]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
Merge remote-tracking branch 'remotes/agraf/tags/signed-ppc-for-upstream' into staging
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
31 #include "qemu/log.h"
32 #include "qemu/error-report.h"
33 #include "hw/loader.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "trace.h"
37
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
40
41 #ifdef PPC_DEBUG_IRQ
42 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43 #else
44 # define LOG_IRQ(...) do { } while (0)
45 #endif
46
47
48 #ifdef PPC_DEBUG_TB
49 # define LOG_TB(...) qemu_log(__VA_ARGS__)
50 #else
51 # define LOG_TB(...) do { } while (0)
52 #endif
53
54 #define NSEC_PER_SEC 1000000000LL
55
56 static void cpu_ppc_tb_stop (CPUPPCState *env);
57 static void cpu_ppc_tb_start (CPUPPCState *env);
58
59 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60 {
61 CPUState *cs = CPU(cpu);
62 CPUPPCState *env = &cpu->env;
63 unsigned int old_pending = env->pending_interrupts;
64
65 if (level) {
66 env->pending_interrupts |= 1 << n_IRQ;
67 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
68 } else {
69 env->pending_interrupts &= ~(1 << n_IRQ);
70 if (env->pending_interrupts == 0) {
71 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
72 }
73 }
74
75 if (old_pending != env->pending_interrupts) {
76 #ifdef CONFIG_KVM
77 kvmppc_set_interrupt(cpu, n_IRQ, level);
78 #endif
79 }
80
81 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
82 "req %08x\n", __func__, env, n_IRQ, level,
83 env->pending_interrupts, CPU(cpu)->interrupt_request);
84 }
85
86 /* PowerPC 6xx / 7xx internal IRQ controller */
87 static void ppc6xx_set_irq(void *opaque, int pin, int level)
88 {
89 PowerPCCPU *cpu = opaque;
90 CPUPPCState *env = &cpu->env;
91 int cur_level;
92
93 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
94 env, pin, level);
95 cur_level = (env->irq_input_state >> pin) & 1;
96 /* Don't generate spurious events */
97 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
98 CPUState *cs = CPU(cpu);
99
100 switch (pin) {
101 case PPC6xx_INPUT_TBEN:
102 /* Level sensitive - active high */
103 LOG_IRQ("%s: %s the time base\n",
104 __func__, level ? "start" : "stop");
105 if (level) {
106 cpu_ppc_tb_start(env);
107 } else {
108 cpu_ppc_tb_stop(env);
109 }
110 case PPC6xx_INPUT_INT:
111 /* Level sensitive - active high */
112 LOG_IRQ("%s: set the external IRQ state to %d\n",
113 __func__, level);
114 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
115 break;
116 case PPC6xx_INPUT_SMI:
117 /* Level sensitive - active high */
118 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
119 __func__, level);
120 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
121 break;
122 case PPC6xx_INPUT_MCP:
123 /* Negative edge sensitive */
124 /* XXX: TODO: actual reaction may depends on HID0 status
125 * 603/604/740/750: check HID0[EMCP]
126 */
127 if (cur_level == 1 && level == 0) {
128 LOG_IRQ("%s: raise machine check state\n",
129 __func__);
130 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
131 }
132 break;
133 case PPC6xx_INPUT_CKSTP_IN:
134 /* Level sensitive - active low */
135 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
136 /* XXX: Note that the only way to restart the CPU is to reset it */
137 if (level) {
138 LOG_IRQ("%s: stop the CPU\n", __func__);
139 cs->halted = 1;
140 }
141 break;
142 case PPC6xx_INPUT_HRESET:
143 /* Level sensitive - active low */
144 if (level) {
145 LOG_IRQ("%s: reset the CPU\n", __func__);
146 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
147 }
148 break;
149 case PPC6xx_INPUT_SRESET:
150 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
151 __func__, level);
152 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
153 break;
154 default:
155 /* Unknown pin - do nothing */
156 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
157 return;
158 }
159 if (level)
160 env->irq_input_state |= 1 << pin;
161 else
162 env->irq_input_state &= ~(1 << pin);
163 }
164 }
165
166 void ppc6xx_irq_init(CPUPPCState *env)
167 {
168 PowerPCCPU *cpu = ppc_env_get_cpu(env);
169
170 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
171 PPC6xx_INPUT_NB);
172 }
173
174 #if defined(TARGET_PPC64)
175 /* PowerPC 970 internal IRQ controller */
176 static void ppc970_set_irq(void *opaque, int pin, int level)
177 {
178 PowerPCCPU *cpu = opaque;
179 CPUPPCState *env = &cpu->env;
180 int cur_level;
181
182 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
183 env, pin, level);
184 cur_level = (env->irq_input_state >> pin) & 1;
185 /* Don't generate spurious events */
186 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
187 CPUState *cs = CPU(cpu);
188
189 switch (pin) {
190 case PPC970_INPUT_INT:
191 /* Level sensitive - active high */
192 LOG_IRQ("%s: set the external IRQ state to %d\n",
193 __func__, level);
194 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
195 break;
196 case PPC970_INPUT_THINT:
197 /* Level sensitive - active high */
198 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
199 level);
200 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
201 break;
202 case PPC970_INPUT_MCP:
203 /* Negative edge sensitive */
204 /* XXX: TODO: actual reaction may depends on HID0 status
205 * 603/604/740/750: check HID0[EMCP]
206 */
207 if (cur_level == 1 && level == 0) {
208 LOG_IRQ("%s: raise machine check state\n",
209 __func__);
210 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
211 }
212 break;
213 case PPC970_INPUT_CKSTP:
214 /* Level sensitive - active low */
215 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
216 if (level) {
217 LOG_IRQ("%s: stop the CPU\n", __func__);
