]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/ppc.c
Merge remote-tracking branch 'remotes/stsquad/tags/pull-travis-speedup-090218-1'...
[mirror_qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "hw/loader.h"
37 #include "sysemu/kvm.h"
38 #include "kvm_ppc.h"
39 #include "trace.h"
40
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
49
50
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
56
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
66
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
71 }
72
73 old_pending = env->pending_interrupts;
74
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82 }
83 }
84
85 if (old_pending != env->pending_interrupts) {
86 #ifdef CONFIG_KVM
87 kvmppc_set_interrupt(cpu, n_IRQ, level);
88 #endif
89 }
90
91
92 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
93 "req %08x\n", __func__, env, n_IRQ, level,
94 env->pending_interrupts, CPU(cpu)->interrupt_request);
95
96 if (locked) {
97 qemu_mutex_unlock_iothread();
98 }
99 }
100
101 /* PowerPC 6xx / 7xx internal IRQ controller */
102 static void ppc6xx_set_irq(void *opaque, int pin, int level)
103 {
104 PowerPCCPU *cpu = opaque;
105 CPUPPCState *env = &cpu->env;
106 int cur_level;
107
108 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
109 env, pin, level);
110 cur_level = (env->irq_input_state >> pin) & 1;
111 /* Don't generate spurious events */
112 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
113 CPUState *cs = CPU(cpu);
114
115 switch (pin) {
116 case PPC6xx_INPUT_TBEN:
117 /* Level sensitive - active high */
118 LOG_IRQ("%s: %s the time base\n",
119 __func__, level ? "start" : "stop");
120 if (level) {
121 cpu_ppc_tb_start(env);
122 } else {
123 cpu_ppc_tb_stop(env);
124 }
125 case PPC6xx_INPUT_INT:
126 /* Level sensitive - active high */
127 LOG_IRQ("%s: set the external IRQ state to %d\n",
128 __func__, level);
129 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
130 break;
131 case PPC6xx_INPUT_SMI:
132 /* Level sensitive - active high */
133 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
134 __func__, level);
135 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
136 break;
137 case PPC6xx_INPUT_MCP:
138 /* Negative edge sensitive */
139 /* XXX: TODO: actual reaction may depends on HID0 status
140 * 603/604/740/750: check HID0[EMCP]
141 */
142 if (cur_level == 1 && level == 0) {
143 LOG_IRQ("%s: raise machine check state\n",
144 __func__);
145 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
146 }
147 break;
148 case PPC6xx_INPUT_CKSTP_IN:
149 /* Level sensitive - active low */
150 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
151 /* XXX: Note that the only way to restart the CPU is to reset it */
152 if (level) {
153 LOG_IRQ("%s: stop the CPU\n", __func__);
154 cs->halted = 1;
155 }
156 break;
157 case PPC6xx_INPUT_HRESET:
158 /* Level sensitive - active low */
159 if (level) {
160 LOG_IRQ("%s: reset the CPU\n", __func__);
161 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
162 }
163 break;
164 case PPC6xx_INPUT_SRESET:
165 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
166 __func__, level);
167 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
168 break;
169 default:
170 /* Unknown pin - do nothing */
171 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
172 return;
173 }
174 if (level)
175 env->irq_input_state |= 1 << pin;
176 else
177 env->irq_input_state &= ~(1 << pin);
178 }
179 }
180
181 void ppc6xx_irq_init(PowerPCCPU *cpu)
182 {
183 CPUPPCState *env = &cpu->env;
184
185 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
186 PPC6xx_INPUT_NB);
187 }
188
189 #if defined(TARGET_PPC64)
190 /* PowerPC 970 internal IRQ controller */
191 static void ppc970_set_irq(void *opaque, int pin, int level)
192 {
193 PowerPCCPU *cpu = opaque;
194 CPUPPCState *env = &cpu->env;
195 int cur_level;
196
197 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
198 env, pin, level);
199 cur_level = (env->irq_input_state >> pin) & 1;
200 /* Don't generate spurious events */
201 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
202 CPUState *cs = CPU(cpu);
203
204 switch (pin) {
205 case PPC970_INPUT_INT:
206 /* Level sensitive - active high */
207 LOG_IRQ("%s: set the external IRQ state to %d\n",
208 __func__, level);
209 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
210 break;
211 case PPC970_INPUT_THINT:
212 /* Level sensitive - active high */
213 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
214 level);
215 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
216 break;
217 case PPC970_INPUT_MCP:
218 /* Negative edge sensitive */
219 /* XXX: TODO: actual reaction may depends on HID0 status
220 * 603/604/740/750: check HID0[EMCP]
