]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
ppc: Create cpu_ppc_set_papr() helper
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/ppc/ppc.h"
27 #include "hw/ppc/ppc_e500.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/cpus.h"
31 #include "hw/timer/m48t59.h"
32 #include "qemu/log.h"
33 #include "qemu/error-report.h"
34 #include "hw/loader.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "trace.h"
38
39 //#define PPC_DEBUG_IRQ
40 //#define PPC_DEBUG_TB
41
42 #ifdef PPC_DEBUG_IRQ
43 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44 #else
45 # define LOG_IRQ(...) do { } while (0)
46 #endif
47
48
49 #ifdef PPC_DEBUG_TB
50 # define LOG_TB(...) qemu_log(__VA_ARGS__)
51 #else
52 # define LOG_TB(...) do { } while (0)
53 #endif
54
55 static void cpu_ppc_tb_stop (CPUPPCState *env);
56 static void cpu_ppc_tb_start (CPUPPCState *env);
57
58 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
59 {
60 CPUState *cs = CPU(cpu);
61 CPUPPCState *env = &cpu->env;
62 unsigned int old_pending = env->pending_interrupts;
63
64 if (level) {
65 env->pending_interrupts |= 1 << n_IRQ;
66 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
67 } else {
68 env->pending_interrupts &= ~(1 << n_IRQ);
69 if (env->pending_interrupts == 0) {
70 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
71 }
72 }
73
74 if (old_pending != env->pending_interrupts) {
75 #ifdef CONFIG_KVM
76 kvmppc_set_interrupt(cpu, n_IRQ, level);
77 #endif
78 }
79
80 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
81 "req %08x\n", __func__, env, n_IRQ, level,
82 env->pending_interrupts, CPU(cpu)->interrupt_request);
83 }
84
85 /* PowerPC 6xx / 7xx internal IRQ controller */
86 static void ppc6xx_set_irq(void *opaque, int pin, int level)
87 {
88 PowerPCCPU *cpu = opaque;
89 CPUPPCState *env = &cpu->env;
90 int cur_level;
91
92 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
93 env, pin, level);
94 cur_level = (env->irq_input_state >> pin) & 1;
95 /* Don't generate spurious events */
96 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
97 CPUState *cs = CPU(cpu);
98
99 switch (pin) {
100 case PPC6xx_INPUT_TBEN:
101 /* Level sensitive - active high */
102 LOG_IRQ("%s: %s the time base\n",
103 __func__, level ? "start" : "stop");
104 if (level) {
105 cpu_ppc_tb_start(env);
106 } else {
107 cpu_ppc_tb_stop(env);
108 }
109 case PPC6xx_INPUT_INT:
110 /* Level sensitive - active high */
111 LOG_IRQ("%s: set the external IRQ state to %d\n",
112 __func__, level);
113 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
114 break;
115 case PPC6xx_INPUT_SMI:
116 /* Level sensitive - active high */
117 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
118 __func__, level);
119 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
120 break;
121 case PPC6xx_INPUT_MCP:
122 /* Negative edge sensitive */
123 /* XXX: TODO: actual reaction may depends on HID0 status
124 * 603/604/740/750: check HID0[EMCP]
125 */
126 if (cur_level == 1 && level == 0) {
127 LOG_IRQ("%s: raise machine check state\n",
128 __func__);
129 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
130 }
131 break;
132 case PPC6xx_INPUT_CKSTP_IN:
133 /* Level sensitive - active low */
134 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
135 /* XXX: Note that the only way to restart the CPU is to reset it */
136 if (level) {
137 LOG_IRQ("%s: stop the CPU\n", __func__);
138 cs->halted = 1;
139 }
140 break;
141 case PPC6xx_INPUT_HRESET:
142 /* Level sensitive - active low */
143 if (level) {
144 LOG_IRQ("%s: reset the CPU\n", __func__);
145 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
146 }
147 break;
148 case PPC6xx_INPUT_SRESET:
149 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
150 __func__, level);
151 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
152 break;
153 default:
154 /* Unknown pin - do nothing */
155 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
156 return;
157 }
158 if (level)
159 env->irq_input_state |= 1 << pin;
160 else
161 env->irq_input_state &= ~(1 << pin);
162 }
163 }
164
165 void ppc6xx_irq_init(CPUPPCState *env)
166 {
167 PowerPCCPU *cpu = ppc_env_get_cpu(env);
168
169 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
170 PPC6xx_INPUT_NB);
171 }
172
173 #if defined(TARGET_PPC64)
174 /* PowerPC 970 internal IRQ controller */
175 static void ppc970_set_irq(void *opaque, int pin, int level)
176 {
177 PowerPCCPU *cpu = opaque;
178 CPUPPCState *env = &cpu->env;
179 int cur_level;
180
181 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
182 env, pin, level);
183 cur_level = (env->irq_input_state >> pin) & 1;
184 /* Don't generate spurious events */
185 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
186 CPUState *cs = CPU(cpu);
187
188 switch (pin) {
189 case PPC970_INPUT_INT:
190 /* Level sensitive - active high */
191 LOG_IRQ("%s: set the external IRQ state to %d\n",
192 __func__, level);
193 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
194 break;
