]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
sysemu: Let VMChangeStateHandler take boolean 'running' argument
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
49
50
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
56
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
66
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
71 }
72
73 old_pending = env->pending_interrupts;
74
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82 }
83 }
84
85 if (old_pending != env->pending_interrupts) {
86 kvmppc_set_interrupt(cpu, n_IRQ, level);
87 }
88
89
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
93
94 if (locked) {
95 qemu_mutex_unlock_iothread();
96 }
97 }
98
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
105
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
112
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
122 }
123 break;
124 case PPC6xx_INPUT_INT:
125 /* Level sensitive - active high */
126 LOG_IRQ("%s: set the external IRQ state to %d\n",
127 __func__, level);
128 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
129 break;
130 case PPC6xx_INPUT_SMI:
131 /* Level sensitive - active high */
132 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
133 __func__, level);
134 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
135 break;
136 case PPC6xx_INPUT_MCP:
137 /* Negative edge sensitive */
138 /* XXX: TODO: actual reaction may depends on HID0 status
139 * 603/604/740/750: check HID0[EMCP]
140 */
141 if (cur_level == 1 && level == 0) {
142 LOG_IRQ("%s: raise machine check state\n",
143 __func__);
144 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
145 }
146 break;
147 case PPC6xx_INPUT_CKSTP_IN:
148 /* Level sensitive - active low */
149 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
150 /* XXX: Note that the only way to restart the CPU is to reset it */
151 if (level) {
152 LOG_IRQ("%s: stop the CPU\n", __func__);
153 cs->halted = 1;
154 }
155 break;
156 case PPC6xx_INPUT_HRESET:
157 /* Level sensitive - active low */
158 if (level) {
159 LOG_IRQ("%s: reset the CPU\n", __func__);
160 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
161 }
162 break;
163 case PPC6xx_INPUT_SRESET:
164 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
165 __func__, level);
166 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
167 break;
168 default:
169 /* Unknown pin - do nothing */
170 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
171 return;
172 }
173 if (level)
174 env->irq_input_state |= 1 << pin;
175 else
176 env->irq_input_state &= ~(1 << pin);
177 }
178 }
179
180 void ppc6xx_irq_init(PowerPCCPU *cpu)
181 {
182 CPUPPCState *env = &cpu->env;
183
184 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
185 PPC6xx_INPUT_NB);
186 }
187
188 #if defined(TARGET_PPC64)
189 /* PowerPC 970 internal IRQ controller */
190 static void ppc970_set_irq(void *opaque, int pin, int level)
191 {
192 PowerPCCPU *cpu = opaque;
193 CPUPPCState *env = &cpu->env;
194 int cur_level;
195
196 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
197 env, pin, level);
198 cur_level = (env->irq_input_state >> pin) & 1;
199 /* Don't generate spurious events */
200 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
201 CPUState *cs = CPU(cpu);
202
203 switch (pin) {
204 case PPC970_INPUT_INT:
205 /* Level sensitive - active high */
206 LOG_IRQ("%s: set the external IRQ state to %d\n",
207 __func__, level);
208 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
209 break;
210 case PPC970_INPUT_THINT:
211 /* Level sensitive - active high */
212 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
213 level);
214 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
215 break;
216 case PPC970_INPUT_MCP:
217 /* Negative edge sensitive */
218 /* XXX: TODO: actual reaction may depends on HID0 status
219 * 603/604/740/750: check HID0[EMCP]
220 */
221 if (cur_level == 1 && level == 0) {
222 LOG_IRQ("%s: raise machine check state\n",
223 __func__);
224 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
225 }
226 break;
227 case PPC970_INPUT_CKSTP:
228 /* Level sensitive - active low */
229 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
230 if (level) {
231 LOG_IRQ("%s: stop the CPU\n", __func__);
232 cs->halted = 1;
233 } else {
234 LOG_IRQ("%s: restart the CPU\n", __func__);
235 cs->halted = 0;
236 qemu_cpu_kick(cs);
237 }
238 break;
239 case PPC970_INPUT_HRESET:
240 /* Level sensitive - active low */
241 if (level) {
242 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
243 }
244 break;
245 case PPC970_INPUT_SRESET:
246 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
247 __func__, level);
248 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
249 break;
250 case PPC970_INPUT_TBEN:
251 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
252 level);
253 /* XXX: TODO */
254 break;
255 default:
256 /* Unknown pin - do nothing */
257 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
258 return;
259 }
260 if (level)
261 env->irq_input_state |= 1 << pin;
262 else
263 env->irq_input_state &= ~(1 << pin);
264 }
265 }
266
267 void ppc970_irq_init(PowerPCCPU *cpu)
268 {
269 CPUPPCState *env = &cpu->env;
270
271 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
272 PPC970_INPUT_NB);
273 }
274
