]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
spapr: clock should count only if vm is running
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "hw/loader.h"
38 #include "sysemu/kvm.h"
39 #include "kvm_ppc.h"
40 #include "trace.h"
41
42 //#define PPC_DEBUG_IRQ
43 //#define PPC_DEBUG_TB
44
45 #ifdef PPC_DEBUG_IRQ
46 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 #else
48 # define LOG_IRQ(...) do { } while (0)
49 #endif
50
51
52 #ifdef PPC_DEBUG_TB
53 # define LOG_TB(...) qemu_log(__VA_ARGS__)
54 #else
55 # define LOG_TB(...) do { } while (0)
56 #endif
57
58 static void cpu_ppc_tb_stop (CPUPPCState *env);
59 static void cpu_ppc_tb_start (CPUPPCState *env);
60
61 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 {
63 CPUState *cs = CPU(cpu);
64 CPUPPCState *env = &cpu->env;
65 unsigned int old_pending = env->pending_interrupts;
66
67 if (level) {
68 env->pending_interrupts |= 1 << n_IRQ;
69 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
70 } else {
71 env->pending_interrupts &= ~(1 << n_IRQ);
72 if (env->pending_interrupts == 0) {
73 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
74 }
75 }
76
77 if (old_pending != env->pending_interrupts) {
78 #ifdef CONFIG_KVM
79 kvmppc_set_interrupt(cpu, n_IRQ, level);
80 #endif
81 }
82
83 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
84 "req %08x\n", __func__, env, n_IRQ, level,
85 env->pending_interrupts, CPU(cpu)->interrupt_request);
86 }
87
88 /* PowerPC 6xx / 7xx internal IRQ controller */
89 static void ppc6xx_set_irq(void *opaque, int pin, int level)
90 {
91 PowerPCCPU *cpu = opaque;
92 CPUPPCState *env = &cpu->env;
93 int cur_level;
94
95 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
96 env, pin, level);
97 cur_level = (env->irq_input_state >> pin) & 1;
98 /* Don't generate spurious events */
99 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
100 CPUState *cs = CPU(cpu);
101
102 switch (pin) {
103 case PPC6xx_INPUT_TBEN:
104 /* Level sensitive - active high */
105 LOG_IRQ("%s: %s the time base\n",
106 __func__, level ? "start" : "stop");
107 if (level) {
108 cpu_ppc_tb_start(env);
109 } else {
110 cpu_ppc_tb_stop(env);
111 }
112 case PPC6xx_INPUT_INT:
113 /* Level sensitive - active high */
114 LOG_IRQ("%s: set the external IRQ state to %d\n",
115 __func__, level);
116 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
117 break;
118 case PPC6xx_INPUT_SMI:
119 /* Level sensitive - active high */
120 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
121 __func__, level);
122 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
123 break;
124 case PPC6xx_INPUT_MCP:
125 /* Negative edge sensitive */
126 /* XXX: TODO: actual reaction may depends on HID0 status
127 * 603/604/740/750: check HID0[EMCP]
128 */
129 if (cur_level == 1 && level == 0) {
130 LOG_IRQ("%s: raise machine check state\n",
131 __func__);
132 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133 }
134 break;
135 case PPC6xx_INPUT_CKSTP_IN:
136 /* Level sensitive - active low */
137 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
138 /* XXX: Note that the only way to restart the CPU is to reset it */
139 if (level) {
140 LOG_IRQ("%s: stop the CPU\n", __func__);
141 cs->halted = 1;
142 }
143 break;
144 case PPC6xx_INPUT_HRESET:
145 /* Level sensitive - active low */
146 if (level) {
147 LOG_IRQ("%s: reset the CPU\n", __func__);
148 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149 }
150 break;
151 case PPC6xx_INPUT_SRESET:
152 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
153 __func__, level);
154 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
155 break;
156 default:
157 /* Unknown pin - do nothing */
158 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
159 return;
160 }
161 if (level)
162 env->irq_input_state |= 1 << pin;
163 else
164 env->irq_input_state &= ~(1 << pin);
165 }
166 }
167
168 void ppc6xx_irq_init(PowerPCCPU *cpu)
169 {
170 CPUPPCState *env = &cpu->env;
171
172 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
173 PPC6xx_INPUT_NB);
174 }
175
176 #if defined(TARGET_PPC64)
177 /* PowerPC 970 internal IRQ controller */
178 static void ppc970_set_irq(void *opaque, int pin, int level)
179 {
180 PowerPCCPU *cpu = opaque;
181 CPUPPCState *env = &cpu->env;
182 int cur_level;
183
184 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
185 env, pin, level);
186 cur_level = (env->irq_input_state >> pin) & 1;
187 /* Don't generate spurious events */
188 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
189 CPUState *cs = CPU(cpu);
190
191 switch (pin) {
192 case PPC970_INPUT_INT:
193 /* Level sensitive - active high */
194 LOG_IRQ("%s: set the external IRQ state to %d\n",
195 __func__, level);
196 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
197 break;
198 case PPC970_INPUT_THINT:
199 /* Level sensitive - active high */
200 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
201 level);
202 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
203 break;
