]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
tcg: drop global lock during TCG code execution
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "hw/loader.h"
38 #include "sysemu/kvm.h"
39 #include "kvm_ppc.h"
40 #include "trace.h"
41
42 //#define PPC_DEBUG_IRQ
43 //#define PPC_DEBUG_TB
44
45 #ifdef PPC_DEBUG_IRQ
46 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 #else
48 # define LOG_IRQ(...) do { } while (0)
49 #endif
50
51
52 #ifdef PPC_DEBUG_TB
53 # define LOG_TB(...) qemu_log(__VA_ARGS__)
54 #else
55 # define LOG_TB(...) do { } while (0)
56 #endif
57
58 static void cpu_ppc_tb_stop (CPUPPCState *env);
59 static void cpu_ppc_tb_start (CPUPPCState *env);
60
61 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 {
63 CPUState *cs = CPU(cpu);
64 CPUPPCState *env = &cpu->env;
65 unsigned int old_pending;
66 bool locked = false;
67
68 /* We may already have the BQL if coming from the reset path */
69 if (!qemu_mutex_iothread_locked()) {
70 locked = true;
71 qemu_mutex_lock_iothread();
72 }
73
74 old_pending = env->pending_interrupts;
75
76 if (level) {
77 env->pending_interrupts |= 1 << n_IRQ;
78 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
79 } else {
80 env->pending_interrupts &= ~(1 << n_IRQ);
81 if (env->pending_interrupts == 0) {
82 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
83 }
84 }
85
86 if (old_pending != env->pending_interrupts) {
87 #ifdef CONFIG_KVM
88 kvmppc_set_interrupt(cpu, n_IRQ, level);
89 #endif
90 }
91
92
93 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
94 "req %08x\n", __func__, env, n_IRQ, level,
95 env->pending_interrupts, CPU(cpu)->interrupt_request);
96
97 if (locked) {
98 qemu_mutex_unlock_iothread();
99 }
100 }
101
102 /* PowerPC 6xx / 7xx internal IRQ controller */
103 static void ppc6xx_set_irq(void *opaque, int pin, int level)
104 {
105 PowerPCCPU *cpu = opaque;
106 CPUPPCState *env = &cpu->env;
107 int cur_level;
108
109 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
110 env, pin, level);
111 cur_level = (env->irq_input_state >> pin) & 1;
112 /* Don't generate spurious events */
113 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
114 CPUState *cs = CPU(cpu);
115
116 switch (pin) {
117 case PPC6xx_INPUT_TBEN:
118 /* Level sensitive - active high */
119 LOG_IRQ("%s: %s the time base\n",
120 __func__, level ? "start" : "stop");
121 if (level) {
122 cpu_ppc_tb_start(env);
123 } else {
124 cpu_ppc_tb_stop(env);
125 }
126 case PPC6xx_INPUT_INT:
127 /* Level sensitive - active high */
128 LOG_IRQ("%s: set the external IRQ state to %d\n",
129 __func__, level);
130 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
131 break;
132 case PPC6xx_INPUT_SMI:
133 /* Level sensitive - active high */
134 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
135 __func__, level);
136 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
137 break;
138 case PPC6xx_INPUT_MCP:
139 /* Negative edge sensitive */
140 /* XXX: TODO: actual reaction may depends on HID0 status
141 * 603/604/740/750: check HID0[EMCP]
142 */
143 if (cur_level == 1 && level == 0) {
144 LOG_IRQ("%s: raise machine check state\n",
145 __func__);
146 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
147 }
148 break;
149 case PPC6xx_INPUT_CKSTP_IN:
150 /* Level sensitive - active low */
151 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
152 /* XXX: Note that the only way to restart the CPU is to reset it */
153 if (level) {
154 LOG_IRQ("%s: stop the CPU\n", __func__);
155 cs->halted = 1;
156 }
157 break;
158 case PPC6xx_INPUT_HRESET:
159 /* Level sensitive - active low */
160 if (level) {
161 LOG_IRQ("%s: reset the CPU\n", __func__);
162 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
163 }
164 break;
165 case PPC6xx_INPUT_SRESET:
166 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
167 __func__, level);
168 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
169 break;
170 default:
171 /* Unknown pin - do nothing */
172 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
173 return;
174 }
175 if (level)
176 env->irq_input_state |= 1 << pin;
177 else
178 env->irq_input_state &= ~(1 << pin);
179 }
180 }
181
182 void ppc6xx_irq_init(PowerPCCPU *cpu)
183 {
184 CPUPPCState *env = &cpu->env;
185
186 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
187 PPC6xx_INPUT_NB);
188 }
189
190 #if defined(TARGET_PPC64)
191 /* PowerPC 970 internal IRQ controller */
192 static void ppc970_set_irq(void *opaque, int pin, int level)
193 {
194 PowerPCCPU *cpu = opaque;
195 CPUPPCState *env = &cpu->env;
196 int cur_level;
197
198 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
199 env, pin, level);
200 cur_level = (env->irq_input_state >> pin) & 1;
201 /* Don't generate spurious events */
202 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
203 CPUState *cs = CPU(cpu);
204
205 switch (pin) {
206 case PPC970_INPUT_INT:
207 /* Level sensitive - active high */
208 LOG_IRQ("%s: set the external IRQ state to %d\n",
209 __func__, level);
210 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
211 break;
212 case PPC970_INPUT_THINT:
213 /* Level sensitive - active high */
214 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
215 level);
216 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
217 break;
218 case PPC970_INPUT_MCP:
219 /* Negative edge sensitive */
220 /* XXX: TODO: actual reaction may depends on HID0 status
221 * 603/604/740/750: check HID0[EMCP]
222 */
223 if (cur_level == 1 && level == 0) {
224 LOG_IRQ("%s: raise machine check state\n",
225 __func__);
226 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
227 }
228 break;
229 case PPC970_INPUT_CKSTP:
230 /* Level sensitive - active low */
231 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
232 if (level) {
233 LOG_IRQ("%s: stop the CPU\n", __func__);
234 cs->halted = 1;
235 } else {
236 LOG_IRQ("%s: restart the CPU\n", __func__);
237 cs->halted = 0;
238 qemu_cpu_kick(cs);
239 }
240 break;
241 case PPC970_INPUT_HRESET:
242 /* Level sensitive - active low */
243 if (level) {
244 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
245 }
246 break;
247 case PPC970_INPUT_SRESET:
248 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
249 __func__, level);
250 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
251 break;
252 case PPC970_INPUT_TBEN:
253 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
254 level);
255 /* XXX: TODO */
256 break;
257 default:
258 /* Unknown pin - do nothing */
259 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
260 return;
261 }
262 if (level)
263 env->irq_input_state |= 1 << pin;
264 else
265 env->irq_input_state &= ~(1 << pin);
266 }
267 }
268
269 void ppc970_irq_init(PowerPCCPU *cpu)
270 {
271 CPUPPCState *env = &cpu->env;
272
273 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
274 PPC970_INPUT_NB);
275 }
276
277 /* POWER7 internal IRQ controller */
278 static void power7_set_irq(void *opaque, int pin, int level)
279 {
280 PowerPCCPU *cpu = opaque;
281 CPUPPCState *env = &cpu->env;
282
283 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
284 env, pin, level);
285
286 switch (pin) {
287 case POWER7_INPUT_INT:
288 /* Level sensitive - active high */
289 LOG_IRQ("%s: set the external IRQ state to %d\n",
290 __func__, level);
291 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
292 break;
293 default:
294 /* Unknown pin - do nothing */
295 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
296 return;
297 }
298 if (level) {
299 env->irq_input_state |= 1 << pin;
300 } else {
301 env->irq_input_state &= ~(1 << pin);
302 }
303 }
304
305 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
306 {
307 CPUPPCState *env = &cpu->env;
308
309 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
310 POWER7_INPUT_NB);
311 }
312 #endif /* defined(TARGET_PPC64) */
313
314 /* PowerPC 40x internal IRQ controller */
315 static void ppc40x_set_irq(void *opaque, int pin, int level)
316 {
317 PowerPCCPU *cpu = opaque;
318 CPUPPCState *env = &cpu->env;
319 int cur_level;
320
321 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
322 env, pin, level);
323 cur_level = (env->irq_input_state >> pin) & 1;
324 /* Don't generate spurious events */
325 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
326 CPUState *cs = CPU(cpu);
327
328 switch (pin) {
329 case PPC40x_INPUT_RESET_SYS:
330 if (level) {
331 LOG_IRQ("%s: reset the PowerPC system\n",
332 __func__);
333 ppc40x_system_reset(cpu);
334 }
335 break;
336 case PPC40x_INPUT_RESET_CHIP:
337 if (level) {
338 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
339 ppc40x_chip_reset(cpu);
340 }
341 break;
342 case PPC40x_INPUT_RESET_CORE:
343 /* XXX: TODO: update DBSR[MRR] */
344 if (level) {
345 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
346 ppc40x_core_reset(cpu);
347 }
348 break;
349 case PPC40x_INPUT_CINT:
350 /* Level sensitive - active high */
351 LOG_IRQ("%s: set the critical IRQ state to %d\n",
352 __func__, level);
353 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
354 break;
355 case PPC40x_INPUT_INT:
356 /* Level sensitive - active high */
357 LOG_IRQ("%s: set the external IRQ state to %d\n",
358 __func__, level);
359 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
360 break;
361 case PPC40x_INPUT_HALT:
362 /* Level sensitive - active low */
363 if (level) {
364 LOG_IRQ("%s: stop the CPU\n", __func__);
365 cs->halted = 1;
366 } else {
367 LOG_IRQ("%s: restart the CPU\n", __func__);
368 cs->halted = 0;
369 qemu_cpu_kick(cs);
370 }
371 break;
372 case PPC40x_INPUT_DEBUG:
373 /* Level sensitive - active high */
374 LOG_IRQ("%s: set the debug pin state to %d\n",
375 __func__, level);
376 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
377 break;
378 default:
379 /* Unknown pin - do nothing */