275 /* POWER7 internal IRQ controller */
276 static void power7_set_irq(void *opaque, int pin, int level)
277 {
278 PowerPCCPU *cpu = opaque;
279
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281 &cpu->env, pin, level);
282
283 switch (pin) {
284 case POWER7_INPUT_INT:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
287 __func__, level);
288 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289 break;
290 default:
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293 return;
294 }
295 }
296
297 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
298 {
299 CPUPPCState *env = &cpu->env;
300
301 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
302 POWER7_INPUT_NB);
303 }
304
305 /* POWER9 internal IRQ controller */
306 static void power9_set_irq(void *opaque, int pin, int level)
307 {
308 PowerPCCPU *cpu = opaque;
309
310 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
311 &cpu->env, pin, level);
312
313 switch (pin) {
314 case POWER9_INPUT_INT:
315 /* Level sensitive - active high */
316 LOG_IRQ("%s: set the external IRQ state to %d\n",
317 __func__, level);
318 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
319 break;
320 case POWER9_INPUT_HINT:
321 /* Level sensitive - active high */
322 LOG_IRQ("%s: set the external IRQ state to %d\n",
323 __func__, level);
324 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
325 break;
326 default:
327 /* Unknown pin - do nothing */
328 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
329 return;
330 }
331 }
332
333 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
334 {
335 CPUPPCState *env = &cpu->env;
336
337 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
338 POWER9_INPUT_NB);
339 }
340 #endif /* defined(TARGET_PPC64) */
341
342 void ppc40x_core_reset(PowerPCCPU *cpu)
343 {
344 CPUPPCState *env = &cpu->env;
345 target_ulong dbsr;
346
347 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
348 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
349 dbsr = env->spr[SPR_40x_DBSR];
350 dbsr &= ~0x00000300;
351 dbsr |= 0x00000100;
352 env->spr[SPR_40x_DBSR] = dbsr;
353 }
354
355 void ppc40x_chip_reset(PowerPCCPU *cpu)
356 {
357 CPUPPCState *env = &cpu->env;
358 target_ulong dbsr;
359
360 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
361 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
362 /* XXX: TODO reset all internal peripherals */
363 dbsr = env->spr[SPR_40x_DBSR];
364 dbsr &= ~0x00000300;
365 dbsr |= 0x00000200;
366 env->spr[SPR_40x_DBSR] = dbsr;
367 }
368
369 void ppc40x_system_reset(PowerPCCPU *cpu)
370 {
371 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
372 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
373 }
374
375 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
376 {
377 PowerPCCPU *cpu = env_archcpu(env);
378
379 switch ((val >> 28) & 0x3) {
380 case 0x0:
381 /* No action */
382 break;
383 case 0x1:
384 /* Core reset */
385 ppc40x_core_reset(cpu);
386 break;
387 case 0x2:
388 /* Chip reset */
389 ppc40x_chip_reset(cpu);
390 break;
391 case 0x3:
392 /* System reset */
393 ppc40x_system_reset(cpu);
394 break;
395 }
396 }
397
398 /* PowerPC 40x internal IRQ controller */
399 static void ppc40x_set_irq(void *opaque, int pin, int level)
400 {
401 PowerPCCPU *cpu = opaque;
402 CPUPPCState *env = &cpu->env;
403 int cur_level;
404
405 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
406 env, pin, level);
407 cur_level = (env->irq_input_state >> pin) & 1;
408 /* Don't generate spurious events */
409 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
410 CPUState *cs = CPU(cpu);
411
412 switch (pin) {
413 case PPC40x_INPUT_RESET_SYS:
414 if (level) {
415 LOG_IRQ("%s: reset the PowerPC system\n",
416 __func__);
417 ppc40x_system_reset(cpu);
418 }
419 break;
420 case PPC40x_INPUT_RESET_CHIP:
421 if (level) {
422 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
423 ppc40x_chip_reset(cpu);
424 }
425 break;
426 case PPC40x_INPUT_RESET_CORE:
427 /* XXX: TODO: update DBSR[MRR] */
428 if (level) {
429 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
430 ppc40x_core_reset(cpu);
431 }
432 break;
433 case PPC40x_INPUT_CINT:
434 /* Level sensitive - active high */
435 LOG_IRQ("%s: set the critical IRQ state to %d\n",
436 __func__, level);
437 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
438 break;
439 case PPC40x_INPUT_INT:
440 /* Level sensitive - active high */
441 LOG_IRQ("%s: set the external IRQ state to %d\n",
442 __func__, level);
443 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
444 break;
445 case PPC40x_INPUT_HALT:
446 /* Level sensitive - active low */
447 if (level) {
448 LOG_IRQ("%s: stop the CPU\n", __func__);
449 cs->halted = 1;
450 } else {
451 LOG_IRQ("%s: restart the CPU\n", __func__);
452 cs->halted = 0;
453 qemu_cpu_kick(cs);
454 }
455 break;
456 case PPC40x_INPUT_DEBUG:
457 /* Level sensitive - active high */
458 LOG_IRQ("%s: set the debug pin state to %d\n",
459 __func__, level);
460 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
461 break;
462 default:
463 /* Unknown pin - do nothing */
464 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
465 return;
466 }
467 if (level)
468 env->irq_input_state |= 1 << pin;
469 else
470 env->irq_input_state &= ~(1 << pin);
471 }
472 }
473
474 void ppc40x_irq_init(PowerPCCPU *cpu)
