]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
cpu: Use QTAILQ for CPU list
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/timer/m48t59.h"
30 #include "qemu/log.h"
31 #include "hw/loader.h"
32 #include "sysemu/kvm.h"
33 #include "kvm_ppc.h"
34
35 //#define PPC_DEBUG_IRQ
36 //#define PPC_DEBUG_TB
37
38 #ifdef PPC_DEBUG_IRQ
39 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
40 #else
41 # define LOG_IRQ(...) do { } while (0)
42 #endif
43
44
45 #ifdef PPC_DEBUG_TB
46 # define LOG_TB(...) qemu_log(__VA_ARGS__)
47 #else
48 # define LOG_TB(...) do { } while (0)
49 #endif
50
51 static void cpu_ppc_tb_stop (CPUPPCState *env);
52 static void cpu_ppc_tb_start (CPUPPCState *env);
53
54 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
55 {
56 CPUState *cs = CPU(cpu);
57 CPUPPCState *env = &cpu->env;
58 unsigned int old_pending = env->pending_interrupts;
59
60 if (level) {
61 env->pending_interrupts |= 1 << n_IRQ;
62 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
63 } else {
64 env->pending_interrupts &= ~(1 << n_IRQ);
65 if (env->pending_interrupts == 0) {
66 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
67 }
68 }
69
70 if (old_pending != env->pending_interrupts) {
71 #ifdef CONFIG_KVM
72 kvmppc_set_interrupt(cpu, n_IRQ, level);
73 #endif
74 }
75
76 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
77 "req %08x\n", __func__, env, n_IRQ, level,
78 env->pending_interrupts, CPU(cpu)->interrupt_request);
79 }
80
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
83 {
84 PowerPCCPU *cpu = opaque;
85 CPUPPCState *env = &cpu->env;
86 int cur_level;
87
88 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
89 env, pin, level);
90 cur_level = (env->irq_input_state >> pin) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93 CPUState *cs = CPU(cpu);
94
95 switch (pin) {
96 case PPC6xx_INPUT_TBEN:
97 /* Level sensitive - active high */
98 LOG_IRQ("%s: %s the time base\n",
99 __func__, level ? "start" : "stop");
100 if (level) {
101 cpu_ppc_tb_start(env);
102 } else {
103 cpu_ppc_tb_stop(env);
104 }
105 case PPC6xx_INPUT_INT:
106 /* Level sensitive - active high */
107 LOG_IRQ("%s: set the external IRQ state to %d\n",
108 __func__, level);
109 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
110 break;
111 case PPC6xx_INPUT_SMI:
112 /* Level sensitive - active high */
113 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
114 __func__, level);
115 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
116 break;
117 case PPC6xx_INPUT_MCP:
118 /* Negative edge sensitive */
119 /* XXX: TODO: actual reaction may depends on HID0 status
120 * 603/604/740/750: check HID0[EMCP]
121 */
122 if (cur_level == 1 && level == 0) {
123 LOG_IRQ("%s: raise machine check state\n",
124 __func__);
125 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
126 }
127 break;
128 case PPC6xx_INPUT_CKSTP_IN:
129 /* Level sensitive - active low */
130 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
131 /* XXX: Note that the only way to restart the CPU is to reset it */
132 if (level) {
133 LOG_IRQ("%s: stop the CPU\n", __func__);
134 cs->halted = 1;
135 }
136 break;
137 case PPC6xx_INPUT_HRESET:
138 /* Level sensitive - active low */
139 if (level) {
140 LOG_IRQ("%s: reset the CPU\n", __func__);
141 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
142 }
143 break;
144 case PPC6xx_INPUT_SRESET:
145 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
146 __func__, level);
147 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
148 break;
149 default:
150 /* Unknown pin - do nothing */
151 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
152 return;
153 }
154 if (level)
155 env->irq_input_state |= 1 << pin;
156 else
157 env->irq_input_state &= ~(1 << pin);
158 }
159 }
160
161 void ppc6xx_irq_init(CPUPPCState *env)
162 {
163 PowerPCCPU *cpu = ppc_env_get_cpu(env);
164
165 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
166 PPC6xx_INPUT_NB);
167 }
168
169 #if defined(TARGET_PPC64)
170 /* PowerPC 970 internal IRQ controller */
171 static void ppc970_set_irq(void *opaque, int pin, int level)
172 {
173 PowerPCCPU *cpu = opaque;
174 CPUPPCState *env = &cpu->env;
175 int cur_level;
176
177 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
178 env, pin, level);
179 cur_level = (env->irq_input_state >> pin) & 1;
180 /* Don't generate spurious events */
181 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
182 CPUState *cs = CPU(cpu);
183
184 switch (pin) {
185 case PPC970_INPUT_INT:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the external IRQ state to %d\n",
188 __func__, level);
189 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
190 break;
191 case PPC970_INPUT_THINT:
192 /* Level sensitive - active high */
193 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
194 level);