195 case PPC970_INPUT_THINT:
196 /* Level sensitive - active high */
197 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
198 level);
199 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
200 break;
201 case PPC970_INPUT_MCP:
202 /* Negative edge sensitive */
203 /* XXX: TODO: actual reaction may depends on HID0 status
204 * 603/604/740/750: check HID0[EMCP]
205 */
206 if (cur_level == 1 && level == 0) {
207 LOG_IRQ("%s: raise machine check state\n",
208 __func__);
209 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
210 }
211 break;
212 case PPC970_INPUT_CKSTP:
213 /* Level sensitive - active low */
214 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
215 if (level) {
216 LOG_IRQ("%s: stop the CPU\n", __func__);
217 cs->halted = 1;
218 } else {
219 LOG_IRQ("%s: restart the CPU\n", __func__);
220 cs->halted = 0;
221 qemu_cpu_kick(cs);
222 }
223 break;
224 case PPC970_INPUT_HRESET:
225 /* Level sensitive - active low */
226 if (level) {
227 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
228 }
229 break;
230 case PPC970_INPUT_SRESET:
231 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
232 __func__, level);
233 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
234 break;
235 case PPC970_INPUT_TBEN:
236 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
237 level);
238 /* XXX: TODO */
239 break;
240 default:
241 /* Unknown pin - do nothing */
242 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
243 return;
244 }
245 if (level)
246 env->irq_input_state |= 1 << pin;
247 else
248 env->irq_input_state &= ~(1 << pin);
249 }
250 }
251
252 void ppc970_irq_init(CPUPPCState *env)
253 {
254 PowerPCCPU *cpu = ppc_env_get_cpu(env);
255
256 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
257 PPC970_INPUT_NB);
258 }
259
260 /* POWER7 internal IRQ controller */
261 static void power7_set_irq(void *opaque, int pin, int level)
262 {
263 PowerPCCPU *cpu = opaque;
264 CPUPPCState *env = &cpu->env;
265
266 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
267 env, pin, level);
268
269 switch (pin) {
270 case POWER7_INPUT_INT:
271 /* Level sensitive - active high */
272 LOG_IRQ("%s: set the external IRQ state to %d\n",
273 __func__, level);
274 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
275 break;
276 default:
277 /* Unknown pin - do nothing */
278 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
279 return;
280 }
281 if (level) {
282 env->irq_input_state |= 1 << pin;
283 } else {
284 env->irq_input_state &= ~(1 << pin);
285 }
286 }
287
288 void ppcPOWER7_irq_init(CPUPPCState *env)
289 {
290 PowerPCCPU *cpu = ppc_env_get_cpu(env);
291
292 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
293 POWER7_INPUT_NB);
294 }
295 #endif /* defined(TARGET_PPC64) */
296
297 /* PowerPC 40x internal IRQ controller */
298 static void ppc40x_set_irq(void *opaque, int pin, int level)
299 {
300 PowerPCCPU *cpu = opaque;
301 CPUPPCState *env = &cpu->env;
302 int cur_level;
303
304 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
305 env, pin, level);
306 cur_level = (env->irq_input_state >> pin) & 1;
307 /* Don't generate spurious events */
308 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
309 CPUState *cs = CPU(cpu);
310
311 switch (pin) {
312 case PPC40x_INPUT_RESET_SYS:
313 if (level) {
314 LOG_IRQ("%s: reset the PowerPC system\n",
315 __func__);
316 ppc40x_system_reset(cpu);
317 }
318 break;
319 case PPC40x_INPUT_RESET_CHIP:
320 if (level) {
321 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
322 ppc40x_chip_reset(cpu);
323 }
324 break;
325 case PPC40x_INPUT_RESET_CORE:
326 /* XXX: TODO: update DBSR[MRR] */
327 if (level) {
328 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
329 ppc40x_core_reset(cpu);
330 }
331 break;
332 case PPC40x_INPUT_CINT:
333 /* Level sensitive - active high */
334 LOG_IRQ("%s: set the critical IRQ state to %d\n",
335 __func__, level);
336 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
337 break;
338 case PPC40x_INPUT_INT:
339 /* Level sensitive - active high */
340 LOG_IRQ("%s: set the external IRQ state to %d\n",
341 __func__, level);
342 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
343 break;
344 case PPC40x_INPUT_HALT:
345 /* Level sensitive - active low */
346 if (level) {
347 LOG_IRQ("%s: stop the CPU\n", __func__);
348 cs->halted = 1;
349 } else {
350 LOG_IRQ("%s: restart the CPU\n", __func__);
351 cs->halted = 0;
352 qemu_cpu_kick(cs);
353 }
354 break;
355 case PPC40x_INPUT_DEBUG:
356 /* Level sensitive - active high */
357 LOG_IRQ("%s: set the debug pin state to %d\n",
358 __func__, level);
359 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
360 break;
361 default:
362 /* Unknown pin - do nothing */
363 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
364 return;
365 }
366 if (level)
367 env->irq_input_state |= 1 << pin;
368 else
369 env->irq_input_state &= ~(1 << pin);
370 }
371 }
372
373 void ppc40x_irq_init(CPUPPCState *env)
374 {
375 PowerPCCPU *cpu = ppc_env_get_cpu(env);
376