204 case PPC970_INPUT_MCP:
205 /* Negative edge sensitive */
206 /* XXX: TODO: actual reaction may depends on HID0 status
207 * 603/604/740/750: check HID0[EMCP]
208 */
209 if (cur_level == 1 && level == 0) {
210 LOG_IRQ("%s: raise machine check state\n",
211 __func__);
212 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213 }
214 break;
215 case PPC970_INPUT_CKSTP:
216 /* Level sensitive - active low */
217 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
218 if (level) {
219 LOG_IRQ("%s: stop the CPU\n", __func__);
220 cs->halted = 1;
221 } else {
222 LOG_IRQ("%s: restart the CPU\n", __func__);
223 cs->halted = 0;
224 qemu_cpu_kick(cs);
225 }
226 break;
227 case PPC970_INPUT_HRESET:
228 /* Level sensitive - active low */
229 if (level) {
230 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231 }
232 break;
233 case PPC970_INPUT_SRESET:
234 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
235 __func__, level);
236 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
237 break;
238 case PPC970_INPUT_TBEN:
239 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
240 level);
241 /* XXX: TODO */
242 break;
243 default:
244 /* Unknown pin - do nothing */
245 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
246 return;
247 }
248 if (level)
249 env->irq_input_state |= 1 << pin;
250 else
251 env->irq_input_state &= ~(1 << pin);
252 }
253 }
254
255 void ppc970_irq_init(PowerPCCPU *cpu)
256 {
257 CPUPPCState *env = &cpu->env;
258
259 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
260 PPC970_INPUT_NB);
261 }
262
263 /* POWER7 internal IRQ controller */
264 static void power7_set_irq(void *opaque, int pin, int level)
265 {
266 PowerPCCPU *cpu = opaque;
267 CPUPPCState *env = &cpu->env;
268
269 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
270 env, pin, level);
271
272 switch (pin) {
273 case POWER7_INPUT_INT:
274 /* Level sensitive - active high */
275 LOG_IRQ("%s: set the external IRQ state to %d\n",
276 __func__, level);
277 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
278 break;
279 default:
280 /* Unknown pin - do nothing */
281 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
282 return;
283 }
284 if (level) {
285 env->irq_input_state |= 1 << pin;
286 } else {
287 env->irq_input_state &= ~(1 << pin);
288 }
289 }
290
291 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
292 {
293 CPUPPCState *env = &cpu->env;
294
295 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
296 POWER7_INPUT_NB);
297 }
298 #endif /* defined(TARGET_PPC64) */
299
300 /* PowerPC 40x internal IRQ controller */
301 static void ppc40x_set_irq(void *opaque, int pin, int level)
302 {
303 PowerPCCPU *cpu = opaque;
304 CPUPPCState *env = &cpu->env;
305 int cur_level;
306
307 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
308 env, pin, level);
309 cur_level = (env->irq_input_state >> pin) & 1;
310 /* Don't generate spurious events */
311 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
312 CPUState *cs = CPU(cpu);
313
314 switch (pin) {
315 case PPC40x_INPUT_RESET_SYS:
316 if (level) {
317 LOG_IRQ("%s: reset the PowerPC system\n",
318 __func__);
319 ppc40x_system_reset(cpu);
320 }
321 break;
322 case PPC40x_INPUT_RESET_CHIP:
323 if (level) {
324 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
325 ppc40x_chip_reset(cpu);
326 }
327 break;
328 case PPC40x_INPUT_RESET_CORE:
329 /* XXX: TODO: update DBSR[MRR] */
330 if (level) {
331 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
332 ppc40x_core_reset(cpu);
333 }
334 break;
335 case PPC40x_INPUT_CINT:
336 /* Level sensitive - active high */
337 LOG_IRQ("%s: set the critical IRQ state to %d\n",
338 __func__, level);
339 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
340 break;
341 case PPC40x_INPUT_INT:
342 /* Level sensitive - active high */
343 LOG_IRQ("%s: set the external IRQ state to %d\n",
344 __func__, level);
345 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
346 break;
347 case PPC40x_INPUT_HALT:
348 /* Level sensitive - active low */
349 if (level) {
350 LOG_IRQ("%s: stop the CPU\n", __func__);
351 cs->halted = 1;
352 } else {
353 LOG_IRQ("%s: restart the CPU\n", __func__);
354 cs->halted = 0;
355 qemu_cpu_kick(cs);
356 }
357 break;
358 case PPC40x_INPUT_DEBUG:
359 /* Level sensitive - active high */
360 LOG_IRQ("%s: set the debug pin state to %d\n",
361 __func__, level);
362 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
363 break;
364 default:
365 /* Unknown pin - do nothing */
366 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
367 return;
368 }
369 if (level)
370 env->irq_input_state |= 1 << pin;
371 else
372 env->irq_input_state &= ~(1 << pin);
373 }
374 }
375
376 void ppc40x_irq_init(PowerPCCPU *cpu)
377 {
378 CPUPPCState *env = &cpu->env;
379
380 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
381 cpu, PPC40x_INPUT_NB);
382 }
383
384 /* PowerPC E500 internal IRQ controller */
385 static void ppce500_set_irq(void *opaque, int pin, int level)
386 {
387 PowerPCCPU *cpu = opaque;