475 {
476 CPUPPCState *env = &cpu->env;
477
478 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
479 cpu, PPC40x_INPUT_NB);
480 }
481
482 /* PowerPC E500 internal IRQ controller */
483 static void ppce500_set_irq(void *opaque, int pin, int level)
484 {
485 PowerPCCPU *cpu = opaque;
486 CPUPPCState *env = &cpu->env;
487 int cur_level;
488
489 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
490 env, pin, level);
491 cur_level = (env->irq_input_state >> pin) & 1;
492 /* Don't generate spurious events */
493 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
494 switch (pin) {
495 case PPCE500_INPUT_MCK:
496 if (level) {
497 LOG_IRQ("%s: reset the PowerPC system\n",
498 __func__);
499 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
500 }
501 break;
502 case PPCE500_INPUT_RESET_CORE:
503 if (level) {
504 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
505 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
506 }
507 break;
508 case PPCE500_INPUT_CINT:
509 /* Level sensitive - active high */
510 LOG_IRQ("%s: set the critical IRQ state to %d\n",
511 __func__, level);
512 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
513 break;
514 case PPCE500_INPUT_INT:
515 /* Level sensitive - active high */
516 LOG_IRQ("%s: set the core IRQ state to %d\n",
517 __func__, level);
518 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
519 break;
520 case PPCE500_INPUT_DEBUG:
521 /* Level sensitive - active high */
522 LOG_IRQ("%s: set the debug pin state to %d\n",
523 __func__, level);
524 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
525 break;
526 default:
527 /* Unknown pin - do nothing */
528 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
529 return;
530 }
531 if (level)
532 env->irq_input_state |= 1 << pin;
533 else
534 env->irq_input_state &= ~(1 << pin);
535 }
536 }
537
538 void ppce500_irq_init(PowerPCCPU *cpu)
539 {
540 CPUPPCState *env = &cpu->env;
541
542 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
543 cpu, PPCE500_INPUT_NB);
544 }
545
546 /* Enable or Disable the E500 EPR capability */
547 void ppce500_set_mpic_proxy(bool enabled)
548 {
549 CPUState *cs;
550
551 CPU_FOREACH(cs) {
552 PowerPCCPU *cpu = POWERPC_CPU(cs);
553
554 cpu->env.mpic_proxy = enabled;
555 if (kvm_enabled()) {
556 kvmppc_set_mpic_proxy(cpu, enabled);
557 }
558 }
559 }
560
561 /*****************************************************************************/
562 /* PowerPC time base and decrementer emulation */
563
564 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
565 {
566 /* TB time in tb periods */
567 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
568 }
569
570 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
571 {
572 ppc_tb_t *tb_env = env->tb_env;
573 uint64_t tb;
574
575 if (kvm_enabled()) {
576 return env->spr[SPR_TBL];
577 }
578
579 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
580 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
581
582 return tb;
583 }
584
585 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
586 {
587 ppc_tb_t *tb_env = env->tb_env;
588 uint64_t tb;
589
590 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592
593 return tb >> 32;
594 }
595
596 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
597 {
598 if (kvm_enabled()) {
599 return env->spr[SPR_TBU];
600 }
601
602 return _cpu_ppc_load_tbu(env);
603 }
604
605 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
606 int64_t *tb_offsetp, uint64_t value)
607 {
608 *tb_offsetp = value -
609 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
610
611 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
612 __func__, value, *tb_offsetp);
613 }
614
615 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
616 {
617 ppc_tb_t *tb_env = env->tb_env;
618 uint64_t tb;
619
620 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
621 tb &= 0xFFFFFFFF00000000ULL;
622 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
623 &tb_env->tb_offset, tb | (uint64_t)value);
624 }
625
626 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
627 {
628 ppc_tb_t *tb_env = env->tb_env;
629 uint64_t tb;
630
631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632 tb &= 0x00000000FFFFFFFFULL;
633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
635 }
636
637 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
638 {
639 _cpu_ppc_store_tbu(env, value);
640 }
641
642 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
643 {
644 ppc_tb_t *tb_env = env->tb_env;
645 uint64_t tb;
646
647 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
648 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
649
650 return tb;
651 }
652
653 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
654 {
655 ppc_tb_t *tb_env = env->tb_env;
656 uint64_t tb;
657
658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660
661 return tb >> 32;
662 }
663
664 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
665 {
666 ppc_tb_t *tb_env = env->tb_env;
667 uint64_t tb;
668
669 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670 tb &= 0xFFFFFFFF00000000ULL;
671 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
672 &tb_env->atb_offset, tb | (uint64_t)value);
673 }
674
675 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
676 {
677 ppc_tb_t *tb_env = env->tb_env;
