]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
isa: Convert uses of isa_create(), isa_try_create() manually
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "sysemu/hw_accel.h"
31 #include "target/ppc/cpu.h"
32 #include "qemu/log.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/ppc.h"
35 #include "hw/ppc/pnv.h"
36 #include "hw/ppc/pnv_core.h"
37 #include "hw/loader.h"
38 #include "hw/nmi.h"
39 #include "exec/address-spaces.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51
52 #include "hw/isa/isa.h"
53 #include "hw/boards.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56
57 #include <libfdt.h>
58
59 #define FDT_MAX_SIZE (1 * MiB)
60
61 #define FW_FILE_NAME "skiboot.lid"
62 #define FW_LOAD_ADDR 0x0
63 #define FW_MAX_SIZE (4 * MiB)
64
65 #define KERNEL_LOAD_ADDR 0x20000000
66 #define KERNEL_MAX_SIZE (256 * MiB)
67 #define INITRD_LOAD_ADDR 0x60000000
68 #define INITRD_MAX_SIZE (256 * MiB)
69
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75 const char *core_type = object_class_get_name(object_class_by_name(s));
76 g_free(s);
77 return core_type;
78 }
79
80 /*
81 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82 * 4 * 4 sockets * 12 cores * 8 threads = 1536
83 * Let's make it 2^11
84 */
85 #define MAX_CPUS 2048
86
87 /*
88 * Memory nodes are created by hostboot, one for each range of memory
89 * that has a different "affinity". In practice, it means one range
90 * per chip.
91 */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94 char *mem_name;
95 uint64_t mem_reg_property[2];
96 int off;
97
98 mem_reg_property[0] = cpu_to_be64(start);
99 mem_reg_property[1] = cpu_to_be64(size);
100
101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102 off = fdt_add_subnode(fdt, 0, mem_name);
103 g_free(mem_name);
104
105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107 sizeof(mem_reg_property))));
108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110
111 static int get_cpus_node(void *fdt)
112 {
113 int cpus_offset = fdt_path_offset(fdt, "/cpus");
114
115 if (cpus_offset < 0) {
116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117 if (cpus_offset) {
118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120 }
121 }
122 _FDT(cpus_offset);
123 return cpus_offset;
124 }
125
126 /*
127 * The PowerNV cores (and threads) need to use real HW ids and not an
128 * incremental index like it has been done on other platforms. This HW
129 * id is stored in the CPU PIR, it is used to create cpu nodes in the
130 * device tree, used in XSCOM to address cores and in interrupt
131 * servers.
132 */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135 PowerPCCPU *cpu = pc->threads[0];
136 CPUState *cs = CPU(cpu);
137 DeviceClass *dc = DEVICE_GET_CLASS(cs);
138 int smt_threads = CPU_CORE(pc)->nr_threads;
139 CPUPPCState *env = &cpu->env;
140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141 uint32_t servers_prop[smt_threads];
142 int i;
143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144 0xffffffff, 0xffffffff};
145 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146 uint32_t cpufreq = 1000000000;
147 uint32_t page_sizes_prop[64];
148 size_t page_sizes_prop_size;
149 const uint8_t pa_features[] = { 24, 0,
150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154 int offset;
155 char *nodename;
156 int cpus_offset = get_cpus_node(fdt);
157
158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160 _FDT(offset);
161 g_free(nodename);
162
163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164
165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168
169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171 env->dcache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173 env->dcache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175 env->icache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177 env->icache_line_size)));
178
179 if (pcc->l1_dcache_size) {
180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181 pcc->l1_dcache_size)));
182 } else {
183 warn_report("Unknown L1 dcache size for cpu");
184 }
185 if (pcc->l1_icache_size) {
186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187 pcc->l1_icache_size)));
188 } else {
189 warn_report("Unknown L1 icache size for cpu");
190 }
191
192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195 cpu->hash64_opts->slb_size)));
196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198
199 if (env->spr_cb[SPR_PURR].oea_read) {
200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201 }
202
203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205 segs, sizeof(segs))));
206 }
207
208 /*
209 * Advertise VMX/VSX (vector extensions) if available
210 * 0 / no property == no vector extensions
211 * 1 == VMX / Altivec available
212 * 2 == VSX available
213 */
214 if (env->insns_flags & PPC_ALTIVEC) {
215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216
217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218 }
219
220 /*
221 * Advertise DFP (Decimal Floating Point) if available
222 * 0 / no property == no DFP
223 * 1 == DFP available
224 */
225 if (env->insns_flags2 & PPC2_DFP) {
226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227 }
228
229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230 sizeof(page_sizes_prop));
231 if (page_sizes_prop_size) {
232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233 page_sizes_prop, page_sizes_prop_size)));
234 }
235
236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237 pa_features, sizeof(pa_features))));
238
239 /* Build interrupt servers properties */
240 for (i = 0; i < smt_threads; i++) {
241 servers_prop[i] = cpu_to_be32(pc->pir + i);
242 }
243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244 servers_prop, sizeof(servers_prop))));
245 }
246
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248 uint32_t nr_threads)
249 {
250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251 char *name;
252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253 uint32_t irange[2], i, rsize;
254 uint64_t *reg;
255 int offset;
256
257 irange[0] = cpu_to_be32(pir);
258 irange[1] = cpu_to_be32(nr_threads);
259
260 rsize = sizeof(uint64_t) * 2 * nr_threads;
261 reg = g_malloc(rsize);
262 for (i = 0; i < nr_threads; i++) {
263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264 reg[i * 2 + 1] = cpu_to_be64(0x1000);
265 }
266
267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268 offset = fdt_add_subnode(fdt, 0, name);
269 _FDT(offset);
270 g_free(name);
271
272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274 _FDT((fdt_setprop_string(fdt, offset, "device_type",
275 "PowerPC-External-Interrupt-Presentation")));
276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278 irange, sizeof(irange))));
279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281 g_free(reg);
282 }
283
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287 int i;
288
289 pnv_dt_xscom(chip, fdt, 0,
290 cpu_to_be64(PNV_XSCOM_BASE(chip)),
291 cpu_to_be64(PNV_XSCOM_SIZE),