221 */
222 if (cur_level == 1 && level == 0) {
223 LOG_IRQ("%s: raise machine check state\n",
224 __func__);
225 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
226 }
227 break;
228 case PPC970_INPUT_CKSTP:
229 /* Level sensitive - active low */
230 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
231 if (level) {
232 LOG_IRQ("%s: stop the CPU\n", __func__);
233 cs->halted = 1;
234 } else {
235 LOG_IRQ("%s: restart the CPU\n", __func__);
236 cs->halted = 0;
237 qemu_cpu_kick(cs);
238 }
239 break;
240 case PPC970_INPUT_HRESET:
241 /* Level sensitive - active low */
242 if (level) {
243 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
244 }
245 break;
246 case PPC970_INPUT_SRESET:
247 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
248 __func__, level);
249 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
250 break;
251 case PPC970_INPUT_TBEN:
252 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
253 level);
254 /* XXX: TODO */
255 break;
256 default:
257 /* Unknown pin - do nothing */
258 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
259 return;
260 }
261 if (level)
262 env->irq_input_state |= 1 << pin;
263 else
264 env->irq_input_state &= ~(1 << pin);
265 }
266 }
267
268 void ppc970_irq_init(PowerPCCPU *cpu)
269 {
270 CPUPPCState *env = &cpu->env;
271
272 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
273 PPC970_INPUT_NB);
274 }
275
276 /* POWER7 internal IRQ controller */
277 static void power7_set_irq(void *opaque, int pin, int level)
278 {
279 PowerPCCPU *cpu = opaque;
280 CPUPPCState *env = &cpu->env;
281
282 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
283 env, pin, level);
284
285 switch (pin) {
286 case POWER7_INPUT_INT:
287 /* Level sensitive - active high */
288 LOG_IRQ("%s: set the external IRQ state to %d\n",
289 __func__, level);
290 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
291 break;
292 default:
293 /* Unknown pin - do nothing */
294 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
295 return;
296 }
297 if (level) {
298 env->irq_input_state |= 1 << pin;
299 } else {
300 env->irq_input_state &= ~(1 << pin);
301 }
302 }
303
304 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
305 {
306 CPUPPCState *env = &cpu->env;
307
308 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
309 POWER7_INPUT_NB);
310 }
311 #endif /* defined(TARGET_PPC64) */
312
313 /* PowerPC 40x internal IRQ controller */
314 static void ppc40x_set_irq(void *opaque, int pin, int level)
315 {
316 PowerPCCPU *cpu = opaque;
317 CPUPPCState *env = &cpu->env;
318 int cur_level;
319
320 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
321 env, pin, level);
322 cur_level = (env->irq_input_state >> pin) & 1;
323 /* Don't generate spurious events */
324 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
325 CPUState *cs = CPU(cpu);
326
327 switch (pin) {
328 case PPC40x_INPUT_RESET_SYS:
329 if (level) {
330 LOG_IRQ("%s: reset the PowerPC system\n",
331 __func__);
332 ppc40x_system_reset(cpu);
333 }
334 break;
335 case PPC40x_INPUT_RESET_CHIP:
336 if (level) {
337 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
338 ppc40x_chip_reset(cpu);
339 }
340 break;
341 case PPC40x_INPUT_RESET_CORE:
342 /* XXX: TODO: update DBSR[MRR] */
343 if (level) {
344 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
345 ppc40x_core_reset(cpu);
346 }
347 break;
348 case PPC40x_INPUT_CINT:
349 /* Level sensitive - active high */
350 LOG_IRQ("%s: set the critical IRQ state to %d\n",
351 __func__, level);
352 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
353 break;
354 case PPC40x_INPUT_INT:
355 /* Level sensitive - active high */
356 LOG_IRQ("%s: set the external IRQ state to %d\n",
357 __func__, level);
358 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
359 break;
360 case PPC40x_INPUT_HALT:
361 /* Level sensitive - active low */
362 if (level) {
363 LOG_IRQ("%s: stop the CPU\n", __func__);
364 cs->halted = 1;
365 } else {
366 LOG_IRQ("%s: restart the CPU\n", __func__);
367 cs->halted = 0;
368 qemu_cpu_kick(cs);
369 }
370 break;
371 case PPC40x_INPUT_DEBUG:
372 /* Level sensitive - active high */
373 LOG_IRQ("%s: set the debug pin state to %d\n",
374 __func__, level);
375 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
376 break;
377 default:
378 /* Unknown pin - do nothing */
379 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
380 return;
381 }
382 if (level)
383 env->irq_input_state |= 1 << pin;
384 else
385 env->irq_input_state &= ~(1 << pin);
386 }
387 }
388
389 void ppc40x_irq_init(PowerPCCPU *cpu)
390 {
391 CPUPPCState *env = &cpu->env;
392
393 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
394 cpu, PPC40x_INPUT_NB);