195 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
196 break;
197 case PPC970_INPUT_MCP:
198 /* Negative edge sensitive */
199 /* XXX: TODO: actual reaction may depends on HID0 status
200 * 603/604/740/750: check HID0[EMCP]
201 */
202 if (cur_level == 1 && level == 0) {
203 LOG_IRQ("%s: raise machine check state\n",
204 __func__);
205 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
206 }
207 break;
208 case PPC970_INPUT_CKSTP:
209 /* Level sensitive - active low */
210 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
211 if (level) {
212 LOG_IRQ("%s: stop the CPU\n", __func__);
213 cs->halted = 1;
214 } else {
215 LOG_IRQ("%s: restart the CPU\n", __func__);
216 cs->halted = 0;
217 qemu_cpu_kick(cs);
218 }
219 break;
220 case PPC970_INPUT_HRESET:
221 /* Level sensitive - active low */
222 if (level) {
223 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
224 }
225 break;
226 case PPC970_INPUT_SRESET:
227 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
228 __func__, level);
229 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
230 break;
231 case PPC970_INPUT_TBEN:
232 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
233 level);
234 /* XXX: TODO */
235 break;
236 default:
237 /* Unknown pin - do nothing */
238 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
239 return;
240 }
241 if (level)
242 env->irq_input_state |= 1 << pin;
243 else
244 env->irq_input_state &= ~(1 << pin);
245 }
246 }
247
248 void ppc970_irq_init(CPUPPCState *env)
249 {
250 PowerPCCPU *cpu = ppc_env_get_cpu(env);
251
252 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
253 PPC970_INPUT_NB);
254 }
255
256 /* POWER7 internal IRQ controller */
257 static void power7_set_irq(void *opaque, int pin, int level)
258 {
259 PowerPCCPU *cpu = opaque;
260 CPUPPCState *env = &cpu->env;
261
262 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
263 env, pin, level);
264
265 switch (pin) {
266 case POWER7_INPUT_INT:
267 /* Level sensitive - active high */
268 LOG_IRQ("%s: set the external IRQ state to %d\n",
269 __func__, level);
270 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
271 break;
272 default:
273 /* Unknown pin - do nothing */
274 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
275 return;
276 }
277 if (level) {
278 env->irq_input_state |= 1 << pin;
279 } else {
280 env->irq_input_state &= ~(1 << pin);
281 }
282 }
283
284 void ppcPOWER7_irq_init(CPUPPCState *env)
285 {
286 PowerPCCPU *cpu = ppc_env_get_cpu(env);
287
288 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
289 POWER7_INPUT_NB);
290 }
291 #endif /* defined(TARGET_PPC64) */
292
293 /* PowerPC 40x internal IRQ controller */
294 static void ppc40x_set_irq(void *opaque, int pin, int level)
295 {
296 PowerPCCPU *cpu = opaque;
297 CPUPPCState *env = &cpu->env;
298 int cur_level;
299
300 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
301 env, pin, level);
302 cur_level = (env->irq_input_state >> pin) & 1;
303 /* Don't generate spurious events */
304 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
305 CPUState *cs = CPU(cpu);
306
307 switch (pin) {
308 case PPC40x_INPUT_RESET_SYS:
309 if (level) {
310 LOG_IRQ("%s: reset the PowerPC system\n",
311 __func__);
312 ppc40x_system_reset(cpu);
313 }
314 break;
315 case PPC40x_INPUT_RESET_CHIP:
316 if (level) {
317 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
318 ppc40x_chip_reset(cpu);
319 }
320 break;
321 case PPC40x_INPUT_RESET_CORE:
322 /* XXX: TODO: update DBSR[MRR] */
323 if (level) {
324 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
325 ppc40x_core_reset(cpu);
326 }
327 break;
328 case PPC40x_INPUT_CINT:
329 /* Level sensitive - active high */
330 LOG_IRQ("%s: set the critical IRQ state to %d\n",
331 __func__, level);
332 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
333 break;
334 case PPC40x_INPUT_INT:
335 /* Level sensitive - active high */
336 LOG_IRQ("%s: set the external IRQ state to %d\n",
337 __func__, level);
338 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
339 break;
340 case PPC40x_INPUT_HALT:
341 /* Level sensitive - active low */
342 if (level) {
343 LOG_IRQ("%s: stop the CPU\n", __func__);
344 cs->halted = 1;
345 } else {
346 LOG_IRQ("%s: restart the CPU\n", __func__);
347 cs->halted = 0;
348 qemu_cpu_kick(cs);
349 }
350 break;
351 case PPC40x_INPUT_DEBUG:
352 /* Level sensitive - active high */
353 LOG_IRQ("%s: set the debug pin state to %d\n",
354 __func__, level);
355 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
356 break;
357 default:
358 /* Unknown pin - do nothing */
359 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
360 return;
361 }
362 if (level)
363 env->irq_input_state |= 1 << pin;
364 else
365 env->irq_input_state &= ~(1 << pin);
366 }
367 }
368
369 void ppc40x_irq_init(CPUPPCState *env)
370 {
371 PowerPCCPU *cpu = ppc_env_get_cpu(env);
372