292 compat, sizeof(compat));
293
294 for (i = 0; i < chip->nr_cores; i++) {
295 PnvCore *pnv_core = chip->cores[i];
296
297 pnv_dt_core(chip, pnv_core, fdt);
298
299 /* Interrupt Control Presenters (ICP). One per core. */
300 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301 }
302
303 if (chip->ram_size) {
304 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305 }
306 }
307
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311 int i;
312
313 pnv_dt_xscom(chip, fdt, 0,
314 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315 cpu_to_be64(PNV9_XSCOM_SIZE),
316 compat, sizeof(compat));
317
318 for (i = 0; i < chip->nr_cores; i++) {
319 PnvCore *pnv_core = chip->cores[i];
320
321 pnv_dt_core(chip, pnv_core, fdt);
322 }
323
324 if (chip->ram_size) {
325 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326 }
327
328 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334 int i;
335
336 pnv_dt_xscom(chip, fdt, 0,
337 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338 cpu_to_be64(PNV10_XSCOM_SIZE),
339 compat, sizeof(compat));
340
341 for (i = 0; i < chip->nr_cores; i++) {
342 PnvCore *pnv_core = chip->cores[i];
343
344 pnv_dt_core(chip, pnv_core, fdt);
345 }
346
347 if (chip->ram_size) {
348 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349 }
350
351 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356 uint32_t io_base = d->ioport_id;
357 uint32_t io_regs[] = {
358 cpu_to_be32(1),
359 cpu_to_be32(io_base),
360 cpu_to_be32(2)
361 };
362 char *name;
363 int node;
364
365 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366 node = fdt_add_subnode(fdt, lpc_off, name);
367 _FDT(node);
368 g_free(name);
369
370 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376 const char compatible[] = "ns16550\0pnpPNP,501";
377 uint32_t io_base = d->ioport_id;
378 uint32_t io_regs[] = {
379 cpu_to_be32(1),
380 cpu_to_be32(io_base),
381 cpu_to_be32(8)
382 };
383 char *name;
384 int node;
385
386 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387 node = fdt_add_subnode(fdt, lpc_off, name);
388 _FDT(node);
389 g_free(name);
390
391 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393 sizeof(compatible))));
394
395 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399 fdt_get_phandle(fdt, lpc_off))));
400
401 /* This is needed by Linux */
402 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407 const char compatible[] = "bt\0ipmi-bt";
408 uint32_t io_base;
409 uint32_t io_regs[] = {
410 cpu_to_be32(1),
411 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412 cpu_to_be32(3)
413 };
414 uint32_t irq;
415 char *name;
416 int node;
417
418 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419 io_regs[1] = cpu_to_be32(io_base);
420
421 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422
423 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424 node = fdt_add_subnode(fdt, lpc_off, name);
425 _FDT(node);
426 g_free(name);
427
428 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430 sizeof(compatible))));
431
432 /* Mark it as reserved to avoid Linux trying to claim it */
433 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436 fdt_get_phandle(fdt, lpc_off))));
437 }
438
439 typedef struct ForeachPopulateArgs {
440 void *fdt;
441 int offset;
442 } ForeachPopulateArgs;
443
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446 ForeachPopulateArgs *args = opaque;
447 ISADevice *d = ISA_DEVICE(dev);
448
449 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450 pnv_dt_rtc(d, args->fdt, args->offset);
451 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452 pnv_dt_serial(d, args->fdt, args->offset);
453 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455 } else {
456 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457 d->ioport_id);
458 }
459
460 return 0;
461 }
462
463 /*
464 * The default LPC bus of a multichip system is on chip 0. It's
465 * recognized by the firmware (skiboot) using a "primary" property.
466 */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470 ForeachPopulateArgs args = {
471 .fdt = fdt,
472 .offset = isa_offset,
473 };
474 uint32_t phandle;
475
476 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477
478 phandle = qemu_fdt_alloc_phandle(fdt);
479 assert(phandle > 0);
480 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481
482 /*
483 * ISA devices are not necessarily parented to the ISA bus so we
484 * can not use object_child_foreach()
485 */
486 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487 &args);
488 }
489
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492 int off;
493
494 off = fdt_add_subnode(fdt, 0, "ibm,opal");
495 off = fdt_add_subnode(fdt, off, "power-mgt");
496
497 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499
500 static void *pnv_dt_create(MachineState *machine)
501 {
502 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503 PnvMachineState *pnv = PNV_MACHINE(machine);
504 void *fdt;
505 char *buf;
506 int off;
507 int i;
508
509 fdt = g_malloc0(FDT_MAX_SIZE);
510 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511
512 /* /qemu node */
513 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514
515 /* Root node */
516 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518 _FDT((fdt_setprop_string(fdt, 0, "model",
519 "IBM PowerNV (emulated by qemu)")));
520 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521
522 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
523 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524 if (qemu_uuid_set) {
525 _FDT((fdt_property_string(fdt, "system-id", buf)));
526 }
527 g_free(buf);
528
529 off = fdt_add_subnode(fdt, 0, "chosen");
530 if (machine->kernel_cmdline) {
531 _FDT((fdt_setprop_string(fdt, off, "bootargs",
532 machine->kernel_cmdline)));
533 }
534
535 if (pnv->initrd_size) {
536 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538
539 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540 &start_prop, sizeof(start_prop))));
541 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542 &end_prop, sizeof(end_prop))));
543 }
544
545 /* Populate device tree for each chip */
546 for (i = 0; i < pnv->num_chips; i++) {
547 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548 }
549
550 /* Populate ISA devices on chip 0 */
551 pnv_dt_isa(pnv, fdt);
552
553 if (pnv->bmc) {
554 pnv_dt_bmc_sensors(pnv->bmc, fdt);
555 }
556
557 /* Create an extra node for power management on machines that support it */
558 if (pmc->dt_power_mgt) {
559 pmc->dt_power_mgt(pnv, fdt);
560 }
561
562 return fdt;
563 }
564
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568
569 if (pnv->bmc) {
570 pnv_bmc_powerdown(pnv->bmc);
571 }
572 }
573
574 static void pnv_reset(MachineState *machine)
575 {
576 PnvMachineState *pnv = PNV_MACHINE(machine);
577 IPMIBmc *bmc;
578 void *fdt;
579
580 qemu_devices_reset();
581
582 /*
583 * The machine should provide by default an internal BMC simulator.
584 * If not, try to use the BMC device that was provided on the command
585 * line.