218 cs->halted = 1;
219 } else {
220 LOG_IRQ("%s: restart the CPU\n", __func__);
221 cs->halted = 0;
222 qemu_cpu_kick(cs);
223 }
224 break;
225 case PPC970_INPUT_HRESET:
226 /* Level sensitive - active low */
227 if (level) {
228 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
229 }
230 break;
231 case PPC970_INPUT_SRESET:
232 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
233 __func__, level);
234 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
235 break;
236 case PPC970_INPUT_TBEN:
237 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
238 level);
239 /* XXX: TODO */
240 break;
241 default:
242 /* Unknown pin - do nothing */
243 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
244 return;
245 }
246 if (level)
247 env->irq_input_state |= 1 << pin;
248 else
249 env->irq_input_state &= ~(1 << pin);
250 }
251 }
252
253 void ppc970_irq_init(CPUPPCState *env)
254 {
255 PowerPCCPU *cpu = ppc_env_get_cpu(env);
256
257 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
258 PPC970_INPUT_NB);
259 }
260
261 /* POWER7 internal IRQ controller */
262 static void power7_set_irq(void *opaque, int pin, int level)
263 {
264 PowerPCCPU *cpu = opaque;
265 CPUPPCState *env = &cpu->env;
266
267 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
268 env, pin, level);
269
270 switch (pin) {
271 case POWER7_INPUT_INT:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the external IRQ state to %d\n",
274 __func__, level);
275 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
276 break;
277 default:
278 /* Unknown pin - do nothing */
279 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
280 return;
281 }
282 if (level) {
283 env->irq_input_state |= 1 << pin;
284 } else {
285 env->irq_input_state &= ~(1 << pin);
286 }
287 }
288
289 void ppcPOWER7_irq_init(CPUPPCState *env)
290 {
291 PowerPCCPU *cpu = ppc_env_get_cpu(env);
292
293 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
294 POWER7_INPUT_NB);
295 }
296 #endif /* defined(TARGET_PPC64) */
297
298 /* PowerPC 40x internal IRQ controller */
299 static void ppc40x_set_irq(void *opaque, int pin, int level)
300 {
301 PowerPCCPU *cpu = opaque;
302 CPUPPCState *env = &cpu->env;
303 int cur_level;
304
305 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
306 env, pin, level);
307 cur_level = (env->irq_input_state >> pin) & 1;
308 /* Don't generate spurious events */
309 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
310 CPUState *cs = CPU(cpu);
311
312 switch (pin) {
313 case PPC40x_INPUT_RESET_SYS:
314 if (level) {
315 LOG_IRQ("%s: reset the PowerPC system\n",
316 __func__);
317 ppc40x_system_reset(cpu);
318 }
319 break;
320 case PPC40x_INPUT_RESET_CHIP:
321 if (level) {
322 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
323 ppc40x_chip_reset(cpu);
324 }
325 break;
326 case PPC40x_INPUT_RESET_CORE:
327 /* XXX: TODO: update DBSR[MRR] */
328 if (level) {
329 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
330 ppc40x_core_reset(cpu);
331 }
332 break;
333 case PPC40x_INPUT_CINT:
334 /* Level sensitive - active high */
335 LOG_IRQ("%s: set the critical IRQ state to %d\n",
336 __func__, level);
337 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
338 break;
339 case PPC40x_INPUT_INT:
340 /* Level sensitive - active high */
341 LOG_IRQ("%s: set the external IRQ state to %d\n",
342 __func__, level);
343 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
344 break;
345 case PPC40x_INPUT_HALT:
346 /* Level sensitive - active low */
347 if (level) {
348 LOG_IRQ("%s: stop the CPU\n", __func__);
349 cs->halted = 1;
350 } else {
351 LOG_IRQ("%s: restart the CPU\n", __func__);
352 cs->halted = 0;
353 qemu_cpu_kick(cs);
354 }
355 break;
356 case PPC40x_INPUT_DEBUG:
357 /* Level sensitive - active high */
358 LOG_IRQ("%s: set the debug pin state to %d\n",
359 __func__, level);
360 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
361 break;
362 default:
363 /* Unknown pin - do nothing */
364 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
365 return;
366 }
367 if (level)
368 env->irq_input_state |= 1 << pin;
369 else
370 env->irq_input_state &= ~(1 << pin);
371 }
372 }
373
374 void ppc40x_irq_init(CPUPPCState *env)
375 {
376 PowerPCCPU *cpu = ppc_env_get_cpu(env);
377
378 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
379 cpu, PPC40x_INPUT_NB);
380 }
381
382 /* PowerPC E500 internal IRQ controller */
383 static void ppce500_set_irq(void *opaque, int pin, int level)
384 {
385 PowerPCCPU *cpu = opaque;
386 CPUPPCState *env = &cpu->env;
387 int cur_level;
388
389 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
390 env, pin, level);
391 cur_level = (env->irq_input_state >> pin) & 1;
392 /* Don't generate spurious events */
393 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
394 switch (pin) {
395 case PPCE500_INPUT_MCK:
396 if (level) {
397 LOG_IRQ("%s: reset the PowerPC system\n",
398 __func__);
399 qemu_system_reset_request();
400 }
401 break;
402 case PPCE500_INPUT_RESET_CORE:
403 if (level) {
404 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
405 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
406 }
407 break;
408 case PPCE500_INPUT_CINT:
409 /* Level sensitive - active high */
410 LOG_IRQ("%s: set the critical IRQ state to %d\n",
411 __func__, level);
412 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
413 break;
414 case PPCE500_INPUT_INT:
415 /* Level sensitive - active high */
416 LOG_IRQ("%s: set the core IRQ state to %d\n",
417 __func__, level);
418 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
419 break;
420 case PPCE500_INPUT_DEBUG:
421 /* Level sensitive - active high */
422 LOG_IRQ("%s: set the debug pin state to %d\n",