388 CPUPPCState *env = &cpu->env;
389 int cur_level;
390
391 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
392 env, pin, level);
393 cur_level = (env->irq_input_state >> pin) & 1;
394 /* Don't generate spurious events */
395 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
396 switch (pin) {
397 case PPCE500_INPUT_MCK:
398 if (level) {
399 LOG_IRQ("%s: reset the PowerPC system\n",
400 __func__);
401 qemu_system_reset_request();
402 }
403 break;
404 case PPCE500_INPUT_RESET_CORE:
405 if (level) {
406 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
407 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408 }
409 break;
410 case PPCE500_INPUT_CINT:
411 /* Level sensitive - active high */
412 LOG_IRQ("%s: set the critical IRQ state to %d\n",
413 __func__, level);
414 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
415 break;
416 case PPCE500_INPUT_INT:
417 /* Level sensitive - active high */
418 LOG_IRQ("%s: set the core IRQ state to %d\n",
419 __func__, level);
420 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
421 break;
422 case PPCE500_INPUT_DEBUG:
423 /* Level sensitive - active high */
424 LOG_IRQ("%s: set the debug pin state to %d\n",
425 __func__, level);
426 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
427 break;
428 default:
429 /* Unknown pin - do nothing */
430 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
431 return;
432 }
433 if (level)
434 env->irq_input_state |= 1 << pin;
435 else
436 env->irq_input_state &= ~(1 << pin);
437 }
438 }
439
440 void ppce500_irq_init(PowerPCCPU *cpu)
441 {
442 CPUPPCState *env = &cpu->env;
443
444 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
445 cpu, PPCE500_INPUT_NB);
446 }
447
448 /* Enable or Disable the E500 EPR capability */
449 void ppce500_set_mpic_proxy(bool enabled)
450 {
451 CPUState *cs;
452
453 CPU_FOREACH(cs) {
454 PowerPCCPU *cpu = POWERPC_CPU(cs);
455
456 cpu->env.mpic_proxy = enabled;
457 if (kvm_enabled()) {
458 kvmppc_set_mpic_proxy(cpu, enabled);
459 }
460 }
461 }
462
463 /*****************************************************************************/
464 /* PowerPC time base and decrementer emulation */
465
466 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
467 {
468 /* TB time in tb periods */
469 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
470 }
471
472 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
473 {
474 ppc_tb_t *tb_env = env->tb_env;
475 uint64_t tb;
476
477 if (kvm_enabled()) {
478 return env->spr[SPR_TBL];
479 }
480
481 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
482 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
483
484 return tb;
485 }
486
487 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
488 {
489 ppc_tb_t *tb_env = env->tb_env;
490 uint64_t tb;
491
492 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
493 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
494
495 return tb >> 32;
496 }
497
498 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499 {
500 if (kvm_enabled()) {
501 return env->spr[SPR_TBU];
502 }
503
504 return _cpu_ppc_load_tbu(env);
505 }
506
507 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
508 int64_t *tb_offsetp, uint64_t value)
509 {
510 *tb_offsetp = value -
511 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
512
513 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
514 __func__, value, *tb_offsetp);
515 }
516
517 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
518 {
519 ppc_tb_t *tb_env = env->tb_env;
520 uint64_t tb;
521
522 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
523 tb &= 0xFFFFFFFF00000000ULL;
524 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
525 &tb_env->tb_offset, tb | (uint64_t)value);
526 }
527
528 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
529 {
530 ppc_tb_t *tb_env = env->tb_env;
531 uint64_t tb;
532
533 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
534 tb &= 0x00000000FFFFFFFFULL;
535 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
536 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
537 }
538
539 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
540 {
541 _cpu_ppc_store_tbu(env, value);
542 }
543
544 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
545 {
546 ppc_tb_t *tb_env = env->tb_env;
547 uint64_t tb;
548
549 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
550 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551
552 return tb;
553 }
554
555 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
556 {
557 ppc_tb_t *tb_env = env->tb_env;
558 uint64_t tb;
559
560 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
561 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562
563 return tb >> 32;
564 }
565
566 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
567 {
568 ppc_tb_t *tb_env = env->tb_env;
569 uint64_t tb;
570
571 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
572 tb &= 0xFFFFFFFF00000000ULL;
573 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574 &tb_env->atb_offset, tb | (uint64_t)value);