373 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
374 cpu, PPC40x_INPUT_NB);
375 }
376
377 /* PowerPC E500 internal IRQ controller */
378 static void ppce500_set_irq(void *opaque, int pin, int level)
379 {
380 PowerPCCPU *cpu = opaque;
381 CPUPPCState *env = &cpu->env;
382 int cur_level;
383
384 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
385 env, pin, level);
386 cur_level = (env->irq_input_state >> pin) & 1;
387 /* Don't generate spurious events */
388 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
389 switch (pin) {
390 case PPCE500_INPUT_MCK:
391 if (level) {
392 LOG_IRQ("%s: reset the PowerPC system\n",
393 __func__);
394 qemu_system_reset_request();
395 }
396 break;
397 case PPCE500_INPUT_RESET_CORE:
398 if (level) {
399 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
400 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
401 }
402 break;
403 case PPCE500_INPUT_CINT:
404 /* Level sensitive - active high */
405 LOG_IRQ("%s: set the critical IRQ state to %d\n",
406 __func__, level);
407 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
408 break;
409 case PPCE500_INPUT_INT:
410 /* Level sensitive - active high */
411 LOG_IRQ("%s: set the core IRQ state to %d\n",
412 __func__, level);
413 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
414 break;
415 case PPCE500_INPUT_DEBUG:
416 /* Level sensitive - active high */
417 LOG_IRQ("%s: set the debug pin state to %d\n",
418 __func__, level);
419 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
420 break;
421 default:
422 /* Unknown pin - do nothing */
423 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
424 return;
425 }
426 if (level)
427 env->irq_input_state |= 1 << pin;
428 else
429 env->irq_input_state &= ~(1 << pin);
430 }
431 }
432
433 void ppce500_irq_init(CPUPPCState *env)
434 {
435 PowerPCCPU *cpu = ppc_env_get_cpu(env);
436
437 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
438 cpu, PPCE500_INPUT_NB);
439 }
440
441 /* Enable or Disable the E500 EPR capability */
442 void ppce500_set_mpic_proxy(bool enabled)
443 {
444 CPUState *cs;
445
446 CPU_FOREACH(cs) {
447 PowerPCCPU *cpu = POWERPC_CPU(cs);
448
449 cpu->env.mpic_proxy = enabled;
450 if (kvm_enabled()) {
451 kvmppc_set_mpic_proxy(cpu, enabled);
452 }
453 }
454 }
455
456 /*****************************************************************************/
457 /* PowerPC time base and decrementer emulation */
458
459 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
460 {
461 /* TB time in tb periods */
462 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
463 }
464
465 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
466 {
467 ppc_tb_t *tb_env = env->tb_env;
468 uint64_t tb;
469
470 if (kvm_enabled()) {
471 return env->spr[SPR_TBL];
472 }
473
474 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
475 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
476
477 return tb;
478 }
479
480 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
481 {
482 ppc_tb_t *tb_env = env->tb_env;
483 uint64_t tb;
484
485 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
486 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
487
488 return tb >> 32;
489 }
490
491 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
492 {
493 if (kvm_enabled()) {
494 return env->spr[SPR_TBU];
495 }
496
497 return _cpu_ppc_load_tbu(env);
498 }
499
500 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
501 int64_t *tb_offsetp, uint64_t value)
502 {
503 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
504 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
505 __func__, value, *tb_offsetp);
506 }
507
508 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
509 {
510 ppc_tb_t *tb_env = env->tb_env;
511 uint64_t tb;
512
513 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
514 tb &= 0xFFFFFFFF00000000ULL;
515 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
516 &tb_env->tb_offset, tb | (uint64_t)value);
517 }
518
519 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
520 {
521 ppc_tb_t *tb_env = env->tb_env;
522 uint64_t tb;
523
524 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
525 tb &= 0x00000000FFFFFFFFULL;
526 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
527 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
528 }
529
530 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
531 {
532 _cpu_ppc_store_tbu(env, value);
533 }
534
535 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
536 {
537 ppc_tb_t *tb_env = env->tb_env;
538 uint64_t tb;
539
540 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
541 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
542
543 return tb;
544 }
545
546 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
547 {
548 ppc_tb_t *tb_env = env->tb_env;
549 uint64_t tb;
550
551 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