423 __func__, level);
424 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
425 break;
426 default:
427 /* Unknown pin - do nothing */
428 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
429 return;
430 }
431 if (level)
432 env->irq_input_state |= 1 << pin;
433 else
434 env->irq_input_state &= ~(1 << pin);
435 }
436 }
437
438 void ppce500_irq_init(CPUPPCState *env)
439 {
440 PowerPCCPU *cpu = ppc_env_get_cpu(env);
441
442 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
443 cpu, PPCE500_INPUT_NB);
444 }
445
446 /* Enable or Disable the E500 EPR capability */
447 void ppce500_set_mpic_proxy(bool enabled)
448 {
449 CPUState *cs;
450
451 CPU_FOREACH(cs) {
452 PowerPCCPU *cpu = POWERPC_CPU(cs);
453
454 cpu->env.mpic_proxy = enabled;
455 if (kvm_enabled()) {
456 kvmppc_set_mpic_proxy(cpu, enabled);
457 }
458 }
459 }
460
461 /*****************************************************************************/
462 /* PowerPC time base and decrementer emulation */
463
464 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
465 {
466 /* TB time in tb periods */
467 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
468 }
469
470 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
471 {
472 ppc_tb_t *tb_env = env->tb_env;
473 uint64_t tb;
474
475 if (kvm_enabled()) {
476 return env->spr[SPR_TBL];
477 }
478
479 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
480 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
481
482 return tb;
483 }
484
485 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
486 {
487 ppc_tb_t *tb_env = env->tb_env;
488 uint64_t tb;
489
490 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
491 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
492
493 return tb >> 32;
494 }
495
496 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
497 {
498 if (kvm_enabled()) {
499 return env->spr[SPR_TBU];
500 }
501
502 return _cpu_ppc_load_tbu(env);
503 }
504
505 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
506 int64_t *tb_offsetp, uint64_t value)
507 {
508 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
509 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
510 __func__, value, *tb_offsetp);
511 }
512
513 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
514 {
515 ppc_tb_t *tb_env = env->tb_env;
516 uint64_t tb;
517
518 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
519 tb &= 0xFFFFFFFF00000000ULL;
520 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
521 &tb_env->tb_offset, tb | (uint64_t)value);
522 }
523
524 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
525 {
526 ppc_tb_t *tb_env = env->tb_env;
527 uint64_t tb;
528
529 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
530 tb &= 0x00000000FFFFFFFFULL;
531 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
532 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
533 }
534
535 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
536 {
537 _cpu_ppc_store_tbu(env, value);
538 }
539
540 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
541 {
542 ppc_tb_t *tb_env = env->tb_env;
543 uint64_t tb;
544
545 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
546 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
547
548 return tb;
549 }
550
551 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
552 {
553 ppc_tb_t *tb_env = env->tb_env;
554 uint64_t tb;
555
556 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
557 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
558
559 return tb >> 32;
560 }
561
562 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
563 {
564 ppc_tb_t *tb_env = env->tb_env;
565 uint64_t tb;
566
567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
568 tb &= 0xFFFFFFFF00000000ULL;
569 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
570 &tb_env->atb_offset, tb | (uint64_t)value);
571 }
572
573 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
574 {
575 ppc_tb_t *tb_env = env->tb_env;
576 uint64_t tb;
577
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
579 tb &= 0x00000000FFFFFFFFULL;
580 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
581 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
582 }
583
584 static void cpu_ppc_tb_stop (CPUPPCState *env)
585 {
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb, atb, vmclk;
588
589 /* If the time base is already frozen, do nothing */
590 if (tb_env->tb_freq != 0) {
591 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
592 /* Get the time base */
593 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
594 /* Get the alternate time base */
595 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
596 /* Store the time base value (ie compute the current offset) */
597 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
598 /* Store the alternate time base value (compute the current offset) */
599 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
600 /* Set the time base frequency to zero */
601 tb_env->tb_freq = 0;
602 /* Now, the time bases are frozen to tb_offset / atb_offset value */
603 }
604 }
605
606 static void cpu_ppc_tb_start (CPUPPCState *env)
607 {
608 ppc_tb_t *tb_env = env->tb_env;
609 uint64_t tb, atb, vmclk;
610
611 /* If the time base is not frozen, do nothing */
612 if (tb_env->tb_freq == 0) {
613 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614 /* Get the time base from tb_offset */
615 tb = tb_env->tb_offset;
616 /* Get the alternate time base from atb_offset */
617 atb = tb_env->atb_offset;
618 /* Restore the tb frequency from the decrementer frequency */
619 tb_env->tb_freq = tb_env->decr_freq;
620 /* Store the time base value */
621 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