395 }
396
397 /* PowerPC E500 internal IRQ controller */
398 static void ppce500_set_irq(void *opaque, int pin, int level)
399 {
400 PowerPCCPU *cpu = opaque;
401 CPUPPCState *env = &cpu->env;
402 int cur_level;
403
404 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405 env, pin, level);
406 cur_level = (env->irq_input_state >> pin) & 1;
407 /* Don't generate spurious events */
408 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409 switch (pin) {
410 case PPCE500_INPUT_MCK:
411 if (level) {
412 LOG_IRQ("%s: reset the PowerPC system\n",
413 __func__);
414 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
415 }
416 break;
417 case PPCE500_INPUT_RESET_CORE:
418 if (level) {
419 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
420 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
421 }
422 break;
423 case PPCE500_INPUT_CINT:
424 /* Level sensitive - active high */
425 LOG_IRQ("%s: set the critical IRQ state to %d\n",
426 __func__, level);
427 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
428 break;
429 case PPCE500_INPUT_INT:
430 /* Level sensitive - active high */
431 LOG_IRQ("%s: set the core IRQ state to %d\n",
432 __func__, level);
433 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
434 break;
435 case PPCE500_INPUT_DEBUG:
436 /* Level sensitive - active high */
437 LOG_IRQ("%s: set the debug pin state to %d\n",
438 __func__, level);
439 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
440 break;
441 default:
442 /* Unknown pin - do nothing */
443 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
444 return;
445 }
446 if (level)
447 env->irq_input_state |= 1 << pin;
448 else
449 env->irq_input_state &= ~(1 << pin);
450 }
451 }
452
453 void ppce500_irq_init(PowerPCCPU *cpu)
454 {
455 CPUPPCState *env = &cpu->env;
456
457 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
458 cpu, PPCE500_INPUT_NB);
459 }
460
461 /* Enable or Disable the E500 EPR capability */
462 void ppce500_set_mpic_proxy(bool enabled)
463 {
464 CPUState *cs;
465
466 CPU_FOREACH(cs) {
467 PowerPCCPU *cpu = POWERPC_CPU(cs);
468
469 cpu->env.mpic_proxy = enabled;
470 if (kvm_enabled()) {
471 kvmppc_set_mpic_proxy(cpu, enabled);
472 }
473 }
474 }
475
476 /*****************************************************************************/
477 /* PowerPC time base and decrementer emulation */
478
479 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
480 {
481 /* TB time in tb periods */
482 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
483 }
484
485 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
486 {
487 ppc_tb_t *tb_env = env->tb_env;
488 uint64_t tb;
489
490 if (kvm_enabled()) {
491 return env->spr[SPR_TBL];
492 }
493
494 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
495 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
496
497 return tb;
498 }
499
500 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
501 {
502 ppc_tb_t *tb_env = env->tb_env;
503 uint64_t tb;
504
505 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
506 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
507
508 return tb >> 32;
509 }
510
511 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
512 {
513 if (kvm_enabled()) {
514 return env->spr[SPR_TBU];
515 }
516
517 return _cpu_ppc_load_tbu(env);
518 }
519
520 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
521 int64_t *tb_offsetp, uint64_t value)
522 {
523 *tb_offsetp = value -
524 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
525
526 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
527 __func__, value, *tb_offsetp);
528 }
529
530 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
531 {
532 ppc_tb_t *tb_env = env->tb_env;
533 uint64_t tb;
534
535 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
536 tb &= 0xFFFFFFFF00000000ULL;
537 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
538 &tb_env->tb_offset, tb | (uint64_t)value);
539 }
540
541 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
542 {
543 ppc_tb_t *tb_env = env->tb_env;
544 uint64_t tb;
545
546 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
547 tb &= 0x00000000FFFFFFFFULL;
548 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
549 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
550 }
551
552 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
553 {
554 _cpu_ppc_store_tbu(env, value);
555 }
556
557 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
558 {
559 ppc_tb_t *tb_env = env->tb_env;
560 uint64_t tb;
561
562 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
563 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
564
565 return tb;
566 }
567
568 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
569 {
