]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40
41 static void cpu_ppc_tb_stop (CPUPPCState *env);
42 static void cpu_ppc_tb_start (CPUPPCState *env);
43
44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
45 {
46 CPUPPCState *env = &cpu->env;
47 unsigned int old_pending;
48
49 /* We may already have the BQL if coming from the reset path */
50 BQL_LOCK_GUARD();
51
52 old_pending = env->pending_interrupts;
53
54 if (level) {
55 env->pending_interrupts |= irq;
56 } else {
57 env->pending_interrupts &= ~irq;
58 }
59
60 if (old_pending != env->pending_interrupts) {
61 ppc_maybe_interrupt(env);
62 if (kvm_enabled()) {
63 kvmppc_set_interrupt(cpu, irq, level);
64 }
65 }
66
67 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
68 CPU(cpu)->interrupt_request);
69 }
70
71 /* PowerPC 6xx / 7xx internal IRQ controller */
72 static void ppc6xx_set_irq(void *opaque, int pin, int level)
73 {
74 PowerPCCPU *cpu = opaque;
75 CPUPPCState *env = &cpu->env;
76 int cur_level;
77
78 trace_ppc_irq_set(env, pin, level);
79
80 cur_level = (env->irq_input_state >> pin) & 1;
81 /* Don't generate spurious events */
82 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
83 CPUState *cs = CPU(cpu);
84
85 switch (pin) {
86 case PPC6xx_INPUT_TBEN:
87 /* Level sensitive - active high */
88 trace_ppc_irq_set_state("time base", level);
89 if (level) {
90 cpu_ppc_tb_start(env);
91 } else {
92 cpu_ppc_tb_stop(env);
93 }
94 break;
95 case PPC6xx_INPUT_INT:
96 /* Level sensitive - active high */
97 trace_ppc_irq_set_state("external IRQ", level);
98 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
99 break;
100 case PPC6xx_INPUT_SMI:
101 /* Level sensitive - active high */
102 trace_ppc_irq_set_state("SMI IRQ", level);
103 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
104 break;
105 case PPC6xx_INPUT_MCP:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
109 */
110 if (cur_level == 1 && level == 0) {
111 trace_ppc_irq_set_state("machine check", 1);
112 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
113 }
114 break;
115 case PPC6xx_INPUT_CKSTP_IN:
116 /* Level sensitive - active low */
117 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
118 /* XXX: Note that the only way to restart the CPU is to reset it */
119 if (level) {
120 trace_ppc_irq_cpu("stop");
121 cs->halted = 1;
122 }
123 break;
124 case PPC6xx_INPUT_HRESET:
125 /* Level sensitive - active low */
126 if (level) {
127 trace_ppc_irq_reset("CPU");
128 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
129 }
130 break;
131 case PPC6xx_INPUT_SRESET:
132 trace_ppc_irq_set_state("RESET IRQ", level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
134 break;
135 default:
136 g_assert_not_reached();
137 }
138 if (level)
139 env->irq_input_state |= 1 << pin;
140 else
141 env->irq_input_state &= ~(1 << pin);
142 }
143 }
144
145 void ppc6xx_irq_init(PowerPCCPU *cpu)
146 {
147 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
148 }
149
150 #if defined(TARGET_PPC64)
151 /* PowerPC 970 internal IRQ controller */
152 static void ppc970_set_irq(void *opaque, int pin, int level)
153 {
154 PowerPCCPU *cpu = opaque;
155 CPUPPCState *env = &cpu->env;
156 int cur_level;
157
158 trace_ppc_irq_set(env, pin, level);
159
160 cur_level = (env->irq_input_state >> pin) & 1;
161 /* Don't generate spurious events */
162 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
163 CPUState *cs = CPU(cpu);
164
165 switch (pin) {
166 case PPC970_INPUT_INT:
167 /* Level sensitive - active high */
168 trace_ppc_irq_set_state("external IRQ", level);
169 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
170 break;
171 case PPC970_INPUT_THINT:
172 /* Level sensitive - active high */
173 trace_ppc_irq_set_state("SMI IRQ", level);
174 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
175 break;
176 case PPC970_INPUT_MCP:
177 /* Negative edge sensitive */
178 /* XXX: TODO: actual reaction may depends on HID0 status
179 * 603/604/740/750: check HID0[EMCP]
180 */
181 if (cur_level == 1 && level == 0) {
182 trace_ppc_irq_set_state("machine check", 1);
183 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
184 }
185 break;
186 case PPC970_INPUT_CKSTP:
187 /* Level sensitive - active low */
188 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
189 if (level) {
190 trace_ppc_irq_cpu("stop");
191 cs->halted = 1;
192 } else {
193 trace_ppc_irq_cpu("restart");
194 cs->halted = 0;
195 qemu_cpu_kick(cs);
196 }
197 break;
198 case PPC970_INPUT_HRESET:
199 /* Level sensitive - active low */
200 if (level) {
201 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
202 }
203 break;
204 case PPC970_INPUT_SRESET:
205 trace_ppc_irq_set_state("RESET IRQ", level);
206 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
207 break;
208 case PPC970_INPUT_TBEN:
209 trace_ppc_irq_set_state("TBEN IRQ", level);
210 /* XXX: TODO */
211 break;
212 default:
213 g_assert_not_reached();
214 }
215 if (level)
216 env->irq_input_state |= 1 << pin;
217 else
218 env->irq_input_state &= ~(1 << pin);
219 }
220 }
221
222 void ppc970_irq_init(PowerPCCPU *cpu)
223 {
224 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
225 }
226
227 /* POWER7 internal IRQ controller */
228 static void power7_set_irq(void *opaque, int pin, int level)
229 {
230 PowerPCCPU *cpu = opaque;
231
232 trace_ppc_irq_set(&cpu->env, pin, level);
233
234 switch (pin) {
235 case POWER7_INPUT_INT:
236 /* Level sensitive - active high */