678 uint64_t tb;
679
680 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681 tb &= 0x00000000FFFFFFFFULL;
682 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
684 }
685
686 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
687 {
688 ppc_tb_t *tb_env = env->tb_env;
689
690 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
691 tb_env->vtb_offset);
692 }
693
694 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
695 {
696 ppc_tb_t *tb_env = env->tb_env;
697
698 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
699 &tb_env->vtb_offset, value);
700 }
701
702 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
703 {
704 ppc_tb_t *tb_env = env->tb_env;
705 uint64_t tb;
706
707 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
708 tb_env->tb_offset);
709 tb &= 0xFFFFFFUL;
710 tb |= (value & ~0xFFFFFFUL);
711 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
712 &tb_env->tb_offset, tb);
713 }
714
715 static void cpu_ppc_tb_stop (CPUPPCState *env)
716 {
717 ppc_tb_t *tb_env = env->tb_env;
718 uint64_t tb, atb, vmclk;
719
720 /* If the time base is already frozen, do nothing */
721 if (tb_env->tb_freq != 0) {
722 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
723 /* Get the time base */
724 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
725 /* Get the alternate time base */
726 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
727 /* Store the time base value (ie compute the current offset) */
728 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
729 /* Store the alternate time base value (compute the current offset) */
730 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
731 /* Set the time base frequency to zero */
732 tb_env->tb_freq = 0;
733 /* Now, the time bases are frozen to tb_offset / atb_offset value */
734 }
735 }
736
737 static void cpu_ppc_tb_start (CPUPPCState *env)
738 {
739 ppc_tb_t *tb_env = env->tb_env;
740 uint64_t tb, atb, vmclk;
741
742 /* If the time base is not frozen, do nothing */
743 if (tb_env->tb_freq == 0) {
744 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
745 /* Get the time base from tb_offset */
746 tb = tb_env->tb_offset;
747 /* Get the alternate time base from atb_offset */
748 atb = tb_env->atb_offset;
749 /* Restore the tb frequency from the decrementer frequency */
750 tb_env->tb_freq = tb_env->decr_freq;
751 /* Store the time base value */
752 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
753 /* Store the alternate time base value */
754 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
755 }
756 }
757
758 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
759 {
760 ppc_tb_t *tb_env = env->tb_env;
761 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
762 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
763 }
764
765 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
766 {
767 ppc_tb_t *tb_env = env->tb_env;
768 int64_t decr, diff;
769
770 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
771 if (diff >= 0) {
772 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
773 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
774 decr = 0;
775 } else {
776 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
777 }
778 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
779
780 return decr;
781 }
782
783 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
784 {
785 ppc_tb_t *tb_env = env->tb_env;
786 uint64_t decr;
787
788 if (kvm_enabled()) {
789 return env->spr[SPR_DECR];
790 }
791
792 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
793
794 /*
795 * If large decrementer is enabled then the decrementer is signed extened
796 * to 64 bits, otherwise it is a 32 bit value.
797 */
798 if (env->spr[SPR_LPCR] & LPCR_LD) {
799 return decr;
800 }
801 return (uint32_t) decr;
802 }
803
804 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
805 {
806 PowerPCCPU *cpu = env_archcpu(env);
807 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
808 ppc_tb_t *tb_env = env->tb_env;
809 uint64_t hdecr;
810
811 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
812
813 /*
814 * If we have a large decrementer (POWER9 or later) then hdecr is sign
815 * extended to 64 bits, otherwise it is 32 bits.
816 */
817 if (pcc->lrg_decr_bits > 32) {
818 return hdecr;
819 }
820 return (uint32_t) hdecr;
821 }
822
823 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
824 {
825 ppc_tb_t *tb_env = env->tb_env;
826
827 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
828 tb_env->purr_offset);
829 }
830
831 /* When decrementer expires,
832 * all we need to do is generate or queue a CPU exception
833 */
834 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
835 {
836 /* Raise it */
837 LOG_TB("raise decrementer exception\n");
838 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
839 }
840
841 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
842 {
843 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
844 }
845
846 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
847 {
848 CPUPPCState *env = &cpu->env;
849
850 /* Raise it */
851 LOG_TB("raise hv decrementer exception\n");
852
853 /* The architecture specifies that we don't deliver HDEC
854 * interrupts in a PM state. Not only they don't cause a
855 * wakeup but they also get effectively discarded.