586 */
587 bmc = pnv_bmc_find(&error_fatal);
588 if (!pnv->bmc) {
589 if (!bmc) {
590 warn_report("machine has no BMC device. Use '-device "
591 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
592 "to define one");
593 } else {
594 pnv_bmc_set_pnor(bmc, pnv->pnor);
595 pnv->bmc = bmc;
596 }
597 }
598
599 fdt = pnv_dt_create(machine);
600
601 /* Pack resulting tree */
602 _FDT((fdt_pack(fdt)));
603
604 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
605 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
606
607 g_free(fdt);
608 }
609
610 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
611 {
612 Pnv8Chip *chip8 = PNV8_CHIP(chip);
613 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
614 }
615
616 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
617 {
618 Pnv8Chip *chip8 = PNV8_CHIP(chip);
619 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
620 }
621
622 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
623 {
624 Pnv9Chip *chip9 = PNV9_CHIP(chip);
625 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
626 }
627
628 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
629 {
630 Pnv10Chip *chip10 = PNV10_CHIP(chip);
631 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
632 }
633
634 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
635 {
636 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
637 }
638
639 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
640 {
641 Pnv8Chip *chip8 = PNV8_CHIP(chip);
642 int i;
643
644 ics_pic_print_info(&chip8->psi.ics, mon);
645 for (i = 0; i < chip->num_phbs; i++) {
646 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
647 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
648 }
649 }
650
651 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
652 {
653 Pnv9Chip *chip9 = PNV9_CHIP(chip);
654 int i, j;
655
656 pnv_xive_pic_print_info(&chip9->xive, mon);
657 pnv_psi_pic_print_info(&chip9->psi, mon);
658
659 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
660 PnvPhb4PecState *pec = &chip9->pecs[i];
661 for (j = 0; j < pec->num_stacks; j++) {
662 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
663 }
664 }
665 }
666
667 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
668 uint32_t core_id)
669 {
670 return PNV_XSCOM_EX_BASE(core_id);
671 }
672
673 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
674 uint32_t core_id)
675 {
676 return PNV9_XSCOM_EC_BASE(core_id);
677 }
678
679 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
680 uint32_t core_id)
681 {
682 return PNV10_XSCOM_EC_BASE(core_id);
683 }
684
685 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
686 {
687 PowerPCCPUClass *ppc_default =
688 POWERPC_CPU_CLASS(object_class_by_name(default_type));
689 PowerPCCPUClass *ppc =
690 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
691
692 return ppc_default->pvr_match(ppc_default, ppc->pvr);
693 }
694
695 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
696 {
697 ISADevice *dev = isa_new("isa-ipmi-bt");
698
699 object_property_set_link(OBJECT(dev), OBJECT(bmc), "bmc", &error_fatal);
700 object_property_set_int(OBJECT(dev), irq, "irq", &error_fatal);
701 isa_realize_and_unref(dev, bus, &error_fatal);
702 }
703
704 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
705 {
706 Pnv10Chip *chip10 = PNV10_CHIP(chip);
707
708 pnv_psi_pic_print_info(&chip10->psi, mon);
709 }
710
711 static void pnv_init(MachineState *machine)
712 {
713 PnvMachineState *pnv = PNV_MACHINE(machine);
714 MachineClass *mc = MACHINE_GET_CLASS(machine);
715 char *fw_filename;
716 long fw_size;
717 int i;
718 char *chip_typename;
719 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
720 DeviceState *dev;
721
722 /* allocate RAM */
723 if (machine->ram_size < (1 * GiB)) {
724 warn_report("skiboot may not work with < 1GB of RAM");
725 }
726 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
727
728 /*
729 * Create our simple PNOR device
730 */
731 dev = qdev_new(TYPE_PNV_PNOR);
732 if (pnor) {
733 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
734 &error_abort);
735 }
736 qdev_realize_and_unref(dev, NULL, &error_fatal);
737 pnv->pnor = PNV_PNOR(dev);
738
739 /* load skiboot firmware */
740 if (bios_name == NULL) {
741 bios_name = FW_FILE_NAME;
742 }
743
744 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
745 if (!fw_filename) {
746 error_report("Could not find OPAL firmware '%s'", bios_name);
747 exit(1);
748 }
749
750 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
751 if (fw_size < 0) {
752 error_report("Could not load OPAL firmware '%s'", fw_filename);
753 exit(1);
754 }
755 g_free(fw_filename);
756
757 /* load kernel */
758 if (machine->kernel_filename) {
759 long kernel_size;
760
761 kernel_size = load_image_targphys(machine->kernel_filename,
762 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
763 if (kernel_size < 0) {
764 error_report("Could not load kernel '%s'",
765 machine->kernel_filename);
766 exit(1);
767 }
768 }
769
770 /* load initrd */
771 if (machine->initrd_filename) {
772 pnv->initrd_base = INITRD_LOAD_ADDR;
773 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
774 pnv->initrd_base, INITRD_MAX_SIZE);
775 if (pnv->initrd_size < 0) {
776 error_report("Could not load initial ram disk '%s'",
777 machine->initrd_filename);
778 exit(1);
779 }
780 }
781
782 /* MSIs are supported on this platform */
783 msi_nonbroken = true;
784
785 /*
786 * Check compatibility of the specified CPU with the machine
787 * default.
788 */
789 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
790 error_report("invalid CPU model '%s' for %s machine",
791 machine->cpu_type, mc->name);
792 exit(1);
793 }
794
795 /* Create the processor chips */
796 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
797 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
798 i, machine->cpu_type);
799 if (!object_class_by_name(chip_typename)) {
800 error_report("invalid chip model '%.*s' for %s machine",
801 i, machine->cpu_type, mc->name);
802 exit(1);
803 }
804
805 pnv->num_chips =
806 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
807 /*
808 * TODO: should we decide on how many chips we can create based
809 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
810 */
811 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
812 error_report("invalid number of chips: '%d'", pnv->num_chips);
813 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
814 exit(1);
815 }
816
817 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
818 for (i = 0; i < pnv->num_chips; i++) {
819 char chip_name[32];
820 Object *chip = OBJECT(qdev_new(chip_typename));
821
822 pnv->chips[i] = PNV_CHIP(chip);
823
824 /*
825 * TODO: put all the memory in one node on chip 0 until we find a
826 * way to specify different ranges for each chip
827 */
828 if (i == 0) {
829 object_property_set_int(chip, machine->ram_size, "ram-size",
830 &error_fatal);
831 }
832
833 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
834 object_property_add_child(OBJECT(pnv), chip_name, chip);
835 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
836 &error_fatal);
837 object_property_set_int(chip, machine->smp.cores,
838 "nr-cores", &error_fatal);
839 object_property_set_int(chip, machine->smp.threads,
840 "nr-threads", &error_fatal);
841 /*
842 * The POWER8 machine use the XICS interrupt interface.
843 * Propagate the XICS fabric to the chip and its controllers.
844 */
845 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
846 object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
847 }
848 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
849 object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
850 &error_abort);
851 }
852 qdev_realize_and_unref(DEVICE(chip), NULL, &error_fatal);
853 }
854 g_free(chip_typename);
855
856 /* Instantiate ISA bus on chip 0 */
857 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
858
859 /* Create serial port */
860 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
861
862 /* Create an RTC ISA device too */
863 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
864
865 /*
866 * Create the machine BMC simulator and the IPMI BT device for
867 * communication with the BMC
868 */
869 if (defaults_enabled()) {
870 pnv->bmc = pnv_bmc_create(pnv->pnor);
871 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
872 }
873
874 /*
875 * OpenPOWER systems use a IPMI SEL Event message to notify the
876 * host to powerdown
877 */
878 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
879 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
880 }
881
882 /*
883 * 0:21 Reserved - Read as zeros
884 * 22:24 Chip ID
885 * 25:28 Core number
886 * 29:31 Thread ID
887 */
888 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
889 {
890 return (chip->chip_id << 7) | (core_id << 3);
891 }
892
893 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
894 Error **errp)
895 {
896 Pnv8Chip *chip8 = PNV8_CHIP(chip);
897 Error *local_err = NULL;
898 Object *obj;
899 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
900
901 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
902 if (local_err) {
903 error_propagate(errp, local_err);
904 return;
905 }
906
907 pnv_cpu->intc = obj;
908 }
909
910
911 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
912 {
913 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
914
915 icp_reset(ICP(pnv_cpu->intc));
916 }
917
918 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
919 {
920 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
921
922 icp_destroy(ICP(pnv_cpu->intc));
923 pnv_cpu->intc = NULL;
924 }
925
926 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
927 Monitor *mon)
928 {
929 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
930 }
931
932 /*
933 * 0:48 Reserved - Read as zeroes
934 * 49:52 Node ID
935 * 53:55 Chip ID
936 * 56 Reserved - Read as zero
937 * 57:61 Core number
938 * 62:63 Thread ID
939 *
940 * We only care about the lower bits. uint32_t is fine for the moment.