237 trace_ppc_irq_set_state("external IRQ", level);
238 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
239 break;
240 default:
241 g_assert_not_reached();
242 }
243 }
244
245 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
246 {
247 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
248 }
249
250 /* POWER9 internal IRQ controller */
251 static void power9_set_irq(void *opaque, int pin, int level)
252 {
253 PowerPCCPU *cpu = opaque;
254
255 trace_ppc_irq_set(&cpu->env, pin, level);
256
257 switch (pin) {
258 case POWER9_INPUT_INT:
259 /* Level sensitive - active high */
260 trace_ppc_irq_set_state("external IRQ", level);
261 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
262 break;
263 case POWER9_INPUT_HINT:
264 /* Level sensitive - active high */
265 trace_ppc_irq_set_state("HV external IRQ", level);
266 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
267 break;
268 default:
269 g_assert_not_reached();
270 return;
271 }
272 }
273
274 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
275 {
276 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
277 }
278 #endif /* defined(TARGET_PPC64) */
279
280 void ppc40x_core_reset(PowerPCCPU *cpu)
281 {
282 CPUPPCState *env = &cpu->env;
283 target_ulong dbsr;
284
285 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
286 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
287 dbsr = env->spr[SPR_40x_DBSR];
288 dbsr &= ~0x00000300;
289 dbsr |= 0x00000100;
290 env->spr[SPR_40x_DBSR] = dbsr;
291 }
292
293 void ppc40x_chip_reset(PowerPCCPU *cpu)
294 {
295 CPUPPCState *env = &cpu->env;
296 target_ulong dbsr;
297
298 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
299 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
300 /* XXX: TODO reset all internal peripherals */
301 dbsr = env->spr[SPR_40x_DBSR];
302 dbsr &= ~0x00000300;
303 dbsr |= 0x00000200;
304 env->spr[SPR_40x_DBSR] = dbsr;
305 }
306
307 void ppc40x_system_reset(PowerPCCPU *cpu)
308 {
309 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
310 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
311 }
312
313 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
314 {
315 PowerPCCPU *cpu = env_archcpu(env);
316
317 bql_lock();
318
319 switch ((val >> 28) & 0x3) {
320 case 0x0:
321 /* No action */
322 break;
323 case 0x1:
324 /* Core reset */
325 ppc40x_core_reset(cpu);
326 break;
327 case 0x2:
328 /* Chip reset */
329 ppc40x_chip_reset(cpu);
330 break;
331 case 0x3:
332 /* System reset */
333 ppc40x_system_reset(cpu);
334 break;
335 }
336
337 bql_unlock();
338 }
339
340 /* PowerPC 40x internal IRQ controller */
341 static void ppc40x_set_irq(void *opaque, int pin, int level)
342 {
343 PowerPCCPU *cpu = opaque;
344 CPUPPCState *env = &cpu->env;
345 int cur_level;
346
347 trace_ppc_irq_set(env, pin, level);
348
349 cur_level = (env->irq_input_state >> pin) & 1;
350 /* Don't generate spurious events */
351 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
352 CPUState *cs = CPU(cpu);
353
354 switch (pin) {
355 case PPC40x_INPUT_RESET_SYS:
356 if (level) {
357 trace_ppc_irq_reset("system");
358 ppc40x_system_reset(cpu);
359 }
360 break;
361 case PPC40x_INPUT_RESET_CHIP:
362 if (level) {
363 trace_ppc_irq_reset("chip");
364 ppc40x_chip_reset(cpu);
365 }
366 break;
367 case PPC40x_INPUT_RESET_CORE:
368 /* XXX: TODO: update DBSR[MRR] */
369 if (level) {
370 trace_ppc_irq_reset("core");
371 ppc40x_core_reset(cpu);
372 }
373 break;
374 case PPC40x_INPUT_CINT:
375 /* Level sensitive - active high */
376 trace_ppc_irq_set_state("critical IRQ", level);
377 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
378 break;
379 case PPC40x_INPUT_INT:
380 /* Level sensitive - active high */
381 trace_ppc_irq_set_state("external IRQ", level);
382 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
383 break;
384 case PPC40x_INPUT_HALT:
385 /* Level sensitive - active low */
386 if (level) {
387 trace_ppc_irq_cpu("stop");
388 cs->halted = 1;
389 } else {
390 trace_ppc_irq_cpu("restart");
391 cs->halted = 0;
392 qemu_cpu_kick(cs);
393 }
394 break;
395 case PPC40x_INPUT_DEBUG:
396 /* Level sensitive - active high */
397 trace_ppc_irq_set_state("debug pin", level);
398 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
399 break;
400 default:
401 g_assert_not_reached();
402 }
403 if (level)
404 env->irq_input_state |= 1 << pin;
405 else
406 env->irq_input_state &= ~(1 << pin);
407 }
408 }
409
410 void ppc40x_irq_init(PowerPCCPU *cpu)
411 {
412 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
413 }
414
415 /* PowerPC E500 internal IRQ controller */
416 static void ppce500_set_irq(void *opaque, int pin, int level)
417 {
418 PowerPCCPU *cpu = opaque;
419 CPUPPCState *env = &cpu->env;
420 int cur_level;
421
422 trace_ppc_irq_set(env, pin, level);
423
424 cur_level = (env->irq_input_state >> pin) & 1;
425 /* Don't generate spurious events */
426 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
427 switch (pin) {
428 case PPCE500_INPUT_MCK:
429 if (level) {
430 trace_ppc_irq_reset("system");
431 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
432 }
433 break;
434 case PPCE500_INPUT_RESET_CORE:
435 if (level) {
436 trace_ppc_irq_reset("core");
437 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
438 }
439 break;
440 case PPCE500_INPUT_CINT:
441 /* Level sensitive - active high */
442 trace_ppc_irq_set_state("critical IRQ", level);
443 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