856 */
857 if (!env->resume_as_sreset) {
858 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
859 }
860 }
861
862 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
863 {
864 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
865 }
866
867 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
868 QEMUTimer *timer,
869 void (*raise_excp)(void *),
870 void (*lower_excp)(PowerPCCPU *),
871 target_ulong decr, target_ulong value,
872 int nr_bits)
873 {
874 CPUPPCState *env = &cpu->env;
875 ppc_tb_t *tb_env = env->tb_env;
876 uint64_t now, next;
877 bool negative;
878
879 /* Truncate value to decr_width and sign extend for simplicity */
880 value &= ((1ULL << nr_bits) - 1);
881 negative = !!(value & (1ULL << (nr_bits - 1)));
882 if (negative) {
883 value |= (0xFFFFFFFFULL << nr_bits);
884 }
885
886 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
887 decr, value);
888
889 if (kvm_enabled()) {
890 /* KVM handles decrementer exceptions, we don't need our own timer */
891 return;
892 }
893
894 /*
895 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
896 * interrupt.
897 *
898 * If we get a really small DEC value, we can assume that by the time we
899 * handled it we should inject an interrupt already.
900 *
901 * On MSB level based DEC implementations the MSB always means the interrupt
902 * is pending, so raise it on those.
903 *
904 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
905 * an edge interrupt, so raise it here too.
906 */
907 if ((value < 3) ||
908 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
909 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
910 && !(decr & (1ULL << (nr_bits - 1))))) {
911 (*raise_excp)(cpu);
912 return;
913 }
914
915 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
916 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
917 (*lower_excp)(cpu);
918 }
919
920 /* Calculate the next timer event */
921 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
922 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
923 *nextp = next;
924
925 /* Adjust timer */
926 timer_mod(timer, next);
927 }
928
929 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
930 target_ulong value, int nr_bits)
931 {
932 ppc_tb_t *tb_env = cpu->env.tb_env;
933
934 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
935 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
936 value, nr_bits);
937 }
938
939 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
940 {
941 PowerPCCPU *cpu = env_archcpu(env);
942 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
943 int nr_bits = 32;
944
945 if (env->spr[SPR_LPCR] & LPCR_LD) {
946 nr_bits = pcc->lrg_decr_bits;
947 }
948
949 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
950 }
951
952 static void cpu_ppc_decr_cb(void *opaque)
953 {
954 PowerPCCPU *cpu = opaque;
955
956 cpu_ppc_decr_excp(cpu);
957 }
958
959 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
960 target_ulong value, int nr_bits)
961 {
962 ppc_tb_t *tb_env = cpu->env.tb_env;
963
964 if (tb_env->hdecr_timer != NULL) {
965 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
966 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
967 hdecr, value, nr_bits);
968 }
969 }
970
971 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
972 {
973 PowerPCCPU *cpu = env_archcpu(env);
974 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
975
976 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
977 pcc->lrg_decr_bits);
978 }
979
980 static void cpu_ppc_hdecr_cb(void *opaque)
981 {
982 PowerPCCPU *cpu = opaque;
983
984 cpu_ppc_hdecr_excp(cpu);
985 }
986
987 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
988 {
989 ppc_tb_t *tb_env = env->tb_env;
990
991 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
992 &tb_env->purr_offset, value);
993 }
994
995 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
996 {
997 CPUPPCState *env = opaque;
998 PowerPCCPU *cpu = env_archcpu(env);
999 ppc_tb_t *tb_env = env->tb_env;
1000
1001 tb_env->tb_freq = freq;
1002 tb_env->decr_freq = freq;
1003 /* There is a bug in Linux 2.4 kernels:
1004 * if a decrementer exception is pending when it enables msr_ee at startup,
1005 * it's not ready to handle it...