552 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
553
554 return tb >> 32;
555 }
556
557 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
558 {
559 ppc_tb_t *tb_env = env->tb_env;
560 uint64_t tb;
561
562 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
563 tb &= 0xFFFFFFFF00000000ULL;
564 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
565 &tb_env->atb_offset, tb | (uint64_t)value);
566 }
567
568 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
569 {
570 ppc_tb_t *tb_env = env->tb_env;
571 uint64_t tb;
572
573 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
574 tb &= 0x00000000FFFFFFFFULL;
575 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
576 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
577 }
578
579 static void cpu_ppc_tb_stop (CPUPPCState *env)
580 {
581 ppc_tb_t *tb_env = env->tb_env;
582 uint64_t tb, atb, vmclk;
583
584 /* If the time base is already frozen, do nothing */
585 if (tb_env->tb_freq != 0) {
586 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
587 /* Get the time base */
588 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
589 /* Get the alternate time base */
590 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
591 /* Store the time base value (ie compute the current offset) */
592 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
593 /* Store the alternate time base value (compute the current offset) */
594 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
595 /* Set the time base frequency to zero */
596 tb_env->tb_freq = 0;
597 /* Now, the time bases are frozen to tb_offset / atb_offset value */
598 }
599 }
600
601 static void cpu_ppc_tb_start (CPUPPCState *env)
602 {
603 ppc_tb_t *tb_env = env->tb_env;
604 uint64_t tb, atb, vmclk;
605
606 /* If the time base is not frozen, do nothing */
607 if (tb_env->tb_freq == 0) {
608 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
609 /* Get the time base from tb_offset */
610 tb = tb_env->tb_offset;
611 /* Get the alternate time base from atb_offset */
612 atb = tb_env->atb_offset;
613 /* Restore the tb frequency from the decrementer frequency */
614 tb_env->tb_freq = tb_env->decr_freq;
615 /* Store the time base value */
616 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
617 /* Store the alternate time base value */
618 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
619 }
620 }
621
622 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
623 {
624 ppc_tb_t *tb_env = env->tb_env;
625 uint32_t decr;
626 int64_t diff;
627
628 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
629 if (diff >= 0) {
630 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
631 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
632 decr = 0;
633 } else {
634 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
635 }
636 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
637
638 return decr;
639 }
640
641 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
642 {
643 ppc_tb_t *tb_env = env->tb_env;
644
645 if (kvm_enabled()) {
646 return env->spr[SPR_DECR];
647 }
648
649 return _cpu_ppc_load_decr(env, tb_env->decr_next);
650 }
651
652 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
653 {
654 ppc_tb_t *tb_env = env->tb_env;
655
656 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
657 }
658
659 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
660 {
661 ppc_tb_t *tb_env = env->tb_env;
662 uint64_t diff;
663
664 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
665
666 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
667 }
668
669 /* When decrementer expires,
670 * all we need to do is generate or queue a CPU exception
671 */
672 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
673 {
674 /* Raise it */
675 LOG_TB("raise decrementer exception\n");
676 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
677 }
678
679 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
680 {
681 /* Raise it */
682 LOG_TB("raise decrementer exception\n");
683 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
684 }
685
686 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
687 struct QEMUTimer *timer,
688 void (*raise_excp)(PowerPCCPU *),
689 uint32_t decr, uint32_t value,
690 int is_excp)
691 {
692 CPUPPCState *env = &cpu->env;
693 ppc_tb_t *tb_env = env->tb_env;
694 uint64_t now, next;
695
696 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
697 decr, value);
698
699 if (kvm_enabled()) {
700 /* KVM handles decrementer exceptions, we don't need our own timer */
701 return;
702 }
703
704 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
706 if (is_excp) {
707 next += *nextp - now;
708 }
709 if (next == now) {
710 next++;
711 }
712 *nextp = next;
713 /* Adjust timer */
714 timer_mod(timer, next);
715
716 /* If we set a negative value and the decrementer was positive, raise an
717 * exception.