570 ppc_tb_t *tb_env = env->tb_env;
571 uint64_t tb;
572
573 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
574 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
575
576 return tb >> 32;
577 }
578
579 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
580 {
581 ppc_tb_t *tb_env = env->tb_env;
582 uint64_t tb;
583
584 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
585 tb &= 0xFFFFFFFF00000000ULL;
586 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
587 &tb_env->atb_offset, tb | (uint64_t)value);
588 }
589
590 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
591 {
592 ppc_tb_t *tb_env = env->tb_env;
593 uint64_t tb;
594
595 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
596 tb &= 0x00000000FFFFFFFFULL;
597 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
598 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
599 }
600
601 static void cpu_ppc_tb_stop (CPUPPCState *env)
602 {
603 ppc_tb_t *tb_env = env->tb_env;
604 uint64_t tb, atb, vmclk;
605
606 /* If the time base is already frozen, do nothing */
607 if (tb_env->tb_freq != 0) {
608 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
609 /* Get the time base */
610 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
611 /* Get the alternate time base */
612 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
613 /* Store the time base value (ie compute the current offset) */
614 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
615 /* Store the alternate time base value (compute the current offset) */
616 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
617 /* Set the time base frequency to zero */
618 tb_env->tb_freq = 0;
619 /* Now, the time bases are frozen to tb_offset / atb_offset value */
620 }
621 }
622
623 static void cpu_ppc_tb_start (CPUPPCState *env)
624 {
625 ppc_tb_t *tb_env = env->tb_env;
626 uint64_t tb, atb, vmclk;
627
628 /* If the time base is not frozen, do nothing */
629 if (tb_env->tb_freq == 0) {
630 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
631 /* Get the time base from tb_offset */
632 tb = tb_env->tb_offset;
633 /* Get the alternate time base from atb_offset */
634 atb = tb_env->atb_offset;
635 /* Restore the tb frequency from the decrementer frequency */
636 tb_env->tb_freq = tb_env->decr_freq;
637 /* Store the time base value */
638 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
639 /* Store the alternate time base value */
640 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
641 }
642 }
643
644 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
645 {
646 ppc_tb_t *tb_env = env->tb_env;
647 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
648 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
649 }
650
651 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
652 {
653 ppc_tb_t *tb_env = env->tb_env;
654 uint32_t decr;
655 int64_t diff;
656
657 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
658 if (diff >= 0) {
659 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
660 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
661 decr = 0;
662 } else {
663 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
664 }
665 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
666
667 return decr;
668 }
669
670 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
671 {
672 ppc_tb_t *tb_env = env->tb_env;
673
674 if (kvm_enabled()) {
675 return env->spr[SPR_DECR];
676 }
677
678 return _cpu_ppc_load_decr(env, tb_env->decr_next);
679 }
680
681 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
682 {
683 ppc_tb_t *tb_env = env->tb_env;
684
685 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
686 }
687
688 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
689 {
690 ppc_tb_t *tb_env = env->tb_env;
691 uint64_t diff;
692
693 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
694
695 return tb_env->purr_load +
696 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
697 }
698
699 /* When decrementer expires,
700 * all we need to do is generate or queue a CPU exception
701 */
702 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
703 {
704 /* Raise it */
705 LOG_TB("raise decrementer exception\n");
706 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
707 }
708
709 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
710 {
711 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
712 }
713
714 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
715 {
716 CPUPPCState *env = &cpu->env;
717
718 /* Raise it */
719 LOG_TB("raise hv decrementer exception\n");
720
721 /* The architecture specifies that we don't deliver HDEC
722 * interrupts in a PM state. Not only they don't cause a
723 * wakeup but they also get effectively discarded.