575 }
576
577 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
578 {
579 ppc_tb_t *tb_env = env->tb_env;
580 uint64_t tb;
581
582 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
583 tb &= 0x00000000FFFFFFFFULL;
584 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
586 }
587
588 static void cpu_ppc_tb_stop (CPUPPCState *env)
589 {
590 ppc_tb_t *tb_env = env->tb_env;
591 uint64_t tb, atb, vmclk;
592
593 /* If the time base is already frozen, do nothing */
594 if (tb_env->tb_freq != 0) {
595 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
596 /* Get the time base */
597 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
598 /* Get the alternate time base */
599 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
600 /* Store the time base value (ie compute the current offset) */
601 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
602 /* Store the alternate time base value (compute the current offset) */
603 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
604 /* Set the time base frequency to zero */
605 tb_env->tb_freq = 0;
606 /* Now, the time bases are frozen to tb_offset / atb_offset value */
607 }
608 }
609
610 static void cpu_ppc_tb_start (CPUPPCState *env)
611 {
612 ppc_tb_t *tb_env = env->tb_env;
613 uint64_t tb, atb, vmclk;
614
615 /* If the time base is not frozen, do nothing */
616 if (tb_env->tb_freq == 0) {
617 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
618 /* Get the time base from tb_offset */
619 tb = tb_env->tb_offset;
620 /* Get the alternate time base from atb_offset */
621 atb = tb_env->atb_offset;
622 /* Restore the tb frequency from the decrementer frequency */
623 tb_env->tb_freq = tb_env->decr_freq;
624 /* Store the time base value */
625 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
626 /* Store the alternate time base value */
627 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
628 }
629 }
630
631 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
632 {
633 ppc_tb_t *tb_env = env->tb_env;
634 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
635 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
636 }
637
638 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
639 {
640 ppc_tb_t *tb_env = env->tb_env;
641 uint32_t decr;
642 int64_t diff;
643
644 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
645 if (diff >= 0) {
646 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
647 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
648 decr = 0;
649 } else {
650 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
651 }
652 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653
654 return decr;
655 }
656
657 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
658 {
659 ppc_tb_t *tb_env = env->tb_env;
660
661 if (kvm_enabled()) {
662 return env->spr[SPR_DECR];
663 }
664
665 return _cpu_ppc_load_decr(env, tb_env->decr_next);
666 }
667
668 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
669 {
670 ppc_tb_t *tb_env = env->tb_env;
671
672 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
673 }
674
675 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
676 {
677 ppc_tb_t *tb_env = env->tb_env;
678 uint64_t diff;
679
680 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
681
682 return tb_env->purr_load +
683 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
684 }
685
686 /* When decrementer expires,
687 * all we need to do is generate or queue a CPU exception
688 */
689 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
690 {
691 /* Raise it */
692 LOG_TB("raise decrementer exception\n");
693 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
694 }
695
696 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
697 {
698 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
699 }
700
701 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
702 {
703 CPUPPCState *env = &cpu->env;
704
705 /* Raise it */
706 LOG_TB("raise hv decrementer exception\n");
707
708 /* The architecture specifies that we don't deliver HDEC
709 * interrupts in a PM state. Not only they don't cause a
710 * wakeup but they also get effectively discarded.
711 */
712 if (!env->in_pm_state) {
713 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
714 }
715 }
716
717 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
718 {
719 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
720 }
721
722 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
723 QEMUTimer *timer,
724 void (*raise_excp)(void *),
725 void (*lower_excp)(PowerPCCPU *),
726 uint32_t decr, uint32_t value)
727 {
728 CPUPPCState *env = &cpu->env;
729 ppc_tb_t *tb_env = env->tb_env;
730 uint64_t now, next;
731
732 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
733 decr, value);
734
735 if (kvm_enabled()) {
736 /* KVM handles decrementer exceptions, we don't need our own timer */
737 return;
738 }
739
740 /*
741 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
742 * interrupt.