622 /* Store the alternate time base value */
623 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
624 }
625 }
626
627 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
628 {
629 ppc_tb_t *tb_env = env->tb_env;
630 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
631 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
632 }
633
634 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
635 {
636 ppc_tb_t *tb_env = env->tb_env;
637 uint32_t decr;
638 int64_t diff;
639
640 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
641 if (diff >= 0) {
642 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
643 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
644 decr = 0;
645 } else {
646 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
647 }
648 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
649
650 return decr;
651 }
652
653 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
654 {
655 ppc_tb_t *tb_env = env->tb_env;
656
657 if (kvm_enabled()) {
658 return env->spr[SPR_DECR];
659 }
660
661 return _cpu_ppc_load_decr(env, tb_env->decr_next);
662 }
663
664 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
665 {
666 ppc_tb_t *tb_env = env->tb_env;
667
668 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
669 }
670
671 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
672 {
673 ppc_tb_t *tb_env = env->tb_env;
674 uint64_t diff;
675
676 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
677
678 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
679 }
680
681 /* When decrementer expires,
682 * all we need to do is generate or queue a CPU exception
683 */
684 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
685 {
686 /* Raise it */
687 LOG_TB("raise decrementer exception\n");
688 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
689 }
690
691 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
692 {
693 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
694 }
695
696 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
697 {
698 /* Raise it */
699 LOG_TB("raise decrementer exception\n");
700 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
701 }
702
703 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
704 {
705 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
706 }
707
708 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
709 QEMUTimer *timer,
710 void (*raise_excp)(void *),
711 void (*lower_excp)(PowerPCCPU *),
712 uint32_t decr, uint32_t value)
713 {
714 CPUPPCState *env = &cpu->env;
715 ppc_tb_t *tb_env = env->tb_env;
716 uint64_t now, next;
717
718 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
719 decr, value);
720
721 if (kvm_enabled()) {
722 /* KVM handles decrementer exceptions, we don't need our own timer */
723 return;
724 }
725
726 /*
727 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
728 * interrupt.
729 *
730 * If we get a really small DEC value, we can assume that by the time we
731 * handled it we should inject an interrupt already.
732 *
733 * On MSB level based DEC implementations the MSB always means the interrupt
734 * is pending, so raise it on those.
735 *
736 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
737 * an edge interrupt, so raise it here too.
738 */
739 if ((value < 3) ||
740 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
741 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
742 && !(decr & 0x80000000))) {
743 (*raise_excp)(cpu);
744 return;
745 }
746
747 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
748 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
749 (*lower_excp)(cpu);
750 }
751
752 /* Calculate the next timer event */
753 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
754 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
755 *nextp = next;
756
757 /* Adjust timer */
758 timer_mod(timer, next);
759 }
760
761 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
762 uint32_t value)
763 {
764 ppc_tb_t *tb_env = cpu->env.tb_env;
765
766 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
767 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
768 value);
769 }
770
771 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
772 {
773 PowerPCCPU *cpu = ppc_env_get_cpu(env);
774
775 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
776 }
777
778 static void cpu_ppc_decr_cb(void *opaque)
779 {
780 PowerPCCPU *cpu = opaque;
781
782 cpu_ppc_decr_excp(cpu);
783 }
784
785 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
786 uint32_t value)
787 {
788 ppc_tb_t *tb_env = cpu->env.tb_env;
789
790 if (tb_env->hdecr_timer != NULL) {
791 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
792 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
793 hdecr, value);
794 }
795 }
796
797 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
798 {
799 PowerPCCPU *cpu = ppc_env_get_cpu(env);
800
801 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
802 }
803
804 static void cpu_ppc_hdecr_cb(void *opaque)
805 {
806 PowerPCCPU *cpu = opaque;
807
808 cpu_ppc_hdecr_excp(cpu);
809 }
810
811 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
812 {
813 ppc_tb_t *tb_env = cpu->env.tb_env;
814
815 tb_env->purr_load = value;
816 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
817 }
818
819 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
820 {
821 CPUPPCState *env = opaque;
822 PowerPCCPU *cpu = ppc_env_get_cpu(env);
823 ppc_tb_t *tb_env = env->tb_env;
824
825 tb_env->tb_freq = freq;
826 tb_env->decr_freq = freq;
827 /* There is a bug in Linux 2.4 kernels:
828 * if a decrementer exception is pending when it enables msr_ee at startup,
829 * it's not ready to handle it...