380 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
381 return;
382 }
383 if (level)
384 env->irq_input_state |= 1 << pin;
385 else
386 env->irq_input_state &= ~(1 << pin);
387 }
388 }
389
390 void ppc40x_irq_init(PowerPCCPU *cpu)
391 {
392 CPUPPCState *env = &cpu->env;
393
394 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
395 cpu, PPC40x_INPUT_NB);
396 }
397
398 /* PowerPC E500 internal IRQ controller */
399 static void ppce500_set_irq(void *opaque, int pin, int level)
400 {
401 PowerPCCPU *cpu = opaque;
402 CPUPPCState *env = &cpu->env;
403 int cur_level;
404
405 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
406 env, pin, level);
407 cur_level = (env->irq_input_state >> pin) & 1;
408 /* Don't generate spurious events */
409 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
410 switch (pin) {
411 case PPCE500_INPUT_MCK:
412 if (level) {
413 LOG_IRQ("%s: reset the PowerPC system\n",
414 __func__);
415 qemu_system_reset_request();
416 }
417 break;
418 case PPCE500_INPUT_RESET_CORE:
419 if (level) {
420 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
421 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
422 }
423 break;
424 case PPCE500_INPUT_CINT:
425 /* Level sensitive - active high */
426 LOG_IRQ("%s: set the critical IRQ state to %d\n",
427 __func__, level);
428 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
429 break;
430 case PPCE500_INPUT_INT:
431 /* Level sensitive - active high */
432 LOG_IRQ("%s: set the core IRQ state to %d\n",
433 __func__, level);
434 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
435 break;
436 case PPCE500_INPUT_DEBUG:
437 /* Level sensitive - active high */
438 LOG_IRQ("%s: set the debug pin state to %d\n",
439 __func__, level);
440 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
441 break;
442 default:
443 /* Unknown pin - do nothing */
444 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
445 return;
446 }
447 if (level)
448 env->irq_input_state |= 1 << pin;
449 else
450 env->irq_input_state &= ~(1 << pin);
451 }
452 }
453
454 void ppce500_irq_init(PowerPCCPU *cpu)
455 {
456 CPUPPCState *env = &cpu->env;
457
458 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
459 cpu, PPCE500_INPUT_NB);
460 }
461
462 /* Enable or Disable the E500 EPR capability */
463 void ppce500_set_mpic_proxy(bool enabled)
464 {
465 CPUState *cs;
466
467 CPU_FOREACH(cs) {
468 PowerPCCPU *cpu = POWERPC_CPU(cs);
469
470 cpu->env.mpic_proxy = enabled;
471 if (kvm_enabled()) {
472 kvmppc_set_mpic_proxy(cpu, enabled);
473 }
474 }
475 }
476
477 /*****************************************************************************/
478 /* PowerPC time base and decrementer emulation */
479
480 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
481 {
482 /* TB time in tb periods */
483 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
484 }
485
486 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
487 {
488 ppc_tb_t *tb_env = env->tb_env;
489 uint64_t tb;
490
491 if (kvm_enabled()) {
492 return env->spr[SPR_TBL];
493 }
494
495 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
496 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
497
498 return tb;
499 }
500
501 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
502 {
503 ppc_tb_t *tb_env = env->tb_env;
504 uint64_t tb;
505
506 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
507 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
508
509 return tb >> 32;
510 }
511
512 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
513 {
514 if (kvm_enabled()) {
515 return env->spr[SPR_TBU];
516 }
517
518 return _cpu_ppc_load_tbu(env);
519 }
520
521 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
522 int64_t *tb_offsetp, uint64_t value)
523 {
524 *tb_offsetp = value -
525 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
526
527 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
528 __func__, value, *tb_offsetp);
529 }
530
531 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
532 {
533 ppc_tb_t *tb_env = env->tb_env;
534 uint64_t tb;
535
536 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
537 tb &= 0xFFFFFFFF00000000ULL;
538 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
539 &tb_env->tb_offset, tb | (uint64_t)value);
540 }
541
542 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
543 {
544 ppc_tb_t *tb_env = env->tb_env;
545 uint64_t tb;
546
547 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
548 tb &= 0x00000000FFFFFFFFULL;
549 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
550 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
551 }
552
553 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
554 {
555 _cpu_ppc_store_tbu(env, value);
556 }
557
558 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
559 {
560 ppc_tb_t *tb_env = env->tb_env;
561 uint64_t tb;
562
563 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
