]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
0ac636890cdf721464c29ef8ae10078636b9f6b5
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/numa.h"
30 #include "hw/hw.h"
31 #include "hw/fw-path-provider.h"
32 #include "elf.h"
33 #include "net/net.h"
34 #include "sysemu/device_tree.h"
35 #include "sysemu/block-backend.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/device_tree.h"
39 #include "kvm_ppc.h"
40 #include "migration/migration.h"
41 #include "mmu-hash64.h"
42 #include "qom/cpu.h"
43
44 #include "hw/boards.h"
45 #include "hw/ppc/ppc.h"
46 #include "hw/loader.h"
47
48 #include "hw/ppc/spapr.h"
49 #include "hw/ppc/spapr_vio.h"
50 #include "hw/pci-host/spapr.h"
51 #include "hw/ppc/xics.h"
52 #include "hw/pci/msi.h"
53
54 #include "hw/pci/pci.h"
55 #include "hw/scsi/scsi.h"
56 #include "hw/virtio/virtio-scsi.h"
57
58 #include "exec/address-spaces.h"
59 #include "hw/usb.h"
60 #include "qemu/config-file.h"
61 #include "qemu/error-report.h"
62 #include "trace.h"
63 #include "hw/nmi.h"
64
65 #include "hw/compat.h"
66 #include "qemu-common.h"
67
68 #include <libfdt.h>
69
70 /* SLOF memory layout:
71 *
72 * SLOF raw image loaded at 0, copies its romfs right below the flat
73 * device-tree, then position SLOF itself 31M below that
74 *
75 * So we set FW_OVERHEAD to 40MB which should account for all of that
76 * and more
77 *
78 * We load our kernel at 4M, leaving space for SLOF initial image
79 */
80 #define FDT_MAX_SIZE 0x100000
81 #define RTAS_MAX_SIZE 0x10000
82 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
83 #define FW_MAX_SIZE 0x400000
84 #define FW_FILE_NAME "slof.bin"
85 #define FW_OVERHEAD 0x2800000
86 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87
88 #define MIN_RMA_SLOF 128UL
89
90 #define TIMEBASE_FREQ 512000000ULL
91
92 #define PHANDLE_XICP 0x00001111
93
94 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95
96 static XICSState *try_create_xics(const char *type, int nr_servers,
97 int nr_irqs, Error **errp)
98 {
99 Error *err = NULL;
100 DeviceState *dev;
101
102 dev = qdev_create(NULL, type);
103 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
104 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
105 object_property_set_bool(OBJECT(dev), true, "realized", &err);
106 if (err) {
107 error_propagate(errp, err);
108 object_unparent(OBJECT(dev));
109 return NULL;
110 }
111 return XICS_COMMON(dev);
112 }
113
114 static XICSState *xics_system_init(MachineState *machine,
115 int nr_servers, int nr_irqs)
116 {
117 XICSState *icp = NULL;
118
119 if (kvm_enabled()) {
120 Error *err = NULL;
121
122 if (machine_kernel_irqchip_allowed(machine)) {
123 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124 }
125 if (machine_kernel_irqchip_required(machine) && !icp) {
126 error_reportf_err(err,
127 "kernel_irqchip requested but unavailable: ");
128 } else {
129 error_free(err);
130 }
131 }
132
133 if (!icp) {
134 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
135 }
136
137 return icp;
138 }
139
140 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
141 int smt_threads)
142 {
143 int i, ret = 0;
144 uint32_t servers_prop[smt_threads];
145 uint32_t gservers_prop[smt_threads * 2];
146 int index = ppc_get_vcpu_dt_id(cpu);
147
148 if (cpu->cpu_version) {
149 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
150 if (ret < 0) {
151 return ret;
152 }
153 }
154
155 /* Build interrupt servers and gservers properties */
156 for (i = 0; i < smt_threads; i++) {
157 servers_prop[i] = cpu_to_be32(index + i);
158 /* Hack, direct the group queues back to cpu 0 */
159 gservers_prop[i*2] = cpu_to_be32(index + i);
160 gservers_prop[i*2 + 1] = 0;
161 }
162 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
163 servers_prop, sizeof(servers_prop));
164 if (ret < 0) {
165 return ret;
166 }
167 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
168 gservers_prop, sizeof(gservers_prop));
169
170 return ret;
171 }
172
173 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
174 {
175 int ret = 0;
176 PowerPCCPU *cpu = POWERPC_CPU(cs);
177 int index = ppc_get_vcpu_dt_id(cpu);
178 uint32_t associativity[] = {cpu_to_be32(0x5),
179 cpu_to_be32(0x0),
180 cpu_to_be32(0x0),
181 cpu_to_be32(0x0),
182 cpu_to_be32(cs->numa_node),
183 cpu_to_be32(index)};
184
185 /* Advertise NUMA via ibm,associativity */
186 if (nb_numa_nodes > 1) {
187 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
188 sizeof(associativity));
189 }
190
191 return ret;
192 }
193
194 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
195 {
196 int ret = 0, offset, cpus_offset;
197 CPUState *cs;
198 char cpu_model[32];
199 int smt = kvmppc_smt_threads();
200 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
201
202 CPU_FOREACH(cs) {
203 PowerPCCPU *cpu = POWERPC_CPU(cs);
204 DeviceClass *dc = DEVICE_GET_CLASS(cs);
205 int index = ppc_get_vcpu_dt_id(cpu);
206
207 if ((index % smt) != 0) {
208 continue;
209 }
210
211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
219 }
220 }
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
227 }
228
229 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
230 pft_size_prop, sizeof(pft_size_prop));
231 if (ret < 0) {
232 return ret;
233 }
234
235 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
236 if (ret < 0) {
237 return ret;
238 }
239
240 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
241 ppc_get_compat_smt_threads(cpu));
242 if (ret < 0) {
243 return ret;
244 }
245 }
246 return ret;
247 }
248
249
250 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
251 size_t maxsize)
252 {
253 size_t maxcells = maxsize / sizeof(uint32_t);
254 int i, j, count;
255 uint32_t *p = prop;
256
257 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
258 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
259
260 if (!sps->page_shift) {
261 break;
262 }
263 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
264 if (sps->enc[count].page_shift == 0) {
265 break;
266 }
267 }
268 if ((p - prop) >= (maxcells - 3 - count * 2)) {
269 break;
270 }
271 *(p++) = cpu_to_be32(sps->page_shift);
272 *(p++) = cpu_to_be32(sps->slb_enc);
273 *(p++) = cpu_to_be32(count);
274 for (j = 0; j < count; j++) {
275 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
276 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 }
278 }
279
280 return (p - prop) * sizeof(uint32_t);
281 }
282
283 static hwaddr spapr_node0_size(void)
284 {
285 MachineState *machine = MACHINE(qdev_get_machine());
286
287 if (nb_numa_nodes) {
288 int i;
289 for (i = 0; i < nb_numa_nodes; ++i) {
290 if (numa_info[i].node_mem) {
291 return MIN(pow2floor(numa_info[i].node_mem),
292 machine->ram_size);
293 }
294 }
295 }
296 return machine->ram_size;
297 }
298
299 #define _FDT(exp) \
300 do { \
301 int ret = (exp); \
302 if (ret < 0) { \
303 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
304 #exp, fdt_strerror(ret)); \
305 exit(1); \
306 } \
307 } while (0)
308
309 static void add_str(GString *s, const gchar *s1)
310 {
311 g_string_append_len(s, s1, strlen(s1) + 1);
312 }
313
314 static void *spapr_create_fdt_skel(hwaddr initrd_base,
315 hwaddr initrd_size,
316 hwaddr kernel_size,
317 bool little_endian,
318 const char *kernel_cmdline,
319 uint32_t epow_irq)
320 {
321 void *fdt;
322 uint32_t start_prop = cpu_to_be32(initrd_base);
323 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324 GString *hypertas = g_string_sized_new(256);
325 GString *qemu_hypertas = g_string_sized_new(256);
326 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
328 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
329 char *buf;
330
331 add_str(hypertas, "hcall-pft");
332 add_str(hypertas, "hcall-term");
333 add_str(hypertas, "hcall-dabr");
334 add_str(hypertas, "hcall-interrupt");
335 add_str(hypertas, "hcall-tce");
336 add_str(hypertas, "hcall-vio");
337 add_str(hypertas, "hcall-splpar");
338 add_str(hypertas, "hcall-bulk");
339 add_str(hypertas, "hcall-set-mode");
340 add_str(qemu_hypertas, "hcall-memop1");
341
342 fdt = g_malloc0(FDT_MAX_SIZE);
343 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
344
345 if (kernel_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
347 }
348 if (initrd_size) {
349 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
350 }
351 _FDT((fdt_finish_reservemap(fdt)));
352