941 */
942 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
943 {
944 return (chip->chip_id << 8) | (core_id << 2);
945 }
946
947 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
948 {
949 return (chip->chip_id << 8) | (core_id << 2);
950 }
951
952 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953 Error **errp)
954 {
955 Pnv9Chip *chip9 = PNV9_CHIP(chip);
956 Error *local_err = NULL;
957 Object *obj;
958 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
959
960 /*
961 * The core creates its interrupt presenter but the XIVE interrupt
962 * controller object is initialized afterwards. Hopefully, it's
963 * only used at runtime.
964 */
965 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
966 &local_err);
967 if (local_err) {
968 error_propagate(errp, local_err);
969 return;
970 }
971
972 pnv_cpu->intc = obj;
973 }
974
975 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
976 {
977 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
978
979 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
980 }
981
982 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
983 {
984 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
985
986 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
987 pnv_cpu->intc = NULL;
988 }
989
990 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
991 Monitor *mon)
992 {
993 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
994 }
995
996 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
997 Error **errp)
998 {
999 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1000
1001 /* Will be defined when the interrupt controller is */
1002 pnv_cpu->intc = NULL;
1003 }
1004
1005 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1006 {
1007 ;
1008 }
1009
1010 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011 {
1012 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013
1014 pnv_cpu->intc = NULL;
1015 }
1016
1017 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018 Monitor *mon)
1019 {
1020 }
1021
1022 /*
1023 * Allowed core identifiers on a POWER8 Processor Chip :
1024 *
1025 * <EX0 reserved>
1026 * EX1 - Venice only
1027 * EX2 - Venice only
1028 * EX3 - Venice only
1029 * EX4
1030 * EX5
1031 * EX6
1032 * <EX7,8 reserved> <reserved>
1033 * EX9 - Venice only
1034 * EX10 - Venice only
1035 * EX11 - Venice only
1036 * EX12
1037 * EX13
1038 * EX14
1039 * <EX15 reserved>
1040 */
1041 #define POWER8E_CORE_MASK (0x7070ull)
1042 #define POWER8_CORE_MASK (0x7e7eull)
1043
1044 /*
1045 * POWER9 has 24 cores, ids starting at 0x0
1046 */
1047 #define POWER9_CORE_MASK (0xffffffffffffffull)
1048
1049
1050 #define POWER10_CORE_MASK (0xffffffffffffffull)
1051
1052 static void pnv_chip_power8_instance_init(Object *obj)
1053 {
1054 PnvChip *chip = PNV_CHIP(obj);
1055 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1056 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1057 int i;
1058
1059 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1060 (Object **)&chip8->xics,
1061 object_property_allow_set_link,
1062 OBJ_PROP_LINK_STRONG);
1063
1064 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
1065 TYPE_PNV8_PSI, &error_abort, NULL);
1066
1067 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
1068 TYPE_PNV8_LPC, &error_abort, NULL);
1069
1070 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
1071 TYPE_PNV8_OCC, &error_abort, NULL);
1072
1073 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer),
1074 TYPE_PNV8_HOMER, &error_abort, NULL);
1075
1076 for (i = 0; i < pcc->num_phbs; i++) {
1077 object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1078 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1079 &error_abort, NULL);
1080 }
1081
1082 /*
1083 * Number of PHBs is the chip default
1084 */
1085 chip->num_phbs = pcc->num_phbs;
1086 }
1087
1088 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1089 {
1090 PnvChip *chip = PNV_CHIP(chip8);
1091 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1092 int i, j;
1093 char *name;
1094
1095 name = g_strdup_printf("icp-%x", chip->chip_id);
1096 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1097 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1098 g_free(name);
1099
1100 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1101
1102 /* Map the ICP registers for each thread */
1103 for (i = 0; i < chip->nr_cores; i++) {
1104 PnvCore *pnv_core = chip->cores[i];
1105 int core_hwid = CPU_CORE(pnv_core)->core_id;
1106
1107 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1108 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1109 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1110
1111 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1112 &icp->mmio);
1113 }
1114 }
1115 }
1116
1117 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1118 {
1119 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1120 PnvChip *chip = PNV_CHIP(dev);
1121 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1122 Pnv8Psi *psi8 = &chip8->psi;
1123 Error *local_err = NULL;
1124 int i;
1125
1126 assert(chip8->xics);
1127
1128 /* XSCOM bridge is first */
1129 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1130 if (local_err) {
1131 error_propagate(errp, local_err);
1132 return;
1133 }
1134 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1135
1136 pcc->parent_realize(dev, &local_err);
1137 if (local_err) {
1138 error_propagate(errp, local_err);
1139 return;
1140 }
1141
1142 /* Processor Service Interface (PSI) Host Bridge */
1143 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1144 "bar", &error_fatal);
1145 object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1146 ICS_PROP_XICS, &error_abort);
1147 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1148 if (local_err) {
1149 error_propagate(errp, local_err);
1150 return;
1151 }
1152 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1153 &PNV_PSI(psi8)->xscom_regs);
1154
1155 /* Create LPC controller */
1156 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1157 &error_abort);
1158 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1159 &error_fatal);
1160 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161
1162 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1163 (uint64_t) PNV_XSCOM_BASE(chip),
1164 PNV_XSCOM_LPC_BASE);
1165
1166 /*
1167 * Interrupt Management Area. This is the memory region holding
1168 * all the Interrupt Control Presenter (ICP) registers
1169 */
1170 pnv_chip_icp_realize(chip8, &local_err);
1171 if (local_err) {
1172 error_propagate(errp, local_err);
1173 return;
1174 }
1175
1176 /* Create the simplified OCC model */
1177 object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1178 &error_abort);
1179 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1180 if (local_err) {
1181 error_propagate(errp, local_err);
1182 return;
1183 }
1184 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1185
1186 /* OCC SRAM model */
1187 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1188 &chip8->occ.sram_regs);
1189
1190 /* HOMER */
1191 object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1192 &error_abort);
1193 object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1194 &local_err);
1195 if (local_err) {
1196 error_propagate(errp, local_err);
1197 return;
1198 }
1199 /* Homer Xscom region */
1200 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1201
1202 /* Homer mmio region */
1203 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1204 &chip8->homer.regs);
1205
1206 /* PHB3 controllers */
1207 for (i = 0; i < chip->num_phbs; i++) {
1208 PnvPHB3 *phb = &chip8->phbs[i];
1209 PnvPBCQState *pbcq = &phb->pbcq;
1210
1211 object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1212 object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1213 &error_fatal);
1214 qdev_realize(DEVICE(phb), NULL, &local_err);
1215 if (local_err) {
1216 error_propagate(errp, local_err);
1217 return;
1218 }
1219
1220 /* Populate the XSCOM address space. */
1221 pnv_xscom_add_subregion(chip,
1222 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1223 &pbcq->xscom_nest_regs);
1224 pnv_xscom_add_subregion(chip,
