]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv_lpc.c
hw/rdma: Free all receive buffers when QP is destroyed
[mirror_qemu.git] / hw / ppc / pnv_lpc.c
1 /*
2 * QEMU PowerPC PowerNV LPC controller
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "sysemu/sysemu.h"
22 #include "target/ppc/cpu.h"
23 #include "qapi/error.h"
24 #include "qemu/log.h"
25 #include "hw/isa/isa.h"
26
27 #include "hw/ppc/pnv.h"
28 #include "hw/ppc/pnv_lpc.h"
29 #include "hw/ppc/pnv_xscom.h"
30 #include "hw/ppc/fdt.h"
31
32 #include <libfdt.h>
33
34 enum {
35 ECCB_CTL = 0,
36 ECCB_RESET = 1,
37 ECCB_STAT = 2,
38 ECCB_DATA = 3,
39 };
40
41 /* OPB Master LS registers */
42 #define OPB_MASTER_LS_ROUTE0 0x8
43 #define OPB_MASTER_LS_ROUTE1 0xC
44 #define OPB_MASTER_LS_IRQ_STAT 0x50
45 #define OPB_MASTER_IRQ_LPC 0x00000800
46 #define OPB_MASTER_LS_IRQ_MASK 0x54
47 #define OPB_MASTER_LS_IRQ_POL 0x58
48 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
49
50 /* LPC HC registers */
51 #define LPC_HC_FW_SEG_IDSEL 0x24
52 #define LPC_HC_FW_RD_ACC_SIZE 0x28
53 #define LPC_HC_FW_RD_1B 0x00000000
54 #define LPC_HC_FW_RD_2B 0x01000000
55 #define LPC_HC_FW_RD_4B 0x02000000
56 #define LPC_HC_FW_RD_16B 0x04000000
57 #define LPC_HC_FW_RD_128B 0x07000000
58 #define LPC_HC_IRQSER_CTRL 0x30
59 #define LPC_HC_IRQSER_EN 0x80000000
60 #define LPC_HC_IRQSER_QMODE 0x40000000
61 #define LPC_HC_IRQSER_START_MASK 0x03000000
62 #define LPC_HC_IRQSER_START_4CLK 0x00000000
63 #define LPC_HC_IRQSER_START_6CLK 0x01000000
64 #define LPC_HC_IRQSER_START_8CLK 0x02000000
65 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
66 #define LPC_HC_IRQSTAT 0x38
67 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
68 #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
69 #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
70 #define LPC_HC_IRQ_LRESET 0x00000400
71 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
72 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
73 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
74 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
75 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
76 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
77 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
78 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
79 #define LPC_HC_ERROR_ADDRESS 0x40
80
81 #define LPC_OPB_SIZE 0x100000000ull
82
83 #define ISA_IO_SIZE 0x00010000
84 #define ISA_MEM_SIZE 0x10000000
85 #define ISA_FW_SIZE 0x10000000
86 #define LPC_IO_OPB_ADDR 0xd0010000
87 #define LPC_IO_OPB_SIZE 0x00010000
88 #define LPC_MEM_OPB_ADDR 0xe0010000
89 #define LPC_MEM_OPB_SIZE 0x10000000
90 #define LPC_FW_OPB_ADDR 0xf0000000
91 #define LPC_FW_OPB_SIZE 0x10000000
92
93 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000
94 #define LPC_OPB_REGS_OPB_SIZE 0x00000060
95 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000
96 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008
97 #define LPC_HC_REGS_OPB_ADDR 0xc0012000
98 #define LPC_HC_REGS_OPB_SIZE 0x00000100
99
100 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
101 {
102 const char compat[] = "ibm,power8-lpc\0ibm,lpc";
103 char *name;
104 int offset;
105 uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
106 uint32_t reg[] = {
107 cpu_to_be32(lpc_pcba),
108 cpu_to_be32(PNV_XSCOM_LPC_SIZE)
109 };
110
111 name = g_strdup_printf("isa@%x", lpc_pcba);
112 offset = fdt_add_subnode(fdt, xscom_offset, name);
113 _FDT(offset);
114 g_free(name);
115
116 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