444 break;
445 case PPCE500_INPUT_INT:
446 /* Level sensitive - active high */
447 trace_ppc_irq_set_state("core IRQ", level);
448 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
449 break;
450 case PPCE500_INPUT_DEBUG:
451 /* Level sensitive - active high */
452 trace_ppc_irq_set_state("debug pin", level);
453 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
454 break;
455 default:
456 g_assert_not_reached();
457 }
458 if (level)
459 env->irq_input_state |= 1 << pin;
460 else
461 env->irq_input_state &= ~(1 << pin);
462 }
463 }
464
465 void ppce500_irq_init(PowerPCCPU *cpu)
466 {
467 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
468 }
469
470 /* Enable or Disable the E500 EPR capability */
471 void ppce500_set_mpic_proxy(bool enabled)
472 {
473 CPUState *cs;
474
475 CPU_FOREACH(cs) {
476 PowerPCCPU *cpu = POWERPC_CPU(cs);
477
478 cpu->env.mpic_proxy = enabled;
479 if (kvm_enabled()) {
480 kvmppc_set_mpic_proxy(cpu, enabled);
481 }
482 }
483 }
484
485 /*****************************************************************************/
486 /* PowerPC time base and decrementer emulation */
487
488 /*
489 * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
490 * TB ticks are arrived at by multiplying tb_freq then dividing by
491 * ns per second, and rounding down. TB ticks drive all clocks and
492 * timers in the target machine.
493 *
494 * Converting TB intervals to ns for the purpose of setting a
495 * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
496 * up. Rounding down could cause the timer to fire before the TB
497 * value has been reached.
498 */
499 static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
500 {
501 return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
502 }
503
504 /* virtual clock in TB ticks, not adjusted by TB offset */
505 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
506 {
507 return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
508 }
509
510 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
511 {
512 /* TB time in tb periods */
513 return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
514 }
515
516 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
517 {
518 ppc_tb_t *tb_env = env->tb_env;
519 uint64_t tb;
520
521 if (kvm_enabled()) {
522 return env->spr[SPR_TBL];
523 }
524
525 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
526 tb_env->tb_offset);
527 trace_ppc_tb_load(tb);
528
529 return tb;
530 }
531
532 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
533 {
534 ppc_tb_t *tb_env = env->tb_env;
535 uint64_t tb;
536
537 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
538 tb_env->tb_offset);
539 trace_ppc_tb_load(tb);
540
541 return tb >> 32;
542 }
543
544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
545 {
546 if (kvm_enabled()) {
547 return env->spr[SPR_TBU];
548 }
549
550 return _cpu_ppc_load_tbu(env);
551 }
552
553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
554 int64_t *tb_offsetp, uint64_t value)
555 {
556 *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
557
558 trace_ppc_tb_store(value, *tb_offsetp);
559 }
560
561 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
562 {
563 ppc_tb_t *tb_env = env->tb_env;
564 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
565 uint64_t tb;
566
567 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
568 tb &= 0xFFFFFFFF00000000ULL;
569 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
570 }
571
572 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
573 {
574 ppc_tb_t *tb_env = env->tb_env;
575 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
576 uint64_t tb;
577
578 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
579 tb &= 0x00000000FFFFFFFFULL;
580 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
581 ((uint64_t)value << 32) | tb);
582 }
583
584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
585 {
586 _cpu_ppc_store_tbu(env, value);
587 }
588
589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
590 {
591 ppc_tb_t *tb_env = env->tb_env;
592 uint64_t tb;
593
594 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
595 tb_env->atb_offset);
596 trace_ppc_tb_load(tb);
597
598 return tb;
599 }
600
601 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
602 {
603 ppc_tb_t *tb_env = env->tb_env;
604 uint64_t tb;
605
606 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
607 tb_env->atb_offset);
608 trace_ppc_tb_load(tb);
609
610 return tb >> 32;
611 }
612
613 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
614 {
615 ppc_tb_t *tb_env = env->tb_env;
616 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617 uint64_t tb;
618
619 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
620 tb &= 0xFFFFFFFF00000000ULL;
621 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
622 }
623
624 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
625 {
626 ppc_tb_t *tb_env = env->tb_env;
627 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628 uint64_t tb;
629
630 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
631 tb &= 0x00000000FFFFFFFFULL;
632 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
633 ((uint64_t)value << 32) | tb);
634 }
635
636 void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset)
637 {
638 env->tb_env->tb_offset += offset;
639 }
640
641 void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset)
642 {
643 env->tb_env->tb_offset -= offset;
644 }
645