1225 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1226 &pbcq->xscom_pci_regs);
1227 pnv_xscom_add_subregion(chip,
1228 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1229 &pbcq->xscom_spci_regs);
1230 }
1231 }
1232
1233 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1234 {
1235 addr &= (PNV_XSCOM_SIZE - 1);
1236 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1237 }
1238
1239 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1240 {
1241 DeviceClass *dc = DEVICE_CLASS(klass);
1242 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1243
1244 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1245 k->cores_mask = POWER8E_CORE_MASK;
1246 k->num_phbs = 3;
1247 k->core_pir = pnv_chip_core_pir_p8;
1248 k->intc_create = pnv_chip_power8_intc_create;
1249 k->intc_reset = pnv_chip_power8_intc_reset;
1250 k->intc_destroy = pnv_chip_power8_intc_destroy;
1251 k->intc_print_info = pnv_chip_power8_intc_print_info;
1252 k->isa_create = pnv_chip_power8_isa_create;
1253 k->dt_populate = pnv_chip_power8_dt_populate;
1254 k->pic_print_info = pnv_chip_power8_pic_print_info;
1255 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1256 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1257 dc->desc = "PowerNV Chip POWER8E";
1258
1259 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1260 &k->parent_realize);
1261 }
1262
1263 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1264 {
1265 DeviceClass *dc = DEVICE_CLASS(klass);
1266 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1267
1268 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1269 k->cores_mask = POWER8_CORE_MASK;
1270 k->num_phbs = 3;
1271 k->core_pir = pnv_chip_core_pir_p8;
1272 k->intc_create = pnv_chip_power8_intc_create;
1273 k->intc_reset = pnv_chip_power8_intc_reset;
1274 k->intc_destroy = pnv_chip_power8_intc_destroy;
1275 k->intc_print_info = pnv_chip_power8_intc_print_info;
1276 k->isa_create = pnv_chip_power8_isa_create;
1277 k->dt_populate = pnv_chip_power8_dt_populate;
1278 k->pic_print_info = pnv_chip_power8_pic_print_info;
1279 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1280 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1281 dc->desc = "PowerNV Chip POWER8";
1282
1283 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1284 &k->parent_realize);
1285 }
1286
1287 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1288 {
1289 DeviceClass *dc = DEVICE_CLASS(klass);
1290 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1291
1292 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1293 k->cores_mask = POWER8_CORE_MASK;
1294 k->num_phbs = 3;
1295 k->core_pir = pnv_chip_core_pir_p8;
1296 k->intc_create = pnv_chip_power8_intc_create;
1297 k->intc_reset = pnv_chip_power8_intc_reset;
1298 k->intc_destroy = pnv_chip_power8_intc_destroy;
1299 k->intc_print_info = pnv_chip_power8_intc_print_info;
1300 k->isa_create = pnv_chip_power8nvl_isa_create;
1301 k->dt_populate = pnv_chip_power8_dt_populate;
1302 k->pic_print_info = pnv_chip_power8_pic_print_info;
1303 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1304 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1305 dc->desc = "PowerNV Chip POWER8NVL";
1306
1307 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1308 &k->parent_realize);
1309 }
1310
1311 static void pnv_chip_power9_instance_init(Object *obj)
1312 {
1313 PnvChip *chip = PNV_CHIP(obj);
1314 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1315 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1316 int i;
1317
1318 sysbus_init_child_obj(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1319 TYPE_PNV_XIVE);
1320 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1321 "xive-fabric");
1322
1323 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1324 TYPE_PNV9_PSI, &error_abort, NULL);
1325
1326 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1327 TYPE_PNV9_LPC, &error_abort, NULL);
1328
1329 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1330 TYPE_PNV9_OCC, &error_abort, NULL);
1331
1332 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer),
1333 TYPE_PNV9_HOMER, &error_abort, NULL);
1334
1335 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1336 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1337 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1338 &error_abort, NULL);
1339 }
1340
1341 /*
1342 * Number of PHBs is the chip default
1343 */
1344 chip->num_phbs = pcc->num_phbs;
1345 }
1346
1347 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1348 {
1349 PnvChip *chip = PNV_CHIP(chip9);
1350 int i;
1351
1352 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1353 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1354
1355 for (i = 0; i < chip9->nr_quads; i++) {
1356 char eq_name[32];
1357 PnvQuad *eq = &chip9->quads[i];
1358 PnvCore *pnv_core = chip->cores[i * 4];
1359 int core_id = CPU_CORE(pnv_core)->core_id;
1360
1361 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1362 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1363 TYPE_PNV_QUAD, &error_fatal, NULL);
1364
1365 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1366 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1367
1368 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1369 &eq->xscom_regs);
1370 }
1371 }
1372
1373 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1374 {
1375 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1376 Error *local_err = NULL;
1377 int i, j;
1378 int phb_id = 0;
1379
1380 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1381 PnvPhb4PecState *pec = &chip9->pecs[i];
1382 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1383 uint32_t pec_nest_base;
1384 uint32_t pec_pci_base;
1385
1386 object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1387 /*
1388 * PEC0 -> 1 stack
1389 * PEC1 -> 2 stacks
1390 * PEC2 -> 3 stacks
1391 */
1392 object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1393 &error_fatal);
1394 object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1395 &error_fatal);
1396 object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1397 "system-memory", &error_abort);
1398 object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1399 if (local_err) {
1400 error_propagate(errp, local_err);
1401 return;
1402 }
1403
1404 pec_nest_base = pecc->xscom_nest_base(pec);
1405 pec_pci_base = pecc->xscom_pci_base(pec);
1406
1407 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1408 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1409
1410 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1411 j++, phb_id++) {
1412 PnvPhb4PecStack *stack = &pec->stacks[j];
1413 Object *obj = OBJECT(&stack->phb);
1414
1415 object_property_set_int(obj, phb_id, "index", &error_fatal);
1416 object_property_set_int(obj, chip->chip_id, "chip-id",
1417 &error_fatal);
1418 object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1419 &error_fatal);
1420 object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1421 &error_fatal);
1422 object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1423 qdev_realize(DEVICE(obj), NULL, &local_err);
1424 if (local_err) {
1425 error_propagate(errp, local_err);
1426 return;
1427 }
1428
1429 /* Populate the XSCOM address space. */
1430 pnv_xscom_add_subregion(chip,
1431 pec_nest_base + 0x40 * (stack->stack_no + 1),
1432 &stack->nest_regs_mr);
1433 pnv_xscom_add_subregion(chip,
1434 pec_pci_base + 0x40 * (stack->stack_no + 1),
1435 &stack->pci_regs_mr);
1436 pnv_xscom_add_subregion(chip,
1437 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1438 0x40 * stack->stack_no,
1439 &stack->phb_regs_mr);
1440 }
1441 }
1442 }
1443
1444 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1445 {
1446 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1447 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1448 PnvChip *chip = PNV_CHIP(dev);
1449 Pnv9Psi *psi9 = &chip9->psi;
1450 Error *local_err = NULL;
1451
1452 /* XSCOM bridge is first */
1453 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1454 if (local_err) {
1455 error_propagate(errp, local_err);
1456 return;
1457 }