564 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
565
566 return tb;
567 }
568
569 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
570 {
571 ppc_tb_t *tb_env = env->tb_env;
572 uint64_t tb;
573
574 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
575 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
576
577 return tb >> 32;
578 }
579
580 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
581 {
582 ppc_tb_t *tb_env = env->tb_env;
583 uint64_t tb;
584
585 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
586 tb &= 0xFFFFFFFF00000000ULL;
587 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
588 &tb_env->atb_offset, tb | (uint64_t)value);
589 }
590
591 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
592 {
593 ppc_tb_t *tb_env = env->tb_env;
594 uint64_t tb;
595
596 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
597 tb &= 0x00000000FFFFFFFFULL;
598 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
599 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
600 }
601
602 static void cpu_ppc_tb_stop (CPUPPCState *env)
603 {
604 ppc_tb_t *tb_env = env->tb_env;
605 uint64_t tb, atb, vmclk;
606
607 /* If the time base is already frozen, do nothing */
608 if (tb_env->tb_freq != 0) {
609 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
610 /* Get the time base */
611 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
612 /* Get the alternate time base */
613 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
614 /* Store the time base value (ie compute the current offset) */
615 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
616 /* Store the alternate time base value (compute the current offset) */
617 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
618 /* Set the time base frequency to zero */
619 tb_env->tb_freq = 0;
620 /* Now, the time bases are frozen to tb_offset / atb_offset value */
621 }
622 }
623
624 static void cpu_ppc_tb_start (CPUPPCState *env)
625 {
626 ppc_tb_t *tb_env = env->tb_env;
627 uint64_t tb, atb, vmclk;
628
629 /* If the time base is not frozen, do nothing */
630 if (tb_env->tb_freq == 0) {
631 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
632 /* Get the time base from tb_offset */
633 tb = tb_env->tb_offset;
634 /* Get the alternate time base from atb_offset */
635 atb = tb_env->atb_offset;
636 /* Restore the tb frequency from the decrementer frequency */
637 tb_env->tb_freq = tb_env->decr_freq;
638 /* Store the time base value */
639 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
640 /* Store the alternate time base value */
641 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
642 }
643 }
644
645 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
646 {
647 ppc_tb_t *tb_env = env->tb_env;
648 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
649 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
650 }
651
652 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
653 {
654 ppc_tb_t *tb_env = env->tb_env;
655 uint32_t decr;
656 int64_t diff;
657
658 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
659 if (diff >= 0) {
660 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
661 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
662 decr = 0;
663 } else {
664 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
665 }
666 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
667
668 return decr;
669 }
670
671 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
672 {
673 ppc_tb_t *tb_env = env->tb_env;
674
675 if (kvm_enabled()) {
676 return env->spr[SPR_DECR];
677 }
678
679 return _cpu_ppc_load_decr(env, tb_env->decr_next);
680 }
681
682 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
683 {
684 ppc_tb_t *tb_env = env->tb_env;
685
686 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
687 }
688
689 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
690 {
691 ppc_tb_t *tb_env = env->tb_env;
692 uint64_t diff;
693
694 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
695
696 return tb_env->purr_load +
697 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
698 }
699
700 /* When decrementer expires,
701 * all we need to do is generate or queue a CPU exception
702 */
703 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
704 {
705 /* Raise it */
706 LOG_TB("raise decrementer exception\n");
707 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
708 }
709
710 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
711 {
712 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
713 }
714
715 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
716 {
717 CPUPPCState *env = &cpu->env;
718
719 /* Raise it */
720 LOG_TB("raise hv decrementer exception\n");
721
722 /* The architecture specifies that we don't deliver HDEC
723 * interrupts in a PM state. Not only they don't cause a
724 * wakeup but they also get effectively discarded.