743 *
744 * If we get a really small DEC value, we can assume that by the time we
745 * handled it we should inject an interrupt already.
746 *
747 * On MSB level based DEC implementations the MSB always means the interrupt
748 * is pending, so raise it on those.
749 *
750 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
751 * an edge interrupt, so raise it here too.
752 */
753 if ((value < 3) ||
754 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
755 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
756 && !(decr & 0x80000000))) {
757 (*raise_excp)(cpu);
758 return;
759 }
760
761 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
762 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
763 (*lower_excp)(cpu);
764 }
765
766 /* Calculate the next timer event */
767 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
768 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
769 *nextp = next;
770
771 /* Adjust timer */
772 timer_mod(timer, next);
773 }
774
775 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
776 uint32_t value)
777 {
778 ppc_tb_t *tb_env = cpu->env.tb_env;
779
780 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
781 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
782 value);
783 }
784
785 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
786 {
787 PowerPCCPU *cpu = ppc_env_get_cpu(env);
788
789 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
790 }
791
792 static void cpu_ppc_decr_cb(void *opaque)
793 {
794 PowerPCCPU *cpu = opaque;
795
796 cpu_ppc_decr_excp(cpu);
797 }
798
799 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
800 uint32_t value)
801 {
802 ppc_tb_t *tb_env = cpu->env.tb_env;
803
804 if (tb_env->hdecr_timer != NULL) {
805 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
806 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
807 hdecr, value);
808 }
809 }
810
811 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
812 {
813 PowerPCCPU *cpu = ppc_env_get_cpu(env);
814
815 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
816 }
817
818 static void cpu_ppc_hdecr_cb(void *opaque)
819 {
820 PowerPCCPU *cpu = opaque;
821
822 cpu_ppc_hdecr_excp(cpu);
823 }
824
825 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
826 {
827 ppc_tb_t *tb_env = cpu->env.tb_env;
828
829 tb_env->purr_load = value;
830 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
831 }
832
833 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
834 {
835 CPUPPCState *env = opaque;
836 PowerPCCPU *cpu = ppc_env_get_cpu(env);
837 ppc_tb_t *tb_env = env->tb_env;
838
839 tb_env->tb_freq = freq;
840 tb_env->decr_freq = freq;
841 /* There is a bug in Linux 2.4 kernels:
842 * if a decrementer exception is pending when it enables msr_ee at startup,
843 * it's not ready to handle it...
844 */
845 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
846 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
847 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
848 }
849
850 static void timebase_save(PPCTimebase *tb)
851 {
852 uint64_t ticks = cpu_get_host_ticks();
853 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
854
855 if (!first_ppc_cpu->env.tb_env) {
856 error_report("No timebase object");
857 return;
858 }
859
860 /* not used anymore, we keep it for compatibility */
861 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
862 /*
863 * tb_offset is only expected to be changed by QEMU so
864 * there is no need to update it from KVM here
865 */
866 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
867 }
868
869 static void timebase_load(PPCTimebase *tb)
870 {
871 CPUState *cpu;
872 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
873 int64_t tb_off_adj, tb_off;
874 unsigned long freq;
875
876 if (!first_ppc_cpu->env.tb_env) {
877 error_report("No timebase object");
878 return;
879 }
880
881 freq = first_ppc_cpu->env.tb_env->tb_freq;
882
883 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
884
885 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
886 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
887 (tb_off_adj - tb_off) / freq);
888
889 /* Set new offset to all CPUs */
890 CPU_FOREACH(cpu) {
891 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
892 pcpu->env.tb_env->tb_offset = tb_off_adj;
893 #if defined(CONFIG_KVM)
894 kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
895 &pcpu->env.tb_env->tb_offset);
896 #endif
897 }
898 }
899
900 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
901 RunState state)
902 {
903 PPCTimebase *tb = opaque;
904
905 if (running) {
906 timebase_load(tb);
907 } else {
908 timebase_save(tb);
909 }
910 }
911
912 /*
913 * When migrating, read the clock just before migration,
914 * so that the guest clock counts during the events
915 * between:
916 *
917 * * vm_stop()
918 * *
919 * * pre_save()
920 *
921 * This reduces clock difference on migration from 5s
922 * to 0.1s (when max_downtime == 5s), because sending the
923 * final pages of memory (which happens between vm_stop()
924 * and pre_save()) takes max_downtime.