646 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
647 {
648 ppc_tb_t *tb_env = env->tb_env;
649
650 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
651 tb_env->vtb_offset);
652 }
653
654 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
655 {
656 ppc_tb_t *tb_env = env->tb_env;
657
658 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659 &tb_env->vtb_offset, value);
660 }
661
662 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
663 {
664 ppc_tb_t *tb_env = env->tb_env;
665 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
666 uint64_t tb;
667
668 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
669 tb &= 0xFFFFFFUL;
670 tb |= (value & ~0xFFFFFFUL);
671 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
672 }
673
674 static void cpu_ppc_tb_stop (CPUPPCState *env)
675 {
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t tb, atb, vmclk;
678
679 /* If the time base is already frozen, do nothing */
680 if (tb_env->tb_freq != 0) {
681 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
682 /* Get the time base */
683 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
684 /* Get the alternate time base */
685 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
686 /* Store the time base value (ie compute the current offset) */
687 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
688 /* Store the alternate time base value (compute the current offset) */
689 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
690 /* Set the time base frequency to zero */
691 tb_env->tb_freq = 0;
692 /* Now, the time bases are frozen to tb_offset / atb_offset value */
693 }
694 }
695
696 static void cpu_ppc_tb_start (CPUPPCState *env)
697 {
698 ppc_tb_t *tb_env = env->tb_env;
699 uint64_t tb, atb, vmclk;
700
701 /* If the time base is not frozen, do nothing */
702 if (tb_env->tb_freq == 0) {
703 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
704 /* Get the time base from tb_offset */
705 tb = tb_env->tb_offset;
706 /* Get the alternate time base from atb_offset */
707 atb = tb_env->atb_offset;
708 /* Restore the tb frequency from the decrementer frequency */
709 tb_env->tb_freq = tb_env->decr_freq;
710 /* Store the time base value */
711 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
712 /* Store the alternate time base value */
713 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
714 }
715 }
716
717 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
718 {
719 ppc_tb_t *tb_env = env->tb_env;
720 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
721 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
722 }
723
724 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now,
725 uint64_t next)
726 {
727 ppc_tb_t *tb_env = env->tb_env;
728 uint64_t n;
729 int64_t decr;
730
731 n = ns_to_tb(tb_env->decr_freq, now);
732 if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
733 decr = 0;
734 } else {
735 decr = next - n;
736 }
737
738 trace_ppc_decr_load(decr);
739
740 return decr;
741 }
742
743 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now)
744 {
745 ppc_tb_t *tb_env = env->tb_env;
746 uint64_t decr;
747
748 decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next);
749
750 /*
751 * If large decrementer is enabled then the decrementer is signed extended
752 * to 64 bits, otherwise it is a 32 bit value.
753 */
754 if (env->spr[SPR_LPCR] & LPCR_LD) {
755 PowerPCCPU *cpu = env_archcpu(env);
756 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
757 return sextract64(decr, 0, pcc->lrg_decr_bits);
758 }
759 return (uint32_t) decr;
760 }
761
762 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
763 {
764 if (kvm_enabled()) {
765 return env->spr[SPR_DECR];
766 } else {
767 return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
768 }
769 }
770
771 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now)
772 {
773 PowerPCCPU *cpu = env_archcpu(env);
774 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
775 ppc_tb_t *tb_env = env->tb_env;
776 uint64_t hdecr;
777
778 hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next);
779
780 /*
781 * If we have a large decrementer (POWER9 or later) then hdecr is sign
782 * extended to 64 bits, otherwise it is 32 bits.
783 */
784 if (pcc->lrg_decr_bits > 32) {
785 return sextract64(hdecr, 0, pcc->lrg_decr_bits);
786 }
787 return (uint32_t) hdecr;
788 }
789
790 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
791 {
792 return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
793 }
794
795 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
796 {
797 ppc_tb_t *tb_env = env->tb_env;
798
799 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
800 tb_env->purr_offset);
801 }
802
803 /* When decrementer expires,
804 * all we need to do is generate or queue a CPU exception
805 */
806 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
807 {
808 /* Raise it */
809 trace_ppc_decr_excp("raise");
810 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
811 }
812
813 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
814 {
815 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
816 }
817
818 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
819 {
820 CPUPPCState *env = &cpu->env;
821
822 /* Raise it */
823 trace_ppc_decr_excp("raise HV");
824
825 /* The architecture specifies that we don't deliver HDEC
826 * interrupts in a PM state. Not only they don't cause a
827 * wakeup but they also get effectively discarded.