353 /* Root node */
354 _FDT((fdt_begin_node(fdt, "")));
355 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
356 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
357 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358
359 /*
360 * Add info to guest to indentify which host is it being run on
361 * and what is the uuid of the guest
362 */
363 if (kvmppc_get_host_model(&buf)) {
364 _FDT((fdt_property_string(fdt, "host-model", buf)));
365 g_free(buf);
366 }
367 if (kvmppc_get_host_serial(&buf)) {
368 _FDT((fdt_property_string(fdt, "host-serial", buf)));
369 g_free(buf);
370 }
371
372 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
373 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
374 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
375 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
376 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
377 qemu_uuid[14], qemu_uuid[15]);
378
379 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
380 if (qemu_uuid_set) {
381 _FDT((fdt_property_string(fdt, "system-id", buf)));
382 }
383 g_free(buf);
384
385 if (qemu_get_vm_name()) {
386 _FDT((fdt_property_string(fdt, "ibm,partition-name",
387 qemu_get_vm_name())));
388 }
389
390 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
391 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
392
393 /* /chosen */
394 _FDT((fdt_begin_node(fdt, "chosen")));
395
396 /* Set Form1_affinity */
397 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
398
399 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
400 _FDT((fdt_property(fdt, "linux,initrd-start",
401 &start_prop, sizeof(start_prop))));
402 _FDT((fdt_property(fdt, "linux,initrd-end",
403 &end_prop, sizeof(end_prop))));
404 if (kernel_size) {
405 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
406 cpu_to_be64(kernel_size) };
407
408 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
409 if (little_endian) {
410 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
411 }
412 }
413 if (boot_menu) {
414 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
415 }
416 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
417 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419
420 _FDT((fdt_end_node(fdt)));
421
422 /* RTAS */
423 _FDT((fdt_begin_node(fdt, "rtas")));
424
425 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
426 add_str(hypertas, "hcall-multi-tce");
427 }
428 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
429 hypertas->len)));
430 g_string_free(hypertas, TRUE);
431 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
432 qemu_hypertas->len)));
433 g_string_free(qemu_hypertas, TRUE);
434
435 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
436 refpoints, sizeof(refpoints))));
437
438 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
439 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
440 RTAS_EVENT_SCAN_RATE)));
441
442 if (msi_supported) {
443 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
444 }
445
446 /*
447 * According to PAPR, rtas ibm,os-term does not guarantee a return
448 * back to the guest cpu.
449 *
450 * While an additional ibm,extended-os-term property indicates that
451 * rtas call return will always occur. Set this property.
452 */
453 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
454
455 _FDT((fdt_end_node(fdt)));
456
457 /* interrupt controller */
458 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
459
460 _FDT((fdt_property_string(fdt, "device_type",
461 "PowerPC-External-Interrupt-Presentation")));
462 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
463 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
464 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
465 interrupt_server_ranges_prop,
466 sizeof(interrupt_server_ranges_prop))));
467 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
468 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
469 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
470
471 _FDT((fdt_end_node(fdt)));
472
473 /* vdevice */
474 _FDT((fdt_begin_node(fdt, "vdevice")));
475
476 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
477 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
478 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
479 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
480 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
481 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
482
483 _FDT((fdt_end_node(fdt)));
484
485 /* event-sources */
486 spapr_events_fdt_skel(fdt, epow_irq);
487
488 /* /hypervisor node */
489 if (kvm_enabled()) {
490 uint8_t hypercall[16];
491
492 /* indicate KVM hypercall interface */
493 _FDT((fdt_begin_node(fdt, "hypervisor")));
494 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
495 if (kvmppc_has_cap_fixup_hcalls()) {
496 /*
497 * Older KVM versions with older guest kernels were broken with the
498 * magic page, don't allow the guest to map it.
499 */
500 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
501 sizeof(hypercall));
502 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
503 sizeof(hypercall))));
504 }
505 _FDT((fdt_end_node(fdt)));
506 }
507
508 _FDT((fdt_end_node(fdt))); /* close root node */
509 _FDT((fdt_finish(fdt)));
510
511 return fdt;
512 }
513
514 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
515 hwaddr size)
516 {
517 uint32_t associativity[] = {
518 cpu_to_be32(0x4), /* length */
519 cpu_to_be32(0x0), cpu_to_be32(0x0),
520 cpu_to_be32(0x0), cpu_to_be32(nodeid)
521 };
522 char mem_name[32];
523 uint64_t mem_reg_property[2];
524 int off;
525
526 mem_reg_property[0] = cpu_to_be64(start);
527 mem_reg_property[1] = cpu_to_be64(size);
528
529 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
530 off = fdt_add_subnode(fdt, 0, mem_name);
531 _FDT(off);
532 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
533 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
534 sizeof(mem_reg_property))));
535 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
536 sizeof(associativity))));
537 return off;
538 }
539
540 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
541 {
542 MachineState *machine = MACHINE(spapr);
543 hwaddr mem_start, node_size;
544 int i, nb_nodes = nb_numa_nodes;
545 NodeInfo *nodes = numa_info;
546 NodeInfo ramnode;
547
548 /* No NUMA nodes, assume there is just one node with whole RAM */
549 if (!nb_numa_nodes) {
550 nb_nodes = 1;
551 ramnode.node_mem = machine->ram_size;
552 nodes = &ramnode;
553 }
554
555 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
556 if (!nodes[i].node_mem) {
557 continue;
558 }
559 if (mem_start >= machine->ram_size) {
560 node_size = 0;
561 } else {
562 node_size = nodes[i].node_mem;
563 if (node_size > machine->ram_size - mem_start) {
564 node_size = machine->ram_size - mem_start;
565 }
566 }
567 if (!mem_start) {
568 /* ppc_spapr_init() checks for rma_size <= node0_size already */
569 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
570 mem_start += spapr->rma_size;
571 node_size -= spapr->rma_size;
572 }
573 for ( ; node_size; ) {
574 hwaddr sizetmp = pow2floor(node_size);
575
576 /* mem_start != 0 here */
577 if (ctzl(mem_start) < ctzl(sizetmp)) {
578 sizetmp = 1ULL << ctzl(mem_start);
579 }
580
581 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
582 node_size -= sizetmp;
583 mem_start += sizetmp;
584 }
585 }
586
587 return 0;
588 }
589
590 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
591 sPAPRMachineState *spapr)
592 {
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 CPUPPCState *env = &cpu->env;
595 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
596 int index = ppc_get_vcpu_dt_id(cpu);
597 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
598 0xffffffff, 0xffffffff};
599 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
600 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
601 uint32_t page_sizes_prop[64];
602 size_t page_sizes_prop_size;
603 uint32_t vcpus_per_socket = smp_threads * smp_cores;
604 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
605
606 /* Note: we keep CI large pages off for now because a 64K capable guest
607 * provisioned with large pages might otherwise try to map a qemu
608 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
609 * even if that qemu runs on a 4k host.