925 */
926 static void timebase_pre_save(void *opaque)
927 {
928 PPCTimebase *tb = opaque;
929
930 timebase_save(tb);
931 }
932
933 const VMStateDescription vmstate_ppc_timebase = {
934 .name = "timebase",
935 .version_id = 1,
936 .minimum_version_id = 1,
937 .minimum_version_id_old = 1,
938 .pre_save = timebase_pre_save,
939 .fields = (VMStateField []) {
940 VMSTATE_UINT64(guest_timebase, PPCTimebase),
941 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
942 VMSTATE_END_OF_LIST()
943 },
944 };
945
946 /* Set up (once) timebase frequency (in Hz) */
947 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
948 {
949 PowerPCCPU *cpu = ppc_env_get_cpu(env);
950 ppc_tb_t *tb_env;
951
952 tb_env = g_malloc0(sizeof(ppc_tb_t));
953 env->tb_env = tb_env;
954 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
955 if (env->insns_flags & PPC_SEGMENT_64B) {
956 /* All Book3S 64bit CPUs implement level based DEC logic */
957 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
958 }
959 /* Create new timer */
960 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
961 if (env->has_hv_mode) {
962 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
963 cpu);
964 } else {
965 tb_env->hdecr_timer = NULL;
966 }
967 cpu_ppc_set_tb_clk(env, freq);
968
969 return &cpu_ppc_set_tb_clk;
970 }
971
972 /* Specific helpers for POWER & PowerPC 601 RTC */
973 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
974 {
975 _cpu_ppc_store_tbu(env, value);
976 }
977
978 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
979 {
980 return _cpu_ppc_load_tbu(env);
981 }
982
983 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
984 {
985 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
986 }
987
988 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
989 {
990 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
991 }
992
993 /*****************************************************************************/
994 /* PowerPC 40x timers */
995
996 /* PIT, FIT & WDT */
997 typedef struct ppc40x_timer_t ppc40x_timer_t;
998 struct ppc40x_timer_t {
999 uint64_t pit_reload; /* PIT auto-reload value */
1000 uint64_t fit_next; /* Tick for next FIT interrupt */
1001 QEMUTimer *fit_timer;
1002 uint64_t wdt_next; /* Tick for next WDT interrupt */
1003 QEMUTimer *wdt_timer;
1004
1005 /* 405 have the PIT, 440 have a DECR. */
1006 unsigned int decr_excp;
1007 };
1008
1009 /* Fixed interval timer */
1010 static void cpu_4xx_fit_cb (void *opaque)
1011 {
1012 PowerPCCPU *cpu;
1013 CPUPPCState *env;
1014 ppc_tb_t *tb_env;
1015 ppc40x_timer_t *ppc40x_timer;
1016 uint64_t now, next;
1017
1018 env = opaque;
1019 cpu = ppc_env_get_cpu(env);
1020 tb_env = env->tb_env;
1021 ppc40x_timer = tb_env->opaque;
1022 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1023 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1024 case 0:
1025 next = 1 << 9;
1026 break;
1027 case 1:
1028 next = 1 << 13;
1029 break;
1030 case 2:
1031 next = 1 << 17;
1032 break;
1033 case 3:
1034 next = 1 << 21;
1035 break;
1036 default:
1037 /* Cannot occur, but makes gcc happy */
1038 return;
1039 }
1040 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1041 if (next == now)
1042 next++;
1043 timer_mod(ppc40x_timer->fit_timer, next);
1044 env->spr[SPR_40x_TSR] |= 1 << 26;
1045 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1046 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1047 }
1048 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1049 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1050 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1051 }
1052
1053 /* Programmable interval timer */
1054 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1055 {
1056 ppc40x_timer_t *ppc40x_timer;
1057 uint64_t now, next;
1058
1059 ppc40x_timer = tb_env->opaque;
1060 if (ppc40x_timer->pit_reload <= 1 ||
1061 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1062 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1063 /* Stop PIT */
1064 LOG_TB("%s: stop PIT\n", __func__);
1065 timer_del(tb_env->decr_timer);
1066 } else {
1067 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1068 __func__, ppc40x_timer->pit_reload);
1069 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1070 next = now + muldiv64(ppc40x_timer->pit_reload,