828 */
829 if (!env->resume_as_sreset) {
830 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
831 }
832 }
833
834 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
835 {
836 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
837 }
838
839 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp,
840 QEMUTimer *timer,
841 void (*raise_excp)(void *),
842 void (*lower_excp)(PowerPCCPU *),
843 uint32_t flags, target_ulong decr,
844 target_ulong value, int nr_bits)
845 {
846 CPUPPCState *env = &cpu->env;
847 ppc_tb_t *tb_env = env->tb_env;
848 uint64_t next;
849 int64_t signed_value;
850 int64_t signed_decr;
851
852 /* Truncate value to decr_width and sign extend for simplicity */
853 value = extract64(value, 0, nr_bits);
854 decr = extract64(decr, 0, nr_bits);
855 signed_value = sextract64(value, 0, nr_bits);
856 signed_decr = sextract64(decr, 0, nr_bits);
857
858 trace_ppc_decr_store(nr_bits, decr, value);
859
860 /*
861 * Calculate the next decrementer event and set a timer.
862 * decr_next is in timebase units to keep rounding simple. Note it is
863 * not adjusted by tb_offset because if TB changes via tb_offset changing,
864 * decrementer does not change, so not directly comparable with TB.
865 */
866 next = ns_to_tb(tb_env->decr_freq, now) + value;
867 *nextp = next; /* nextp is in timebase units */
868
869 /*
870 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
871 *
872 * On MSB level based DEC implementations the MSB always means the interrupt
873 * is pending, so raise it on those.
874 *
875 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
876 * an edge interrupt, so raise it here too.
877 */
878 if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
879 ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
880 && signed_decr >= 0)) {
881 (*raise_excp)(cpu);
882 return;
883 }
884
885 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
886 if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
887 (*lower_excp)(cpu);
888 }
889
890 /* Adjust timer */
891 timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
892 }
893
894 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now,
895 target_ulong decr, target_ulong value,
896 int nr_bits)
897 {
898 ppc_tb_t *tb_env = cpu->env.tb_env;
899
900 __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer,
901 tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
902 tb_env->flags, decr, value, nr_bits);
903 }
904
905 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
906 {
907 PowerPCCPU *cpu = env_archcpu(env);
908 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
909 int64_t now;
910 target_ulong decr;
911 int nr_bits = 32;
912
913 if (kvm_enabled()) {
914 /* KVM handles decrementer exceptions, we don't need our own timer */
915 return;
916 }
917
918 if (env->spr[SPR_LPCR] & LPCR_LD) {
919 nr_bits = pcc->lrg_decr_bits;
920 }
921
922 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
923 decr = _cpu_ppc_load_decr(env, now);
924 _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits);
925 }
926
927 static void cpu_ppc_decr_cb(void *opaque)
928 {
929 PowerPCCPU *cpu = opaque;
930
931 cpu_ppc_decr_excp(cpu);
932 }
933
934 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now,
935 target_ulong hdecr, target_ulong value,
936 int nr_bits)
937 {
938 ppc_tb_t *tb_env = cpu->env.tb_env;
939
940 if (tb_env->hdecr_timer != NULL) {
941 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
942 __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer,
943 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
944 PPC_DECR_UNDERFLOW_TRIGGERED,
945 hdecr, value, nr_bits);
946 }
947 }
948
949 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
950 {
951 PowerPCCPU *cpu = env_archcpu(env);
952 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
953 int64_t now;
954 target_ulong hdecr;
955
956 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
957 hdecr = _cpu_ppc_load_hdecr(env, now);
958 _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits);
959 }
960
961 static void cpu_ppc_hdecr_cb(void *opaque)
962 {
963 PowerPCCPU *cpu = opaque;
964
965 cpu_ppc_hdecr_excp(cpu);
966 }
967
968 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value)
969 {
970 ppc_tb_t *tb_env = env->tb_env;
971
972 cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value);
973 }
974
975 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
976 {
977 _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value);
978 }
979
980 static void timebase_save(PPCTimebase *tb)
981 {
982 uint64_t ticks = cpu_get_host_ticks();
983 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
984
985 if (!first_ppc_cpu->env.tb_env) {
986 error_report("No timebase object");
987 return;
988 }
989
990 if (replay_mode == REPLAY_MODE_NONE) {
991 /* not used anymore, we keep it for compatibility */
992 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
993 } else {
994 /* simpler for record-replay to avoid this event, compat not needed */
995 tb->time_of_the_day_ns = 0;
996 }
997
998 /*
999 * tb_offset is only expected to be changed by QEMU so
1000 * there is no need to update it from KVM here
1001 */
1002 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1003
1004 tb->runstate_paused =
1005 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
1006 }
1007
1008 static void timebase_load(PPCTimebase *tb)
1009 {
1010 CPUState *cpu;
1011 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1012 int64_t tb_off_adj, tb_off;
1013 unsigned long freq;
1014
1015 if (!first_ppc_cpu->env.tb_env) {
1016 error_report("No timebase object");
1017 return;
1018 }
1019
1020 freq = first_ppc_cpu->env.tb_env->tb_freq;
1021
1022 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1023
1024 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1025 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1026 (tb_off_adj - tb_off) / freq);
1027
1028 /* Set new offset to all CPUs */
1029 CPU_FOREACH(cpu) {
1030 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1031 pcpu->env.tb_env->tb_offset = tb_off_adj;
1032 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1033 }
1034 }
1035
1036 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1037 RunState state)
1038 {
1039 PPCTimebase *tb = opaque;
1040
1041 if (running) {
1042 timebase_load(tb);
1043 } else {
1044 timebase_save(tb);
1045 }
1046 }
1047
1048 /*
1049 * When migrating a running guest, read the clock just
1050 * before migration, so that the guest clock counts
1051 * during the events between:
1052 *
1053 * * vm_stop()
1054 * *
1055 * * pre_save()
1056 *
1057 * This reduces clock difference on migration from 5s
1058 * to 0.1s (when max_downtime == 5s), because sending the
1059 * final pages of memory (which happens between vm_stop()
1060 * and pre_save()) takes max_downtime.