610 *
611 * We can later add this bit back when we are confident this is not
612 * an issue (!HV KVM or 64K host)
613 */
614 uint8_t pa_features_206[] = { 6, 0,
615 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
616 uint8_t pa_features_207[] = { 24, 0,
617 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
618 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
620 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
621 uint8_t *pa_features;
622 size_t pa_size;
623
624 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
625 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
626
627 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
628 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
629 env->dcache_line_size)));
630 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
631 env->dcache_line_size)));
632 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
633 env->icache_line_size)));
634 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
635 env->icache_line_size)));
636
637 if (pcc->l1_dcache_size) {
638 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
639 pcc->l1_dcache_size)));
640 } else {
641 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
642 }
643 if (pcc->l1_icache_size) {
644 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
645 pcc->l1_icache_size)));
646 } else {
647 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
648 }
649
650 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
651 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
652 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
653 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
654 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
655 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
656
657 if (env->spr_cb[SPR_PURR].oea_read) {
658 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
659 }
660
661 if (env->mmu_model & POWERPC_MMU_1TSEG) {
662 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
663 segs, sizeof(segs))));
664 }
665
666 /* Advertise VMX/VSX (vector extensions) if available
667 * 0 / no property == no vector extensions
668 * 1 == VMX / Altivec available
669 * 2 == VSX available */
670 if (env->insns_flags & PPC_ALTIVEC) {
671 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
672
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
674 }
675
676 /* Advertise DFP (Decimal Floating Point) if available
677 * 0 / no property == no DFP
678 * 1 == DFP available */
679 if (env->insns_flags2 & PPC2_DFP) {
680 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
681 }
682
683 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
684 sizeof(page_sizes_prop));
685 if (page_sizes_prop_size) {
686 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
687 page_sizes_prop, page_sizes_prop_size)));
688 }
689
690 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
691 if (env->mmu_model == POWERPC_MMU_2_06) {
692 pa_features = pa_features_206;
693 pa_size = sizeof(pa_features_206);
694 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
695 pa_features = pa_features_207;
696 pa_size = sizeof(pa_features_207);
697 }
698 if (env->ci_large_pages) {
699 pa_features[3] |= 0x20;
700 }
701 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
702
703 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
704 cs->cpu_index / vcpus_per_socket)));
705
706 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
707 pft_size_prop, sizeof(pft_size_prop))));
708
709 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
710
711 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
712 ppc_get_compat_smt_threads(cpu)));
713 }
714
715 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
716 {
717 CPUState *cs;
718 int cpus_offset;
719 char *nodename;
720 int smt = kvmppc_smt_threads();
721
722 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
723 _FDT(cpus_offset);
724 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
725 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
726
727 /*
728 * We walk the CPUs in reverse order to ensure that CPU DT nodes
729 * created by fdt_add_subnode() end up in the right order in FDT
730 * for the guest kernel the enumerate the CPUs correctly.
731 */
732 CPU_FOREACH_REVERSE(cs) {
733 PowerPCCPU *cpu = POWERPC_CPU(cs);
734 int index = ppc_get_vcpu_dt_id(cpu);
735 DeviceClass *dc = DEVICE_GET_CLASS(cs);
736 int offset;
737
738 if ((index % smt) != 0) {
739 continue;
740 }
741
742 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
743 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
744 g_free(nodename);
745 _FDT(offset);
746 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
747 }
748
749 }
750
751 /*
752 * Adds ibm,dynamic-reconfiguration-memory node.
753 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
754 * of this device tree node.
755 */
756 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
757 {
758 MachineState *machine = MACHINE(spapr);
759 int ret, i, offset;
760 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
761 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
762 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
763 uint32_t *int_buf, *cur_index, buf_len;
764 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
765
766 /*
767 * Don't create the node if there are no DR LMBs.
768 */
769 if (!nr_lmbs) {
770 return 0;
771 }
772
773 /*
774 * Allocate enough buffer size to fit in ibm,dynamic-memory
775 * or ibm,associativity-lookup-arrays
776 */
777 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
778 * sizeof(uint32_t);
779 cur_index = int_buf = g_malloc0(buf_len);
780
781 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
782
783 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
784 sizeof(prop_lmb_size));
785 if (ret < 0) {
786 goto out;
787 }
788
789 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
790 if (ret < 0) {
791 goto out;
792 }
793
794 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
795 if (ret < 0) {
796 goto out;
797 }
798
799 /* ibm,dynamic-memory */
800 int_buf[0] = cpu_to_be32(nr_lmbs);
801 cur_index++;
802 for (i = 0; i < nr_lmbs; i++) {
803 sPAPRDRConnector *drc;
804 sPAPRDRConnectorClass *drck;
805 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
806 uint32_t *dynamic_memory = cur_index;
807
808 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
809 addr/lmb_size);
810 g_assert(drc);
811 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
812
813 dynamic_memory[0] = cpu_to_be32(addr >> 32);
814 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
816 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
818 if (addr < machine->ram_size ||
819 memory_region_present(get_system_memory(), addr)) {
820 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
821 } else {
822 dynamic_memory[5] = cpu_to_be32(0);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 if (ret < 0) {
829 goto out;
830 }
831
832 /* ibm,associativity-lookup-arrays */
833 cur_index = int_buf;
834 int_buf[0] = cpu_to_be32(nr_nodes);
835 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
836 cur_index += 2;
837 for (i = 0; i < nr_nodes; i++) {
838 uint32_t associativity[] = {
839 cpu_to_be32(0x0),
840 cpu_to_be32(0x0),
841 cpu_to_be32(0x0),
842 cpu_to_be32(i)
843 };
844 memcpy(cur_index, associativity, sizeof(associativity));
845 cur_index += 4;
846 }
847 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
848 (cur_index - int_buf) * sizeof(uint32_t));
849 out:
850 g_free(int_buf);
851 return ret;
852 }
853
854 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
855 target_ulong addr, target_ulong size,
856 bool cpu_update, bool memory_update)
857 {
858 void *fdt, *fdt_skel;
859 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
860 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
861
862 size -= sizeof(hdr);
863
864 /* Create sceleton */
865 fdt_skel = g_malloc0(size);
866 _FDT((fdt_create(fdt_skel, size)));
867 _FDT((fdt_begin_node(fdt_skel, "")));
868 _FDT((fdt_end_node(fdt_skel)));
869 _FDT((fdt_finish(fdt_skel)));
870 fdt = g_malloc0(size);
871 _FDT((fdt_open_into(fdt_skel, fdt, size)));
872 g_free(fdt_skel);
873
874 /* Fixup cpu nodes */
875 if (cpu_update) {
876 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
877 }
878
879 /* Generate ibm,dynamic-reconfiguration-memory node if required */
880 if (memory_update && smc->dr_lmb_enabled) {
881 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
882 }
883
884 /* Pack resulting tree */
885 _FDT((fdt_pack(fdt)));
886
887 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
888 trace_spapr_cas_failed(size);
889 return -1;
890 }
891
892 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
893 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
894 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
895 g_free(fdt);
896
897 return 0;
898 }
899
900 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
901 hwaddr fdt_addr,
902 hwaddr rtas_addr,
903 hwaddr rtas_size)
904 {
905 MachineState *machine = MACHINE(qdev_get_machine());
906 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
907 const char *boot_device = machine->boot_order;
908 int ret, i;
909 size_t cb = 0;
910 char *bootlist;
911 void *fdt;
912 sPAPRPHBState *phb;
913
914 fdt = g_malloc(FDT_MAX_SIZE);
915
916 /* open out the base tree into a temp buffer for the final tweaks */
917 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
918
919 ret = spapr_populate_memory(spapr, fdt);
920 if (ret < 0) {
921 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
922 exit(1);
923 }
924
925 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
926 if (ret < 0) {
927 fprintf(stderr, "couldn't setup vio devices in fdt\n");
928 exit(1);
929 }
930
931 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
932 ret = spapr_rng_populate_dt(fdt);
933 if (ret < 0) {
934 fprintf(stderr, "could not set up rng device in the fdt\n");
935 exit(1);
936 }
937 }
938
939 QLIST_FOREACH(phb, &spapr->phbs, list) {
940 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
941 }
942
943 if (ret < 0) {
944 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
945 exit(1);
946 }
947
948 /* RTAS */
949 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
950 if (ret < 0) {
951 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
952 }
953
954 /* cpus */
955 spapr_populate_cpus_dt_node(fdt, spapr);
956
957 bootlist = get_boot_devices_list(&cb, true);
958 if (cb && bootlist) {
959 int offset = fdt_path_offset(fdt, "/chosen");
960 if (offset < 0) {
961 exit(1);
962 }
963 for (i = 0; i < cb; i++) {
964 if (bootlist[i] == '\n') {
965 bootlist[i] = ' ';
966 }
967
968 }
969 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
970 }
971
972 if (boot_device && strlen(boot_device)) {
973 int offset = fdt_path_offset(fdt, "/chosen");
974
975 if (offset < 0) {
976 exit(1);
977 }
978 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
979 }
980
981 if (!spapr->has_graphics) {
982 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
983 }
984
985 if (smc->dr_lmb_enabled) {
986 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
987 }
988
989 _FDT((fdt_pack(fdt)));
990
991 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
992 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
993 fdt_totalsize(fdt), FDT_MAX_SIZE);
994 exit(1);
995 }
996
997 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
998 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
999
1000 g_free(bootlist);
1001 g_free(fdt);
1002 }
1003
1004 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1005 {
1006 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1007 }
1008
1009 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1010 {
1011 CPUPPCState *env = &cpu->env;
1012
1013 if (msr_pr) {
1014 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1015 env->gpr[3] = H_PRIVILEGE;
1016 } else {
1017 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1018 }
1019 }
1020
1021 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1022 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1023 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1024 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1025 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1026
1027 static void spapr_alloc_htab(sPAPRMachineState *spapr)
1028 {
1029 long shift;
1030 int index;
1031
1032 /* allocate hash page table. For now we always make this 16mb,
1033 * later we should probably make it scale to the size of guest
1034 * RAM */
1035
1036 shift = kvmppc_reset_htab(spapr->htab_shift);
1037 if (shift < 0) {
1038 /*
1039 * For HV KVM, host kernel will return -ENOMEM when requested
1040 * HTAB size can't be allocated.