830 */
831 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
832 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
833 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
834 }
835
836 static void timebase_pre_save(void *opaque)
837 {
838 PPCTimebase *tb = opaque;
839 uint64_t ticks = cpu_get_real_ticks();
840 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
841
842 if (!first_ppc_cpu->env.tb_env) {
843 error_report("No timebase object");
844 return;
845 }
846
847 tb->time_of_the_day_ns = get_clock_realtime();
848 /*
849 * tb_offset is only expected to be changed by migration so
850 * there is no need to update it from KVM here
851 */
852 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
853 }
854
855 static int timebase_post_load(void *opaque, int version_id)
856 {
857 PPCTimebase *tb_remote = opaque;
858 CPUState *cpu;
859 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
860 int64_t tb_off_adj, tb_off, ns_diff;
861 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
862 unsigned long freq;
863
864 if (!first_ppc_cpu->env.tb_env) {
865 error_report("No timebase object");
866 return -1;
867 }
868
869 freq = first_ppc_cpu->env.tb_env->tb_freq;
870 /*
871 * Calculate timebase on the destination side of migration.
872 * The destination timebase must be not less than the source timebase.
873 * We try to adjust timebase by downtime if host clocks are not
874 * too much out of sync (1 second for now).
875 */
876 host_ns = get_clock_realtime();
877 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
878 migration_duration_ns = MIN(NSEC_PER_SEC, ns_diff);
879 migration_duration_tb = muldiv64(migration_duration_ns, freq, NSEC_PER_SEC);
880 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
881
882 tb_off_adj = guest_tb - cpu_get_real_ticks();
883
884 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
885 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
886 (tb_off_adj - tb_off) / freq);
887
888 /* Set new offset to all CPUs */
889 CPU_FOREACH(cpu) {
890 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
891 pcpu->env.tb_env->tb_offset = tb_off_adj;
892 }
893
894 return 0;
895 }
896
897 const VMStateDescription vmstate_ppc_timebase = {
898 .name = "timebase",
899 .version_id = 1,
900 .minimum_version_id = 1,
901 .minimum_version_id_old = 1,
902 .pre_save = timebase_pre_save,
903 .post_load = timebase_post_load,
904 .fields = (VMStateField []) {
905 VMSTATE_UINT64(guest_timebase, PPCTimebase),
906 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
907 VMSTATE_END_OF_LIST()
908 },
909 };
910
911 /* Set up (once) timebase frequency (in Hz) */
912 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
913 {
914 PowerPCCPU *cpu = ppc_env_get_cpu(env);
915 ppc_tb_t *tb_env;
916
917 tb_env = g_malloc0(sizeof(ppc_tb_t));
918 env->tb_env = tb_env;
919 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
920 if (env->insns_flags & PPC_SEGMENT_64B) {
921 /* All Book3S 64bit CPUs implement level based DEC logic */
922 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
923 }
924 /* Create new timer */
925 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
926 if (0) {
927 /* XXX: find a suitable condition to enable the hypervisor decrementer
928 */
929 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
930 cpu);
931 } else {
932 tb_env->hdecr_timer = NULL;
933 }
934 cpu_ppc_set_tb_clk(env, freq);
935
936 return &cpu_ppc_set_tb_clk;
937 }
938
939 /* Specific helpers for POWER & PowerPC 601 RTC */
940 #if 0
941 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
942 {
943 return cpu_ppc_tb_init(env, 7812500);
944 }
945 #endif
946
947 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
948 {
949 _cpu_ppc_store_tbu(env, value);
950 }
951
952 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
953 {
954 return _cpu_ppc_load_tbu(env);
955 }
956
957 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
958 {
959 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
960 }
961
962 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
963 {
964 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
965 }
966
967 /*****************************************************************************/
968 /* PowerPC 40x timers */
969
970 /* PIT, FIT & WDT */
971 typedef struct ppc40x_timer_t ppc40x_timer_t;
972 struct ppc40x_timer_t {
973 uint64_t pit_reload; /* PIT auto-reload value */
974 uint64_t fit_next; /* Tick for next FIT interrupt */
975 QEMUTimer *fit_timer;
976 uint64_t wdt_next; /* Tick for next WDT interrupt */
977 QEMUTimer *wdt_timer;
978
979 /* 405 have the PIT, 440 have a DECR. */
980 unsigned int decr_excp;
981 };
982
983 /* Fixed interval timer */
984 static void cpu_4xx_fit_cb (void *opaque)
