1692 chip->cores_mask);
1693 return;
1694 }
1695 chip->cores_mask &= pcc->cores_mask;
1696
1697 /* now that we have a sane layout, let check the number of cores */
1698 cores_max = ctpop64(chip->cores_mask);
1699 if (chip->nr_cores > cores_max) {
1700 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1701 cores_max);
1702 return;
1703 }
1704 }
1705
1706 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1707 {
1708 Error *error = NULL;
1709 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1710 const char *typename = pnv_chip_core_typename(chip);
1711 int i, core_hwid;
1712 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1713
1714 if (!object_class_by_name(typename)) {
1715 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1716 return;
1717 }
1718
1719 /* Cores */
1720 pnv_chip_core_sanitize(chip, &error);
1721 if (error) {
1722 error_propagate(errp, error);
1723 return;
1724 }
1725
1726 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1727
1728 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1729 && (i < chip->nr_cores); core_hwid++) {
1730 char core_name[32];
1731 PnvCore *pnv_core;
1732 uint64_t xscom_core_base;
1733
1734 if (!(chip->cores_mask & (1ull << core_hwid))) {
1735 continue;
1736 }
1737
1738 pnv_core = PNV_CORE(object_new(typename));
1739
1740 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1741 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1742 chip->cores[i] = pnv_core;
1743 object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1744 "nr-threads", &error_fatal);
1745 object_property_set_int(OBJECT(pnv_core), core_hwid,
1746 CPU_CORE_PROP_CORE_ID, &error_fatal);
1747 object_property_set_int(OBJECT(pnv_core),
1748 pcc->core_pir(chip, core_hwid),
1749 "pir", &error_fatal);
1750 object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1751 "hrmor", &error_fatal);
1752 object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1753 &error_abort);
1754 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1755 &error_fatal);
1756
1757 /* Each core has an XSCOM MMIO region */
1758 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1759
1760 pnv_xscom_add_subregion(chip, xscom_core_base,
1761 &pnv_core->xscom_regs);
1762 i++;
1763 }
1764 }
1765
1766 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1767 {
1768 PnvChip *chip = PNV_CHIP(dev);
1769 Error *error = NULL;
1770
1771 /* Cores */
1772 pnv_chip_core_realize(chip, &error);
1773 if (error) {
1774 error_propagate(errp, error);
1775 return;
1776 }
1777 }
1778
1779 static Property pnv_chip_properties[] = {
1780 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1781 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1782 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1783 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1784 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1785 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1786 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1787 DEFINE_PROP_END_OF_LIST(),
1788 };
1789
1790 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1791 {
1792 DeviceClass *dc = DEVICE_CLASS(klass);
1793
1794 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1795 dc->realize = pnv_chip_realize;
1796 device_class_set_props(dc, pnv_chip_properties);
1797 dc->desc = "PowerNV Chip";
1798 }
1799
1800 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1801 {
1802 int i, j;
1803
1804 for (i = 0; i < chip->nr_cores; i++) {
1805 PnvCore *pc = chip->cores[i];
1806 CPUCore *cc = CPU_CORE(pc);
1807
1808 for (j = 0; j < cc->nr_threads; j++) {
1809 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1810 return pc->threads[j];
1811 }
1812 }
1813 }
1814 return NULL;
1815 }
1816
1817 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1818 {
1819 PnvMachineState *pnv = PNV_MACHINE(xi);
1820 int i, j;
1821
1822 for (i = 0; i < pnv->num_chips; i++) {
1823 PnvChip *chip = pnv->chips[i];
1824 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825
1826 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1827 return &chip8->psi.ics;
1828 }
1829 for (j = 0; j < chip->num_phbs; j++) {
1830 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1831 return &chip8->phbs[j].lsis;
1832 }
1833 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1834 return ICS(&chip8->phbs[j].msis);
1835 }
1836 }
1837 }
1838 return NULL;