1041 */
1042 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1043 } else if (shift > 0) {
1044 /*
1045 * Kernel handles htab, we don't need to allocate one
1046 *
1047 * Older kernels can fall back to lower HTAB shift values,
1048 * but we don't allow booting of such guests.
1049 */
1050 if (shift != spapr->htab_shift) {
1051 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1052 }
1053
1054 spapr->htab_shift = shift;
1055 kvmppc_kern_htab = true;
1056 } else {
1057 /* Allocate htab */
1058 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1059
1060 /* And clear it */
1061 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1062
1063 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1064 DIRTY_HPTE(HPTE(spapr->htab, index));
1065 }
1066 }
1067 }
1068
1069 /*
1070 * Clear HTAB entries during reset.
1071 *
1072 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1073 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1074 */
1075 static void spapr_reset_htab(sPAPRMachineState *spapr)
1076 {
1077 long shift;
1078 int index;
1079
1080 shift = kvmppc_reset_htab(spapr->htab_shift);
1081 if (shift < 0) {
1082 error_setg(&error_abort, "Failed to reset HTAB");
1083 } else if (shift > 0) {
1084 if (shift != spapr->htab_shift) {
1085 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1086 }
1087
1088 /* Tell readers to update their file descriptor */
1089 if (spapr->htab_fd >= 0) {
1090 spapr->htab_fd_stale = true;
1091 }
1092 } else {
1093 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1094
1095 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1096 DIRTY_HPTE(HPTE(spapr->htab, index));
1097 }
1098 }
1099
1100 /* Update the RMA size if necessary */
1101 if (spapr->vrma_adjust) {
1102 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1103 spapr->htab_shift);
1104 }
1105 }
1106
1107 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1108 {
1109 bool matched = false;
1110
1111 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1112 matched = true;
1113 }
1114
1115 if (!matched) {
1116 error_report("Device %s is not supported by this machine yet.",
1117 qdev_fw_name(DEVICE(sbdev)));
1118 exit(1);
1119 }
1120
1121 return 0;
1122 }
1123
1124 /*
1125 * A guest reset will cause spapr->htab_fd to become stale if being used.
1126 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1127 */
1128 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1129 {
1130 int rc = 0;
1131
1132 if (spapr->htab_fd_stale) {
1133 close(spapr->htab_fd);
1134 spapr->htab_fd = kvmppc_get_htab_fd(false);
1135 if (spapr->htab_fd < 0) {
1136 error_report("Unable to open fd for reading hash table from KVM: "
1137 "%s", strerror(errno));
1138 rc = -1;
1139 }
1140 spapr->htab_fd_stale = false;
1141 }
1142
1143 return rc;
1144 }
1145
1146 static void ppc_spapr_reset(void)
1147 {
1148 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1149 PowerPCCPU *first_ppc_cpu;
1150 uint32_t rtas_limit;
1151
1152 /* Check for unknown sysbus devices */
1153 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1154
1155 /* Reset the hash table & recalc the RMA */
1156 spapr_reset_htab(spapr);
1157
1158 qemu_devices_reset();
1159
1160 /*
1161 * We place the device tree and RTAS just below either the top of the RMA,
1162 * or just below 2GB, whichever is lowere, so that it can be
1163 * processed with 32-bit real mode code if necessary
1164 */
1165 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1166 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1167 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1168
1169 /* Load the fdt */
1170 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1171 spapr->rtas_size);
1172
1173 /* Copy RTAS over */
1174 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1175 spapr->rtas_size);
1176
1177 /* Set up the entry state */
1178 first_ppc_cpu = POWERPC_CPU(first_cpu);
1179 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1180 first_ppc_cpu->env.gpr[5] = 0;
1181 first_cpu->halted = 0;
1182 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1183
1184 }
1185
1186 static void spapr_cpu_reset(void *opaque)
1187 {
1188 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1189 PowerPCCPU *cpu = opaque;
1190 CPUState *cs = CPU(cpu);
1191 CPUPPCState *env = &cpu->env;
1192
1193 cpu_reset(cs);
1194
1195 /* All CPUs start halted. CPU0 is unhalted from the machine level
1196 * reset code and the rest are explicitly started up by the guest
1197 * using an RTAS call */
1198 cs->halted = 1;
1199
1200 env->spr[SPR_HIOR] = 0;
1201
1202 env->external_htab = (uint8_t *)spapr->htab;
1203 if (kvm_enabled() && !env->external_htab) {
1204 /*
1205 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1206 * functions do the right thing.
1207 */
1208 env->external_htab = (void *)1;
1209 }
1210 env->htab_base = -1;
1211 /*
1212 * htab_mask is the mask used to normalize hash value to PTEG index.
1213 * htab_shift is log2 of hash table size.
1214 * We have 8 hpte per group, and each hpte is 16 bytes.
1215 * ie have 128 bytes per hpte entry.