718 */
719 if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
720 && (value & 0x80000000)
721 && !(decr & 0x80000000)) {
722 (*raise_excp)(cpu);
723 }
724 }
725
726 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
727 uint32_t value, int is_excp)
728 {
729 ppc_tb_t *tb_env = cpu->env.tb_env;
730
731 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
732 &cpu_ppc_decr_excp, decr, value, is_excp);
733 }
734
735 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
736 {
737 PowerPCCPU *cpu = ppc_env_get_cpu(env);
738
739 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
740 }
741
742 static void cpu_ppc_decr_cb(void *opaque)
743 {
744 PowerPCCPU *cpu = opaque;
745
746 _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
747 }
748
749 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
750 uint32_t value, int is_excp)
751 {
752 ppc_tb_t *tb_env = cpu->env.tb_env;
753
754 if (tb_env->hdecr_timer != NULL) {
755 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
756 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
757 }
758 }
759
760 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
761 {
762 PowerPCCPU *cpu = ppc_env_get_cpu(env);
763
764 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
765 }
766
767 static void cpu_ppc_hdecr_cb(void *opaque)
768 {
769 PowerPCCPU *cpu = opaque;
770
771 _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
772 }
773
774 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
775 {
776 ppc_tb_t *tb_env = cpu->env.tb_env;
777
778 tb_env->purr_load = value;
779 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
780 }
781
782 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
783 {
784 CPUPPCState *env = opaque;
785 PowerPCCPU *cpu = ppc_env_get_cpu(env);
786 ppc_tb_t *tb_env = env->tb_env;
787
788 tb_env->tb_freq = freq;
789 tb_env->decr_freq = freq;
790 /* There is a bug in Linux 2.4 kernels:
791 * if a decrementer exception is pending when it enables msr_ee at startup,
792 * it's not ready to handle it...
793 */
794 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
795 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
796 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
797 }
798
799 /* Set up (once) timebase frequency (in Hz) */
800 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
801 {
802 PowerPCCPU *cpu = ppc_env_get_cpu(env);
803 ppc_tb_t *tb_env;
804
805 tb_env = g_malloc0(sizeof(ppc_tb_t));
806 env->tb_env = tb_env;
807 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
808 /* Create new timer */
809 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
810 if (0) {
811 /* XXX: find a suitable condition to enable the hypervisor decrementer
812 */
813 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
814 cpu);
815 } else {
816 tb_env->hdecr_timer = NULL;
817 }
818 cpu_ppc_set_tb_clk(env, freq);
819
820 return &cpu_ppc_set_tb_clk;
821 }
822
823 /* Specific helpers for POWER & PowerPC 601 RTC */
824 #if 0
825 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
826 {
827 return cpu_ppc_tb_init(env, 7812500);
828 }
829 #endif
830
831 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
832 {
833 _cpu_ppc_store_tbu(env, value);
834 }
835
836 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
837 {
838 return _cpu_ppc_load_tbu(env);
839 }
840
841 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
842 {
843 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
844 }
845
846 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
847 {
848 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
849 }
850
851 /*****************************************************************************/
852 /* PowerPC 40x timers */
853
854 /* PIT, FIT & WDT */
855 typedef struct ppc40x_timer_t ppc40x_timer_t;
856 struct ppc40x_timer_t {
857 uint64_t pit_reload; /* PIT auto-reload value */
858 uint64_t fit_next; /* Tick for next FIT interrupt */
859 struct QEMUTimer *fit_timer;
860 uint64_t wdt_next; /* Tick for next WDT interrupt */
861 struct QEMUTimer *wdt_timer;
862
863 /* 405 have the PIT, 440 have a DECR. */
864 unsigned int decr_excp;
865 };
866
867 /* Fixed interval timer */
868 static void cpu_4xx_fit_cb (void *opaque)
869 {
870 PowerPCCPU *cpu;
871 CPUPPCState *env;
872 ppc_tb_t *tb_env;
873 ppc40x_timer_t *ppc40x_timer;
874 uint64_t now, next;
875
876 env = opaque;
877 cpu = ppc_env_get_cpu(env);
878 tb_env = env->tb_env;
879 ppc40x_timer = tb_env->opaque;
