]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
0db86a7945840264894cff61d460500f1c3626b3
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "qmp-commands.h"
78
79 #include <libfdt.h>
80
81 /* SLOF memory layout:
82 *
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
85 *
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
88 *
89 * We load our kernel at 4M, leaving space for SLOF initial image
90 */
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98
99 #define MIN_RMA_SLOF 128UL
100
101 #define PHANDLE_XICP 0x00001111
102
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
106 {
107 Error *local_err = NULL;
108 Object *obj;
109
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
117 }
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
121 }
122
123 return ICS_SIMPLE(obj);
124
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
128 }
129
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
135 */
136 return false;
137 }
138
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
149 },
150 };
151
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
156 }
157
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 static inline int xics_max_server_number(void)
165 {
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 }
168
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 {
171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173
174 if (kvm_enabled()) {
175 if (machine_kernel_irqchip_allowed(machine) &&
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179 }
180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
183 }
184 }
185
186 if (!spapr->ics) {
187 xics_spapr_init(spapr);
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190 if (!spapr->ics) {
191 return;
192 }
193 }
194
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
197
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
201 */
202 pre_2_10_vmstate_register_dummy_icp(i);
203 }
204 }
205 }
206
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
209 {
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = spapr_vcpu_id(cpu);
214
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217 if (ret < 0) {
218 return ret;
219 }
220 }
221
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
228 }
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
233 }
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
236
237 return ret;
238 }
239
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 {
242 int index = spapr_vcpu_id(cpu);
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
247 cpu_to_be32(cpu->node_id),
248 cpu_to_be32(index)};
249
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252 sizeof(associativity));
253 }
254
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
257 PowerPCCPU *cpu,
258 void *fdt, int offset,
259 bool legacy_guest)
260 {
261 CPUPPCState *env = &cpu->env;
262 uint8_t pa_features_206[] = { 6, 0,
263 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
264 uint8_t pa_features_207[] = { 24, 0,
265 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
266 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
267 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
268 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
269 uint8_t pa_features_300[] = { 66, 0,
270 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
271 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
272 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
273 /* 6: DS207 */
274 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
275 /* 16: Vector */
276 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
277 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
278 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
279 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
281 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
282 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
283 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
285 /* 42: PM, 44: PC RA, 46: SC vec'd */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
287 /* 48: SIMD, 50: QP BFP, 52: String */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
289 /* 54: DecFP, 56: DecI, 58: SHA */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
291 /* 60: NM atomic, 62: RNG */
292 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
293 };
294 uint8_t *pa_features = NULL;
295 size_t pa_size;
296
297 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
298 pa_features = pa_features_206;
299 pa_size = sizeof(pa_features_206);
300 }
301 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
302 pa_features = pa_features_207;
303 pa_size = sizeof(pa_features_207);
304 }
305 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
306 pa_features = pa_features_300;
307 pa_size = sizeof(pa_features_300);
308 }
309 if (!pa_features) {
310 return;
311 }
312
313 if (env->ci_large_pages) {
314 /*
315 * Note: we keep CI large pages off by default because a 64K capable
316 * guest provisioned with large pages might otherwise try to map a qemu
317 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
318 * even if that qemu runs on a 4k host.
319 * We dd this bit back here if we are confident this is not an issue
320 */
321 pa_features[3] |= 0x20;
322 }
323 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
324 pa_features[24] |= 0x80; /* Transactional memory support */
325 }
326 if (legacy_guest && pa_size > 40) {
327 /* Workaround for broken kernels that attempt (guest) radix
328 * mode when they can't handle it, if they see the radix bit set
329 * in pa-features. So hide it from them. */
330 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
331 }
332
333 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
334 }
335
336 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
337 {
338 int ret = 0, offset, cpus_offset;
339 CPUState *cs;
340 char cpu_model[32];
341 int smt = kvmppc_smt_threads();
342 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
343
344 CPU_FOREACH(cs) {
345 PowerPCCPU *cpu = POWERPC_CPU(cs);
346 DeviceClass *dc = DEVICE_GET_CLASS(cs);
347 int index = spapr_vcpu_id(cpu);
348 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
349
350 if ((index % smt) != 0) {
351 continue;
352 }
353
354 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
355
356 cpus_offset = fdt_path_offset(fdt, "/cpus");
357 if (cpus_offset < 0) {
358 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
359 if (cpus_offset < 0) {
360 return cpus_offset;
361 }
362 }
363 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366 if (offset < 0) {
367 return offset;
368 }
369 }
370
371 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372 pft_size_prop, sizeof(pft_size_prop));
373 if (ret < 0) {
374 return ret;
375 }
376
377 if (nb_numa_nodes > 1) {
378 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379 if (ret < 0) {
380 return ret;
381 }
382 }
383
384 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385 if (ret < 0) {