1216 */
1217 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1218 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1219 (spapr->htab_shift - 18);
1220 }
1221
1222 static void spapr_create_nvram(sPAPRMachineState *spapr)
1223 {
1224 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1225 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1226
1227 if (dinfo) {
1228 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1229 &error_fatal);
1230 }
1231
1232 qdev_init_nofail(dev);
1233
1234 spapr->nvram = (struct sPAPRNVRAM *)dev;
1235 }
1236
1237 static void spapr_rtc_create(sPAPRMachineState *spapr)
1238 {
1239 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1240
1241 qdev_init_nofail(dev);
1242 spapr->rtc = dev;
1243
1244 object_property_add_alias(qdev_get_machine(), "rtc-time",
1245 OBJECT(spapr->rtc), "date", NULL);
1246 }
1247
1248 /* Returns whether we want to use VGA or not */
1249 static int spapr_vga_init(PCIBus *pci_bus)
1250 {
1251 switch (vga_interface_type) {
1252 case VGA_NONE:
1253 return false;
1254 case VGA_DEVICE:
1255 return true;
1256 case VGA_STD:
1257 case VGA_VIRTIO:
1258 return pci_vga_init(pci_bus) != NULL;
1259 default:
1260 fprintf(stderr, "This vga model is not supported,"
1261 "currently it only supports -vga std\n");
1262 exit(0);
1263 }
1264 }
1265
1266 static int spapr_post_load(void *opaque, int version_id)
1267 {
1268 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1269 int err = 0;
1270
1271 /* In earlier versions, there was no separate qdev for the PAPR
1272 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1273 * So when migrating from those versions, poke the incoming offset
1274 * value into the RTC device */
1275 if (version_id < 3) {
1276 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1277 }
1278
1279 return err;
1280 }
1281
1282 static bool version_before_3(void *opaque, int version_id)
1283 {
1284 return version_id < 3;
1285 }
1286
1287 static const VMStateDescription vmstate_spapr = {
1288 .name = "spapr",
1289 .version_id = 3,
1290 .minimum_version_id = 1,
1291 .post_load = spapr_post_load,
1292 .fields = (VMStateField[]) {
1293 /* used to be @next_irq */
1294 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1295
1296 /* RTC offset */
1297 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1298
1299 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1300 VMSTATE_END_OF_LIST()
1301 },
1302 };
1303
1304 static int htab_save_setup(QEMUFile *f, void *opaque)
1305 {
1306 sPAPRMachineState *spapr = opaque;
1307
1308 /* "Iteration" header */
1309 qemu_put_be32(f, spapr->htab_shift);
1310
1311 if (spapr->htab) {
1312 spapr->htab_save_index = 0;
1313 spapr->htab_first_pass = true;
1314 } else {
1315 assert(kvm_enabled());
1316
1317 spapr->htab_fd = kvmppc_get_htab_fd(false);
1318 spapr->htab_fd_stale = false;
1319 if (spapr->htab_fd < 0) {
1320 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1321 strerror(errno));
1322 return -1;
1323 }
1324 }
1325
1326
1327 return 0;
1328 }
1329
1330 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1331 int64_t max_ns)
1332 {
1333 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1334 int index = spapr->htab_save_index;
1335 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1336
1337 assert(spapr->htab_first_pass);
1338
1339 do {
1340 int chunkstart;
1341
1342 /* Consume invalid HPTEs */
1343 while ((index < htabslots)
1344 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1345 index++;
1346 CLEAN_HPTE(HPTE(spapr->htab, index));
1347 }
1348
1349 /* Consume valid HPTEs */
1350 chunkstart = index;
1351 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1352 && HPTE_VALID(HPTE(spapr->htab, index))) {
1353 index++;
1354 CLEAN_HPTE(HPTE(spapr->htab, index));
1355 }
1356
1357 if (index > chunkstart) {
1358 int n_valid = index - chunkstart;
1359
1360 qemu_put_be32(f, chunkstart);
1361 qemu_put_be16(f, n_valid);
1362 qemu_put_be16(f, 0);
1363 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1364 HASH_PTE_SIZE_64 * n_valid);
1365
1366 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1367 break;
1368 }
1369 }
1370 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1371
1372 if (index >= htabslots) {
1373 assert(index == htabslots);
1374 index = 0;
1375 spapr->htab_first_pass = false;
1376 }
1377 spapr->htab_save_index = index;
1378 }
1379
1380 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1381 int64_t max_ns)
1382 {
1383 bool final = max_ns < 0;
1384 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1385 int examined = 0, sent = 0;
1386 int index = spapr->htab_save_index;
1387 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1388
1389 assert(!spapr->htab_first_pass);
1390
1391 do {
1392 int chunkstart, invalidstart;
1393
1394 /* Consume non-dirty HPTEs */
1395 while ((index < htabslots)
1396 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1397 index++;
1398 examined++;
1399 }
1400
1401 chunkstart = index;
1402 /* Consume valid dirty HPTEs */
1403 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1404 && HPTE_DIRTY(HPTE(spapr->htab, index))
1405 && HPTE_VALID(HPTE(spapr->htab, index))) {
1406 CLEAN_HPTE(HPTE(spapr->htab, index));
1407 index++;
1408 examined++;
1409 }
1410
1411 invalidstart = index;
1412 /* Consume invalid dirty HPTEs */
1413 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1414 && HPTE_DIRTY(HPTE(spapr->htab, index))
1415 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1416 CLEAN_HPTE(HPTE(spapr->htab, index));
1417 index++;
1418 examined++;
1419 }
1420
1421 if (index > chunkstart) {
1422 int n_valid = invalidstart - chunkstart;
1423 int n_invalid = index - invalidstart;
1424
1425 qemu_put_be32(f, chunkstart);
1426 qemu_put_be16(f, n_valid);
1427 qemu_put_be16(f, n_invalid);
1428 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1429 HASH_PTE_SIZE_64 * n_valid);
1430 sent += index - chunkstart;
1431
1432 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1433 break;
1434 }
1435 }
1436
1437 if (examined >= htabslots) {
1438 break;
1439 }
1440
1441 if (index >= htabslots) {
1442 assert(index == htabslots);
1443 index = 0;
1444 }
1445 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1446
1447 if (index >= htabslots) {
1448 assert(index == htabslots);
1449 index = 0;
1450 }
1451
1452 spapr->htab_save_index = index;
1453
1454 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1455 }
1456
1457 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1458 #define MAX_KVM_BUF_SIZE 2048
1459
1460 static int htab_save_iterate(QEMUFile *f, void *opaque)
1461 {
1462 sPAPRMachineState *spapr = opaque;
1463 int rc = 0;
1464
1465 /* Iteration header */
1466 qemu_put_be32(f, 0);
1467
1468 if (!spapr->htab) {
1469 assert(kvm_enabled());
1470
1471 rc = spapr_check_htab_fd(spapr);
1472 if (rc < 0) {
1473 return rc;
1474 }
1475
1476 rc = kvmppc_save_htab(f, spapr->htab_fd,
1477 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1478 if (rc < 0) {
1479 return rc;
1480 }
1481 } else if (spapr->htab_first_pass) {
1482 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1483 } else {
1484 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1485 }
1486
1487 /* End marker */
1488 qemu_put_be32(f, 0);
1489 qemu_put_be16(f, 0);
1490 qemu_put_be16(f, 0);
1491
1492 return rc;
1493 }
1494
1495 static int htab_save_complete(QEMUFile *f, void *opaque)
1496 {
1497 sPAPRMachineState *spapr = opaque;
1498
1499 /* Iteration header */
1500 qemu_put_be32(f, 0);
1501
1502 if (!spapr->htab) {
1503 int rc;
1504
1505 assert(kvm_enabled());
1506
1507 rc = spapr_check_htab_fd(spapr);
1508 if (rc < 0) {
1509 return rc;
1510 }
1511
1512 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1513 if (rc < 0) {
1514 return rc;
1515 }
1516 close(spapr->htab_fd);
1517 spapr->htab_fd = -1;
1518 } else {
1519 htab_save_later_pass(f, spapr, -1);
1520 }
1521
1522 /* End marker */
1523 qemu_put_be32(f, 0);
1524 qemu_put_be16(f, 0);
1525 qemu_put_be16(f, 0);
1526
1527 return 0;
1528 }
1529
1530 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1531 {
1532 sPAPRMachineState *spapr = opaque;
1533 uint32_t section_hdr;
1534 int fd = -1;
1535
1536 if (version_id < 1 || version_id > 1) {
1537 fprintf(stderr, "htab_load() bad version\n");
1538 return -EINVAL;
1539 }
1540
1541 section_hdr = qemu_get_be32(f);
1542
1543 if (section_hdr) {
1544 /* First section, just the hash shift */
1545 if (spapr->htab_shift != section_hdr) {
1546 error_report("htab_shift mismatch: source %d target %d",
1547 section_hdr, spapr->htab_shift);
1548 return -EINVAL;
1549 }
1550 return 0;
1551 }
1552
1553 if (!spapr->htab) {
1554 assert(kvm_enabled());
1555
1556 fd = kvmppc_get_htab_fd(true);
1557 if (fd < 0) {
1558 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1559 strerror(errno));
1560 }
1561 }
1562
1563 while (true) {
1564 uint32_t index;
1565 uint16_t n_valid, n_invalid;
1566
1567 index = qemu_get_be32(f);
1568 n_valid = qemu_get_be16(f);
1569 n_invalid = qemu_get_be16(f);
1570
1571 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1572 /* End of Stream */
1573 break;
1574 }
1575
1576 if ((index + n_valid + n_invalid) >
1577 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1578 /* Bad index in stream */
1579 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1580 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1581 spapr->htab_shift);
1582 return -EINVAL;
1583 }
1584
1585 if (spapr->htab) {
1586 if (n_valid) {
1587 qemu_get_buffer(f, HPTE(spapr->htab, index),
1588 HASH_PTE_SIZE_64 * n_valid);
1589 }
1590 if (n_invalid) {
1591 memset(HPTE(spapr->htab, index + n_valid), 0,
1592 HASH_PTE_SIZE_64 * n_invalid);
1593 }
1594 } else {
1595 int rc;
1596
1597 assert(fd >= 0);
1598
1599 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1600 if (rc < 0) {
1601 return rc;
1602 }
1603 }
1604 }
1605
1606 if (!spapr->htab) {
1607 assert(fd >= 0);
1608 close(fd);
1609 }
1610
1611 return 0;
1612 }
1613
1614 static SaveVMHandlers savevm_htab_handlers = {
1615 .save_live_setup = htab_save_setup,
1616 .save_live_iterate = htab_save_iterate,
1617 .save_live_complete_precopy = htab_save_complete,
1618 .load_state = htab_load,
1619 };
1620
1621 static void spapr_boot_set(void *opaque, const char *boot_device,
1622 Error **errp)
1623 {
1624 MachineState *machine = MACHINE(qdev_get_machine());
1625 machine->boot_order = g_strdup(boot_device);
1626 }
1627
1628 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1629 {
1630 CPUPPCState *env = &cpu->env;
1631
1632 /* Set time-base frequency to 512 MHz */
1633 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1634
1635 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1636 * MSR[IP] should never be set.