1071 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1072 if (is_excp)
1073 next += tb_env->decr_next - now;
1074 if (next == now)
1075 next++;
1076 timer_mod(tb_env->decr_timer, next);
1077 tb_env->decr_next = next;
1078 }
1079 }
1080
1081 static void cpu_4xx_pit_cb (void *opaque)
1082 {
1083 PowerPCCPU *cpu;
1084 CPUPPCState *env;
1085 ppc_tb_t *tb_env;
1086 ppc40x_timer_t *ppc40x_timer;
1087
1088 env = opaque;
1089 cpu = ppc_env_get_cpu(env);
1090 tb_env = env->tb_env;
1091 ppc40x_timer = tb_env->opaque;
1092 env->spr[SPR_40x_TSR] |= 1 << 27;
1093 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1094 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1095 }
1096 start_stop_pit(env, tb_env, 1);
1097 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1098 "%016" PRIx64 "\n", __func__,
1099 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1100 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1101 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1102 ppc40x_timer->pit_reload);
1103 }
1104
1105 /* Watchdog timer */
1106 static void cpu_4xx_wdt_cb (void *opaque)
1107 {
1108 PowerPCCPU *cpu;
1109 CPUPPCState *env;
1110 ppc_tb_t *tb_env;
1111 ppc40x_timer_t *ppc40x_timer;
1112 uint64_t now, next;
1113
1114 env = opaque;
1115 cpu = ppc_env_get_cpu(env);
1116 tb_env = env->tb_env;
1117 ppc40x_timer = tb_env->opaque;
1118 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1119 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1120 case 0:
1121 next = 1 << 17;
1122 break;
1123 case 1:
1124 next = 1 << 21;
1125 break;
1126 case 2:
1127 next = 1 << 25;
1128 break;
1129 case 3:
1130 next = 1 << 29;
1131 break;
1132 default:
1133 /* Cannot occur, but makes gcc happy */
1134 return;
1135 }
1136 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1137 if (next == now)
1138 next++;
1139 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1140 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1141 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1142 case 0x0:
1143 case 0x1:
1144 timer_mod(ppc40x_timer->wdt_timer, next);
1145 ppc40x_timer->wdt_next = next;
1146 env->spr[SPR_40x_TSR] |= 1U << 31;
1147 break;
1148 case 0x2:
1149 timer_mod(ppc40x_timer->wdt_timer, next);
1150 ppc40x_timer->wdt_next = next;
1151 env->spr[SPR_40x_TSR] |= 1 << 30;
1152 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1153 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1154 }
1155 break;
1156 case 0x3:
1157 env->spr[SPR_40x_TSR] &= ~0x30000000;
1158 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1159 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1160 case 0x0:
1161 /* No reset */
1162 break;
1163 case 0x1: /* Core reset */
1164 ppc40x_core_reset(cpu);
1165 break;
1166 case 0x2: /* Chip reset */
1167 ppc40x_chip_reset(cpu);
1168 break;
1169 case 0x3: /* System reset */
1170 ppc40x_system_reset(cpu);
1171 break;
1172 }
1173 }
1174 }
1175
1176 void store_40x_pit (CPUPPCState *env, target_ulong val)
1177 {
1178 ppc_tb_t *tb_env;
1179 ppc40x_timer_t *ppc40x_timer;
1180
1181 tb_env = env->tb_env;
1182 ppc40x_timer = tb_env->opaque;
1183 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1184 ppc40x_timer->pit_reload = val;
1185 start_stop_pit(env, tb_env, 0);
1186 }
1187
1188 target_ulong load_40x_pit (CPUPPCState *env)
1189 {
1190 return cpu_ppc_load_decr(env);
1191 }
1192
1193 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1194 {
1195 CPUPPCState *env = opaque;
1196 ppc_tb_t *tb_env = env->tb_env;
1197
1198 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1199 freq);
1200 tb_env->tb_freq = freq;
1201 tb_env->decr_freq = freq;
1202 /* XXX: we should also update all timers */
1203 }
1204
1205 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1206 unsigned int decr_excp)
1207 {
1208 ppc_tb_t *tb_env;
1209 ppc40x_timer_t *ppc40x_timer;
1210
1211 tb_env = g_malloc0(sizeof(ppc_tb_t));
1212 env->tb_env = tb_env;
1213 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1214 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1215 tb_env->tb_freq = freq;
1216 tb_env->decr_freq = freq;
1217 tb_env->opaque = ppc40x_timer;
1218 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1219 if (ppc40x_timer != NULL) {