377 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
378 cpu, PPC40x_INPUT_NB);
379 }
380
381 /* PowerPC E500 internal IRQ controller */
382 static void ppce500_set_irq(void *opaque, int pin, int level)
383 {
384 PowerPCCPU *cpu = opaque;
385 CPUPPCState *env = &cpu->env;
386 int cur_level;
387
388 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
389 env, pin, level);
390 cur_level = (env->irq_input_state >> pin) & 1;
391 /* Don't generate spurious events */
392 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
393 switch (pin) {
394 case PPCE500_INPUT_MCK:
395 if (level) {
396 LOG_IRQ("%s: reset the PowerPC system\n",
397 __func__);
398 qemu_system_reset_request();
399 }
400 break;
401 case PPCE500_INPUT_RESET_CORE:
402 if (level) {
403 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
404 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
405 }
406 break;
407 case PPCE500_INPUT_CINT:
408 /* Level sensitive - active high */
409 LOG_IRQ("%s: set the critical IRQ state to %d\n",
410 __func__, level);
411 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
412 break;
413 case PPCE500_INPUT_INT:
414 /* Level sensitive - active high */
415 LOG_IRQ("%s: set the core IRQ state to %d\n",
416 __func__, level);
417 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
418 break;
419 case PPCE500_INPUT_DEBUG:
420 /* Level sensitive - active high */
421 LOG_IRQ("%s: set the debug pin state to %d\n",
422 __func__, level);
423 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
424 break;
425 default:
426 /* Unknown pin - do nothing */
427 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
428 return;
429 }
430 if (level)
431 env->irq_input_state |= 1 << pin;
432 else
433 env->irq_input_state &= ~(1 << pin);
434 }
435 }
436
437 void ppce500_irq_init(CPUPPCState *env)
438 {
439 PowerPCCPU *cpu = ppc_env_get_cpu(env);
440
441 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
442 cpu, PPCE500_INPUT_NB);
443 }
444
445 /* Enable or Disable the E500 EPR capability */
446 void ppce500_set_mpic_proxy(bool enabled)
447 {
448 CPUState *cs;
449
450 CPU_FOREACH(cs) {
451 PowerPCCPU *cpu = POWERPC_CPU(cs);
452
453 cpu->env.mpic_proxy = enabled;
454 if (kvm_enabled()) {
455 kvmppc_set_mpic_proxy(cpu, enabled);
456 }
457 }
458 }
459
460 /*****************************************************************************/
461 /* PowerPC time base and decrementer emulation */
462
463 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
464 {
465 /* TB time in tb periods */
466 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
467 }
468
469 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
470 {
471 ppc_tb_t *tb_env = env->tb_env;
472 uint64_t tb;
473
474 if (kvm_enabled()) {
475 return env->spr[SPR_TBL];
476 }
477
478 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
479 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
480
481 return tb;
482 }
483
484 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
485 {
486 ppc_tb_t *tb_env = env->tb_env;
487 uint64_t tb;
488
489 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
490 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
491
492 return tb >> 32;
493 }
494
495 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
496 {
497 if (kvm_enabled()) {
498 return env->spr[SPR_TBU];
499 }
500
501 return _cpu_ppc_load_tbu(env);
502 }
503
504 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
505 int64_t *tb_offsetp, uint64_t value)
506 {
507 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
508 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
509 __func__, value, *tb_offsetp);
510 }
511
512 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
513 {
514 ppc_tb_t *tb_env = env->tb_env;
515 uint64_t tb;
516
517 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
518 tb &= 0xFFFFFFFF00000000ULL;
519 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
520 &tb_env->tb_offset, tb | (uint64_t)value);
521 }
522
523 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
524 {
525 ppc_tb_t *tb_env = env->tb_env;
526 uint64_t tb;
527
528 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
529 tb &= 0x00000000FFFFFFFFULL;
530 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
531 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
532 }
533
534 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
535 {
536 _cpu_ppc_store_tbu(env, value);
537 }
538
539 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
540 {
541 ppc_tb_t *tb_env = env->tb_env;
542 uint64_t tb;
543
544 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
545 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
546
547 return tb;
548 }
549
550 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
551 {
552 ppc_tb_t *tb_env = env->tb_env;
553 uint64_t tb;
554
555 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
556 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
557
558 return tb >> 32;
559 }
560
561 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