880 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
881 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
882 case 0:
883 next = 1 << 9;
884 break;
885 case 1:
886 next = 1 << 13;
887 break;
888 case 2:
889 next = 1 << 17;
890 break;
891 case 3:
892 next = 1 << 21;
893 break;
894 default:
895 /* Cannot occur, but makes gcc happy */
896 return;
897 }
898 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
899 if (next == now)
900 next++;
901 timer_mod(ppc40x_timer->fit_timer, next);
902 env->spr[SPR_40x_TSR] |= 1 << 26;
903 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
904 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
905 }
906 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
907 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
908 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
909 }
910
911 /* Programmable interval timer */
912 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
913 {
914 ppc40x_timer_t *ppc40x_timer;
915 uint64_t now, next;
916
917 ppc40x_timer = tb_env->opaque;
918 if (ppc40x_timer->pit_reload <= 1 ||
919 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
920 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
921 /* Stop PIT */
922 LOG_TB("%s: stop PIT\n", __func__);
923 timer_del(tb_env->decr_timer);
924 } else {
925 LOG_TB("%s: start PIT %016" PRIx64 "\n",
926 __func__, ppc40x_timer->pit_reload);
927 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
928 next = now + muldiv64(ppc40x_timer->pit_reload,
929 get_ticks_per_sec(), tb_env->decr_freq);
930 if (is_excp)
931 next += tb_env->decr_next - now;
932 if (next == now)
933 next++;
934 timer_mod(tb_env->decr_timer, next);
935 tb_env->decr_next = next;
936 }
937 }
938
939 static void cpu_4xx_pit_cb (void *opaque)
940 {
941 PowerPCCPU *cpu;
942 CPUPPCState *env;
943 ppc_tb_t *tb_env;
944 ppc40x_timer_t *ppc40x_timer;
945
946 env = opaque;
947 cpu = ppc_env_get_cpu(env);
948 tb_env = env->tb_env;
949 ppc40x_timer = tb_env->opaque;
950 env->spr[SPR_40x_TSR] |= 1 << 27;
951 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
952 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
953 }
954 start_stop_pit(env, tb_env, 1);
955 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
956 "%016" PRIx64 "\n", __func__,
957 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
958 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
959 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
960 ppc40x_timer->pit_reload);
961 }
962
963 /* Watchdog timer */
964 static void cpu_4xx_wdt_cb (void *opaque)
965 {
966 PowerPCCPU *cpu;
967 CPUPPCState *env;
968 ppc_tb_t *tb_env;
969 ppc40x_timer_t *ppc40x_timer;
970 uint64_t now, next;
971
972 env = opaque;
973 cpu = ppc_env_get_cpu(env);
974 tb_env = env->tb_env;
975 ppc40x_timer = tb_env->opaque;
976 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
977 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
978 case 0:
979 next = 1 << 17;
980 break;
981 case 1:
982 next = 1 << 21;
983 break;
984 case 2:
985 next = 1 << 25;
986 break;
987 case 3:
988 next = 1 << 29;
989 break;
990 default:
991 /* Cannot occur, but makes gcc happy */
992 return;
993 }
994 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
995 if (next == now)
996 next++;
997 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
998 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
999 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1000 case 0x0:
1001 case 0x1:
1002 timer_mod(ppc40x_timer->wdt_timer, next);
1003 ppc40x_timer->wdt_next = next;
1004 env->spr[SPR_40x_TSR] |= 1 << 31;
1005 break;
1006 case 0x2:
1007 timer_mod(ppc40x_timer->wdt_timer, next);
1008 ppc40x_timer->wdt_next = next;
1009 env->spr[SPR_40x_TSR] |= 1 << 30;
1010 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1011 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1012 }
1013 break;
1014 case 0x3:
1015 env->spr[SPR_40x_TSR] &= ~0x30000000;
1016 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1017 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1018 case 0x0:
1019 /* No reset */
1020 break;
1021 case 0x1: /* Core reset */
1022 ppc40x_core_reset(cpu);
1023 break;
1024 case 0x2: /* Chip reset */
1025 ppc40x_chip_reset(cpu);
1026 break;
1027 case 0x3: /* System reset */
1028 ppc40x_system_reset(cpu);
1029 break;
1030 }
1031 }
1032 }
1033
1034 void store_40x_pit (CPUPPCState *env, target_ulong val)
1035 {
1036 ppc_tb_t *tb_env;