725 */
726 if (!env->in_pm_state) {
727 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
728 }
729 }
730
731 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
732 {
733 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
734 }
735
736 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
737 QEMUTimer *timer,
738 void (*raise_excp)(void *),
739 void (*lower_excp)(PowerPCCPU *),
740 uint32_t decr, uint32_t value)
741 {
742 CPUPPCState *env = &cpu->env;
743 ppc_tb_t *tb_env = env->tb_env;
744 uint64_t now, next;
745
746 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
747 decr, value);
748
749 if (kvm_enabled()) {
750 /* KVM handles decrementer exceptions, we don't need our own timer */
751 return;
752 }
753
754 /*
755 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
756 * interrupt.
757 *
758 * If we get a really small DEC value, we can assume that by the time we
759 * handled it we should inject an interrupt already.
760 *
761 * On MSB level based DEC implementations the MSB always means the interrupt
762 * is pending, so raise it on those.
763 *
764 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
765 * an edge interrupt, so raise it here too.
766 */
767 if ((value < 3) ||
768 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
769 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
770 && !(decr & 0x80000000))) {
771 (*raise_excp)(cpu);
772 return;
773 }
774
775 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
776 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
777 (*lower_excp)(cpu);
778 }
779
780 /* Calculate the next timer event */
781 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
782 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
783 *nextp = next;
784
785 /* Adjust timer */
786 timer_mod(timer, next);
787 }
788
789 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
790 uint32_t value)
791 {
792 ppc_tb_t *tb_env = cpu->env.tb_env;
793
794 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
795 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
796 value);
797 }
798
799 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
800 {
801 PowerPCCPU *cpu = ppc_env_get_cpu(env);
802
803 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
804 }
805
806 static void cpu_ppc_decr_cb(void *opaque)
807 {
808 PowerPCCPU *cpu = opaque;
809
810 cpu_ppc_decr_excp(cpu);
811 }
812
813 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
814 uint32_t value)
815 {
816 ppc_tb_t *tb_env = cpu->env.tb_env;
817
818 if (tb_env->hdecr_timer != NULL) {
819 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
820 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
821 hdecr, value);
822 }
823 }
824
825 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
826 {
827 PowerPCCPU *cpu = ppc_env_get_cpu(env);
828
829 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
830 }
831
832 static void cpu_ppc_hdecr_cb(void *opaque)
833 {
834 PowerPCCPU *cpu = opaque;
835
836 cpu_ppc_hdecr_excp(cpu);
837 }
838
839 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
840 {
841 ppc_tb_t *tb_env = cpu->env.tb_env;
842
843 tb_env->purr_load = value;
844 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
845 }
846
847 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
848 {
849 CPUPPCState *env = opaque;
850 PowerPCCPU *cpu = ppc_env_get_cpu(env);
851 ppc_tb_t *tb_env = env->tb_env;
852
853 tb_env->tb_freq = freq;
854 tb_env->decr_freq = freq;
855 /* There is a bug in Linux 2.4 kernels:
856 * if a decrementer exception is pending when it enables msr_ee at startup,
857 * it's not ready to handle it...
858 */
859 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
860 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
861 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
862 }
863
864 static void timebase_save(PPCTimebase *tb)
865 {
866 uint64_t ticks = cpu_get_host_ticks();
867 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
868
869 if (!first_ppc_cpu->env.tb_env) {
870 error_report("No timebase object");
871 return;
872 }
873
874 /* not used anymore, we keep it for compatibility */
875 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
876 /*
877 * tb_offset is only expected to be changed by QEMU so
878 * there is no need to update it from KVM here
879 */
880 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
881 }
882
883 static void timebase_load(PPCTimebase *tb)
884 {
885 CPUState *cpu;
886 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
887 int64_t tb_off_adj, tb_off;
888 unsigned long freq;
889
890 if (!first_ppc_cpu->env.tb_env) {
891 error_report("No timebase object");
892 return;
893 }
894
895 freq = first_ppc_cpu->env.tb_env->tb_freq;
896
897 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
898
899 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
900 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
901 (tb_off_adj - tb_off) / freq);
902
903 /* Set new offset to all CPUs */
904 CPU_FOREACH(cpu) {
905 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
906 pcpu->env.tb_env->tb_offset = tb_off_adj;
907 #if defined(CONFIG_KVM)
908 kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
909 &pcpu->env.tb_env->tb_offset);
910 #endif
911 }
912 }
913
914 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
915 RunState state)
916 {
917 PPCTimebase *tb = opaque;
918
919 if (running) {
920 timebase_load(tb);
921 } else {
922 timebase_save(tb);
923 }
924 }
925
926 /*
927 * When migrating, read the clock just before migration,
928 * so that the guest clock counts during the events
929 * between:
930 *
931 * * vm_stop()
932 * *
933 * * pre_save()
934 *
935 * This reduces clock difference on migration from 5s
936 * to 0.1s (when max_downtime == 5s), because sending the
937 * final pages of memory (which happens between vm_stop()
938 * and pre_save()) takes max_downtime.