724 */
725 if (!env->in_pm_state) {
726 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
727 }
728 }
729
730 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
731 {
732 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
733 }
734
735 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
736 QEMUTimer *timer,
737 void (*raise_excp)(void *),
738 void (*lower_excp)(PowerPCCPU *),
739 uint32_t decr, uint32_t value)
740 {
741 CPUPPCState *env = &cpu->env;
742 ppc_tb_t *tb_env = env->tb_env;
743 uint64_t now, next;
744
745 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
746 decr, value);
747
748 if (kvm_enabled()) {
749 /* KVM handles decrementer exceptions, we don't need our own timer */
750 return;
751 }
752
753 /*
754 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
755 * interrupt.
756 *
757 * If we get a really small DEC value, we can assume that by the time we
758 * handled it we should inject an interrupt already.
759 *
760 * On MSB level based DEC implementations the MSB always means the interrupt
761 * is pending, so raise it on those.
762 *
763 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
764 * an edge interrupt, so raise it here too.
765 */
766 if ((value < 3) ||
767 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
768 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
769 && !(decr & 0x80000000))) {
770 (*raise_excp)(cpu);
771 return;
772 }
773
774 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
775 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
776 (*lower_excp)(cpu);
777 }
778
779 /* Calculate the next timer event */
780 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
781 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
782 *nextp = next;
783
784 /* Adjust timer */
785 timer_mod(timer, next);
786 }
787
788 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
789 uint32_t value)
790 {
791 ppc_tb_t *tb_env = cpu->env.tb_env;
792
793 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
794 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
795 value);
796 }
797
798 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
799 {
800 PowerPCCPU *cpu = ppc_env_get_cpu(env);
801
802 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
803 }
804
805 static void cpu_ppc_decr_cb(void *opaque)
806 {
807 PowerPCCPU *cpu = opaque;
808
809 cpu_ppc_decr_excp(cpu);
810 }
811
812 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
813 uint32_t value)
814 {
815 ppc_tb_t *tb_env = cpu->env.tb_env;
816
817 if (tb_env->hdecr_timer != NULL) {
818 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
819 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
820 hdecr, value);
821 }
822 }
823
824 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
825 {
826 PowerPCCPU *cpu = ppc_env_get_cpu(env);
827
828 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
829 }
830
831 static void cpu_ppc_hdecr_cb(void *opaque)
832 {
833 PowerPCCPU *cpu = opaque;
834
835 cpu_ppc_hdecr_excp(cpu);
836 }
837
838 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
839 {
840 ppc_tb_t *tb_env = cpu->env.tb_env;
841
842 tb_env->purr_load = value;
843 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
844 }
845
846 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
847 {
848 CPUPPCState *env = opaque;
849 PowerPCCPU *cpu = ppc_env_get_cpu(env);
850 ppc_tb_t *tb_env = env->tb_env;
851
852 tb_env->tb_freq = freq;
853 tb_env->decr_freq = freq;
854 /* There is a bug in Linux 2.4 kernels:
855 * if a decrementer exception is pending when it enables msr_ee at startup,
856 * it's not ready to handle it...
857 */
858 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
859 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
860 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
861 }
862
863 static void timebase_save(PPCTimebase *tb)
864 {
865 uint64_t ticks = cpu_get_host_ticks();
866 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
867
868 if (!first_ppc_cpu->env.tb_env) {
869 error_report("No timebase object");
870 return;
871 }
872
873 /* not used anymore, we keep it for compatibility */
874 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
875 /*
876 * tb_offset is only expected to be changed by QEMU so
877 * there is no need to update it from KVM here
878 */
879 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
880 }
881
882 static void timebase_load(PPCTimebase *tb)
883 {
884 CPUState *cpu;
885 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
886 int64_t tb_off_adj, tb_off;
887 unsigned long freq;
888
889 if (!first_ppc_cpu->env.tb_env) {
890 error_report("No timebase object");
891 return;
892 }
893
894 freq = first_ppc_cpu->env.tb_env->tb_freq;
895
896 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
897
898 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
899 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
900 (tb_off_adj - tb_off) / freq);
901
902 /* Set new offset to all CPUs */
903 CPU_FOREACH(cpu) {
904 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
905 pcpu->env.tb_env->tb_offset = tb_off_adj;
906 #if defined(CONFIG_KVM)
907 kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
908 &pcpu->env.tb_env->tb_offset);
909 #endif
910 }
911 }
912
913 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
914 RunState state)
915 {
916 PPCTimebase *tb = opaque;
917
918 if (running) {
919 timebase_load(tb);
920 } else {
921 timebase_save(tb);
922 }
923 }
924
925 /*
926 * When migrating, read the clock just before migration,
927 * so that the guest clock counts during the events
928 * between:
929 *
930 * * vm_stop()
931 * *
932 * * pre_save()
933 *
934 * This reduces clock difference on migration from 5s
935 * to 0.1s (when max_downtime == 5s), because sending the
936 * final pages of memory (which happens between vm_stop()
937 * and pre_save()) takes max_downtime.