985 {
986 PowerPCCPU *cpu;
987 CPUPPCState *env;
988 ppc_tb_t *tb_env;
989 ppc40x_timer_t *ppc40x_timer;
990 uint64_t now, next;
991
992 env = opaque;
993 cpu = ppc_env_get_cpu(env);
994 tb_env = env->tb_env;
995 ppc40x_timer = tb_env->opaque;
996 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
997 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
998 case 0:
999 next = 1 << 9;
1000 break;
1001 case 1:
1002 next = 1 << 13;
1003 break;
1004 case 2:
1005 next = 1 << 17;
1006 break;
1007 case 3:
1008 next = 1 << 21;
1009 break;
1010 default:
1011 /* Cannot occur, but makes gcc happy */
1012 return;
1013 }
1014 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1015 if (next == now)
1016 next++;
1017 timer_mod(ppc40x_timer->fit_timer, next);
1018 env->spr[SPR_40x_TSR] |= 1 << 26;
1019 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1020 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1021 }
1022 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1023 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1024 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1025 }
1026
1027 /* Programmable interval timer */
1028 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1029 {
1030 ppc40x_timer_t *ppc40x_timer;
1031 uint64_t now, next;
1032
1033 ppc40x_timer = tb_env->opaque;
1034 if (ppc40x_timer->pit_reload <= 1 ||
1035 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1036 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1037 /* Stop PIT */
1038 LOG_TB("%s: stop PIT\n", __func__);
1039 timer_del(tb_env->decr_timer);
1040 } else {
1041 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1042 __func__, ppc40x_timer->pit_reload);
1043 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1044 next = now + muldiv64(ppc40x_timer->pit_reload,
1045 get_ticks_per_sec(), tb_env->decr_freq);
1046 if (is_excp)
1047 next += tb_env->decr_next - now;
1048 if (next == now)
1049 next++;
1050 timer_mod(tb_env->decr_timer, next);
1051 tb_env->decr_next = next;
1052 }
1053 }
1054
1055 static void cpu_4xx_pit_cb (void *opaque)
1056 {
1057 PowerPCCPU *cpu;
1058 CPUPPCState *env;
1059 ppc_tb_t *tb_env;
1060 ppc40x_timer_t *ppc40x_timer;
1061
1062 env = opaque;
1063 cpu = ppc_env_get_cpu(env);
1064 tb_env = env->tb_env;
1065 ppc40x_timer = tb_env->opaque;
1066 env->spr[SPR_40x_TSR] |= 1 << 27;
1067 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1068 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1069 }
1070 start_stop_pit(env, tb_env, 1);
1071 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1072 "%016" PRIx64 "\n", __func__,
1073 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1074 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1075 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1076 ppc40x_timer->pit_reload);
1077 }
1078
1079 /* Watchdog timer */
1080 static void cpu_4xx_wdt_cb (void *opaque)
1081 {
1082 PowerPCCPU *cpu;
1083 CPUPPCState *env;
1084 ppc_tb_t *tb_env;
1085 ppc40x_timer_t *ppc40x_timer;
1086 uint64_t now, next;
1087
1088 env = opaque;
1089 cpu = ppc_env_get_cpu(env);
1090 tb_env = env->tb_env;
1091 ppc40x_timer = tb_env->opaque;
1092 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1093 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1094 case 0:
1095 next = 1 << 17;
1096 break;
1097 case 1:
1098 next = 1 << 21;
1099 break;
1100 case 2:
1101 next = 1 << 25;
1102 break;
1103 case 3:
1104 next = 1 << 29;
1105 break;
1106 default:
1107 /* Cannot occur, but makes gcc happy */
1108 return;
1109 }
1110 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1111 if (next == now)
1112 next++;
1113 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1114 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1115 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1116 case 0x0:
1117 case 0x1:
1118 timer_mod(ppc40x_timer->wdt_timer, next);
1119 ppc40x_timer->wdt_next = next;
1120 env->spr[SPR_40x_TSR] |= 1U << 31;
1121 break;
1122 case 0x2:
1123 timer_mod(ppc40x_timer->wdt_timer, next);
1124 ppc40x_timer->wdt_next = next;
1125 env->spr[SPR_40x_TSR] |= 1 << 30;
1126 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1127 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1128 }
1129 break;
1130 case 0x3:
1131 env->spr[SPR_40x_TSR] &= ~0x30000000;
1132 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1133 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1134 case 0x0:
1135 /* No reset */
1136 break;
1137 case 0x1: /* Core reset */
1138 ppc40x_core_reset(cpu);
1139 break;
1140 case 0x2: /* Chip reset */
1141 ppc40x_chip_reset(cpu);
1142 break;
1143 case 0x3: /* System reset */
1144 ppc40x_system_reset(cpu);
1145 break;
1146 }
1147 }