562 {
563 ppc_tb_t *tb_env = env->tb_env;
564 uint64_t tb;
565
566 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
567 tb &= 0xFFFFFFFF00000000ULL;
568 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
569 &tb_env->atb_offset, tb | (uint64_t)value);
570 }
571
572 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
573 {
574 ppc_tb_t *tb_env = env->tb_env;
575 uint64_t tb;
576
577 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
578 tb &= 0x00000000FFFFFFFFULL;
579 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
580 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
581 }
582
583 static void cpu_ppc_tb_stop (CPUPPCState *env)
584 {
585 ppc_tb_t *tb_env = env->tb_env;
586 uint64_t tb, atb, vmclk;
587
588 /* If the time base is already frozen, do nothing */
589 if (tb_env->tb_freq != 0) {
590 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
591 /* Get the time base */
592 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
593 /* Get the alternate time base */
594 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
595 /* Store the time base value (ie compute the current offset) */
596 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
597 /* Store the alternate time base value (compute the current offset) */
598 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
599 /* Set the time base frequency to zero */
600 tb_env->tb_freq = 0;
601 /* Now, the time bases are frozen to tb_offset / atb_offset value */
602 }
603 }
604
605 static void cpu_ppc_tb_start (CPUPPCState *env)
606 {
607 ppc_tb_t *tb_env = env->tb_env;
608 uint64_t tb, atb, vmclk;
609
610 /* If the time base is not frozen, do nothing */
611 if (tb_env->tb_freq == 0) {
612 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
613 /* Get the time base from tb_offset */
614 tb = tb_env->tb_offset;
615 /* Get the alternate time base from atb_offset */
616 atb = tb_env->atb_offset;
617 /* Restore the tb frequency from the decrementer frequency */
618 tb_env->tb_freq = tb_env->decr_freq;
619 /* Store the time base value */
620 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
621 /* Store the alternate time base value */
622 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
623 }
624 }
625
626 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
627 {
628 ppc_tb_t *tb_env = env->tb_env;
629 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
630 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
631 }
632
633 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
634 {
635 ppc_tb_t *tb_env = env->tb_env;
636 uint32_t decr;
637 int64_t diff;
638
639 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
640 if (diff >= 0) {
641 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
642 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
643 decr = 0;
644 } else {
645 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
646 }
647 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
648
649 return decr;
650 }
651
652 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
653 {
654 ppc_tb_t *tb_env = env->tb_env;
655
656 if (kvm_enabled()) {
657 return env->spr[SPR_DECR];
658 }
659
660 return _cpu_ppc_load_decr(env, tb_env->decr_next);
661 }
662
663 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
664 {
665 ppc_tb_t *tb_env = env->tb_env;
666
667 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
668 }
669
670 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
671 {
672 ppc_tb_t *tb_env = env->tb_env;
673 uint64_t diff;
674
675 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
676
677 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
678 }
679
680 /* When decrementer expires,
681 * all we need to do is generate or queue a CPU exception
682 */
683 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
684 {
685 /* Raise it */
686 LOG_TB("raise decrementer exception\n");
687 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
688 }
689
690 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
691 {
692 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
693 }
694
695 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
696 {
697 /* Raise it */
698 LOG_TB("raise decrementer exception\n");
699 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
700 }
701
702 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
703 {
704 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
705 }
706
707 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
708 QEMUTimer *timer,
709 void (*raise_excp)(void *),
710 void (*lower_excp)(PowerPCCPU *),
711 uint32_t decr, uint32_t value)
712 {
713 CPUPPCState *env = &cpu->env;
714 ppc_tb_t *tb_env = env->tb_env;
715 uint64_t now, next;
716
717 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
718 decr, value);
719
720 if (kvm_enabled()) {
721 /* KVM handles decrementer exceptions, we don't need our own timer */
722 return;
723 }
724
725 /*
726 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
727 * interrupt.