1037 ppc40x_timer_t *ppc40x_timer;
1038
1039 tb_env = env->tb_env;
1040 ppc40x_timer = tb_env->opaque;
1041 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1042 ppc40x_timer->pit_reload = val;
1043 start_stop_pit(env, tb_env, 0);
1044 }
1045
1046 target_ulong load_40x_pit (CPUPPCState *env)
1047 {
1048 return cpu_ppc_load_decr(env);
1049 }
1050
1051 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1052 {
1053 CPUPPCState *env = opaque;
1054 ppc_tb_t *tb_env = env->tb_env;
1055
1056 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1057 freq);
1058 tb_env->tb_freq = freq;
1059 tb_env->decr_freq = freq;
1060 /* XXX: we should also update all timers */
1061 }
1062
1063 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1064 unsigned int decr_excp)
1065 {
1066 ppc_tb_t *tb_env;
1067 ppc40x_timer_t *ppc40x_timer;
1068
1069 tb_env = g_malloc0(sizeof(ppc_tb_t));
1070 env->tb_env = tb_env;
1071 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1072 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1073 tb_env->tb_freq = freq;
1074 tb_env->decr_freq = freq;
1075 tb_env->opaque = ppc40x_timer;
1076 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1077 if (ppc40x_timer != NULL) {
1078 /* We use decr timer for PIT */
1079 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1080 ppc40x_timer->fit_timer =
1081 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1082 ppc40x_timer->wdt_timer =
1083 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1084 ppc40x_timer->decr_excp = decr_excp;
1085 }
1086
1087 return &ppc_40x_set_tb_clk;
1088 }
1089
1090 /*****************************************************************************/
1091 /* Embedded PowerPC Device Control Registers */
1092 typedef struct ppc_dcrn_t ppc_dcrn_t;
1093 struct ppc_dcrn_t {
1094 dcr_read_cb dcr_read;
1095 dcr_write_cb dcr_write;
1096 void *opaque;
1097 };
1098
1099 /* XXX: on 460, DCR addresses are 32 bits wide,
1100 * using DCRIPR to get the 22 upper bits of the DCR address
1101 */
1102 #define DCRN_NB 1024
1103 struct ppc_dcr_t {
1104 ppc_dcrn_t dcrn[DCRN_NB];
1105 int (*read_error)(int dcrn);
1106 int (*write_error)(int dcrn);
1107 };
1108
1109 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1110 {
1111 ppc_dcrn_t *dcr;
1112
1113 if (dcrn < 0 || dcrn >= DCRN_NB)
1114 goto error;
1115 dcr = &dcr_env->dcrn[dcrn];
1116 if (dcr->dcr_read == NULL)
1117 goto error;
1118 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1119
1120 return 0;
1121
1122 error:
1123 if (dcr_env->read_error != NULL)
1124 return (*dcr_env->read_error)(dcrn);
1125
1126 return -1;
1127 }
1128
1129 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1130 {
1131 ppc_dcrn_t *dcr;
1132
1133 if (dcrn < 0 || dcrn >= DCRN_NB)
1134 goto error;
1135 dcr = &dcr_env->dcrn[dcrn];
1136 if (dcr->dcr_write == NULL)
1137 goto error;
1138 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1139
1140 return 0;
1141
1142 error:
1143 if (dcr_env->write_error != NULL)
1144 return (*dcr_env->write_error)(dcrn);
1145
1146 return -1;
1147 }
1148
1149 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1150 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1151 {
1152 ppc_dcr_t *dcr_env;
1153 ppc_dcrn_t *dcr;
1154
1155 dcr_env = env->dcr_env;
1156 if (dcr_env == NULL)
1157 return -1;
1158 if (dcrn < 0 || dcrn >= DCRN_NB)
1159 return -1;
1160 dcr = &dcr_env->dcrn[dcrn];
1161 if (dcr->opaque != NULL ||
1162 dcr->dcr_read != NULL ||
1163 dcr->dcr_write != NULL)
1164 return -1;
1165 dcr->opaque = opaque;
1166 dcr->dcr_read = dcr_read;
1167 dcr->dcr_write = dcr_write;
1168
1169 return 0;
1170 }
1171
1172 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1173 int (*write_error)(int dcrn))
1174 {
1175 ppc_dcr_t *dcr_env;
1176
1177 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1178 dcr_env->read_error = read_error;
1179 dcr_env->write_error = write_error;
1180 env->dcr_env = dcr_env;
1181
1182 return 0;
1183 }
1184
1185 /*****************************************************************************/
1186 /* Debug port */
1187 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1188 {
1189 addr &= 0xF;
1190 switch (addr) {
1191 case 0:
1192 printf("%c", val);
1193 break;
1194 case 1:
1195 printf("\n");
1196 fflush(stdout);
1197 break;
1198 case 2:
1199 printf("Set loglevel to %04" PRIx32 "\n", val);
1200 qemu_set_log(val | 0x100);
1201 break;
1202 }
1203 }
1204
1205 /*****************************************************************************/