939 */
940 static void timebase_pre_save(void *opaque)
941 {
942 PPCTimebase *tb = opaque;
943
944 timebase_save(tb);
945 }
946
947 const VMStateDescription vmstate_ppc_timebase = {
948 .name = "timebase",
949 .version_id = 1,
950 .minimum_version_id = 1,
951 .minimum_version_id_old = 1,
952 .pre_save = timebase_pre_save,
953 .fields = (VMStateField []) {
954 VMSTATE_UINT64(guest_timebase, PPCTimebase),
955 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
956 VMSTATE_END_OF_LIST()
957 },
958 };
959
960 /* Set up (once) timebase frequency (in Hz) */
961 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
962 {
963 PowerPCCPU *cpu = ppc_env_get_cpu(env);
964 ppc_tb_t *tb_env;
965
966 tb_env = g_malloc0(sizeof(ppc_tb_t));
967 env->tb_env = tb_env;
968 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
969 if (env->insns_flags & PPC_SEGMENT_64B) {
970 /* All Book3S 64bit CPUs implement level based DEC logic */
971 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
972 }
973 /* Create new timer */
974 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
975 if (env->has_hv_mode) {
976 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
977 cpu);
978 } else {
979 tb_env->hdecr_timer = NULL;
980 }
981 cpu_ppc_set_tb_clk(env, freq);
982
983 return &cpu_ppc_set_tb_clk;
984 }
985
986 /* Specific helpers for POWER & PowerPC 601 RTC */
987 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
988 {
989 _cpu_ppc_store_tbu(env, value);
990 }
991
992 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
993 {
994 return _cpu_ppc_load_tbu(env);
995 }
996
997 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
998 {
999 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1000 }
1001
1002 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1003 {
1004 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1005 }
1006
1007 /*****************************************************************************/
1008 /* PowerPC 40x timers */
1009
1010 /* PIT, FIT & WDT */
1011 typedef struct ppc40x_timer_t ppc40x_timer_t;
1012 struct ppc40x_timer_t {
1013 uint64_t pit_reload; /* PIT auto-reload value */
1014 uint64_t fit_next; /* Tick for next FIT interrupt */
1015 QEMUTimer *fit_timer;
1016 uint64_t wdt_next; /* Tick for next WDT interrupt */
1017 QEMUTimer *wdt_timer;
1018
1019 /* 405 have the PIT, 440 have a DECR. */
1020 unsigned int decr_excp;
1021 };
1022
1023 /* Fixed interval timer */
1024 static void cpu_4xx_fit_cb (void *opaque)
1025 {
1026 PowerPCCPU *cpu;
1027 CPUPPCState *env;
1028 ppc_tb_t *tb_env;
1029 ppc40x_timer_t *ppc40x_timer;
1030 uint64_t now, next;
1031
1032 env = opaque;
1033 cpu = ppc_env_get_cpu(env);
1034 tb_env = env->tb_env;
1035 ppc40x_timer = tb_env->opaque;
1036 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1037 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1038 case 0:
1039 next = 1 << 9;
1040 break;
1041 case 1:
1042 next = 1 << 13;
1043 break;
1044 case 2:
1045 next = 1 << 17;
1046 break;
1047 case 3:
1048 next = 1 << 21;
1049 break;
1050 default:
1051 /* Cannot occur, but makes gcc happy */
1052 return;
1053 }
1054 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1055 if (next == now)
1056 next++;
1057 timer_mod(ppc40x_timer->fit_timer, next);
1058 env->spr[SPR_40x_TSR] |= 1 << 26;
1059 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1060 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1061 }
1062 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1063 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1064 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1065 }
1066
1067 /* Programmable interval timer */
1068 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1069 {
1070 ppc40x_timer_t *ppc40x_timer;
1071 uint64_t now, next;
1072
1073 ppc40x_timer = tb_env->opaque;
1074 if (ppc40x_timer->pit_reload <= 1 ||
1075 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1076 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1077 /* Stop PIT */
1078 LOG_TB("%s: stop PIT\n", __func__);
1079 timer_del(tb_env->decr_timer);
1080 } else {
1081 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1082 __func__, ppc40x_timer->pit_reload);
1083 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1084 next = now + muldiv64(ppc40x_timer->pit_reload,