728 *
729 * If we get a really small DEC value, we can assume that by the time we
730 * handled it we should inject an interrupt already.
731 *
732 * On MSB level based DEC implementations the MSB always means the interrupt
733 * is pending, so raise it on those.
734 *
735 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
736 * an edge interrupt, so raise it here too.
737 */
738 if ((value < 3) ||
739 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
740 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
741 && !(decr & 0x80000000))) {
742 (*raise_excp)(cpu);
743 return;
744 }
745
746 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
747 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
748 (*lower_excp)(cpu);
749 }
750
751 /* Calculate the next timer event */
752 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
753 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
754 *nextp = next;
755
756 /* Adjust timer */
757 timer_mod(timer, next);
758 }
759
760 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
761 uint32_t value)
762 {
763 ppc_tb_t *tb_env = cpu->env.tb_env;
764
765 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
766 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
767 value);
768 }
769
770 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
771 {
772 PowerPCCPU *cpu = ppc_env_get_cpu(env);
773
774 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
775 }
776
777 static void cpu_ppc_decr_cb(void *opaque)
778 {
779 PowerPCCPU *cpu = opaque;
780
781 cpu_ppc_decr_excp(cpu);
782 }
783
784 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
785 uint32_t value)
786 {
787 ppc_tb_t *tb_env = cpu->env.tb_env;
788
789 if (tb_env->hdecr_timer != NULL) {
790 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
791 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
792 hdecr, value);
793 }
794 }
795
796 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
797 {
798 PowerPCCPU *cpu = ppc_env_get_cpu(env);
799
800 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
801 }
802
803 static void cpu_ppc_hdecr_cb(void *opaque)
804 {
805 PowerPCCPU *cpu = opaque;
806
807 cpu_ppc_hdecr_excp(cpu);
808 }
809
810 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
811 {
812 ppc_tb_t *tb_env = cpu->env.tb_env;
813
814 tb_env->purr_load = value;
815 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
816 }
817
818 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
819 {
820 CPUPPCState *env = opaque;
821 PowerPCCPU *cpu = ppc_env_get_cpu(env);
822 ppc_tb_t *tb_env = env->tb_env;
823
824 tb_env->tb_freq = freq;
825 tb_env->decr_freq = freq;
826 /* There is a bug in Linux 2.4 kernels:
827 * if a decrementer exception is pending when it enables msr_ee at startup,
828 * it's not ready to handle it...
829 */
830 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
831 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
832 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
833 }
834
835 static void timebase_pre_save(void *opaque)
836 {
837 PPCTimebase *tb = opaque;
838 uint64_t ticks = cpu_get_host_ticks();
839 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
840
841 if (!first_ppc_cpu->env.tb_env) {
842 error_report("No timebase object");
843 return;
844 }
845
846 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
847 /*
848 * tb_offset is only expected to be changed by migration so
849 * there is no need to update it from KVM here
850 */
851 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
852 }
853
854 static int timebase_post_load(void *opaque, int version_id)
855 {
856 PPCTimebase *tb_remote = opaque;
857 CPUState *cpu;
858 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
859 int64_t tb_off_adj, tb_off, ns_diff;
860 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
861 unsigned long freq;
862
863 if (!first_ppc_cpu->env.tb_env) {
864 error_report("No timebase object");
865 return -1;
866 }
867
868 freq = first_ppc_cpu->env.tb_env->tb_freq;
869 /*
870 * Calculate timebase on the destination side of migration.
871 * The destination timebase must be not less than the source timebase.
872 * We try to adjust timebase by downtime if host clocks are not
873 * too much out of sync (1 second for now).