1637 */
1638 env->msr_mask &= ~(1 << 6);
1639
1640 /* Tell KVM that we're in PAPR mode */
1641 if (kvm_enabled()) {
1642 kvmppc_set_papr(cpu);
1643 }
1644
1645 if (cpu->max_compat) {
1646 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1647 exit(1);
1648 }
1649 }
1650
1651 xics_cpu_setup(spapr->icp, cpu);
1652
1653 qemu_register_reset(spapr_cpu_reset, cpu);
1654 }
1655
1656 /*
1657 * Reset routine for LMB DR devices.
1658 *
1659 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1660 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1661 * when it walks all its children devices. LMB devices reset occurs
1662 * as part of spapr_ppc_reset().
1663 */
1664 static void spapr_drc_reset(void *opaque)
1665 {
1666 sPAPRDRConnector *drc = opaque;
1667 DeviceState *d = DEVICE(drc);
1668
1669 if (d) {
1670 device_reset(d);
1671 }
1672 }
1673
1674 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1675 {
1676 MachineState *machine = MACHINE(spapr);
1677 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1678 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1679 int i;
1680
1681 for (i = 0; i < nr_lmbs; i++) {
1682 sPAPRDRConnector *drc;
1683 uint64_t addr;
1684
1685 addr = i * lmb_size + spapr->hotplug_memory.base;
1686 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1687 addr/lmb_size);
1688 qemu_register_reset(spapr_drc_reset, drc);
1689 }
1690 }
1691
1692 /*
1693 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1694 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1695 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1696 */
1697 static void spapr_validate_node_memory(MachineState *machine)
1698 {
1699 int i;
1700
1701 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1702 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1703 error_report("Can't support memory configuration where RAM size "
1704 "0x" RAM_ADDR_FMT " or maxmem size "
1705 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1706 machine->ram_size, machine->maxram_size,
1707 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1708 exit(EXIT_FAILURE);
1709 }
1710
1711 for (i = 0; i < nb_numa_nodes; i++) {
1712 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1713 error_report("Can't support memory configuration where memory size"
1714 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1715 numa_info[i].node_mem, i,
1716 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1717 exit(EXIT_FAILURE);
1718 }
1719 }
1720 }
1721
1722 /* pSeries LPAR / sPAPR hardware init */
1723 static void ppc_spapr_init(MachineState *machine)
1724 {
1725 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1726 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1727 const char *kernel_filename = machine->kernel_filename;
1728 const char *kernel_cmdline = machine->kernel_cmdline;
1729 const char *initrd_filename = machine->initrd_filename;
1730 PowerPCCPU *cpu;
1731 PCIHostState *phb;
1732 int i;
1733 MemoryRegion *sysmem = get_system_memory();
1734 MemoryRegion *ram = g_new(MemoryRegion, 1);
1735 MemoryRegion *rma_region;
1736 void *rma = NULL;
1737 hwaddr rma_alloc_size;
1738 hwaddr node0_size = spapr_node0_size();
1739 uint32_t initrd_base = 0;
1740 long kernel_size = 0, initrd_size = 0;
1741 long load_limit, fw_size;
1742 bool kernel_le = false;
1743 char *filename;
1744
1745 msi_supported = true;
1746
1747 QLIST_INIT(&spapr->phbs);
1748
1749 cpu_ppc_hypercall = emulate_spapr_hypercall;
1750
1751 /* Allocate RMA if necessary */
1752 rma_alloc_size = kvmppc_alloc_rma(&rma);
1753
1754 if (rma_alloc_size == -1) {
1755 error_report("Unable to create RMA");
1756 exit(1);
1757 }
1758
1759 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1760 spapr->rma_size = rma_alloc_size;
1761 } else {
1762 spapr->rma_size = node0_size;
1763
1764 /* With KVM, we don't actually know whether KVM supports an
1765 * unbounded RMA (PR KVM) or is limited by the hash table size
1766 * (HV KVM using VRMA), so we always assume the latter
1767 *
1768 * In that case, we also limit the initial allocations for RTAS
1769 * etc... to 256M since we have no way to know what the VRMA size
1770 * is going to be as it depends on the size of the hash table
1771 * isn't determined yet.
1772 */
1773 if (kvm_enabled()) {
1774 spapr->vrma_adjust = 1;
1775 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1776 }
1777 }
1778
1779 if (spapr->rma_size > node0_size) {
1780 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1781 spapr->rma_size);
1782 exit(1);
1783 }
1784
1785 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1786 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1787
1788 /* We aim for a hash table of size 1/128 the size of RAM. The
1789 * normal rule of thumb is 1/64 the size of RAM, but that's much
1790 * more than needed for the Linux guests we support. */
1791 spapr->htab_shift = 18; /* Minimum architected size */
1792 while (spapr->htab_shift <= 46) {
1793 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1794 break;
1795 }
1796 spapr->htab_shift++;
1797 }
1798 spapr_alloc_htab(spapr);
1799
1800 /* Set up Interrupt Controller before we create the VCPUs */
1801 spapr->icp = xics_system_init(machine,
1802 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1803 smp_threads),
1804 XICS_IRQS);
1805
1806 if (smc->dr_lmb_enabled) {
1807 spapr_validate_node_memory(machine);
1808 }
1809
1810 /* init CPUs */
1811 if (machine->cpu_model == NULL) {
1812 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1813 }
1814 for (i = 0; i < smp_cpus; i++) {
1815 cpu = cpu_ppc_init(machine->cpu_model);
1816 if (cpu == NULL) {
1817 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1818 exit(1);
1819 }
1820 spapr_cpu_init(spapr, cpu);
1821 }
1822
1823 if (kvm_enabled()) {
1824 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1825 kvmppc_enable_logical_ci_hcalls();
1826 kvmppc_enable_set_mode_hcall();
1827 }
1828
1829 /* allocate RAM */
1830 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1831 machine->ram_size);
1832 memory_region_add_subregion(sysmem, 0, ram);
1833
1834 if (rma_alloc_size && rma) {
1835 rma_region = g_new(MemoryRegion, 1);
1836 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1837 rma_alloc_size, rma);
1838 vmstate_register_ram_global(rma_region);
1839 memory_region_add_subregion(sysmem, 0, rma_region);
1840 }
1841
1842 /* initialize hotplug memory address space */
1843 if (machine->ram_size < machine->maxram_size) {
1844 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1845
1846 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1847 error_report("Specified number of memory slots %" PRIu64
1848 " exceeds max supported %d",
1849 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1850 exit(EXIT_FAILURE);
1851 }
1852
1853 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1854 SPAPR_HOTPLUG_MEM_ALIGN);
1855 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1856 "hotplug-memory", hotplug_mem_size);
1857 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1858 &spapr->hotplug_memory.mr);
1859 }
1860
1861 if (smc->dr_lmb_enabled) {
1862 spapr_create_lmb_dr_connectors(spapr);
1863 }
1864
1865 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1866 if (!filename) {
1867 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1868 exit(1);
1869 }
1870 spapr->rtas_size = get_image_size(filename);
1871 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1872 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1873 error_report("Could not load LPAR rtas '%s'", filename);
1874 exit(1);
1875 }
1876 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1877 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1878 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1879 exit(1);
1880 }
1881 g_free(filename);
1882
1883 /* Set up EPOW events infrastructure */
1884 spapr_events_init(spapr);
1885
1886 /* Set up the RTC RTAS interfaces */
1887 spapr_rtc_create(spapr);
1888
1889 /* Set up VIO bus */
1890 spapr->vio_bus = spapr_vio_bus_init();
1891
1892 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1893 if (serial_hds[i]) {
1894 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1895 }
1896 }
1897
1898 /* We always have at least the nvram device on VIO */
1899 spapr_create_nvram(spapr);
1900
1901 /* Set up PCI */
1902 spapr_pci_rtas_init();
1903
1904 phb = spapr_create_phb(spapr, 0);
1905
1906 for (i = 0; i < nb_nics; i++) {
1907 NICInfo *nd = &nd_table[i];
1908
1909 if (!nd->model) {
1910 nd->model = g_strdup("ibmveth");
1911 }
1912
1913 if (strcmp(nd->model, "ibmveth") == 0) {
1914 spapr_vlan_create(spapr->vio_bus, nd);
1915 } else {
1916 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1917 }
1918 }
1919
1920 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1921 spapr_vscsi_create(spapr->vio_bus);
1922 }
1923
1924 /* Graphics */
1925 if (spapr_vga_init(phb->bus)) {
1926 spapr->has_graphics = true;
1927 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1928 }
1929
1930 if (machine->usb) {
1931 if (smc->use_ohci_by_default) {