1148 }
1149
1150 void store_40x_pit (CPUPPCState *env, target_ulong val)
1151 {
1152 ppc_tb_t *tb_env;
1153 ppc40x_timer_t *ppc40x_timer;
1154
1155 tb_env = env->tb_env;
1156 ppc40x_timer = tb_env->opaque;
1157 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1158 ppc40x_timer->pit_reload = val;
1159 start_stop_pit(env, tb_env, 0);
1160 }
1161
1162 target_ulong load_40x_pit (CPUPPCState *env)
1163 {
1164 return cpu_ppc_load_decr(env);
1165 }
1166
1167 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1168 {
1169 CPUPPCState *env = opaque;
1170 ppc_tb_t *tb_env = env->tb_env;
1171
1172 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1173 freq);
1174 tb_env->tb_freq = freq;
1175 tb_env->decr_freq = freq;
1176 /* XXX: we should also update all timers */
1177 }
1178
1179 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1180 unsigned int decr_excp)
1181 {
1182 ppc_tb_t *tb_env;
1183 ppc40x_timer_t *ppc40x_timer;
1184
1185 tb_env = g_malloc0(sizeof(ppc_tb_t));
1186 env->tb_env = tb_env;
1187 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1188 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1189 tb_env->tb_freq = freq;
1190 tb_env->decr_freq = freq;
1191 tb_env->opaque = ppc40x_timer;
1192 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1193 if (ppc40x_timer != NULL) {
1194 /* We use decr timer for PIT */
1195 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1196 ppc40x_timer->fit_timer =
1197 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1198 ppc40x_timer->wdt_timer =
1199 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1200 ppc40x_timer->decr_excp = decr_excp;
1201 }
1202
1203 return &ppc_40x_set_tb_clk;
1204 }
1205
1206 /*****************************************************************************/
1207 /* Embedded PowerPC Device Control Registers */
1208 typedef struct ppc_dcrn_t ppc_dcrn_t;
1209 struct ppc_dcrn_t {
1210 dcr_read_cb dcr_read;
1211 dcr_write_cb dcr_write;
1212 void *opaque;
1213 };
1214
1215 /* XXX: on 460, DCR addresses are 32 bits wide,
1216 * using DCRIPR to get the 22 upper bits of the DCR address
1217 */
1218 #define DCRN_NB 1024
1219 struct ppc_dcr_t {
1220 ppc_dcrn_t dcrn[DCRN_NB];
1221 int (*read_error)(int dcrn);
1222 int (*write_error)(int dcrn);
1223 };
1224
1225 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1226 {
1227 ppc_dcrn_t *dcr;
1228
1229 if (dcrn < 0 || dcrn >= DCRN_NB)
1230 goto error;
1231 dcr = &dcr_env->dcrn[dcrn];
1232 if (dcr->dcr_read == NULL)
1233 goto error;
1234 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1235
1236 return 0;
1237
1238 error:
1239 if (dcr_env->read_error != NULL)
1240 return (*dcr_env->read_error)(dcrn);
1241
1242 return -1;
1243 }
1244
1245 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1246 {
1247 ppc_dcrn_t *dcr;
1248
1249 if (dcrn < 0 || dcrn >= DCRN_NB)
1250 goto error;
1251 dcr = &dcr_env->dcrn[dcrn];
1252 if (dcr->dcr_write == NULL)
1253 goto error;
1254 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1255
1256 return 0;
1257
1258 error:
1259 if (dcr_env->write_error != NULL)
1260 return (*dcr_env->write_error)(dcrn);
1261
1262 return -1;
1263 }
1264
1265 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1266 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1267 {
1268 ppc_dcr_t *dcr_env;
1269 ppc_dcrn_t *dcr;
1270
1271 dcr_env = env->dcr_env;
1272 if (dcr_env == NULL)
1273 return -1;
1274 if (dcrn < 0 || dcrn >= DCRN_NB)
1275 return -1;
1276 dcr = &dcr_env->dcrn[dcrn];
1277 if (dcr->opaque != NULL ||
1278 dcr->dcr_read != NULL ||
1279 dcr->dcr_write != NULL)
1280 return -1;
1281 dcr->opaque = opaque;
1282 dcr->dcr_read = dcr_read;
1283 dcr->dcr_write = dcr_write;
1284
1285 return 0;
1286 }
1287
1288 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1289 int (*write_error)(int dcrn))
1290 {
1291 ppc_dcr_t *dcr_env;
1292
1293 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1294 dcr_env->read_error = read_error;
1295 dcr_env->write_error = write_error;
1296 env->dcr_env = dcr_env;
1297
1298 return 0;
1299 }
1300
1301 /*****************************************************************************/
1302 /* Debug port */
1303 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1304 {
1305 addr &= 0xF;
1306 switch (addr) {
1307 case 0:
1308 printf("%c", val);
1309 break;
1310 case 1:
1311 printf("\n");
1312 fflush(stdout);
1313 break;
1314 case 2:
1315 printf("Set loglevel to %04" PRIx32 "\n", val);
1316 qemu_set_log(val | 0x100);
1317 break;
1318 }
1319 }
1320
1321 /*****************************************************************************/
1322 /* NVRAM helpers */
1323 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1324 {
1325 return (*nvram->read_fn)(nvram->opaque, addr);