1206 /* NVRAM helpers */
1207 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1208 {
1209 return (*nvram->read_fn)(nvram->opaque, addr);
1210 }
1211
1212 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1213 {
1214 (*nvram->write_fn)(nvram->opaque, addr, val);
1215 }
1216
1217 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1218 {
1219 nvram_write(nvram, addr, value);
1220 }
1221
1222 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1223 {
1224 return nvram_read(nvram, addr);
1225 }
1226
1227 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1228 {
1229 nvram_write(nvram, addr, value >> 8);
1230 nvram_write(nvram, addr + 1, value & 0xFF);
1231 }
1232
1233 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1234 {
1235 uint16_t tmp;
1236
1237 tmp = nvram_read(nvram, addr) << 8;
1238 tmp |= nvram_read(nvram, addr + 1);
1239
1240 return tmp;
1241 }
1242
1243 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1244 {
1245 nvram_write(nvram, addr, value >> 24);
1246 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1247 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1248 nvram_write(nvram, addr + 3, value & 0xFF);
1249 }
1250
1251 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1252 {
1253 uint32_t tmp;
1254
1255 tmp = nvram_read(nvram, addr) << 24;
1256 tmp |= nvram_read(nvram, addr + 1) << 16;
1257 tmp |= nvram_read(nvram, addr + 2) << 8;
1258 tmp |= nvram_read(nvram, addr + 3);
1259
1260 return tmp;
1261 }
1262
1263 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1264 uint32_t max)
1265 {
1266 int i;
1267
1268 for (i = 0; i < max && str[i] != '\0'; i++) {
1269 nvram_write(nvram, addr + i, str[i]);
1270 }
1271 nvram_write(nvram, addr + i, str[i]);
1272 nvram_write(nvram, addr + max - 1, '\0');
1273 }
1274
1275 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1276 {
1277 int i;
1278
1279 memset(dst, 0, max);
1280 for (i = 0; i < max; i++) {
1281 dst[i] = NVRAM_get_byte(nvram, addr + i);
1282 if (dst[i] == '\0')
1283 break;
1284 }
1285
1286 return i;
1287 }
1288
1289 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1290 {
1291 uint16_t tmp;
1292 uint16_t pd, pd1, pd2;
1293
1294 tmp = prev >> 8;
1295 pd = prev ^ value;
1296 pd1 = pd & 0x000F;
1297 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1298 tmp ^= (pd1 << 3) | (pd1 << 8);
1299 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1300
1301 return tmp;
1302 }
1303
1304 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1305 {
1306 uint32_t i;
1307 uint16_t crc = 0xFFFF;
1308 int odd;
1309
1310 odd = count & 1;
1311 count &= ~1;
1312 for (i = 0; i != count; i++) {
1313 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1314 }
1315 if (odd) {
1316 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1317 }
1318
1319 return crc;
1320 }
1321
1322 #define CMDLINE_ADDR 0x017ff000
1323
1324 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1325 const char *arch,
1326 uint32_t RAM_size, int boot_device,
1327 uint32_t kernel_image, uint32_t kernel_size,
1328 const char *cmdline,
1329 uint32_t initrd_image, uint32_t initrd_size,
1330 uint32_t NVRAM_image,
1331 int width, int height, int depth)
1332 {
1333 uint16_t crc;
1334
1335 /* Set parameters for Open Hack'Ware BIOS */
1336 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1337 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1338 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1339 NVRAM_set_string(nvram, 0x20, arch, 16);
1340 NVRAM_set_lword(nvram, 0x30, RAM_size);
1341 NVRAM_set_byte(nvram, 0x34, boot_device);
1342 NVRAM_set_lword(nvram, 0x38, kernel_image);
1343 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1344 if (cmdline) {
1345 /* XXX: put the cmdline in NVRAM too ? */
1346 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1347 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1348 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1349 } else {
1350 NVRAM_set_lword(nvram, 0x40, 0);
1351 NVRAM_set_lword(nvram, 0x44, 0);
1352 }
1353 NVRAM_set_lword(nvram, 0x48, initrd_image);
1354 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1355 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1356
1357 NVRAM_set_word(nvram, 0x54, width);
1358 NVRAM_set_word(nvram, 0x56, height);
1359 NVRAM_set_word(nvram, 0x58, depth);
1360 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1361 NVRAM_set_word(nvram, 0xFC, crc);
1362
1363 return 0;
1364 }