1932 pci_create_simple(phb->bus, -1, "pci-ohci");
1933 } else {
1934 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1935 }
1936
1937 if (spapr->has_graphics) {
1938 USBBus *usb_bus = usb_bus_find(-1);
1939
1940 usb_create_simple(usb_bus, "usb-kbd");
1941 usb_create_simple(usb_bus, "usb-mouse");
1942 }
1943 }
1944
1945 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1946 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1947 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1948 exit(1);
1949 }
1950
1951 if (kernel_filename) {
1952 uint64_t lowaddr = 0;
1953
1954 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1955 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1956 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1957 kernel_size = load_elf(kernel_filename,
1958 translate_kernel_address, NULL,
1959 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1960 kernel_le = kernel_size > 0;
1961 }
1962 if (kernel_size < 0) {
1963 fprintf(stderr, "qemu: error loading %s: %s\n",
1964 kernel_filename, load_elf_strerror(kernel_size));
1965 exit(1);
1966 }
1967
1968 /* load initrd */
1969 if (initrd_filename) {
1970 /* Try to locate the initrd in the gap between the kernel
1971 * and the firmware. Add a bit of space just in case
1972 */
1973 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1974 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1975 load_limit - initrd_base);
1976 if (initrd_size < 0) {
1977 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1978 initrd_filename);
1979 exit(1);
1980 }
1981 } else {
1982 initrd_base = 0;
1983 initrd_size = 0;
1984 }
1985 }
1986
1987 if (bios_name == NULL) {
1988 bios_name = FW_FILE_NAME;
1989 }
1990 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1991 if (!filename) {
1992 error_report("Could not find LPAR firmware '%s'", bios_name);
1993 exit(1);
1994 }
1995 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1996 if (fw_size <= 0) {
1997 error_report("Could not load LPAR firmware '%s'", filename);
1998 exit(1);
1999 }
2000 g_free(filename);
2001
2002 /* FIXME: Should register things through the MachineState's qdev
2003 * interface, this is a legacy from the sPAPREnvironment structure
2004 * which predated MachineState but had a similar function */
2005 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2006 register_savevm_live(NULL, "spapr/htab", -1, 1,
2007 &savevm_htab_handlers, spapr);
2008
2009 /* Prepare the device tree */
2010 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2011 kernel_size, kernel_le,
2012 kernel_cmdline,
2013 spapr->check_exception_irq);
2014 assert(spapr->fdt_skel != NULL);
2015
2016 /* used by RTAS */
2017 QTAILQ_INIT(&spapr->ccs_list);
2018 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2019
2020 qemu_register_boot_set(spapr_boot_set, spapr);
2021 }
2022
2023 static int spapr_kvm_type(const char *vm_type)
2024 {
2025 if (!vm_type) {
2026 return 0;
2027 }
2028
2029 if (!strcmp(vm_type, "HV")) {
2030 return 1;
2031 }
2032
2033 if (!strcmp(vm_type, "PR")) {
2034 return 2;
2035 }
2036
2037 error_report("Unknown kvm-type specified '%s'", vm_type);
2038 exit(1);
2039 }
2040
2041 /*
2042 * Implementation of an interface to adjust firmware path
2043 * for the bootindex property handling.
2044 */
2045 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2046 DeviceState *dev)
2047 {
2048 #define CAST(type, obj, name) \
2049 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2050 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2051 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2052
2053 if (d) {
2054 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2055 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2056 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2057
2058 if (spapr) {
2059 /*
2060 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2061 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2062 * in the top 16 bits of the 64-bit LUN
2063 */
2064 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2065 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2066 (uint64_t)id << 48);
2067 } else if (virtio) {
2068 /*
2069 * We use SRP luns of the form 01000000 | (target << 8) | lun
2070 * in the top 32 bits of the 64-bit LUN
2071 * Note: the quote above is from SLOF and it is wrong,
2072 * the actual binding is:
2073 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2074 */
2075 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2077 (uint64_t)id << 32);
2078 } else if (usb) {
2079 /*
2080 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2081 * in the top 32 bits of the 64-bit LUN
2082 */
2083 unsigned usb_port = atoi(usb->port->path);
2084 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2085 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2086 (uint64_t)id << 32);
2087 }
2088 }
2089
2090 if (phb) {
2091 /* Replace "pci" with "pci@800000020000000" */
2092 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2093 }
2094
2095 return NULL;
2096 }
2097
2098 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2099 {
2100 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2101
2102 return g_strdup(spapr->kvm_type);
2103 }
2104
2105 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2106 {
2107 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2108
2109 g_free(spapr->kvm_type);
2110 spapr->kvm_type = g_strdup(value);
2111 }
2112
2113 static void spapr_machine_initfn(Object *obj)
2114 {
2115 object_property_add_str(obj, "kvm-type",
2116 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2117 object_property_set_description(obj, "kvm-type",
2118 "Specifies the KVM virtualization mode (HV, PR)",
2119 NULL);
2120 }
2121
2122 static void spapr_machine_finalizefn(Object *obj)
2123 {
2124 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2125
2126 g_free(spapr->kvm_type);
2127 }
2128
2129 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2130 {
2131 CPUState *cs = arg;
2132
2133 cpu_synchronize_state(cs);
2134 ppc_cpu_do_system_reset(cs);
2135 }
2136
2137 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2138 {
2139 CPUState *cs;
2140
2141 CPU_FOREACH(cs) {
2142 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2143 }
2144 }
2145
2146 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2147 uint32_t node, Error **errp)
2148 {
2149 sPAPRDRConnector *drc;
2150 sPAPRDRConnectorClass *drck;
2151 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2152 int i, fdt_offset, fdt_size;
2153 void *fdt;
2154
2155 /*
2156 * Check for DRC connectors and send hotplug notification to the
2157 * guest only in case of hotplugged memory. This allows cold plugged
2158 * memory to be specified at boot time.
2159 */
2160 if (!dev->hotplugged) {
2161 return;
2162 }
2163
2164 for (i = 0; i < nr_lmbs; i++) {
2165 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2166 addr/SPAPR_MEMORY_BLOCK_SIZE);
2167 g_assert(drc);
2168
2169 fdt = create_device_tree(&fdt_size);
2170 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2171 SPAPR_MEMORY_BLOCK_SIZE);
2172
2173 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2174 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2175 addr += SPAPR_MEMORY_BLOCK_SIZE;
2176 }
2177 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2178 }
2179
2180 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2181 uint32_t node, Error **errp)
2182 {
2183 Error *local_err = NULL;
2184 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2185 PCDIMMDevice *dimm = PC_DIMM(dev);
2186 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2187 MemoryRegion *mr = ddc->get_memory_region(dimm);
2188 uint64_t align = memory_region_get_alignment(mr);
2189 uint64_t size = memory_region_size(mr);
2190 uint64_t addr;
2191
2192 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2193 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2194 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2195 goto out;
2196 }
2197
2198 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2199 if (local_err) {
2200 goto out;
2201 }
2202
2203 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2204 if (local_err) {
2205 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2206 goto out;
2207 }
2208
2209 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2210
2211 out:
2212 error_propagate(errp, local_err);
2213 }
2214
2215 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2216 DeviceState *dev, Error **errp)
2217 {
2218 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2219
2220 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2221 int node;
2222
2223 if (!smc->dr_lmb_enabled) {
2224 error_setg(errp, "Memory hotplug not supported for this machine");
2225 return;
2226 }
2227 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2228 if (*errp) {
2229 return;
2230 }
2231
2232 /*
2233 * Currently PowerPC kernel doesn't allow hot-adding memory to
2234 * memory-less node, but instead will silently add the memory
2235 * to the first node that has some memory. This causes two
2236 * unexpected behaviours for the user.