1326 }
1327
1328 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1329 {
1330 (*nvram->write_fn)(nvram->opaque, addr, val);
1331 }
1332
1333 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1334 {
1335 nvram_write(nvram, addr, value);
1336 }
1337
1338 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1339 {
1340 return nvram_read(nvram, addr);
1341 }
1342
1343 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1344 {
1345 nvram_write(nvram, addr, value >> 8);
1346 nvram_write(nvram, addr + 1, value & 0xFF);
1347 }
1348
1349 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1350 {
1351 uint16_t tmp;
1352
1353 tmp = nvram_read(nvram, addr) << 8;
1354 tmp |= nvram_read(nvram, addr + 1);
1355
1356 return tmp;
1357 }
1358
1359 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1360 {
1361 nvram_write(nvram, addr, value >> 24);
1362 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1363 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1364 nvram_write(nvram, addr + 3, value & 0xFF);
1365 }
1366
1367 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1368 {
1369 uint32_t tmp;
1370
1371 tmp = nvram_read(nvram, addr) << 24;
1372 tmp |= nvram_read(nvram, addr + 1) << 16;
1373 tmp |= nvram_read(nvram, addr + 2) << 8;
1374 tmp |= nvram_read(nvram, addr + 3);
1375
1376 return tmp;
1377 }
1378
1379 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1380 uint32_t max)
1381 {
1382 int i;
1383
1384 for (i = 0; i < max && str[i] != '\0'; i++) {
1385 nvram_write(nvram, addr + i, str[i]);
1386 }
1387 nvram_write(nvram, addr + i, str[i]);
1388 nvram_write(nvram, addr + max - 1, '\0');
1389 }
1390
1391 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1392 {
1393 int i;
1394
1395 memset(dst, 0, max);
1396 for (i = 0; i < max; i++) {
1397 dst[i] = NVRAM_get_byte(nvram, addr + i);
1398 if (dst[i] == '\0')
1399 break;
1400 }
1401
1402 return i;
1403 }
1404
1405 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1406 {
1407 uint16_t tmp;
1408 uint16_t pd, pd1, pd2;
1409
1410 tmp = prev >> 8;
1411 pd = prev ^ value;
1412 pd1 = pd & 0x000F;
1413 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1414 tmp ^= (pd1 << 3) | (pd1 << 8);
1415 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1416
1417 return tmp;
1418 }
1419
1420 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1421 {
1422 uint32_t i;
1423 uint16_t crc = 0xFFFF;
1424 int odd;
1425
1426 odd = count & 1;
1427 count &= ~1;
1428 for (i = 0; i != count; i++) {
1429 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1430 }
1431 if (odd) {
1432 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1433 }
1434
1435 return crc;
1436 }
1437
1438 #define CMDLINE_ADDR 0x017ff000
1439
1440 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1441 const char *arch,
1442 uint32_t RAM_size, int boot_device,
1443 uint32_t kernel_image, uint32_t kernel_size,
1444 const char *cmdline,
1445 uint32_t initrd_image, uint32_t initrd_size,
1446 uint32_t NVRAM_image,
1447 int width, int height, int depth)
1448 {
1449 uint16_t crc;
1450
1451 /* Set parameters for Open Hack'Ware BIOS */
1452 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1453 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1454 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1455 NVRAM_set_string(nvram, 0x20, arch, 16);
1456 NVRAM_set_lword(nvram, 0x30, RAM_size);
1457 NVRAM_set_byte(nvram, 0x34, boot_device);
1458 NVRAM_set_lword(nvram, 0x38, kernel_image);
1459 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1460 if (cmdline) {
1461 /* XXX: put the cmdline in NVRAM too ? */
1462 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1463 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1464 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1465 } else {
1466 NVRAM_set_lword(nvram, 0x40, 0);
1467 NVRAM_set_lword(nvram, 0x44, 0);
1468 }
1469 NVRAM_set_lword(nvram, 0x48, initrd_image);
1470 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1471 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1472
1473 NVRAM_set_word(nvram, 0x54, width);
1474 NVRAM_set_word(nvram, 0x56, height);
1475 NVRAM_set_word(nvram, 0x58, depth);
1476 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1477 NVRAM_set_word(nvram, 0xFC, crc);
1478
1479 return 0;
1480 }
1481
1482 /* CPU device-tree ID helpers */
1483 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1484 {
1485 return cpu->cpu_dt_id;
1486 }
1487
1488 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1489 {
1490 CPUState *cs;
1491
1492 CPU_FOREACH(cs) {
1493 PowerPCCPU *cpu = POWERPC_CPU(cs);
1494
1495 if (cpu->cpu_dt_id == cpu_dt_id) {
1496 return cpu;
1497 }
1498 }
1499
1500 return NULL;
1501 }