874 */
875 host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
876 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
877 migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
878 migration_duration_tb = muldiv64(migration_duration_ns, freq,
879 NANOSECONDS_PER_SECOND);
880 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
881
882 tb_off_adj = guest_tb - cpu_get_host_ticks();
883
884 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
885 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
886 (tb_off_adj - tb_off) / freq);
887
888 /* Set new offset to all CPUs */
889 CPU_FOREACH(cpu) {
890 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
891 pcpu->env.tb_env->tb_offset = tb_off_adj;
892 }
893
894 return 0;
895 }
896
897 const VMStateDescription vmstate_ppc_timebase = {
898 .name = "timebase",
899 .version_id = 1,
900 .minimum_version_id = 1,
901 .minimum_version_id_old = 1,
902 .pre_save = timebase_pre_save,
903 .post_load = timebase_post_load,
904 .fields = (VMStateField []) {
905 VMSTATE_UINT64(guest_timebase, PPCTimebase),
906 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
907 VMSTATE_END_OF_LIST()
908 },
909 };
910
911 /* Set up (once) timebase frequency (in Hz) */
912 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
913 {
914 PowerPCCPU *cpu = ppc_env_get_cpu(env);
915 ppc_tb_t *tb_env;
916
917 tb_env = g_malloc0(sizeof(ppc_tb_t));
918 env->tb_env = tb_env;
919 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
920 if (env->insns_flags & PPC_SEGMENT_64B) {
921 /* All Book3S 64bit CPUs implement level based DEC logic */
922 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
923 }
924 /* Create new timer */
925 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
926 if (0) {
927 /* XXX: find a suitable condition to enable the hypervisor decrementer
928 */
929 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
930 cpu);
931 } else {
932 tb_env->hdecr_timer = NULL;
933 }
934 cpu_ppc_set_tb_clk(env, freq);
935
936 return &cpu_ppc_set_tb_clk;
937 }
938
939 /* Specific helpers for POWER & PowerPC 601 RTC */
940 #if 0
941 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
942 {
943 return cpu_ppc_tb_init(env, 7812500);
944 }
945 #endif
946
947 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
948 {
949 _cpu_ppc_store_tbu(env, value);
950 }
951
952 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
953 {
954 return _cpu_ppc_load_tbu(env);
955 }
956
957 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
958 {
959 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
960 }
961
962 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
963 {
964 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
965 }
966
967 /*****************************************************************************/
968 /* PowerPC 40x timers */
969
970 /* PIT, FIT & WDT */
971 typedef struct ppc40x_timer_t ppc40x_timer_t;
972 struct ppc40x_timer_t {
973 uint64_t pit_reload; /* PIT auto-reload value */
974 uint64_t fit_next; /* Tick for next FIT interrupt */
975 QEMUTimer *fit_timer;
976 uint64_t wdt_next; /* Tick for next WDT interrupt */
977 QEMUTimer *wdt_timer;
978
979 /* 405 have the PIT, 440 have a DECR. */
980 unsigned int decr_excp;
981 };
982
983 /* Fixed interval timer */
984 static void cpu_4xx_fit_cb (void *opaque)
985 {
986 PowerPCCPU *cpu;
987 CPUPPCState *env;
988 ppc_tb_t *tb_env;
989 ppc40x_timer_t *ppc40x_timer;
990 uint64_t now, next;
991
992 env = opaque;
993 cpu = ppc_env_get_cpu(env);
994 tb_env = env->tb_env;
995 ppc40x_timer = tb_env->opaque;
996 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
997 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
998 case 0:
999 next = 1 << 9;
1000 break;
1001 case 1:
1002 next = 1 << 13;
1003 break;
1004 case 2:
1005 next = 1 << 17;
1006 break;
1007 case 3:
1008 next = 1 << 21;
1009 break;
1010 default:
1011 /* Cannot occur, but makes gcc happy */
1012 return;
1013 }
1014 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1015 if (next == now)
1016 next++;
1017 timer_mod(ppc40x_timer->fit_timer, next);
1018 env->spr[SPR_40x_TSR] |= 1 << 26;
1019 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1020 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1021 }