938 */
939 static int timebase_pre_save(void *opaque)
940 {
941 PPCTimebase *tb = opaque;
942
943 timebase_save(tb);
944
945 return 0;
946 }
947
948 const VMStateDescription vmstate_ppc_timebase = {
949 .name = "timebase",
950 .version_id = 1,
951 .minimum_version_id = 1,
952 .minimum_version_id_old = 1,
953 .pre_save = timebase_pre_save,
954 .fields = (VMStateField []) {
955 VMSTATE_UINT64(guest_timebase, PPCTimebase),
956 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
957 VMSTATE_END_OF_LIST()
958 },
959 };
960
961 /* Set up (once) timebase frequency (in Hz) */
962 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
963 {
964 PowerPCCPU *cpu = ppc_env_get_cpu(env);
965 ppc_tb_t *tb_env;
966
967 tb_env = g_malloc0(sizeof(ppc_tb_t));
968 env->tb_env = tb_env;
969 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
970 if (env->insns_flags & PPC_SEGMENT_64B) {
971 /* All Book3S 64bit CPUs implement level based DEC logic */
972 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
973 }
974 /* Create new timer */
975 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
976 if (env->has_hv_mode) {
977 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
978 cpu);
979 } else {
980 tb_env->hdecr_timer = NULL;
981 }
982 cpu_ppc_set_tb_clk(env, freq);
983
984 return &cpu_ppc_set_tb_clk;
985 }
986
987 /* Specific helpers for POWER & PowerPC 601 RTC */
988 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
989 {
990 _cpu_ppc_store_tbu(env, value);
991 }
992
993 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
994 {
995 return _cpu_ppc_load_tbu(env);
996 }
997
998 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
999 {
1000 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1001 }
1002
1003 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1004 {
1005 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1006 }
1007
1008 /*****************************************************************************/
1009 /* PowerPC 40x timers */
1010
1011 /* PIT, FIT & WDT */
1012 typedef struct ppc40x_timer_t ppc40x_timer_t;
1013 struct ppc40x_timer_t {
1014 uint64_t pit_reload; /* PIT auto-reload value */
1015 uint64_t fit_next; /* Tick for next FIT interrupt */
1016 QEMUTimer *fit_timer;
1017 uint64_t wdt_next; /* Tick for next WDT interrupt */
1018 QEMUTimer *wdt_timer;
1019
1020 /* 405 have the PIT, 440 have a DECR. */
1021 unsigned int decr_excp;
1022 };
1023
1024 /* Fixed interval timer */
1025 static void cpu_4xx_fit_cb (void *opaque)
1026 {
1027 PowerPCCPU *cpu;
1028 CPUPPCState *env;
1029 ppc_tb_t *tb_env;
1030 ppc40x_timer_t *ppc40x_timer;
1031 uint64_t now, next;
1032
1033 env = opaque;
1034 cpu = ppc_env_get_cpu(env);
1035 tb_env = env->tb_env;
1036 ppc40x_timer = tb_env->opaque;
1037 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1038 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1039 case 0:
1040 next = 1 << 9;
1041 break;
1042 case 1:
1043 next = 1 << 13;
1044 break;
1045 case 2:
1046 next = 1 << 17;
1047 break;
1048 case 3:
1049 next = 1 << 21;
1050 break;
1051 default:
1052 /* Cannot occur, but makes gcc happy */
1053 return;
1054 }
1055 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1056 if (next == now)
1057 next++;
1058 timer_mod(ppc40x_timer->fit_timer, next);
1059 env->spr[SPR_40x_TSR] |= 1 << 26;
1060 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1061 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1062 }
1063 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1064 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1065 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1066 }
1067
1068 /* Programmable interval timer */
1069 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1070 {
1071 ppc40x_timer_t *ppc40x_timer;
1072 uint64_t now, next;
1073
1074 ppc40x_timer = tb_env->opaque;
1075 if (ppc40x_timer->pit_reload <= 1 ||