1458 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1459
1460 pcc->parent_realize(dev, &local_err);
1461 if (local_err) {
1462 error_propagate(errp, local_err);
1463 return;
1464 }
1465
1466 pnv_chip_quad_realize(chip9, &local_err);
1467 if (local_err) {
1468 error_propagate(errp, local_err);
1469 return;
1470 }
1471
1472 /* XIVE interrupt controller (POWER9) */
1473 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1474 "ic-bar", &error_fatal);
1475 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1476 "vc-bar", &error_fatal);
1477 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1478 "pc-bar", &error_fatal);
1479 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1480 "tm-bar", &error_fatal);
1481 object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1482 &error_abort);
1483 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1484 &local_err);
1485 if (local_err) {
1486 error_propagate(errp, local_err);
1487 return;
1488 }
1489 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1490 &chip9->xive.xscom_regs);
1491
1492 /* Processor Service Interface (PSI) Host Bridge */
1493 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1494 "bar", &error_fatal);
1495 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1496 if (local_err) {
1497 error_propagate(errp, local_err);
1498 return;
1499 }
1500 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1501 &PNV_PSI(psi9)->xscom_regs);
1502
1503 /* LPC */
1504 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1505 &error_abort);
1506 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1507 if (local_err) {
1508 error_propagate(errp, local_err);
1509 return;
1510 }
1511 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1512 &chip9->lpc.xscom_regs);
1513
1514 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1515 (uint64_t) PNV9_LPCM_BASE(chip));
1516
1517 /* Create the simplified OCC model */
1518 object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1519 &error_abort);
1520 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1521 if (local_err) {
1522 error_propagate(errp, local_err);
1523 return;
1524 }
1525 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1526
1527 /* OCC SRAM model */
1528 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1529 &chip9->occ.sram_regs);
1530
1531 /* HOMER */
1532 object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1533 &error_abort);
1534 object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1535 &local_err);
1536 if (local_err) {
1537 error_propagate(errp, local_err);
1538 return;
1539 }
1540 /* Homer Xscom region */
1541 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1542
1543 /* Homer mmio region */
1544 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1545 &chip9->homer.regs);
1546
1547 /* PHBs */
1548 pnv_chip_power9_phb_realize(chip, &local_err);
1549 if (local_err) {
1550 error_propagate(errp, local_err);
1551 return;
1552 }
1553 }
1554
1555 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1556 {
1557 addr &= (PNV9_XSCOM_SIZE - 1);
1558 return addr >> 3;
1559 }
1560
1561 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1562 {
1563 DeviceClass *dc = DEVICE_CLASS(klass);
1564 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1565
1566 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1567 k->cores_mask = POWER9_CORE_MASK;
1568 k->core_pir = pnv_chip_core_pir_p9;
1569 k->intc_create = pnv_chip_power9_intc_create;
1570 k->intc_reset = pnv_chip_power9_intc_reset;
1571 k->intc_destroy = pnv_chip_power9_intc_destroy;
1572 k->intc_print_info = pnv_chip_power9_intc_print_info;
1573 k->isa_create = pnv_chip_power9_isa_create;
1574 k->dt_populate = pnv_chip_power9_dt_populate;
1575 k->pic_print_info = pnv_chip_power9_pic_print_info;
1576 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1577 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1578 dc->desc = "PowerNV Chip POWER9";
1579 k->num_phbs = 6;
1580
1581 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1582 &k->parent_realize);
1583 }
1584
1585 static void pnv_chip_power10_instance_init(Object *obj)
1586 {
1587 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1588
1589 object_initialize_child(obj, "psi", &chip10->psi, sizeof(chip10->psi),
1590 TYPE_PNV10_PSI, &error_abort, NULL);
1591 object_initialize_child(obj, "lpc", &chip10->lpc, sizeof(chip10->lpc),
1592 TYPE_PNV10_LPC, &error_abort, NULL);
1593 }
1594
1595 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1596 {
1597 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1598 PnvChip *chip = PNV_CHIP(dev);
1599 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1600 Error *local_err = NULL;
1601
1602 /* XSCOM bridge is first */
1603 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1604 if (local_err) {
1605 error_propagate(errp, local_err);
1606 return;
1607 }
1608 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1609
1610 pcc->parent_realize(dev, &local_err);
1611 if (local_err) {
1612 error_propagate(errp, local_err);
1613 return;
1614 }
1615
1616 /* Processor Service Interface (PSI) Host Bridge */
1617 object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1618 "bar", &error_fatal);
1619 object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1620 &local_err);
1621 if (local_err) {
1622 error_propagate(errp, local_err);
1623 return;
1624 }
1625 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1626 &PNV_PSI(&chip10->psi)->xscom_regs);
1627
1628 /* LPC */
1629 object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1630 &error_abort);
1631 object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1632 &local_err);
1633 if (local_err) {
1634 error_propagate(errp, local_err);
1635 return;
1636 }
1637 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1638 &chip10->lpc.xscom_regs);
1639
1640 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1641 (uint64_t) PNV10_LPCM_BASE(chip));
1642 }
1643
1644 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1645 {
1646 addr &= (PNV10_XSCOM_SIZE - 1);
1647 return addr >> 3;
1648 }
1649
1650 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1651 {
1652 DeviceClass *dc = DEVICE_CLASS(klass);
1653 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1654
1655 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1656 k->cores_mask = POWER10_CORE_MASK;
1657 k->core_pir = pnv_chip_core_pir_p10;
1658 k->intc_create = pnv_chip_power10_intc_create;
1659 k->intc_reset = pnv_chip_power10_intc_reset;
1660 k->intc_destroy = pnv_chip_power10_intc_destroy;
1661 k->intc_print_info = pnv_chip_power10_intc_print_info;
1662 k->isa_create = pnv_chip_power10_isa_create;
1663 k->dt_populate = pnv_chip_power10_dt_populate;
1664 k->pic_print_info = pnv_chip_power10_pic_print_info;
1665 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1666 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1667 dc->desc = "PowerNV Chip POWER10";
1668
1669 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1670 &k->parent_realize);
1671 }
1672
1673 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1674 {
1675 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1676 int cores_max;
1677
1678 /*
1679 * No custom mask for this chip, let's use the default one from *
1680 * the chip class
1681 */
1682 if (!chip->cores_mask) {
1683 chip->cores_mask = pcc->cores_mask;
1684 }
1685
1686 /* filter alien core ids ! some are reserved */
1687 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1688 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1689 chip->cores_mask);
1690 return;
1691 }
1692 chip->cores_mask &= pcc->cores_mask;
1693
1694 /* now that we have a sane layout, let check the number of cores */
1695 cores_max = ctpop64(chip->cores_mask);
1696 if (chip->nr_cores > cores_max) {
1697 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1698 cores_max);
1699 return;
1700 }
1701 }
1702
1703 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1704 {
1705 Error *error = NULL;
1706 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1707 const char *typename = pnv_chip_core_typename(chip);
1708 int i, core_hwid;