1085 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1086 if (is_excp)
1087 next += tb_env->decr_next - now;
1088 if (next == now)
1089 next++;
1090 timer_mod(tb_env->decr_timer, next);
1091 tb_env->decr_next = next;
1092 }
1093 }
1094
1095 static void cpu_4xx_pit_cb (void *opaque)
1096 {
1097 PowerPCCPU *cpu;
1098 CPUPPCState *env;
1099 ppc_tb_t *tb_env;
1100 ppc40x_timer_t *ppc40x_timer;
1101
1102 env = opaque;
1103 cpu = ppc_env_get_cpu(env);
1104 tb_env = env->tb_env;
1105 ppc40x_timer = tb_env->opaque;
1106 env->spr[SPR_40x_TSR] |= 1 << 27;
1107 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1108 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1109 }
1110 start_stop_pit(env, tb_env, 1);
1111 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1112 "%016" PRIx64 "\n", __func__,
1113 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1114 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1115 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1116 ppc40x_timer->pit_reload);
1117 }
1118
1119 /* Watchdog timer */
1120 static void cpu_4xx_wdt_cb (void *opaque)
1121 {
1122 PowerPCCPU *cpu;
1123 CPUPPCState *env;
1124 ppc_tb_t *tb_env;
1125 ppc40x_timer_t *ppc40x_timer;
1126 uint64_t now, next;
1127
1128 env = opaque;
1129 cpu = ppc_env_get_cpu(env);
1130 tb_env = env->tb_env;
1131 ppc40x_timer = tb_env->opaque;
1132 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1133 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1134 case 0:
1135 next = 1 << 17;
1136 break;
1137 case 1:
1138 next = 1 << 21;
1139 break;
1140 case 2:
1141 next = 1 << 25;
1142 break;
1143 case 3:
1144 next = 1 << 29;
1145 break;
1146 default:
1147 /* Cannot occur, but makes gcc happy */
1148 return;
1149 }
1150 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1151 if (next == now)
1152 next++;
1153 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1154 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1155 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1156 case 0x0:
1157 case 0x1:
1158 timer_mod(ppc40x_timer->wdt_timer, next);
1159 ppc40x_timer->wdt_next = next;
1160 env->spr[SPR_40x_TSR] |= 1U << 31;
1161 break;
1162 case 0x2:
1163 timer_mod(ppc40x_timer->wdt_timer, next);
1164 ppc40x_timer->wdt_next = next;
1165 env->spr[SPR_40x_TSR] |= 1 << 30;
1166 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1167 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1168 }
1169 break;
1170 case 0x3:
1171 env->spr[SPR_40x_TSR] &= ~0x30000000;
1172 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1173 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1174 case 0x0:
1175 /* No reset */
1176 break;
1177 case 0x1: /* Core reset */
1178 ppc40x_core_reset(cpu);
1179 break;
1180 case 0x2: /* Chip reset */
1181 ppc40x_chip_reset(cpu);
1182 break;
1183 case 0x3: /* System reset */
1184 ppc40x_system_reset(cpu);
1185 break;
1186 }
1187 }
1188 }
1189
1190 void store_40x_pit (CPUPPCState *env, target_ulong val)
1191 {
1192 ppc_tb_t *tb_env;
1193 ppc40x_timer_t *ppc40x_timer;
1194
1195 tb_env = env->tb_env;
1196 ppc40x_timer = tb_env->opaque;
1197 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1198 ppc40x_timer->pit_reload = val;
1199 start_stop_pit(env, tb_env, 0);
1200 }
1201
1202 target_ulong load_40x_pit (CPUPPCState *env)
1203 {
1204 return cpu_ppc_load_decr(env);
1205 }
1206
1207 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1208 {
1209 CPUPPCState *env = opaque;
1210 ppc_tb_t *tb_env = env->tb_env;
1211
1212 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1213 freq);
1214 tb_env->tb_freq = freq;
1215 tb_env->decr_freq = freq;
1216 /* XXX: we should also update all timers */
1217 }
1218
1219 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1220 unsigned int decr_excp)
1221 {
1222 ppc_tb_t *tb_env;
1223 ppc40x_timer_t *ppc40x_timer;
1224
1225 tb_env = g_malloc0(sizeof(ppc_tb_t));
1226 env->tb_env = tb_env;
1227 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1228 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1229 tb_env->tb_freq = freq;
1230 tb_env->decr_freq = freq;
1231 tb_env->opaque = ppc40x_timer;
1232 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1233 if (ppc40x_timer != NULL) {