1006 */
1007 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1008 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1009 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1010 }
1011
1012 static void timebase_save(PPCTimebase *tb)
1013 {
1014 uint64_t ticks = cpu_get_host_ticks();
1015 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1016
1017 if (!first_ppc_cpu->env.tb_env) {
1018 error_report("No timebase object");
1019 return;
1020 }
1021
1022 /* not used anymore, we keep it for compatibility */
1023 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1024 /*
1025 * tb_offset is only expected to be changed by QEMU so
1026 * there is no need to update it from KVM here
1027 */
1028 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1029
1030 tb->runstate_paused =
1031 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
1032 }
1033
1034 static void timebase_load(PPCTimebase *tb)
1035 {
1036 CPUState *cpu;
1037 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1038 int64_t tb_off_adj, tb_off;
1039 unsigned long freq;
1040
1041 if (!first_ppc_cpu->env.tb_env) {
1042 error_report("No timebase object");
1043 return;
1044 }
1045
1046 freq = first_ppc_cpu->env.tb_env->tb_freq;
1047
1048 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1049
1050 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1051 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1052 (tb_off_adj - tb_off) / freq);
1053
1054 /* Set new offset to all CPUs */
1055 CPU_FOREACH(cpu) {
1056 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1057 pcpu->env.tb_env->tb_offset = tb_off_adj;
1058 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1059 }
1060 }
1061
1062 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1063 RunState state)
1064 {
1065 PPCTimebase *tb = opaque;
1066
1067 if (running) {
1068 timebase_load(tb);
1069 } else {
1070 timebase_save(tb);
1071 }
1072 }
1073
1074 /*
1075 * When migrating a running guest, read the clock just
1076 * before migration, so that the guest clock counts
1077 * during the events between:
1078 *
1079 * * vm_stop()
1080 * *
1081 * * pre_save()
1082 *
1083 * This reduces clock difference on migration from 5s
1084 * to 0.1s (when max_downtime == 5s), because sending the
1085 * final pages of memory (which happens between vm_stop()
1086 * and pre_save()) takes max_downtime.
1087 */
1088 static int timebase_pre_save(void *opaque)
1089 {
1090 PPCTimebase *tb = opaque;
1091
1092 /* guest_timebase won't be overridden in case of paused guest or savevm */
1093 if (!tb->runstate_paused) {
1094 timebase_save(tb);
1095 }
1096
1097 return 0;
1098 }
1099
1100 const VMStateDescription vmstate_ppc_timebase = {
1101 .name = "timebase",
1102 .version_id = 1,
1103 .minimum_version_id = 1,
1104 .minimum_version_id_old = 1,
1105 .pre_save = timebase_pre_save,
1106 .fields = (VMStateField []) {
1107 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1108 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1109 VMSTATE_END_OF_LIST()
1110 },
1111 };
1112
1113 /* Set up (once) timebase frequency (in Hz) */
1114 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1115 {
1116 PowerPCCPU *cpu = env_archcpu(env);
1117 ppc_tb_t *tb_env;
1118
1119 tb_env = g_malloc0(sizeof(ppc_tb_t));
1120 env->tb_env = tb_env;
1121 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1122 if (is_book3s_arch2x(env)) {
1123 /* All Book3S 64bit CPUs implement level based DEC logic */
1124 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1125 }
1126 /* Create new timer */
1127 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1128 if (env->has_hv_mode) {
1129 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1130 cpu);
1131 } else {
1132 tb_env->hdecr_timer = NULL;
1133 }
1134 cpu_ppc_set_tb_clk(env, freq);
1135
1136 return &cpu_ppc_set_tb_clk;
1137 }
1138
1139 /* Specific helpers for POWER & PowerPC 601 RTC */
1140 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1141 {
1142 _cpu_ppc_store_tbu(env, value);
1143 }
1144
1145 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1146 {
1147 return _cpu_ppc_load_tbu(env);
1148 }
1149
1150 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1151 {
1152 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1153 }
1154
1155 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1156 {
1157 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1158 }
1159
1160 /*****************************************************************************/
1161 /* PowerPC 40x timers */
1162
1163 /* PIT, FIT & WDT */
1164 typedef struct ppc40x_timer_t ppc40x_timer_t;
1165 struct ppc40x_timer_t {
1166 uint64_t pit_reload; /* PIT auto-reload value */
1167 uint64_t fit_next; /* Tick for next FIT interrupt */
1168 QEMUTimer *fit_timer;
1169 uint64_t wdt_next; /* Tick for next WDT interrupt */