1709 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1710
1711 if (!object_class_by_name(typename)) {
1712 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1713 return;
1714 }
1715
1716 /* Cores */
1717 pnv_chip_core_sanitize(chip, &error);
1718 if (error) {
1719 error_propagate(errp, error);
1720 return;
1721 }
1722
1723 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1724
1725 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1726 && (i < chip->nr_cores); core_hwid++) {
1727 char core_name[32];
1728 PnvCore *pnv_core;
1729 uint64_t xscom_core_base;
1730
1731 if (!(chip->cores_mask & (1ull << core_hwid))) {
1732 continue;
1733 }
1734
1735 pnv_core = PNV_CORE(object_new(typename));
1736
1737 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1738 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1739 chip->cores[i] = pnv_core;
1740 object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1741 "nr-threads", &error_fatal);
1742 object_property_set_int(OBJECT(pnv_core), core_hwid,
1743 CPU_CORE_PROP_CORE_ID, &error_fatal);
1744 object_property_set_int(OBJECT(pnv_core),
1745 pcc->core_pir(chip, core_hwid),
1746 "pir", &error_fatal);
1747 object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1748 "hrmor", &error_fatal);
1749 object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1750 &error_abort);
1751 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1752 &error_fatal);
1753
1754 /* Each core has an XSCOM MMIO region */
1755 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1756
1757 pnv_xscom_add_subregion(chip, xscom_core_base,
1758 &pnv_core->xscom_regs);
1759 i++;
1760 }
1761 }
1762
1763 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1764 {
1765 PnvChip *chip = PNV_CHIP(dev);
1766 Error *error = NULL;
1767
1768 /* Cores */
1769 pnv_chip_core_realize(chip, &error);
1770 if (error) {
1771 error_propagate(errp, error);
1772 return;
1773 }
1774 }
1775
1776 static Property pnv_chip_properties[] = {
1777 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1778 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1779 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1780 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1781 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1782 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1783 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1784 DEFINE_PROP_END_OF_LIST(),
1785 };
1786
1787 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1788 {
1789 DeviceClass *dc = DEVICE_CLASS(klass);
1790
1791 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1792 dc->realize = pnv_chip_realize;
1793 device_class_set_props(dc, pnv_chip_properties);
1794 dc->desc = "PowerNV Chip";
1795 }
1796
1797 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1798 {
1799 int i, j;
1800
1801 for (i = 0; i < chip->nr_cores; i++) {
1802 PnvCore *pc = chip->cores[i];
1803 CPUCore *cc = CPU_CORE(pc);
1804
1805 for (j = 0; j < cc->nr_threads; j++) {
1806 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1807 return pc->threads[j];
1808 }
1809 }
1810 }
1811 return NULL;
1812 }
1813
1814 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1815 {
1816 PnvMachineState *pnv = PNV_MACHINE(xi);
1817 int i, j;
1818
1819 for (i = 0; i < pnv->num_chips; i++) {
1820 PnvChip *chip = pnv->chips[i];
1821 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1822
1823 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1824 return &chip8->psi.ics;
1825 }
1826 for (j = 0; j < chip->num_phbs; j++) {
1827 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1828 return &chip8->phbs[j].lsis;
1829 }
1830 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1831 return ICS(&chip8->phbs[j].msis);
1832 }
1833 }
1834 }
1835 return NULL;
1836 }
1837
1838 static void pnv_ics_resend(XICSFabric *xi)
1839 {
1840 PnvMachineState *pnv = PNV_MACHINE(xi);
1841 int i, j;
1842
1843 for (i = 0; i < pnv->num_chips; i++) {
1844 PnvChip *chip = pnv->chips[i];
1845 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1846
1847 ics_resend(&chip8->psi.ics);
1848 for (j = 0; j < chip->num_phbs; j++) {
1849 ics_resend(&chip8->phbs[j].lsis);
1850 ics_resend(ICS(&chip8->phbs[j].msis));
1851 }
1852 }
1853 }
1854
1855 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1856 {
1857 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1858
1859 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1860 }
1861
1862 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1863 Monitor *mon)
1864 {
1865 PnvMachineState *pnv = PNV_MACHINE(obj);
1866 int i;
1867 CPUState *cs;
1868
1869 CPU_FOREACH(cs) {
1870 PowerPCCPU *cpu = POWERPC_CPU(cs);
1871
1872 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1873 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1874 mon);
1875 }
1876
1877 for (i = 0; i < pnv->num_chips; i++) {
1878 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1879 }
1880 }
1881
1882 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1883 uint8_t nvt_blk, uint32_t nvt_idx,
1884 bool cam_ignore, uint8_t priority,
1885 uint32_t logic_serv,
1886 XiveTCTXMatch *match)
1887 {
1888 PnvMachineState *pnv = PNV_MACHINE(xfb);
1889 int total_count = 0;
1890 int i;
1891
1892 for (i = 0; i < pnv->num_chips; i++) {
1893 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1894 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1895 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1896 int count;
1897
1898 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1899 priority, logic_serv, match);
1900
1901 if (count < 0) {
1902 return count;
1903 }
1904
1905 total_count += count;
1906 }
1907
1908 return total_count;
1909 }
1910
1911 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1912 {
1913 MachineClass *mc = MACHINE_CLASS(oc);
1914 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1915 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1916 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1917
1918 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1919 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1920
1921 xic->icp_get = pnv_icp_get;
1922 xic->ics_get = pnv_ics_get;
1923 xic->ics_resend = pnv_ics_resend;
1924
1925 pmc->compat = compat;
1926 pmc->compat_size = sizeof(compat);
1927 }
1928
1929 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1930 {
1931 MachineClass *mc = MACHINE_CLASS(oc);
1932 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1933 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1934 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1935
1936 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1937 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1938 xfc->match_nvt = pnv_match_nvt;
1939
1940 mc->alias = "powernv";
1941
1942 pmc->compat = compat;
1943 pmc->compat_size = sizeof(compat);
1944 pmc->dt_power_mgt = pnv_dt_power_mgt;
1945 }
1946
1947 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1948 {
1949 MachineClass *mc = MACHINE_CLASS(oc);
1950 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1951 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1952
1953 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1954 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1955
1956 pmc->compat = compat;
1957 pmc->compat_size = sizeof(compat);
1958 pmc->dt_power_mgt = pnv_dt_power_mgt;
1959 }
1960
1961 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1962 {
1963 PnvMachineState *pnv = PNV_MACHINE(obj);
1964
1965 return !!pnv->fw_load_addr;
1966 }
1967
1968 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1969 {
1970 PnvMachineState *pnv = PNV_MACHINE(obj);
1971
1972 if (value) {
1973 pnv->fw_load_addr = 0x8000000;
1974 }
1975 }
1976
1977 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1978 {
1979 PowerPCCPU *cpu = POWERPC_CPU(cs);
1980 CPUPPCState *env = &cpu->env;
1981
1982 cpu_synchronize_state(cs);
1983 ppc_cpu_do_system_reset(cs);
1984 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1985 /*
1986 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1987 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1988 * (PPC_BIT(43)).