1220 /* We use decr timer for PIT */
1221 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1222 ppc40x_timer->fit_timer =
1223 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1224 ppc40x_timer->wdt_timer =
1225 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1226 ppc40x_timer->decr_excp = decr_excp;
1227 }
1228
1229 return &ppc_40x_set_tb_clk;
1230 }
1231
1232 /*****************************************************************************/
1233 /* Embedded PowerPC Device Control Registers */
1234 typedef struct ppc_dcrn_t ppc_dcrn_t;
1235 struct ppc_dcrn_t {
1236 dcr_read_cb dcr_read;
1237 dcr_write_cb dcr_write;
1238 void *opaque;
1239 };
1240
1241 /* XXX: on 460, DCR addresses are 32 bits wide,
1242 * using DCRIPR to get the 22 upper bits of the DCR address
1243 */
1244 #define DCRN_NB 1024
1245 struct ppc_dcr_t {
1246 ppc_dcrn_t dcrn[DCRN_NB];
1247 int (*read_error)(int dcrn);
1248 int (*write_error)(int dcrn);
1249 };
1250
1251 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1252 {
1253 ppc_dcrn_t *dcr;
1254
1255 if (dcrn < 0 || dcrn >= DCRN_NB)
1256 goto error;
1257 dcr = &dcr_env->dcrn[dcrn];
1258 if (dcr->dcr_read == NULL)
1259 goto error;
1260 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1261
1262 return 0;
1263
1264 error:
1265 if (dcr_env->read_error != NULL)
1266 return (*dcr_env->read_error)(dcrn);
1267
1268 return -1;
1269 }
1270
1271 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1272 {
1273 ppc_dcrn_t *dcr;
1274
1275 if (dcrn < 0 || dcrn >= DCRN_NB)
1276 goto error;
1277 dcr = &dcr_env->dcrn[dcrn];
1278 if (dcr->dcr_write == NULL)
1279 goto error;
1280 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1281
1282 return 0;
1283
1284 error:
1285 if (dcr_env->write_error != NULL)
1286 return (*dcr_env->write_error)(dcrn);
1287
1288 return -1;
1289 }
1290
1291 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1292 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1293 {
1294 ppc_dcr_t *dcr_env;
1295 ppc_dcrn_t *dcr;
1296
1297 dcr_env = env->dcr_env;
1298 if (dcr_env == NULL)
1299 return -1;
1300 if (dcrn < 0 || dcrn >= DCRN_NB)
1301 return -1;
1302 dcr = &dcr_env->dcrn[dcrn];
1303 if (dcr->opaque != NULL ||
1304 dcr->dcr_read != NULL ||
1305 dcr->dcr_write != NULL)
1306 return -1;
1307 dcr->opaque = opaque;
1308 dcr->dcr_read = dcr_read;
1309 dcr->dcr_write = dcr_write;
1310
1311 return 0;
1312 }
1313
1314 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1315 int (*write_error)(int dcrn))
1316 {
1317 ppc_dcr_t *dcr_env;
1318
1319 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1320 dcr_env->read_error = read_error;
1321 dcr_env->write_error = write_error;
1322 env->dcr_env = dcr_env;
1323
1324 return 0;
1325 }
1326
1327 /*****************************************************************************/
1328 /* Debug port */
1329 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1330 {
1331 addr &= 0xF;
1332 switch (addr) {
1333 case 0:
1334 printf("%c", val);
1335 break;
1336 case 1:
1337 printf("\n");
1338 fflush(stdout);
1339 break;
1340 case 2:
1341 printf("Set loglevel to %04" PRIx32 "\n", val);
1342 qemu_set_log(val | 0x100);
1343 break;
1344 }
1345 }
1346
1347 /* CPU device-tree ID helpers */
1348 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1349 {
1350 return cpu->cpu_dt_id;
1351 }
1352
1353 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1354 {
1355 CPUState *cs;
1356
1357 CPU_FOREACH(cs) {
1358 PowerPCCPU *cpu = POWERPC_CPU(cs);
1359
1360 if (cpu->cpu_dt_id == cpu_dt_id) {
1361 return cpu;
1362 }
1363 }
1364
1365 return NULL;
1366 }
1367
1368 void ppc_cpu_parse_features(const char *cpu_model)
1369 {
1370 CPUClass *cc;
1371 ObjectClass *oc;
1372 const char *typename;
1373 gchar **model_pieces;
1374
1375 model_pieces = g_strsplit(cpu_model, ",", 2);
1376 if (!model_pieces[0]) {
1377 error_report("Invalid/empty CPU model name");
1378 exit(1);
1379 }
1380
1381 oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1382 if (oc == NULL) {
1383 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1384 exit(1);
1385 }
1386
1387 typename = object_class_get_name(oc);
1388 cc = CPU_CLASS(oc);
1389 cc->parse_features(typename, model_pieces[1], &error_fatal);
1390 g_strfreev(model_pieces);
1391 }