117 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
118 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
119 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
120 return 0;
121 }
122
123 /* POWER9 only */
124 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset)
125 {
126 const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
127 const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
128 char *name;
129 int offset, lpcm_offset;
130 uint64_t lpcm_addr = PNV9_LPCM_BASE(chip);
131 uint32_t opb_ranges[8] = { 0,
132 cpu_to_be32(lpcm_addr >> 32),
133 cpu_to_be32((uint32_t)lpcm_addr),
134 cpu_to_be32(PNV9_LPCM_SIZE / 2),
135 cpu_to_be32(PNV9_LPCM_SIZE / 2),
136 cpu_to_be32(lpcm_addr >> 32),
137 cpu_to_be32(PNV9_LPCM_SIZE / 2),
138 cpu_to_be32(PNV9_LPCM_SIZE / 2),
139 };
140 uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
141 cpu_to_be32((uint32_t)lpcm_addr),
142 cpu_to_be32(PNV9_LPCM_SIZE >> 32),
143 cpu_to_be32((uint32_t)PNV9_LPCM_SIZE),
144 };
145 uint32_t reg[2];
146
147 /*
148 * OPB bus
149 */
150 name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
151 lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
152 _FDT(lpcm_offset);
153 g_free(name);
154
155 _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
156 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
157 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
158 _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
159 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
160 _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
161 sizeof(opb_ranges))));
162
163 /*
164 * OPB Master registers
165 */
166 name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
167 offset = fdt_add_subnode(fdt, lpcm_offset, name);
168 _FDT(offset);
169 g_free(name);
170
171 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
172 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
173 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
174 _FDT((fdt_setprop_string(fdt, offset, "compatible",
175 "ibm,power9-lpcm-opb-master")));
176
177 /*
178 * OPB arbitrer registers
179 */
180 name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
181 offset = fdt_add_subnode(fdt, lpcm_offset, name);
182 _FDT(offset);
183 g_free(name);
184
185 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
186 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
187 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
188 _FDT((fdt_setprop_string(fdt, offset, "compatible",
189 "ibm,power9-lpcm-opb-arbiter")));
190
191 /*
192 * LPC Host Controller registers
193 */
194 name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
195 offset = fdt_add_subnode(fdt, lpcm_offset, name);
196 _FDT(offset);
197 g_free(name);
198
199 reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
200 reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
201 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
202 _FDT((fdt_setprop_string(fdt, offset, "compatible",
203 "ibm,power9-lpc-controller")));
204
205 name = g_strdup_printf("lpc@0");
206 offset = fdt_add_subnode(fdt, lpcm_offset, name);
207 _FDT(offset);
208 g_free(name);
209 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
210 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
211 _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
212 sizeof(lpc_compat))));
213
214 return 0;
215 }
216
217 /*
218 * These read/write handlers of the OPB address space should be common
219 * with the P9 LPC Controller which uses direct MMIOs.
220 *
221 * TODO: rework to use address_space_stq() and address_space_ldq()
222 * instead.