1061 */
1062 static int timebase_pre_save(void *opaque)
1063 {
1064 PPCTimebase *tb = opaque;
1065
1066 /* guest_timebase won't be overridden in case of paused guest or savevm */
1067 if (!tb->runstate_paused) {
1068 timebase_save(tb);
1069 }
1070
1071 return 0;
1072 }
1073
1074 const VMStateDescription vmstate_ppc_timebase = {
1075 .name = "timebase",
1076 .version_id = 1,
1077 .minimum_version_id = 1,
1078 .pre_save = timebase_pre_save,
1079 .fields = (const VMStateField []) {
1080 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1081 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1082 VMSTATE_END_OF_LIST()
1083 },
1084 };
1085
1086 /* Set up (once) timebase frequency (in Hz) */
1087 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
1088 {
1089 PowerPCCPU *cpu = env_archcpu(env);
1090 ppc_tb_t *tb_env;
1091
1092 tb_env = g_new0(ppc_tb_t, 1);
1093 env->tb_env = tb_env;
1094 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1095 if (is_book3s_arch2x(env)) {
1096 /* All Book3S 64bit CPUs implement level based DEC logic */
1097 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1098 }
1099 /* Create new timer */
1100 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1101 &cpu_ppc_decr_cb, cpu);
1102 if (env->has_hv_mode && !cpu->vhyp) {
1103 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1104 &cpu_ppc_hdecr_cb, cpu);
1105 } else {
1106 tb_env->hdecr_timer = NULL;
1107 }
1108
1109 tb_env->tb_freq = freq;
1110 tb_env->decr_freq = freq;
1111 }
1112
1113 void cpu_ppc_tb_reset(CPUPPCState *env)
1114 {
1115 PowerPCCPU *cpu = env_archcpu(env);
1116 ppc_tb_t *tb_env = env->tb_env;
1117
1118 timer_del(tb_env->decr_timer);
1119 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
1120 tb_env->decr_next = 0;
1121 if (tb_env->hdecr_timer != NULL) {
1122 timer_del(tb_env->hdecr_timer);
1123 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
1124 tb_env->hdecr_next = 0;
1125 }
1126
1127 /*
1128 * There is a bug in Linux 2.4 kernels:
1129 * if a decrementer exception is pending when it enables msr_ee at startup,
1130 * it's not ready to handle it...
1131 */
1132 cpu_ppc_store_decr(env, -1);
1133 cpu_ppc_store_hdecr(env, -1);
1134 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1135 }
1136
1137 void cpu_ppc_tb_free(CPUPPCState *env)
1138 {
1139 timer_free(env->tb_env->decr_timer);
1140 timer_free(env->tb_env->hdecr_timer);
1141 g_free(env->tb_env);
1142 }
1143
1144 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1145 void cpu_ppc_hdecr_init(CPUPPCState *env)
1146 {
1147 PowerPCCPU *cpu = env_archcpu(env);
1148
1149 assert(env->tb_env->hdecr_timer == NULL);
1150
1151 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1152 &cpu_ppc_hdecr_cb, cpu);
1153 }
1154
1155 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1156 {
1157 PowerPCCPU *cpu = env_archcpu(env);
1158
1159 timer_free(env->tb_env->hdecr_timer);
1160 env->tb_env->hdecr_timer = NULL;
1161
1162 cpu_ppc_hdecr_lower(cpu);
1163 }
1164
1165 /*****************************************************************************/
1166 /* PowerPC 40x timers */
1167
1168 /* PIT, FIT & WDT */
1169 typedef struct ppc40x_timer_t ppc40x_timer_t;
1170 struct ppc40x_timer_t {
1171 uint64_t pit_reload; /* PIT auto-reload value */
1172 uint64_t fit_next; /* Tick for next FIT interrupt */
1173 QEMUTimer *fit_timer;
1174 uint64_t wdt_next; /* Tick for next WDT interrupt */
1175 QEMUTimer *wdt_timer;
1176
1177 /* 405 have the PIT, 440 have a DECR. */
1178 unsigned int decr_excp;
1179 };
1180
1181 /* Fixed interval timer */
1182 static void cpu_4xx_fit_cb (void *opaque)
1183 {
1184 PowerPCCPU *cpu = opaque;
1185 CPUPPCState *env = &cpu->env;
1186 ppc_tb_t *tb_env;
1187 ppc40x_timer_t *ppc40x_timer;
1188 uint64_t now, next;
1189
1190 tb_env = env->tb_env;
1191 ppc40x_timer = tb_env->opaque;
1192 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1193 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1194 case 0:
1195 next = 1 << 9;
1196 break;
1197 case 1:
1198 next = 1 << 13;
1199 break;
1200 case 2:
1201 next = 1 << 17;
1202 break;
1203 case 3:
1204 next = 1 << 21;
1205 break;
1206 default:
1207 /* Cannot occur, but makes gcc happy */
1208 return;
1209 }
1210 next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
1211 timer_mod(ppc40x_timer->fit_timer, next);
1212 env->spr[SPR_40x_TSR] |= 1 << 26;
1213 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1214 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1215 }