1170 QEMUTimer *wdt_timer;
1171
1172 /* 405 have the PIT, 440 have a DECR. */
1173 unsigned int decr_excp;
1174 };
1175
1176 /* Fixed interval timer */
1177 static void cpu_4xx_fit_cb (void *opaque)
1178 {
1179 PowerPCCPU *cpu;
1180 CPUPPCState *env;
1181 ppc_tb_t *tb_env;
1182 ppc40x_timer_t *ppc40x_timer;
1183 uint64_t now, next;
1184
1185 env = opaque;
1186 cpu = env_archcpu(env);
1187 tb_env = env->tb_env;
1188 ppc40x_timer = tb_env->opaque;
1189 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1190 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1191 case 0:
1192 next = 1 << 9;
1193 break;
1194 case 1:
1195 next = 1 << 13;
1196 break;
1197 case 2:
1198 next = 1 << 17;
1199 break;
1200 case 3:
1201 next = 1 << 21;
1202 break;
1203 default:
1204 /* Cannot occur, but makes gcc happy */
1205 return;
1206 }
1207 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1208 if (next == now)
1209 next++;
1210 timer_mod(ppc40x_timer->fit_timer, next);
1211 env->spr[SPR_40x_TSR] |= 1 << 26;
1212 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1213 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1214 }
1215 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1216 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1217 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1218 }
1219
1220 /* Programmable interval timer */
1221 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1222 {
1223 ppc40x_timer_t *ppc40x_timer;
1224 uint64_t now, next;
1225
1226 ppc40x_timer = tb_env->opaque;
1227 if (ppc40x_timer->pit_reload <= 1 ||
1228 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1229 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1230 /* Stop PIT */
1231 LOG_TB("%s: stop PIT\n", __func__);
1232 timer_del(tb_env->decr_timer);
1233 } else {
1234 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1235 __func__, ppc40x_timer->pit_reload);
1236 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1237 next = now + muldiv64(ppc40x_timer->pit_reload,
1238 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1239 if (is_excp)
1240 next += tb_env->decr_next - now;
1241 if (next == now)
1242 next++;
1243 timer_mod(tb_env->decr_timer, next);
1244 tb_env->decr_next = next;
1245 }
1246 }
1247
1248 static void cpu_4xx_pit_cb (void *opaque)
1249 {
1250 PowerPCCPU *cpu;
1251 CPUPPCState *env;
1252 ppc_tb_t *tb_env;
1253 ppc40x_timer_t *ppc40x_timer;
1254
1255 env = opaque;
1256 cpu = env_archcpu(env);
1257 tb_env = env->tb_env;
1258 ppc40x_timer = tb_env->opaque;
1259 env->spr[SPR_40x_TSR] |= 1 << 27;
1260 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1261 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1262 }
1263 start_stop_pit(env, tb_env, 1);
1264 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1265 "%016" PRIx64 "\n", __func__,
1266 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1267 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1268 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1269 ppc40x_timer->pit_reload);
1270 }
1271
1272 /* Watchdog timer */
1273 static void cpu_4xx_wdt_cb (void *opaque)
1274 {
1275 PowerPCCPU *cpu;
1276 CPUPPCState *env;
1277 ppc_tb_t *tb_env;
1278 ppc40x_timer_t *ppc40x_timer;
1279 uint64_t now, next;
1280
1281 env = opaque;
1282 cpu = env_archcpu(env);
1283 tb_env = env->tb_env;
1284 ppc40x_timer = tb_env->opaque;
1285 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1286 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1287 case 0:
1288 next = 1 << 17;
1289 break;
1290 case 1:
1291 next = 1 << 21;
1292 break;
1293 case 2:
1294 next = 1 << 25;
1295 break;
1296 case 3:
1297 next = 1 << 29;
1298 break;
1299 default:
1300 /* Cannot occur, but makes gcc happy */
1301 return;
1302 }
1303 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1304 if (next == now)
1305 next++;
1306 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1307 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1308 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1309 case 0x0:
1310 case 0x1:
1311 timer_mod(ppc40x_timer->wdt_timer, next);
1312 ppc40x_timer->wdt_next = next;
1313 env->spr[SPR_40x_TSR] |= 1U << 31;
1314 break;
1315 case 0x2:
1316 timer_mod(ppc40x_timer->wdt_timer, next);
1317 ppc40x_timer->wdt_next = next;
1318 env->spr[SPR_40x_TSR] |= 1 << 30;
1319 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1320 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1321 }
1322 break;
1323 case 0x3:
1324 env->spr[SPR_40x_TSR] &= ~0x30000000;
1325 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1326 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1327 case 0x0:
1328 /* No reset */
1329 break;
1330 case 0x1: /* Core reset */
1331 ppc40x_core_reset(cpu);
1332 break;
1333 case 0x2: /* Chip reset */
1334 ppc40x_chip_reset(cpu);
1335 break;