1234 /* We use decr timer for PIT */
1235 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1236 ppc40x_timer->fit_timer =
1237 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1238 ppc40x_timer->wdt_timer =
1239 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1240 ppc40x_timer->decr_excp = decr_excp;
1241 }
1242
1243 return &ppc_40x_set_tb_clk;
1244 }
1245
1246 /*****************************************************************************/
1247 /* Embedded PowerPC Device Control Registers */
1248 typedef struct ppc_dcrn_t ppc_dcrn_t;
1249 struct ppc_dcrn_t {
1250 dcr_read_cb dcr_read;
1251 dcr_write_cb dcr_write;
1252 void *opaque;
1253 };
1254
1255 /* XXX: on 460, DCR addresses are 32 bits wide,
1256 * using DCRIPR to get the 22 upper bits of the DCR address
1257 */
1258 #define DCRN_NB 1024
1259 struct ppc_dcr_t {
1260 ppc_dcrn_t dcrn[DCRN_NB];
1261 int (*read_error)(int dcrn);
1262 int (*write_error)(int dcrn);
1263 };
1264
1265 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1266 {
1267 ppc_dcrn_t *dcr;
1268
1269 if (dcrn < 0 || dcrn >= DCRN_NB)
1270 goto error;
1271 dcr = &dcr_env->dcrn[dcrn];
1272 if (dcr->dcr_read == NULL)
1273 goto error;
1274 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1275
1276 return 0;
1277
1278 error:
1279 if (dcr_env->read_error != NULL)
1280 return (*dcr_env->read_error)(dcrn);
1281
1282 return -1;
1283 }
1284
1285 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1286 {
1287 ppc_dcrn_t *dcr;
1288
1289 if (dcrn < 0 || dcrn >= DCRN_NB)
1290 goto error;
1291 dcr = &dcr_env->dcrn[dcrn];
1292 if (dcr->dcr_write == NULL)
1293 goto error;
1294 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1295
1296 return 0;
1297
1298 error:
1299 if (dcr_env->write_error != NULL)
1300 return (*dcr_env->write_error)(dcrn);
1301
1302 return -1;
1303 }
1304
1305 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1306 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1307 {
1308 ppc_dcr_t *dcr_env;
1309 ppc_dcrn_t *dcr;
1310
1311 dcr_env = env->dcr_env;
1312 if (dcr_env == NULL)
1313 return -1;
1314 if (dcrn < 0 || dcrn >= DCRN_NB)
1315 return -1;
1316 dcr = &dcr_env->dcrn[dcrn];
1317 if (dcr->opaque != NULL ||
1318 dcr->dcr_read != NULL ||
1319 dcr->dcr_write != NULL)
1320 return -1;
1321 dcr->opaque = opaque;
1322 dcr->dcr_read = dcr_read;
1323 dcr->dcr_write = dcr_write;
1324
1325 return 0;
1326 }
1327
1328 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1329 int (*write_error)(int dcrn))
1330 {
1331 ppc_dcr_t *dcr_env;
1332
1333 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1334 dcr_env->read_error = read_error;
1335 dcr_env->write_error = write_error;
1336 env->dcr_env = dcr_env;
1337
1338 return 0;
1339 }
1340
1341 /*****************************************************************************/
1342 /* Debug port */
1343 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1344 {
1345 addr &= 0xF;
1346 switch (addr) {
1347 case 0:
1348 printf("%c", val);
1349 break;
1350 case 1:
1351 printf("\n");
1352 fflush(stdout);
1353 break;
1354 case 2:
1355 printf("Set loglevel to %04" PRIx32 "\n", val);
1356 qemu_set_log(val | 0x100);
1357 break;
1358 }
1359 }
1360
1361 /* CPU device-tree ID helpers */
1362 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1363 {
1364 return cpu->cpu_dt_id;
1365 }
1366
1367 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1368 {
1369 CPUState *cs;
1370
1371 CPU_FOREACH(cs) {
1372 PowerPCCPU *cpu = POWERPC_CPU(cs);
1373
1374 if (cpu->cpu_dt_id == cpu_dt_id) {
1375 return cpu;
1376 }
1377 }
1378
1379 return NULL;
1380 }
1381
1382 void ppc_cpu_parse_features(const char *cpu_model)
1383 {
1384 CPUClass *cc;
1385 ObjectClass *oc;
1386 const char *typename;
1387 gchar **model_pieces;
1388
1389 model_pieces = g_strsplit(cpu_model, ",", 2);
1390 if (!model_pieces[0]) {
1391 error_report("Invalid/empty CPU model name");
1392 exit(1);
1393 }
1394
1395 oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1396 if (oc == NULL) {
1397 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1398 exit(1);
1399 }
1400
1401 typename = object_class_get_name(oc);
1402 cc = CPU_CLASS(oc);
1403 cc->parse_features(typename, model_pieces[1], &error_fatal);
1404 g_strfreev(model_pieces);
1405 }