1216 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1217 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1218 }
1219
1220 /* Programmable interval timer */
1221 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1222 {
1223 ppc40x_timer_t *ppc40x_timer;
1224 uint64_t now, next;
1225
1226 ppc40x_timer = tb_env->opaque;
1227 if (ppc40x_timer->pit_reload <= 1 ||
1228 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1229 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1230 /* Stop PIT */
1231 trace_ppc4xx_pit_stop();
1232 timer_del(tb_env->decr_timer);
1233 } else {
1234 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1235 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1236
1237 if (is_excp) {
1238 tb_env->decr_next += ppc40x_timer->pit_reload;
1239 } else {
1240 tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
1241 + ppc40x_timer->pit_reload;
1242 }
1243 next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
1244 timer_mod(tb_env->decr_timer, next);
1245 }
1246 }
1247
1248 static void cpu_4xx_pit_cb (void *opaque)
1249 {
1250 PowerPCCPU *cpu = opaque;
1251 CPUPPCState *env = &cpu->env;
1252 ppc_tb_t *tb_env;
1253 ppc40x_timer_t *ppc40x_timer;
1254
1255 tb_env = env->tb_env;
1256 ppc40x_timer = tb_env->opaque;
1257 env->spr[SPR_40x_TSR] |= 1 << 27;
1258 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1259 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1260 }
1261 start_stop_pit(env, tb_env, 1);
1262 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1263 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1264 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1265 ppc40x_timer->pit_reload);
1266 }
1267
1268 /* Watchdog timer */
1269 static void cpu_4xx_wdt_cb (void *opaque)
1270 {
1271 PowerPCCPU *cpu = opaque;
1272 CPUPPCState *env = &cpu->env;
1273 ppc_tb_t *tb_env;
1274 ppc40x_timer_t *ppc40x_timer;
1275 uint64_t now, next;
1276
1277 tb_env = env->tb_env;
1278 ppc40x_timer = tb_env->opaque;
1279 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1280 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1281 case 0:
1282 next = 1 << 17;
1283 break;
1284 case 1:
1285 next = 1 << 21;
1286 break;
1287 case 2:
1288 next = 1 << 25;
1289 break;
1290 case 3:
1291 next = 1 << 29;
1292 break;
1293 default:
1294 /* Cannot occur, but makes gcc happy */
1295 return;
1296 }
1297 next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
1298 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1299 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1300 case 0x0:
1301 case 0x1:
1302 timer_mod(ppc40x_timer->wdt_timer, next);
1303 ppc40x_timer->wdt_next = next;
1304 env->spr[SPR_40x_TSR] |= 1U << 31;
1305 break;
1306 case 0x2:
1307 timer_mod(ppc40x_timer->wdt_timer, next);
1308 ppc40x_timer->wdt_next = next;
1309 env->spr[SPR_40x_TSR] |= 1 << 30;
1310 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1311 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1312 }
1313 break;
1314 case 0x3:
1315 env->spr[SPR_40x_TSR] &= ~0x30000000;
1316 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1317 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1318 case 0x0:
1319 /* No reset */
1320 break;
1321 case 0x1: /* Core reset */
1322 ppc40x_core_reset(cpu);
1323 break;
1324 case 0x2: /* Chip reset */
1325 ppc40x_chip_reset(cpu);
1326 break;
1327 case 0x3: /* System reset */
1328 ppc40x_system_reset(cpu);
1329 break;
1330 }
1331 }
1332 }
1333
1334 void store_40x_pit (CPUPPCState *env, target_ulong val)
1335 {
1336 ppc_tb_t *tb_env;
1337 ppc40x_timer_t *ppc40x_timer;
1338
1339 tb_env = env->tb_env;
1340 ppc40x_timer = tb_env->opaque;
1341 trace_ppc40x_store_pit(val);
1342 ppc40x_timer->pit_reload = val;
1343 start_stop_pit(env, tb_env, 0);
1344 }
1345
1346 target_ulong load_40x_pit (CPUPPCState *env)
1347 {
1348 return cpu_ppc_load_decr(env);
1349 }
1350
1351 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1352 {
1353 PowerPCCPU *cpu = env_archcpu(env);
1354
1355 trace_ppc40x_store_tcr(val);
1356
1357 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1358 if (val & 0x80000000) {
1359 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1360 }
1361 }
1362
1363 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1364 {
1365 PowerPCCPU *cpu = env_archcpu(env);
1366 ppc_tb_t *tb_env;
1367
1368 trace_ppc40x_store_tsr(val);
1369
1370 tb_env = env->tb_env;
1371 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1372 start_stop_pit(env, tb_env, 1);