1022 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1023 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1024 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1025 }
1026
1027 /* Programmable interval timer */
1028 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1029 {
1030 ppc40x_timer_t *ppc40x_timer;
1031 uint64_t now, next;
1032
1033 ppc40x_timer = tb_env->opaque;
1034 if (ppc40x_timer->pit_reload <= 1 ||
1035 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1036 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1037 /* Stop PIT */
1038 LOG_TB("%s: stop PIT\n", __func__);
1039 timer_del(tb_env->decr_timer);
1040 } else {
1041 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1042 __func__, ppc40x_timer->pit_reload);
1043 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1044 next = now + muldiv64(ppc40x_timer->pit_reload,
1045 get_ticks_per_sec(), tb_env->decr_freq);
1046 if (is_excp)
1047 next += tb_env->decr_next - now;
1048 if (next == now)
1049 next++;
1050 timer_mod(tb_env->decr_timer, next);
1051 tb_env->decr_next = next;
1052 }
1053 }
1054
1055 static void cpu_4xx_pit_cb (void *opaque)
1056 {
1057 PowerPCCPU *cpu;
1058 CPUPPCState *env;
1059 ppc_tb_t *tb_env;
1060 ppc40x_timer_t *ppc40x_timer;
1061
1062 env = opaque;
1063 cpu = ppc_env_get_cpu(env);
1064 tb_env = env->tb_env;
1065 ppc40x_timer = tb_env->opaque;
1066 env->spr[SPR_40x_TSR] |= 1 << 27;
1067 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1068 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1069 }
1070 start_stop_pit(env, tb_env, 1);
1071 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1072 "%016" PRIx64 "\n", __func__,
1073 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1074 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1075 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1076 ppc40x_timer->pit_reload);
1077 }
1078
1079 /* Watchdog timer */
1080 static void cpu_4xx_wdt_cb (void *opaque)
1081 {
1082 PowerPCCPU *cpu;
1083 CPUPPCState *env;
1084 ppc_tb_t *tb_env;
1085 ppc40x_timer_t *ppc40x_timer;
1086 uint64_t now, next;
1087
1088 env = opaque;
1089 cpu = ppc_env_get_cpu(env);
1090 tb_env = env->tb_env;
1091 ppc40x_timer = tb_env->opaque;
1092 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1093 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1094 case 0:
1095 next = 1 << 17;
1096 break;
1097 case 1:
1098 next = 1 << 21;
1099 break;
1100 case 2:
1101 next = 1 << 25;
1102 break;
1103 case 3:
1104 next = 1 << 29;
1105 break;
1106 default:
1107 /* Cannot occur, but makes gcc happy */
1108 return;
1109 }
1110 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1111 if (next == now)
1112 next++;
1113 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1114 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1115 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1116 case 0x0:
1117 case 0x1:
1118 timer_mod(ppc40x_timer->wdt_timer, next);
1119 ppc40x_timer->wdt_next = next;
1120 env->spr[SPR_40x_TSR] |= 1U << 31;
1121 break;
1122 case 0x2:
1123 timer_mod(ppc40x_timer->wdt_timer, next);
1124 ppc40x_timer->wdt_next = next;
1125 env->spr[SPR_40x_TSR] |= 1 << 30;
1126 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1127 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1128 }
1129 break;
1130 case 0x3:
1131 env->spr[SPR_40x_TSR] &= ~0x30000000;
1132 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1133 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1134 case 0x0:
1135 /* No reset */
1136 break;
1137 case 0x1: /* Core reset */
1138 ppc40x_core_reset(cpu);
1139 break;
1140 case 0x2: /* Chip reset */
1141 ppc40x_chip_reset(cpu);
1142 break;
1143 case 0x3: /* System reset */
1144 ppc40x_system_reset(cpu);
1145 break;
1146 }
1147 }
1148 }
1149
1150 void store_40x_pit (CPUPPCState *env, target_ulong val)
1151 {
1152 ppc_tb_t *tb_env;
1153 ppc40x_timer_t *ppc40x_timer;
1154
1155 tb_env = env->tb_env;
1156 ppc40x_timer = tb_env->opaque;
1157 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1158 ppc40x_timer->pit_reload = val;
1159 start_stop_pit(env, tb_env, 0);
1160 }
1161
1162 target_ulong load_40x_pit (CPUPPCState *env)
1163 {
1164 return cpu_ppc_load_decr(env);
1165 }
1166
1167 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1168 {
1169 CPUPPCState *env = opaque;
1170 ppc_tb_t *tb_env = env->tb_env;
1171