1076 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1077 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1078 /* Stop PIT */
1079 LOG_TB("%s: stop PIT\n", __func__);
1080 timer_del(tb_env->decr_timer);
1081 } else {
1082 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1083 __func__, ppc40x_timer->pit_reload);
1084 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1085 next = now + muldiv64(ppc40x_timer->pit_reload,
1086 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1087 if (is_excp)
1088 next += tb_env->decr_next - now;
1089 if (next == now)
1090 next++;
1091 timer_mod(tb_env->decr_timer, next);
1092 tb_env->decr_next = next;
1093 }
1094 }
1095
1096 static void cpu_4xx_pit_cb (void *opaque)
1097 {
1098 PowerPCCPU *cpu;
1099 CPUPPCState *env;
1100 ppc_tb_t *tb_env;
1101 ppc40x_timer_t *ppc40x_timer;
1102
1103 env = opaque;
1104 cpu = ppc_env_get_cpu(env);
1105 tb_env = env->tb_env;
1106 ppc40x_timer = tb_env->opaque;
1107 env->spr[SPR_40x_TSR] |= 1 << 27;
1108 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1109 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1110 }
1111 start_stop_pit(env, tb_env, 1);
1112 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1113 "%016" PRIx64 "\n", __func__,
1114 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1115 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1116 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1117 ppc40x_timer->pit_reload);
1118 }
1119
1120 /* Watchdog timer */
1121 static void cpu_4xx_wdt_cb (void *opaque)
1122 {
1123 PowerPCCPU *cpu;
1124 CPUPPCState *env;
1125 ppc_tb_t *tb_env;
1126 ppc40x_timer_t *ppc40x_timer;
1127 uint64_t now, next;
1128
1129 env = opaque;
1130 cpu = ppc_env_get_cpu(env);
1131 tb_env = env->tb_env;
1132 ppc40x_timer = tb_env->opaque;
1133 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1134 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1135 case 0:
1136 next = 1 << 17;
1137 break;
1138 case 1:
1139 next = 1 << 21;
1140 break;
1141 case 2:
1142 next = 1 << 25;
1143 break;
1144 case 3:
1145 next = 1 << 29;
1146 break;
1147 default:
1148 /* Cannot occur, but makes gcc happy */
1149 return;
1150 }
1151 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1152 if (next == now)
1153 next++;
1154 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1155 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1156 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1157 case 0x0:
1158 case 0x1:
1159 timer_mod(ppc40x_timer->wdt_timer, next);
1160 ppc40x_timer->wdt_next = next;
1161 env->spr[SPR_40x_TSR] |= 1U << 31;
1162 break;
1163 case 0x2:
1164 timer_mod(ppc40x_timer->wdt_timer, next);
1165 ppc40x_timer->wdt_next = next;
1166 env->spr[SPR_40x_TSR] |= 1 << 30;
1167 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1168 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1169 }
1170 break;
1171 case 0x3:
1172 env->spr[SPR_40x_TSR] &= ~0x30000000;
1173 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1174 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1175 case 0x0:
1176 /* No reset */
1177 break;
1178 case 0x1: /* Core reset */
1179 ppc40x_core_reset(cpu);
1180 break;
1181 case 0x2: /* Chip reset */
1182 ppc40x_chip_reset(cpu);
1183 break;
1184 case 0x3: /* System reset */
1185 ppc40x_system_reset(cpu);
1186 break;
1187 }
1188 }
1189 }
1190
1191 void store_40x_pit (CPUPPCState *env, target_ulong val)
1192 {
1193 ppc_tb_t *tb_env;
1194 ppc40x_timer_t *ppc40x_timer;
1195
1196 tb_env = env->tb_env;
1197 ppc40x_timer = tb_env->opaque;
1198 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1199 ppc40x_timer->pit_reload = val;
1200 start_stop_pit(env, tb_env, 0);
1201 }
1202
1203 target_ulong load_40x_pit (CPUPPCState *env)
1204 {
1205 return cpu_ppc_load_decr(env);
1206 }
1207
1208 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1209 {
1210 CPUPPCState *env = opaque;
1211 ppc_tb_t *tb_env = env->tb_env;
1212