223 */
224 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
225 int sz)
226 {
227 /* XXX Handle access size limits and FW read caching here */
228 return !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
229 data, sz, false);
230 }
231
232 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
233 int sz)
234 {
235 /* XXX Handle access size limits here */
236 return !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
237 data, sz, true);
238 }
239
240 #define ECCB_CTL_READ PPC_BIT(15)
241 #define ECCB_CTL_SZ_LSH (63 - 7)
242 #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
243 #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
244
245 #define ECCB_STAT_OP_DONE PPC_BIT(52)
246 #define ECCB_STAT_OP_ERR PPC_BIT(52)
247 #define ECCB_STAT_RD_DATA_LSH (63 - 37)
248 #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
249
250 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
251 {
252 /* XXX Check for magic bits at the top, addr size etc... */
253 unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
254 uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
255 uint8_t data[8];
256 bool success;
257
258 if (sz > sizeof(data)) {
259 qemu_log_mask(LOG_GUEST_ERROR,
260 "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
261 return;
262 }
263
264 if (cmd & ECCB_CTL_READ) {
265 success = opb_read(lpc, opb_addr, data, sz);
266 if (success) {
267 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
268 (((uint64_t)data[0]) << 24 |
269 ((uint64_t)data[1]) << 16 |
270 ((uint64_t)data[2]) << 8 |
271 ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
272 } else {
273 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
274 (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
275 }
276 } else {
277 data[0] = lpc->eccb_data_reg >> 24;
278 data[1] = lpc->eccb_data_reg >> 16;
279 data[2] = lpc->eccb_data_reg >> 8;
280 data[3] = lpc->eccb_data_reg;
281
282 success = opb_write(lpc, opb_addr, data, sz);
283 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
284 }
285 /* XXX Which error bit (if any) to signal OPB error ? */
286 }
287
288 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
289 {
290 PnvLpcController *lpc = PNV_LPC(opaque);
291 uint32_t offset = addr >> 3;
292 uint64_t val = 0;
293
294 switch (offset & 3) {
295 case ECCB_CTL:
296 case ECCB_RESET:
297 val = 0;
298 break;
299 case ECCB_STAT:
300 val = lpc->eccb_stat_reg;
301 lpc->eccb_stat_reg = 0;
302 break;
303 case ECCB_DATA:
304 val = ((uint64_t)lpc->eccb_data_reg) << 32;
305 break;
306 }
307 return val;
308 }
309
310 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
311 uint64_t val, unsigned size)
312 {
313 PnvLpcController *lpc = PNV_LPC(opaque);
314 uint32_t offset = addr >> 3;
315
316 switch (offset & 3) {
317 case ECCB_CTL:
318 pnv_lpc_do_eccb(lpc, val);
319 break;
320 case ECCB_RESET:
321 /* XXXX */
322 break;
323 case ECCB_STAT:
324 break;
325 case ECCB_DATA:
326 lpc->eccb_data_reg = val >> 32;
327 break;
328 }
329 }
330
331 static const MemoryRegionOps pnv_lpc_xscom_ops = {
332 .read = pnv_lpc_xscom_read,
333 .write = pnv_lpc_xscom_write,
334 .valid.min_access_size = 8,
335 .valid.max_access_size = 8,
336 .impl.min_access_size = 8,
337 .impl.max_access_size = 8,
338 .endianness = DEVICE_BIG_ENDIAN,
339 };
340
341 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
342 {
343 PnvLpcController *lpc = PNV_LPC(opaque);
344 uint64_t val = 0;
345 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
346 MemTxResult result;
347
348 switch (size) {
349 case 4:
350 val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
351 &result);
352 break;
353 case 1:
354 val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
355 &result);
356 break;
357 default:
358 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
359 HWADDR_PRIx " invalid size %d\n", addr, size);
360 return 0;
361 }
362
363 if (result != MEMTX_OK) {
364 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
365 HWADDR_PRIx "\n", addr);
366 }
367
368 return val;
369 }
370
371 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
372 uint64_t val, unsigned size)
373 {
374 PnvLpcController *lpc = PNV_LPC(opaque);
375 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
376 MemTxResult result;
377
378 switch (size) {
379 case 4:
380 address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
381 &result);
382 break;
383 case 1:
384 address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
385 &result);
386 break;
387 default:
388 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
389 HWADDR_PRIx " invalid size %d\n", addr, size);
390 return;
391 }
392
393 if (result != MEMTX_OK) {
394 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
395 HWADDR_PRIx "\n", addr);
396 }
397 }
398
399 static const MemoryRegionOps pnv_lpc_mmio_ops = {
400 .read = pnv_lpc_mmio_read,
401 .write = pnv_lpc_mmio_write,
402 .impl = {
403 .min_access_size = 1,
404 .max_access_size = 4,
405 },
406 .endianness = DEVICE_BIG_ENDIAN,
407 };
408
409 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
410 {
411 bool lpc_to_opb_irq = false;
412 PnvLpcClass *plc = PNV_LPC_GET_CLASS(lpc);
413
414 /* Update LPC controller to OPB line */
415 if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
416 uint32_t irqs;
417
418 irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
419 lpc_to_opb_irq = (irqs != 0);
420 }
421
422 /* We don't honor the polarity register, it's pointless and unused
423 * anyway
424 */
425 if (lpc_to_opb_irq) {
426 lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
427 } else {
428 lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
429 }
430
431 /* Update OPB internal latch */
432 lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
433
434 /* Reflect the interrupt */
435 pnv_psi_irq_set(lpc->psi, plc->psi_irq, lpc->opb_irq_stat != 0);
436 }
437
438 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
439 {
440 PnvLpcController *lpc = opaque;
441 uint64_t val = 0xfffffffffffffffful;
442
443 switch (addr) {
444 case LPC_HC_FW_SEG_IDSEL:
445 val = lpc->lpc_hc_fw_seg_idsel;
446 break;
447 case LPC_HC_FW_RD_ACC_SIZE:
448 val = lpc->lpc_hc_fw_rd_acc_size;
449 break;
450 case LPC_HC_IRQSER_CTRL:
451 val = lpc->lpc_hc_irqser_ctrl;
452 break;
453 case LPC_HC_IRQMASK:
454 val = lpc->lpc_hc_irqmask;
455 break;
456 case LPC_HC_IRQSTAT:
457 val = lpc->lpc_hc_irqstat;
458 break;
459 case LPC_HC_ERROR_ADDRESS:
460 val = lpc->lpc_hc_error_addr;
461 break;
462 default:
463 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
464 HWADDR_PRIx "\n", addr);
465 }
466 return val;
467 }
468
469 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
470 unsigned size)
471 {
472 PnvLpcController *lpc = opaque;
473
474 /* XXX Filter out reserved bits */
475
476 switch (addr) {
477 case LPC_HC_FW_SEG_IDSEL:
478 /* XXX Actually figure out how that works as this impact
479 * memory regions/aliases
480 */
481 lpc->lpc_hc_fw_seg_idsel = val;
482 break;
483 case LPC_HC_FW_RD_ACC_SIZE:
484 lpc->lpc_hc_fw_rd_acc_size = val;
485 break;
486 case LPC_HC_IRQSER_CTRL:
487 lpc->lpc_hc_irqser_ctrl = val;
488 pnv_lpc_eval_irqs(lpc);
489 break;
490 case LPC_HC_IRQMASK:
491 lpc->lpc_hc_irqmask = val;
492 pnv_lpc_eval_irqs(lpc);
493 break;
494 case LPC_HC_IRQSTAT:
495 lpc->lpc_hc_irqstat &= ~val;
496 pnv_lpc_eval_irqs(lpc);
497 break;
498 case LPC_HC_ERROR_ADDRESS:
499 break;
500 default:
501 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
502 HWADDR_PRIx "\n", addr);
503 }
504 }
505
506 static const MemoryRegionOps lpc_hc_ops = {
507 .read = lpc_hc_read,
508 .write = lpc_hc_write,
509 .endianness = DEVICE_BIG_ENDIAN,
510 .valid = {
511 .min_access_size = 4,
512 .max_access_size = 4,
513 },
514 .impl = {
515 .min_access_size = 4,
516 .max_access_size = 4,
517 },
518 };
519
520 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
521 {
522 PnvLpcController *lpc = opaque;
523 uint64_t val = 0xfffffffffffffffful;
524
525 switch (addr) {
526 case OPB_MASTER_LS_ROUTE0: /* TODO */
527 val = lpc->opb_irq_route0;
528 break;
529 case OPB_MASTER_LS_ROUTE1: /* TODO */
530 val = lpc->opb_irq_route1;
531 break;
532 case OPB_MASTER_LS_IRQ_STAT:
533 val = lpc->opb_irq_stat;
534 break;
535 case OPB_MASTER_LS_IRQ_MASK:
536 val = lpc->opb_irq_mask;
537 break;
538 case OPB_MASTER_LS_IRQ_POL:
539 val = lpc->opb_irq_pol;
540 break;
541 case OPB_MASTER_LS_IRQ_INPUT:
542 val = lpc->opb_irq_input;
543 break;
544 default:
545 qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
546 HWADDR_PRIx "\n", addr);
547 }
548
549 return val;
550 }
551
552 static void opb_master_write(void *opaque, hwaddr addr,