1172 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1173 freq);
1174 tb_env->tb_freq = freq;
1175 tb_env->decr_freq = freq;
1176 /* XXX: we should also update all timers */
1177 }
1178
1179 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1180 unsigned int decr_excp)
1181 {
1182 ppc_tb_t *tb_env;
1183 ppc40x_timer_t *ppc40x_timer;
1184
1185 tb_env = g_malloc0(sizeof(ppc_tb_t));
1186 env->tb_env = tb_env;
1187 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1188 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1189 tb_env->tb_freq = freq;
1190 tb_env->decr_freq = freq;
1191 tb_env->opaque = ppc40x_timer;
1192 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1193 if (ppc40x_timer != NULL) {
1194 /* We use decr timer for PIT */
1195 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1196 ppc40x_timer->fit_timer =
1197 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1198 ppc40x_timer->wdt_timer =
1199 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1200 ppc40x_timer->decr_excp = decr_excp;
1201 }
1202
1203 return &ppc_40x_set_tb_clk;
1204 }
1205
1206 /*****************************************************************************/
1207 /* Embedded PowerPC Device Control Registers */
1208 typedef struct ppc_dcrn_t ppc_dcrn_t;
1209 struct ppc_dcrn_t {
1210 dcr_read_cb dcr_read;
1211 dcr_write_cb dcr_write;
1212 void *opaque;
1213 };
1214
1215 /* XXX: on 460, DCR addresses are 32 bits wide,
1216 * using DCRIPR to get the 22 upper bits of the DCR address
1217 */
1218 #define DCRN_NB 1024
1219 struct ppc_dcr_t {
1220 ppc_dcrn_t dcrn[DCRN_NB];
1221 int (*read_error)(int dcrn);
1222 int (*write_error)(int dcrn);
1223 };
1224
1225 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1226 {
1227 ppc_dcrn_t *dcr;
1228
1229 if (dcrn < 0 || dcrn >= DCRN_NB)
1230 goto error;
1231 dcr = &dcr_env->dcrn[dcrn];
1232 if (dcr->dcr_read == NULL)
1233 goto error;
1234 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1235
1236 return 0;
1237
1238 error:
1239 if (dcr_env->read_error != NULL)
1240 return (*dcr_env->read_error)(dcrn);
1241
1242 return -1;
1243 }
1244
1245 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1246 {
1247 ppc_dcrn_t *dcr;
1248
1249 if (dcrn < 0 || dcrn >= DCRN_NB)
1250 goto error;
1251 dcr = &dcr_env->dcrn[dcrn];
1252 if (dcr->dcr_write == NULL)
1253 goto error;
1254 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1255
1256 return 0;
1257
1258 error:
1259 if (dcr_env->write_error != NULL)
1260 return (*dcr_env->write_error)(dcrn);
1261
1262 return -1;
1263 }
1264
1265 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1266 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1267 {
1268 ppc_dcr_t *dcr_env;
1269 ppc_dcrn_t *dcr;
1270
1271 dcr_env = env->dcr_env;
1272 if (dcr_env == NULL)
1273 return -1;
1274 if (dcrn < 0 || dcrn >= DCRN_NB)
1275 return -1;
1276 dcr = &dcr_env->dcrn[dcrn];
1277 if (dcr->opaque != NULL ||
1278 dcr->dcr_read != NULL ||
1279 dcr->dcr_write != NULL)
1280 return -1;
1281 dcr->opaque = opaque;
1282 dcr->dcr_read = dcr_read;
1283 dcr->dcr_write = dcr_write;
1284
1285 return 0;
1286 }
1287
1288 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1289 int (*write_error)(int dcrn))
1290 {
1291 ppc_dcr_t *dcr_env;
1292
1293 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1294 dcr_env->read_error = read_error;
1295 dcr_env->write_error = write_error;
1296 env->dcr_env = dcr_env;
1297
1298 return 0;
1299 }
1300
1301 /*****************************************************************************/
1302 /* Debug port */
1303 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1304 {
1305 addr &= 0xF;
1306 switch (addr) {
1307 case 0:
1308 printf("%c", val);
1309 break;
1310 case 1:
1311 printf("\n");
1312 fflush(stdout);
1313 break;
1314 case 2:
1315 printf("Set loglevel to %04" PRIx32 "\n", val);
1316 qemu_set_log(val | 0x100);
1317 break;
1318 }
1319 }
1320
1321 /* CPU device-tree ID helpers */
1322 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1323 {
1324 return cpu->cpu_dt_id;
1325 }
1326
1327 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1328 {
1329 CPUState *cs;
1330
1331 CPU_FOREACH(cs) {
1332 PowerPCCPU *cpu = POWERPC_CPU(cs);
1333
1334 if (cpu->cpu_dt_id == cpu_dt_id) {
1335 return cpu;
1336 }
1337 }
1338
1339 return NULL;
1340 }