1839 }
1840
1841 static void pnv_ics_resend(XICSFabric *xi)
1842 {
1843 PnvMachineState *pnv = PNV_MACHINE(xi);
1844 int i, j;
1845
1846 for (i = 0; i < pnv->num_chips; i++) {
1847 PnvChip *chip = pnv->chips[i];
1848 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1849
1850 ics_resend(&chip8->psi.ics);
1851 for (j = 0; j < chip->num_phbs; j++) {
1852 ics_resend(&chip8->phbs[j].lsis);
1853 ics_resend(ICS(&chip8->phbs[j].msis));
1854 }
1855 }
1856 }
1857
1858 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1859 {
1860 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1861
1862 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1863 }
1864
1865 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1866 Monitor *mon)
1867 {
1868 PnvMachineState *pnv = PNV_MACHINE(obj);
1869 int i;
1870 CPUState *cs;
1871
1872 CPU_FOREACH(cs) {
1873 PowerPCCPU *cpu = POWERPC_CPU(cs);
1874
1875 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1876 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1877 mon);
1878 }
1879
1880 for (i = 0; i < pnv->num_chips; i++) {
1881 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1882 }
1883 }
1884
1885 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1886 uint8_t nvt_blk, uint32_t nvt_idx,
1887 bool cam_ignore, uint8_t priority,
1888 uint32_t logic_serv,
1889 XiveTCTXMatch *match)
1890 {
1891 PnvMachineState *pnv = PNV_MACHINE(xfb);
1892 int total_count = 0;
1893 int i;
1894
1895 for (i = 0; i < pnv->num_chips; i++) {
1896 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1897 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1898 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1899 int count;
1900
1901 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1902 priority, logic_serv, match);
1903
1904 if (count < 0) {
1905 return count;
1906 }
1907
1908 total_count += count;
1909 }
1910
1911 return total_count;
1912 }
1913
1914 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1915 {
1916 MachineClass *mc = MACHINE_CLASS(oc);
1917 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1918 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1919 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1920
1921 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1922 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1923
1924 xic->icp_get = pnv_icp_get;
1925 xic->ics_get = pnv_ics_get;
1926 xic->ics_resend = pnv_ics_resend;
1927
1928 pmc->compat = compat;
1929 pmc->compat_size = sizeof(compat);
1930 }
1931
1932 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1933 {
1934 MachineClass *mc = MACHINE_CLASS(oc);
1935 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1936 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1937 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1938
1939 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1940 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1941 xfc->match_nvt = pnv_match_nvt;
1942
1943 mc->alias = "powernv";
1944
1945 pmc->compat = compat;
1946 pmc->compat_size = sizeof(compat);
1947 pmc->dt_power_mgt = pnv_dt_power_mgt;
1948 }
1949
1950 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1951 {
1952 MachineClass *mc = MACHINE_CLASS(oc);
1953 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1954 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1955
1956 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1957 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1958
1959 pmc->compat = compat;
1960 pmc->compat_size = sizeof(compat);
1961 pmc->dt_power_mgt = pnv_dt_power_mgt;
1962 }
1963
1964 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1965 {
1966 PnvMachineState *pnv = PNV_MACHINE(obj);
1967
1968 return !!pnv->fw_load_addr;
1969 }
1970
1971 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1972 {
1973 PnvMachineState *pnv = PNV_MACHINE(obj);
1974
1975 if (value) {
1976 pnv->fw_load_addr = 0x8000000;
1977 }
1978 }
1979
1980 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1981 {
1982 PowerPCCPU *cpu = POWERPC_CPU(cs);
1983 CPUPPCState *env = &cpu->env;
1984
1985 cpu_synchronize_state(cs);
1986 ppc_cpu_do_system_reset(cs);
1987 /*
1988 * SRR1[42:45] is set to 0100 which the ISA defines as implementation
1989 * dependent. POWER processors use this for xscom triggered interrupts,
1990 * which come from the BMC or NMI IPIs.