553 uint64_t val, unsigned size)
554 {
555 PnvLpcController *lpc = opaque;
556
557 switch (addr) {
558 case OPB_MASTER_LS_ROUTE0: /* TODO */
559 lpc->opb_irq_route0 = val;
560 break;
561 case OPB_MASTER_LS_ROUTE1: /* TODO */
562 lpc->opb_irq_route1 = val;
563 break;
564 case OPB_MASTER_LS_IRQ_STAT:
565 lpc->opb_irq_stat &= ~val;
566 pnv_lpc_eval_irqs(lpc);
567 break;
568 case OPB_MASTER_LS_IRQ_MASK:
569 lpc->opb_irq_mask = val;
570 pnv_lpc_eval_irqs(lpc);
571 break;
572 case OPB_MASTER_LS_IRQ_POL:
573 lpc->opb_irq_pol = val;
574 pnv_lpc_eval_irqs(lpc);
575 break;
576 case OPB_MASTER_LS_IRQ_INPUT:
577 /* Read only */
578 break;
579 default:
580 qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
581 HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
582 }
583 }
584
585 static const MemoryRegionOps opb_master_ops = {
586 .read = opb_master_read,
587 .write = opb_master_write,
588 .endianness = DEVICE_BIG_ENDIAN,
589 .valid = {
590 .min_access_size = 4,
591 .max_access_size = 4,
592 },
593 .impl = {
594 .min_access_size = 4,
595 .max_access_size = 4,
596 },
597 };
598
599 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
600 {
601 PnvLpcController *lpc = PNV_LPC(dev);
602 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
603 Error *local_err = NULL;
604
605 plc->parent_realize(dev, &local_err);
606 if (local_err) {
607 error_propagate(errp, local_err);
608 return;
609 }
610
611 /* P8 uses a XSCOM region for LPC registers */
612 pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
613 &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
614 PNV_XSCOM_LPC_SIZE);
615 }
616
617 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
618 {
619 DeviceClass *dc = DEVICE_CLASS(klass);
620 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
621 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
622
623 dc->desc = "PowerNV LPC Controller POWER8";
624
625 xdc->dt_xscom = pnv_lpc_dt_xscom;
626
627 plc->psi_irq = PSIHB_IRQ_LPC_I2C;
628
629 device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
630 &plc->parent_realize);
631 }
632
633 static const TypeInfo pnv_lpc_power8_info = {
634 .name = TYPE_PNV8_LPC,
635 .parent = TYPE_PNV_LPC,
636 .instance_size = sizeof(PnvLpcController),
637 .class_init = pnv_lpc_power8_class_init,
638 .interfaces = (InterfaceInfo[]) {
639 { TYPE_PNV_XSCOM_INTERFACE },
640 { }
641 }
642 };
643
644 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
645 {
646 PnvLpcController *lpc = PNV_LPC(dev);
647 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
648 Error *local_err = NULL;
649
650 plc->parent_realize(dev, &local_err);
651 if (local_err) {
652 error_propagate(errp, local_err);
653 return;
654 }
655
656 /* P9 uses a MMIO region */
657 memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
658 lpc, "lpcm", PNV9_LPCM_SIZE);
659 }
660
661 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
662 {
663 DeviceClass *dc = DEVICE_CLASS(klass);
664 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
665
666 dc->desc = "PowerNV LPC Controller POWER9";
667
668 plc->psi_irq = PSIHB9_IRQ_LPCHC;
669
670 device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
671 &plc->parent_realize);
672 }
673
674 static const TypeInfo pnv_lpc_power9_info = {
675 .name = TYPE_PNV9_LPC,
676 .parent = TYPE_PNV_LPC,
677 .instance_size = sizeof(PnvLpcController),
678 .class_init = pnv_lpc_power9_class_init,
679 };
680
681 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
682 {
683 PnvLpcController *lpc = PNV_LPC(dev);
684 Object *obj;
685 Error *local_err = NULL;
686
687 obj = object_property_get_link(OBJECT(dev), "psi", &local_err);
688 if (!obj) {
689 error_propagate(errp, local_err);
690 error_prepend(errp, "required link 'psi' not found: ");
691 return;
692 }
693 /* The LPC controller needs PSI to generate interrupts */
694 lpc->psi = PNV_PSI(obj);
695
696 /* Reg inits */
697 lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
698
699 /* Create address space and backing MR for the OPB bus */
700 memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
701 address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
702
703 /* Create ISA IO and Mem space regions which are the root of
704 * the ISA bus (ie, ISA address spaces). We don't create a
705 * separate one for FW which we alias to memory.