1373 cpu_4xx_wdt_cb(cpu);
1374 }
1375
1376 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1377 {
1378 CPUPPCState *env = opaque;
1379 ppc_tb_t *tb_env = env->tb_env;
1380
1381 trace_ppc40x_set_tb_clk(freq);
1382 tb_env->tb_freq = freq;
1383 tb_env->decr_freq = freq;
1384 /* XXX: we should also update all timers */
1385 }
1386
1387 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1388 unsigned int decr_excp)
1389 {
1390 ppc_tb_t *tb_env;
1391 ppc40x_timer_t *ppc40x_timer;
1392 PowerPCCPU *cpu = env_archcpu(env);
1393
1394 trace_ppc40x_timers_init(freq);
1395
1396 tb_env = g_new0(ppc_tb_t, 1);
1397 ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1398
1399 env->tb_env = tb_env;
1400 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1401 tb_env->tb_freq = freq;
1402 tb_env->decr_freq = freq;
1403 tb_env->opaque = ppc40x_timer;
1404
1405 /* We use decr timer for PIT */
1406 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1407 ppc40x_timer->fit_timer =
1408 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1409 ppc40x_timer->wdt_timer =
1410 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1411 ppc40x_timer->decr_excp = decr_excp;
1412
1413 return &ppc_40x_set_tb_clk;
1414 }
1415
1416 /*****************************************************************************/
1417 /* Embedded PowerPC Device Control Registers */
1418 typedef struct ppc_dcrn_t ppc_dcrn_t;
1419 struct ppc_dcrn_t {
1420 dcr_read_cb dcr_read;
1421 dcr_write_cb dcr_write;
1422 void *opaque;
1423 };
1424
1425 /* XXX: on 460, DCR addresses are 32 bits wide,
1426 * using DCRIPR to get the 22 upper bits of the DCR address
1427 */
1428 #define DCRN_NB 1024
1429 struct ppc_dcr_t {
1430 ppc_dcrn_t dcrn[DCRN_NB];
1431 int (*read_error)(int dcrn);
1432 int (*write_error)(int dcrn);
1433 };
1434
1435 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1436 {
1437 ppc_dcrn_t *dcr;
1438
1439 if (dcrn < 0 || dcrn >= DCRN_NB)
1440 goto error;
1441 dcr = &dcr_env->dcrn[dcrn];
1442 if (dcr->dcr_read == NULL)
1443 goto error;
1444 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1445 trace_ppc_dcr_read(dcrn, *valp);
1446
1447 return 0;
1448
1449 error:
1450 if (dcr_env->read_error != NULL)
1451 return (*dcr_env->read_error)(dcrn);
1452
1453 return -1;
1454 }
1455
1456 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1457 {
1458 ppc_dcrn_t *dcr;
1459
1460 if (dcrn < 0 || dcrn >= DCRN_NB)
1461 goto error;
1462 dcr = &dcr_env->dcrn[dcrn];
1463 if (dcr->dcr_write == NULL)
1464 goto error;
1465 trace_ppc_dcr_write(dcrn, val);
1466 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1467
1468 return 0;
1469
1470 error:
1471 if (dcr_env->write_error != NULL)
1472 return (*dcr_env->write_error)(dcrn);
1473
1474 return -1;
1475 }
1476
1477 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1478 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1479 {
1480 ppc_dcr_t *dcr_env;
1481 ppc_dcrn_t *dcr;
1482
1483 dcr_env = env->dcr_env;
1484 if (dcr_env == NULL)
1485 return -1;
1486 if (dcrn < 0 || dcrn >= DCRN_NB)
1487 return -1;
1488 dcr = &dcr_env->dcrn[dcrn];
1489 if (dcr->opaque != NULL ||
1490 dcr->dcr_read != NULL ||
1491 dcr->dcr_write != NULL)
1492 return -1;
1493 dcr->opaque = opaque;
1494 dcr->dcr_read = dcr_read;
1495 dcr->dcr_write = dcr_write;
1496
1497 return 0;
1498 }
1499
1500 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1501 int (*write_error)(int dcrn))
1502 {
1503 ppc_dcr_t *dcr_env;
1504
1505 dcr_env = g_new0(ppc_dcr_t, 1);
1506 dcr_env->read_error = read_error;
1507 dcr_env->write_error = write_error;
1508 env->dcr_env = dcr_env;
1509
1510 return 0;
1511 }
1512
1513 /*****************************************************************************/
1514
1515 int ppc_cpu_pir(PowerPCCPU *cpu)
1516 {
1517 CPUPPCState *env = &cpu->env;
1518 return env->spr_cb[SPR_PIR].default_value;
1519 }
1520
1521 int ppc_cpu_tir(PowerPCCPU *cpu)
1522 {
1523 CPUPPCState *env = &cpu->env;
1524 return env->spr_cb[SPR_TIR].default_value;
1525 }
1526
1527 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1528 {
1529 CPUState *cs;
1530
1531 CPU_FOREACH(cs) {
1532 PowerPCCPU *cpu = POWERPC_CPU(cs);
1533
1534 if (ppc_cpu_pir(cpu) == pir) {
1535 return cpu;
1536 }
1537 }
1538
1539 return NULL;
1540 }
1541
1542 void ppc_irq_reset(PowerPCCPU *cpu)
1543 {
1544 CPUPPCState *env = &cpu->env;
1545
1546 env->irq_input_state = 0;
1547 if (kvm_enabled()) {
1548 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1549 }
1550 }