1991 */
1992 env->spr[SPR_SRR1] |= PPC_BIT(43);
1993 }
1994
1995 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1996 {
1997 CPUState *cs;
1998
1999 CPU_FOREACH(cs) {
2000 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2001 }
2002 }
2003
2004 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2005 {
2006 MachineClass *mc = MACHINE_CLASS(oc);
2007 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2008 NMIClass *nc = NMI_CLASS(oc);
2009
2010 mc->desc = "IBM PowerNV (Non-Virtualized)";
2011 mc->init = pnv_init;
2012 mc->reset = pnv_reset;
2013 mc->max_cpus = MAX_CPUS;
2014 /* Pnv provides a AHCI device for storage */
2015 mc->block_default_type = IF_IDE;
2016 mc->no_parallel = 1;
2017 mc->default_boot_order = NULL;
2018 /*
2019 * RAM defaults to less than 2048 for 32-bit hosts, and large
2020 * enough to fit the maximum initrd size at it's load address
2021 */
2022 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2023 mc->default_ram_id = "pnv.ram";
2024 ispc->print_info = pnv_pic_print_info;
2025 nc->nmi_monitor_handler = pnv_nmi;
2026
2027 object_class_property_add_bool(oc, "hb-mode",
2028 pnv_machine_get_hb, pnv_machine_set_hb);
2029 object_class_property_set_description(oc, "hb-mode",
2030 "Use a hostboot like boot loader");
2031 }
2032
2033 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2034 { \
2035 .name = type, \
2036 .class_init = class_initfn, \
2037 .parent = TYPE_PNV8_CHIP, \
2038 }
2039
2040 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2041 { \
2042 .name = type, \
2043 .class_init = class_initfn, \
2044 .parent = TYPE_PNV9_CHIP, \
2045 }
2046
2047 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2048 { \
2049 .name = type, \
2050 .class_init = class_initfn, \
2051 .parent = TYPE_PNV10_CHIP, \
2052 }
2053
2054 static const TypeInfo types[] = {
2055 {
2056 .name = MACHINE_TYPE_NAME("powernv10"),
2057 .parent = TYPE_PNV_MACHINE,
2058 .class_init = pnv_machine_power10_class_init,
2059 },
2060 {
2061 .name = MACHINE_TYPE_NAME("powernv9"),
2062 .parent = TYPE_PNV_MACHINE,
2063 .class_init = pnv_machine_power9_class_init,
2064 .interfaces = (InterfaceInfo[]) {
2065 { TYPE_XIVE_FABRIC },
2066 { },
2067 },
2068 },
2069 {
2070 .name = MACHINE_TYPE_NAME("powernv8"),
2071 .parent = TYPE_PNV_MACHINE,
2072 .class_init = pnv_machine_power8_class_init,
2073 .interfaces = (InterfaceInfo[]) {
2074 { TYPE_XICS_FABRIC },
2075 { },
2076 },
2077 },
2078 {
2079 .name = TYPE_PNV_MACHINE,
2080 .parent = TYPE_MACHINE,
2081 .abstract = true,
2082 .instance_size = sizeof(PnvMachineState),
2083 .class_init = pnv_machine_class_init,
2084 .class_size = sizeof(PnvMachineClass),
2085 .interfaces = (InterfaceInfo[]) {
2086 { TYPE_INTERRUPT_STATS_PROVIDER },
2087 { TYPE_NMI },
2088 { },
2089 },
2090 },
2091 {
2092 .name = TYPE_PNV_CHIP,
2093 .parent = TYPE_SYS_BUS_DEVICE,
2094 .class_init = pnv_chip_class_init,
2095 .instance_size = sizeof(PnvChip),
2096 .class_size = sizeof(PnvChipClass),
2097 .abstract = true,
2098 },
2099
2100 /*
2101 * P10 chip and variants
2102 */
2103 {
2104 .name = TYPE_PNV10_CHIP,
2105 .parent = TYPE_PNV_CHIP,
2106 .instance_init = pnv_chip_power10_instance_init,
2107 .instance_size = sizeof(Pnv10Chip),
2108 },
2109 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2110
2111 /*
2112 * P9 chip and variants
2113 */
2114 {
2115 .name = TYPE_PNV9_CHIP,
2116 .parent = TYPE_PNV_CHIP,
2117 .instance_init = pnv_chip_power9_instance_init,
2118 .instance_size = sizeof(Pnv9Chip),
2119 },
2120 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2121
2122 /*
2123 * P8 chip and variants
2124 */
2125 {
2126 .name = TYPE_PNV8_CHIP,
2127 .parent = TYPE_PNV_CHIP,
2128 .instance_init = pnv_chip_power8_instance_init,
2129 .instance_size = sizeof(Pnv8Chip),
2130 },
2131 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2132 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2133 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2134 pnv_chip_power8nvl_class_init),
2135 };
2136
2137 DEFINE_TYPES(types)