706 */
707 memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
708 memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
709 memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE);
710
711 /* Create windows from the OPB space to the ISA space */
712 memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
713 &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
714 memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
715 &lpc->opb_isa_io);
716 memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
717 &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
718 memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
719 &lpc->opb_isa_mem);
720 memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
721 &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
722 memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
723 &lpc->opb_isa_fw);
724
725 /* Create MMIO regions for LPC HC and OPB registers */
726 memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
727 lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
728 memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
729 &lpc->opb_master_regs);
730 memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
731 "lpc-hc", LPC_HC_REGS_OPB_SIZE);
732 memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
733 &lpc->lpc_hc_regs);
734 }
735
736 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
737 {
738 DeviceClass *dc = DEVICE_CLASS(klass);
739
740 dc->realize = pnv_lpc_realize;
741 dc->desc = "PowerNV LPC Controller";
742 }
743
744 static const TypeInfo pnv_lpc_info = {
745 .name = TYPE_PNV_LPC,
746 .parent = TYPE_DEVICE,
747 .class_init = pnv_lpc_class_init,
748 .class_size = sizeof(PnvLpcClass),
749 .abstract = true,
750 };
751
752 static void pnv_lpc_register_types(void)
753 {
754 type_register_static(&pnv_lpc_info);
755 type_register_static(&pnv_lpc_power8_info);
756 type_register_static(&pnv_lpc_power9_info);
757 }
758
759 type_init(pnv_lpc_register_types)
760
761 /* If we don't use the built-in LPC interrupt deserializer, we need
762 * to provide a set of qirqs for the ISA bus or things will go bad.
763 *
764 * Most machines using pre-Naples chips (without said deserializer)
765 * have a CPLD that will collect the SerIRQ and shoot them as a
766 * single level interrupt to the P8 chip. So let's setup a hook
767 * for doing just that.
768 */
769 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
770 {
771 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
772 uint32_t old_state = pnv->cpld_irqstate;
773 PnvLpcController *lpc = PNV_LPC(opaque);
774
775 if (level) {
776 pnv->cpld_irqstate |= 1u << n;
777 } else {
778 pnv->cpld_irqstate &= ~(1u << n);
779 }
780
781 if (pnv->cpld_irqstate != old_state) {
782 pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0);
783 }
784 }
785
786 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
787 {
788 PnvLpcController *lpc = PNV_LPC(opaque);
789
790 /* The Naples HW latches the 1 levels, clearing is done by SW */
791 if (level) {
792 lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
793 pnv_lpc_eval_irqs(lpc);
794 }
795 }
796
797 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
798 {
799 Error *local_err = NULL;
800 ISABus *isa_bus;
801 qemu_irq *irqs;
802 qemu_irq_handler handler;
803
804 /* let isa_bus_new() create its own bridge on SysBus otherwise
805 * devices speficied on the command line won't find the bus and
806 * will fail to create.
807 */
808 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
809 if (local_err) {
810 error_propagate(errp, local_err);
811 return NULL;
812 }
813
814 /* Not all variants have a working serial irq decoder. If not,
815 * handling of LPC interrupts becomes a platform issue (some
816 * platforms have a CPLD to do it).
817 */
818 if (use_cpld) {
819 handler = pnv_lpc_isa_irq_handler_cpld;
820 } else {
821 handler = pnv_lpc_isa_irq_handler;
822 }
823
824 irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
825
826 isa_bus_irqs(isa_bus, irqs);
827 return isa_bus;
828 }