2237 *
2238 * - Memory gets hotplugged to a different node than what the user
2239 * specified.
2240 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2241 * to memory-less node, a reboot will set things accordingly
2242 * and the previously hotplugged memory now ends in the right node.
2243 * This appears as if some memory moved from one node to another.
2244 *
2245 * So until kernel starts supporting memory hotplug to memory-less
2246 * nodes, just prevent such attempts upfront in QEMU.
2247 */
2248 if (nb_numa_nodes && !numa_info[node].node_mem) {
2249 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2250 node);
2251 return;
2252 }
2253
2254 spapr_memory_plug(hotplug_dev, dev, node, errp);
2255 }
2256 }
2257
2258 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2259 DeviceState *dev, Error **errp)
2260 {
2261 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2262 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2263 }
2264 }
2265
2266 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2267 DeviceState *dev)
2268 {
2269 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2270 return HOTPLUG_HANDLER(machine);
2271 }
2272 return NULL;
2273 }
2274
2275 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2276 {
2277 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2278 * socket means much for the paravirtualized PAPR platform) */
2279 return cpu_index / smp_threads / smp_cores;
2280 }
2281
2282 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2283 {
2284 MachineClass *mc = MACHINE_CLASS(oc);
2285 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2286 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2287 NMIClass *nc = NMI_CLASS(oc);
2288 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2289
2290 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2291
2292 /*
2293 * We set up the default / latest behaviour here. The class_init
2294 * functions for the specific versioned machine types can override
2295 * these details for backwards compatibility
2296 */
2297 mc->init = ppc_spapr_init;
2298 mc->reset = ppc_spapr_reset;
2299 mc->block_default_type = IF_SCSI;
2300 mc->max_cpus = MAX_CPUMASK_BITS;
2301 mc->no_parallel = 1;
2302 mc->default_boot_order = "";
2303 mc->default_ram_size = 512 * M_BYTE;
2304 mc->kvm_type = spapr_kvm_type;
2305 mc->has_dynamic_sysbus = true;
2306 mc->pci_allow_0_address = true;
2307 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2308 hc->plug = spapr_machine_device_plug;
2309 hc->unplug = spapr_machine_device_unplug;
2310 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2311
2312 smc->dr_lmb_enabled = true;
2313 fwc->get_dev_path = spapr_get_fw_dev_path;
2314 nc->nmi_monitor_handler = spapr_nmi;
2315 }
2316
2317 static const TypeInfo spapr_machine_info = {
2318 .name = TYPE_SPAPR_MACHINE,
2319 .parent = TYPE_MACHINE,
2320 .abstract = true,
2321 .instance_size = sizeof(sPAPRMachineState),
2322 .instance_init = spapr_machine_initfn,
2323 .instance_finalize = spapr_machine_finalizefn,
2324 .class_size = sizeof(sPAPRMachineClass),
2325 .class_init = spapr_machine_class_init,
2326 .interfaces = (InterfaceInfo[]) {
2327 { TYPE_FW_PATH_PROVIDER },
2328 { TYPE_NMI },
2329 { TYPE_HOTPLUG_HANDLER },
2330 { }
2331 },
2332 };
2333
2334 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2335 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2336 void *data) \
2337 { \
2338 MachineClass *mc = MACHINE_CLASS(oc); \
2339 spapr_machine_##suffix##_class_options(mc); \
2340 if (latest) { \
2341 mc->alias = "pseries"; \
2342 mc->is_default = 1; \
2343 } \
2344 } \
2345 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2346 { \
2347 MachineState *machine = MACHINE(obj); \
2348 spapr_machine_##suffix##_instance_options(machine); \
2349 } \
2350 static const TypeInfo spapr_machine_##suffix##_info = { \
2351 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2352 .parent = TYPE_SPAPR_MACHINE, \
2353 .class_init = spapr_machine_##suffix##_class_init, \
2354 .instance_init = spapr_machine_##suffix##_instance_init, \
2355 }; \
2356 static void spapr_machine_register_##suffix(void) \
2357 { \
2358 type_register(&spapr_machine_##suffix##_info); \
2359 } \
2360 machine_init(spapr_machine_register_##suffix)
2361
2362 /*
2363 * pseries-2.6
2364 */
2365 static void spapr_machine_2_6_instance_options(MachineState *machine)
2366 {
2367 }
2368
2369 static void spapr_machine_2_6_class_options(MachineClass *mc)
2370 {
2371 /* Defaults for the latest behaviour inherited from the base class */
2372 }
2373
2374 DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2375
2376 /*
2377 * pseries-2.5
2378 */
2379 #define SPAPR_COMPAT_2_5 \
2380 HW_COMPAT_2_5
2381
2382 static void spapr_machine_2_5_instance_options(MachineState *machine)
2383 {
2384 }
2385
2386 static void spapr_machine_2_5_class_options(MachineClass *mc)
2387 {
2388 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2389
2390 spapr_machine_2_6_class_options(mc);
2391 smc->use_ohci_by_default = true;
2392 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2393 }
2394
2395 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2396
2397 /*
2398 * pseries-2.4
2399 */
2400 #define SPAPR_COMPAT_2_4 \
2401 HW_COMPAT_2_4
2402
2403 static void spapr_machine_2_4_instance_options(MachineState *machine)
2404 {
2405 spapr_machine_2_5_instance_options(machine);
2406 }
2407
2408 static void spapr_machine_2_4_class_options(MachineClass *mc)
2409 {
2410 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2411
2412 spapr_machine_2_5_class_options(mc);
2413 smc->dr_lmb_enabled = false;
2414 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2415 }
2416
2417 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2418
2419 /*
2420 * pseries-2.3
2421 */
2422 #define SPAPR_COMPAT_2_3 \
2423 SPAPR_COMPAT_2_4 \
2424 HW_COMPAT_2_3 \
2425 {\
2426 .driver = "spapr-pci-host-bridge",\
2427 .property = "dynamic-reconfiguration",\
2428 .value = "off",\
2429 },
2430
2431 static void spapr_machine_2_3_instance_options(MachineState *machine)
2432 {
2433 spapr_machine_2_4_instance_options(machine);
2434 savevm_skip_section_footers();
2435 global_state_set_optional();
2436 }
2437
2438 static void spapr_machine_2_3_class_options(MachineClass *mc)
2439 {
2440 spapr_machine_2_4_class_options(mc);
2441 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2442 }
2443 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2444
2445 /*
2446 * pseries-2.2
2447 */
2448
2449 #define SPAPR_COMPAT_2_2 \
2450 SPAPR_COMPAT_2_3 \
2451 HW_COMPAT_2_2 \
2452 {\
2453 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2454 .property = "mem_win_size",\
2455 .value = "0x20000000",\
2456 },
2457
2458 static void spapr_machine_2_2_instance_options(MachineState *machine)
2459 {
2460 spapr_machine_2_3_instance_options(machine);
2461 }
2462
2463 static void spapr_machine_2_2_class_options(MachineClass *mc)
2464 {
2465 spapr_machine_2_3_class_options(mc);
2466 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2467 }
2468 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2469
2470 /*
2471 * pseries-2.1
2472 */
2473 #define SPAPR_COMPAT_2_1 \
2474 SPAPR_COMPAT_2_2 \
2475 HW_COMPAT_2_1
2476
2477 static void spapr_machine_2_1_instance_options(MachineState *machine)
2478 {
2479 spapr_machine_2_2_instance_options(machine);
2480 }
2481
2482 static void spapr_machine_2_1_class_options(MachineClass *mc)
2483 {
2484 spapr_machine_2_2_class_options(mc);
2485 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2486 }
2487 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2488
2489 static void spapr_machine_register_types(void)
2490 {
2491 type_register_static(&spapr_machine_info);
2492 }
2493
2494 type_init(spapr_machine_register_types)