1336 case 0x3: /* System reset */
1337 ppc40x_system_reset(cpu);
1338 break;
1339 }
1340 }
1341 }
1342
1343 void store_40x_pit (CPUPPCState *env, target_ulong val)
1344 {
1345 ppc_tb_t *tb_env;
1346 ppc40x_timer_t *ppc40x_timer;
1347
1348 tb_env = env->tb_env;
1349 ppc40x_timer = tb_env->opaque;
1350 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1351 ppc40x_timer->pit_reload = val;
1352 start_stop_pit(env, tb_env, 0);
1353 }
1354
1355 target_ulong load_40x_pit (CPUPPCState *env)
1356 {
1357 return cpu_ppc_load_decr(env);
1358 }
1359
1360 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1361 {
1362 CPUPPCState *env = opaque;
1363 ppc_tb_t *tb_env = env->tb_env;
1364
1365 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1366 freq);
1367 tb_env->tb_freq = freq;
1368 tb_env->decr_freq = freq;
1369 /* XXX: we should also update all timers */
1370 }
1371
1372 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1373 unsigned int decr_excp)
1374 {
1375 ppc_tb_t *tb_env;
1376 ppc40x_timer_t *ppc40x_timer;
1377
1378 tb_env = g_malloc0(sizeof(ppc_tb_t));
1379 env->tb_env = tb_env;
1380 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1381 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1382 tb_env->tb_freq = freq;
1383 tb_env->decr_freq = freq;
1384 tb_env->opaque = ppc40x_timer;
1385 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1386 if (ppc40x_timer != NULL) {
1387 /* We use decr timer for PIT */
1388 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1389 ppc40x_timer->fit_timer =
1390 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1391 ppc40x_timer->wdt_timer =
1392 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1393 ppc40x_timer->decr_excp = decr_excp;
1394 }
1395
1396 return &ppc_40x_set_tb_clk;
1397 }
1398
1399 /*****************************************************************************/
1400 /* Embedded PowerPC Device Control Registers */
1401 typedef struct ppc_dcrn_t ppc_dcrn_t;
1402 struct ppc_dcrn_t {
1403 dcr_read_cb dcr_read;
1404 dcr_write_cb dcr_write;
1405 void *opaque;
1406 };
1407
1408 /* XXX: on 460, DCR addresses are 32 bits wide,
1409 * using DCRIPR to get the 22 upper bits of the DCR address
1410 */
1411 #define DCRN_NB 1024
1412 struct ppc_dcr_t {
1413 ppc_dcrn_t dcrn[DCRN_NB];
1414 int (*read_error)(int dcrn);
1415 int (*write_error)(int dcrn);
1416 };
1417
1418 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1419 {
1420 ppc_dcrn_t *dcr;
1421
1422 if (dcrn < 0 || dcrn >= DCRN_NB)
1423 goto error;
1424 dcr = &dcr_env->dcrn[dcrn];
1425 if (dcr->dcr_read == NULL)
1426 goto error;
1427 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1428
1429 return 0;
1430
1431 error:
1432 if (dcr_env->read_error != NULL)
1433 return (*dcr_env->read_error)(dcrn);
1434
1435 return -1;
1436 }
1437
1438 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1439 {
1440 ppc_dcrn_t *dcr;
1441
1442 if (dcrn < 0 || dcrn >= DCRN_NB)
1443 goto error;
1444 dcr = &dcr_env->dcrn[dcrn];
1445 if (dcr->dcr_write == NULL)
1446 goto error;
1447 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1448
1449 return 0;
1450
1451 error:
1452 if (dcr_env->write_error != NULL)
1453 return (*dcr_env->write_error)(dcrn);
1454
1455 return -1;
1456 }
1457
1458 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1459 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1460 {
1461 ppc_dcr_t *dcr_env;
1462 ppc_dcrn_t *dcr;
1463
1464 dcr_env = env->dcr_env;
1465 if (dcr_env == NULL)
1466 return -1;
1467 if (dcrn < 0 || dcrn >= DCRN_NB)
1468 return -1;
1469 dcr = &dcr_env->dcrn[dcrn];
1470 if (dcr->opaque != NULL ||
1471 dcr->dcr_read != NULL ||
1472 dcr->dcr_write != NULL)
1473 return -1;
1474 dcr->opaque = opaque;
1475 dcr->dcr_read = dcr_read;
1476 dcr->dcr_write = dcr_write;
1477
1478 return 0;
1479 }
1480
1481 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1482 int (*write_error)(int dcrn))
1483 {
1484 ppc_dcr_t *dcr_env;
1485
1486 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1487 dcr_env->read_error = read_error;
1488 dcr_env->write_error = write_error;
1489 env->dcr_env = dcr_env;
1490
1491 return 0;
1492 }
1493
1494 /*****************************************************************************/
1495
1496 int ppc_cpu_pir(PowerPCCPU *cpu)
1497 {
1498 CPUPPCState *env = &cpu->env;
1499 return env->spr_cb[SPR_PIR].default_value;
1500 }
1501
1502 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1503 {
1504 CPUState *cs;
1505
1506 CPU_FOREACH(cs) {
1507 PowerPCCPU *cpu = POWERPC_CPU(cs);
1508
1509 if (ppc_cpu_pir(cpu) == pir) {
1510 return cpu;
1511 }
1512 }
1513
1514 return NULL;
1515 }
1516
1517 void ppc_irq_reset(PowerPCCPU *cpu)
1518 {
1519 CPUPPCState *env = &cpu->env;
1520
1521 env->irq_input_state = 0;
1522 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1523 }