1213 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1214 freq);
1215 tb_env->tb_freq = freq;
1216 tb_env->decr_freq = freq;
1217 /* XXX: we should also update all timers */
1218 }
1219
1220 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1221 unsigned int decr_excp)
1222 {
1223 ppc_tb_t *tb_env;
1224 ppc40x_timer_t *ppc40x_timer;
1225
1226 tb_env = g_malloc0(sizeof(ppc_tb_t));
1227 env->tb_env = tb_env;
1228 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1229 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1230 tb_env->tb_freq = freq;
1231 tb_env->decr_freq = freq;
1232 tb_env->opaque = ppc40x_timer;
1233 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1234 if (ppc40x_timer != NULL) {
1235 /* We use decr timer for PIT */
1236 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1237 ppc40x_timer->fit_timer =
1238 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1239 ppc40x_timer->wdt_timer =
1240 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1241 ppc40x_timer->decr_excp = decr_excp;
1242 }
1243
1244 return &ppc_40x_set_tb_clk;
1245 }
1246
1247 /*****************************************************************************/
1248 /* Embedded PowerPC Device Control Registers */
1249 typedef struct ppc_dcrn_t ppc_dcrn_t;
1250 struct ppc_dcrn_t {
1251 dcr_read_cb dcr_read;
1252 dcr_write_cb dcr_write;
1253 void *opaque;
1254 };
1255
1256 /* XXX: on 460, DCR addresses are 32 bits wide,
1257 * using DCRIPR to get the 22 upper bits of the DCR address
1258 */
1259 #define DCRN_NB 1024
1260 struct ppc_dcr_t {
1261 ppc_dcrn_t dcrn[DCRN_NB];
1262 int (*read_error)(int dcrn);
1263 int (*write_error)(int dcrn);
1264 };
1265
1266 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1267 {
1268 ppc_dcrn_t *dcr;
1269
1270 if (dcrn < 0 || dcrn >= DCRN_NB)
1271 goto error;
1272 dcr = &dcr_env->dcrn[dcrn];
1273 if (dcr->dcr_read == NULL)
1274 goto error;
1275 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1276
1277 return 0;
1278
1279 error:
1280 if (dcr_env->read_error != NULL)
1281 return (*dcr_env->read_error)(dcrn);
1282
1283 return -1;
1284 }
1285
1286 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1287 {
1288 ppc_dcrn_t *dcr;
1289
1290 if (dcrn < 0 || dcrn >= DCRN_NB)
1291 goto error;
1292 dcr = &dcr_env->dcrn[dcrn];
1293 if (dcr->dcr_write == NULL)
1294 goto error;
1295 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1296
1297 return 0;
1298
1299 error:
1300 if (dcr_env->write_error != NULL)
1301 return (*dcr_env->write_error)(dcrn);
1302
1303 return -1;
1304 }
1305
1306 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1307 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1308 {
1309 ppc_dcr_t *dcr_env;
1310 ppc_dcrn_t *dcr;
1311
1312 dcr_env = env->dcr_env;
1313 if (dcr_env == NULL)
1314 return -1;
1315 if (dcrn < 0 || dcrn >= DCRN_NB)
1316 return -1;
1317 dcr = &dcr_env->dcrn[dcrn];
1318 if (dcr->opaque != NULL ||
1319 dcr->dcr_read != NULL ||
1320 dcr->dcr_write != NULL)
1321 return -1;
1322 dcr->opaque = opaque;
1323 dcr->dcr_read = dcr_read;
1324 dcr->dcr_write = dcr_write;
1325
1326 return 0;
1327 }
1328
1329 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1330 int (*write_error)(int dcrn))
1331 {
1332 ppc_dcr_t *dcr_env;
1333
1334 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1335 dcr_env->read_error = read_error;
1336 dcr_env->write_error = write_error;
1337 env->dcr_env = dcr_env;
1338
1339 return 0;
1340 }
1341
1342 /*****************************************************************************/
1343 /* Debug port */
1344 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1345 {
1346 addr &= 0xF;
1347 switch (addr) {
1348 case 0:
1349 printf("%c", val);
1350 break;
1351 case 1:
1352 printf("\n");
1353 fflush(stdout);
1354 break;
1355 case 2:
1356 printf("Set loglevel to %04" PRIx32 "\n", val);
1357 qemu_set_log(val | 0x100);
1358 break;
1359 }
1360 }