1989 */
1990 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1991 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1992 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1993 }
1994 } else {
1995 /*
1996 * For non-powersave system resets, SRR1[42:45] are defined to be
1997 * implementation-dependent. The POWER9 User Manual specifies that
1998 * an external (SCOM driven, which may come from a BMC nmi command or
1999 * another CPU requesting a NMI IPI) system reset exception should be
2000 * 0b0010 (PPC_BIT(44)).
2001 */
2002 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2003 }
2004 }
2005
2006 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2007 {
2008 CPUState *cs;
2009
2010 CPU_FOREACH(cs) {
2011 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2012 }
2013 }
2014
2015 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2016 {
2017 MachineClass *mc = MACHINE_CLASS(oc);
2018 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2019 NMIClass *nc = NMI_CLASS(oc);
2020
2021 mc->desc = "IBM PowerNV (Non-Virtualized)";
2022 mc->init = pnv_init;
2023 mc->reset = pnv_reset;
2024 mc->max_cpus = MAX_CPUS;
2025 /* Pnv provides a AHCI device for storage */
2026 mc->block_default_type = IF_IDE;
2027 mc->no_parallel = 1;
2028 mc->default_boot_order = NULL;
2029 /*
2030 * RAM defaults to less than 2048 for 32-bit hosts, and large
2031 * enough to fit the maximum initrd size at it's load address
2032 */
2033 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2034 mc->default_ram_id = "pnv.ram";
2035 ispc->print_info = pnv_pic_print_info;
2036 nc->nmi_monitor_handler = pnv_nmi;
2037
2038 object_class_property_add_bool(oc, "hb-mode",
2039 pnv_machine_get_hb, pnv_machine_set_hb);
2040 object_class_property_set_description(oc, "hb-mode",
2041 "Use a hostboot like boot loader");
2042 }
2043
2044 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2045 { \
2046 .name = type, \
2047 .class_init = class_initfn, \
2048 .parent = TYPE_PNV8_CHIP, \
2049 }
2050
2051 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2052 { \
2053 .name = type, \
2054 .class_init = class_initfn, \
2055 .parent = TYPE_PNV9_CHIP, \
2056 }
2057
2058 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2059 { \
2060 .name = type, \
2061 .class_init = class_initfn, \
2062 .parent = TYPE_PNV10_CHIP, \
2063 }
2064
2065 static const TypeInfo types[] = {
2066 {
2067 .name = MACHINE_TYPE_NAME("powernv10"),
2068 .parent = TYPE_PNV_MACHINE,
2069 .class_init = pnv_machine_power10_class_init,
2070 },
2071 {
2072 .name = MACHINE_TYPE_NAME("powernv9"),
2073 .parent = TYPE_PNV_MACHINE,
2074 .class_init = pnv_machine_power9_class_init,
2075 .interfaces = (InterfaceInfo[]) {
2076 { TYPE_XIVE_FABRIC },
2077 { },
2078 },
2079 },
2080 {
2081 .name = MACHINE_TYPE_NAME("powernv8"),
2082 .parent = TYPE_PNV_MACHINE,
2083 .class_init = pnv_machine_power8_class_init,
2084 .interfaces = (InterfaceInfo[]) {
2085 { TYPE_XICS_FABRIC },
2086 { },
2087 },
2088 },
2089 {
2090 .name = TYPE_PNV_MACHINE,
2091 .parent = TYPE_MACHINE,
2092 .abstract = true,
2093 .instance_size = sizeof(PnvMachineState),
2094 .class_init = pnv_machine_class_init,
2095 .class_size = sizeof(PnvMachineClass),
2096 .interfaces = (InterfaceInfo[]) {
2097 { TYPE_INTERRUPT_STATS_PROVIDER },
2098 { TYPE_NMI },
2099 { },
2100 },
2101 },
2102 {
2103 .name = TYPE_PNV_CHIP,
2104 .parent = TYPE_SYS_BUS_DEVICE,
2105 .class_init = pnv_chip_class_init,
2106 .instance_size = sizeof(PnvChip),
2107 .class_size = sizeof(PnvChipClass),
2108 .abstract = true,
2109 },
2110
2111 /*
2112 * P10 chip and variants
2113 */
2114 {
2115 .name = TYPE_PNV10_CHIP,
2116 .parent = TYPE_PNV_CHIP,
2117 .instance_init = pnv_chip_power10_instance_init,
2118 .instance_size = sizeof(Pnv10Chip),
2119 },
2120 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2121
2122 /*
2123 * P9 chip and variants
2124 */
2125 {
2126 .name = TYPE_PNV9_CHIP,
2127 .parent = TYPE_PNV_CHIP,
2128 .instance_init = pnv_chip_power9_instance_init,
2129 .instance_size = sizeof(Pnv9Chip),
2130 },
2131 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2132
2133 /*
2134 * P8 chip and variants
2135 */
2136 {
2137 .name = TYPE_PNV8_CHIP,
2138 .parent = TYPE_PNV_CHIP,
2139 .instance_init = pnv_chip_power8_instance_init,
2140 .instance_size = sizeof(Pnv8Chip),
2141 },
2142 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2143 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2144 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2145 pnv_chip_power8nvl_class_init),
2146 };
2147
2148 DEFINE_TYPES(types)