386 return ret;
387 }
388
389 spapr_populate_pa_features(spapr, cpu, fdt, offset,
390 spapr->cas_legacy_guest_workaround);
391 }
392 return ret;
393 }
394
395 static hwaddr spapr_node0_size(MachineState *machine)
396 {
397 if (nb_numa_nodes) {
398 int i;
399 for (i = 0; i < nb_numa_nodes; ++i) {
400 if (numa_info[i].node_mem) {
401 return MIN(pow2floor(numa_info[i].node_mem),
402 machine->ram_size);
403 }
404 }
405 }
406 return machine->ram_size;
407 }
408
409 static void add_str(GString *s, const gchar *s1)
410 {
411 g_string_append_len(s, s1, strlen(s1) + 1);
412 }
413
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415 hwaddr size)
416 {
417 uint32_t associativity[] = {
418 cpu_to_be32(0x4), /* length */
419 cpu_to_be32(0x0), cpu_to_be32(0x0),
420 cpu_to_be32(0x0), cpu_to_be32(nodeid)
421 };
422 char mem_name[32];
423 uint64_t mem_reg_property[2];
424 int off;
425
426 mem_reg_property[0] = cpu_to_be64(start);
427 mem_reg_property[1] = cpu_to_be64(size);
428
429 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430 off = fdt_add_subnode(fdt, 0, mem_name);
431 _FDT(off);
432 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434 sizeof(mem_reg_property))));
435 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436 sizeof(associativity))));
437 return off;
438 }
439
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
441 {
442 MachineState *machine = MACHINE(spapr);
443 hwaddr mem_start, node_size;
444 int i, nb_nodes = nb_numa_nodes;
445 NodeInfo *nodes = numa_info;
446 NodeInfo ramnode;
447
448 /* No NUMA nodes, assume there is just one node with whole RAM */
449 if (!nb_numa_nodes) {
450 nb_nodes = 1;
451 ramnode.node_mem = machine->ram_size;
452 nodes = &ramnode;
453 }
454
455 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456 if (!nodes[i].node_mem) {
457 continue;
458 }
459 if (mem_start >= machine->ram_size) {
460 node_size = 0;
461 } else {
462 node_size = nodes[i].node_mem;
463 if (node_size > machine->ram_size - mem_start) {
464 node_size = machine->ram_size - mem_start;
465 }
466 }
467 if (!mem_start) {
468 /* ppc_spapr_init() checks for rma_size <= node0_size already */
469 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470 mem_start += spapr->rma_size;
471 node_size -= spapr->rma_size;
472 }
473 for ( ; node_size; ) {
474 hwaddr sizetmp = pow2floor(node_size);
475
476 /* mem_start != 0 here */
477 if (ctzl(mem_start) < ctzl(sizetmp)) {
478 sizetmp = 1ULL << ctzl(mem_start);
479 }
480
481 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482 node_size -= sizetmp;
483 mem_start += sizetmp;
484 }
485 }
486
487 return 0;
488 }
489
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491 sPAPRMachineState *spapr)
492 {
493 PowerPCCPU *cpu = POWERPC_CPU(cs);
494 CPUPPCState *env = &cpu->env;
495 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496 int index = spapr_vcpu_id(cpu);
497 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498 0xffffffff, 0xffffffff};
499 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500 : SPAPR_TIMEBASE_FREQ;
501 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502 uint32_t page_sizes_prop[64];
503 size_t page_sizes_prop_size;
504 uint32_t vcpus_per_socket = smp_threads * smp_cores;
505 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
507 sPAPRDRConnector *drc;
508 int drc_index;
509 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510 int i;
511
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513 if (drc) {
514 drc_index = spapr_drc_index(drc);
515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
516 }
517
518 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
520
521 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527 env->icache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529 env->icache_line_size)));
530
531 if (pcc->l1_dcache_size) {
532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533 pcc->l1_dcache_size)));
534 } else {
535 warn_report("Unknown L1 dcache size for cpu");
536 }
537 if (pcc->l1_icache_size) {
538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539 pcc->l1_icache_size)));
540 } else {
541 warn_report("Unknown L1 icache size for cpu");
542 }
543
544 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
550
551 if (env->spr_cb[SPR_PURR].oea_read) {
552 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
553 }
554
555 if (env->mmu_model & POWERPC_MMU_1TSEG) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557 segs, sizeof(segs))));
558 }
559
560 /* Advertise VSX (vector extensions) if available
561 * 1 == VMX / Altivec available
562 * 2 == VSX available
563 *
564 * Only CPUs for which we create core types in spapr_cpu_core.c
565 * are possible, and all of those have VMX */
566 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
567 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
568 } else {
569 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
570 }
571
572 /* Advertise DFP (Decimal Floating Point) if available
573 * 0 / no property == no DFP
574 * 1 == DFP available */
575 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
576 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
577 }
578
579 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580 sizeof(page_sizes_prop));
581 if (page_sizes_prop_size) {
582 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583 page_sizes_prop, page_sizes_prop_size)));
584 }
585
586 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
587
588 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589 cs->cpu_index / vcpus_per_socket)));
590
591 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592 pft_size_prop, sizeof(pft_size_prop))));
593
594 if (nb_numa_nodes > 1) {
595 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
596 }
597
598 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
599
600 if (pcc->radix_page_info) {
601 for (i = 0; i < pcc->radix_page_info->count; i++) {
602 radix_AP_encodings[i] =
603 cpu_to_be32(pcc->radix_page_info->entries[i]);
604 }
605 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606 radix_AP_encodings,
607 pcc->radix_page_info->count *
608 sizeof(radix_AP_encodings[0]))));
609 }
610 }
611
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
613 {
614 CPUState *cs;
615 int cpus_offset;
616 char *nodename;
617 int smt = kvmppc_smt_threads();
618
619 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620 _FDT(cpus_offset);
621 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
623
624 /*
625 * We walk the CPUs in reverse order to ensure that CPU DT nodes
626 * created by fdt_add_subnode() end up in the right order in FDT
627 * for the guest kernel the enumerate the CPUs correctly.
628 */
629 CPU_FOREACH_REVERSE(cs) {
630 PowerPCCPU *cpu = POWERPC_CPU(cs);
631 int index = spapr_vcpu_id(cpu);
632 DeviceClass *dc = DEVICE_GET_CLASS(cs);
633 int offset;
634
635 if ((index % smt) != 0) {
636 continue;
637 }
638
639 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641 g_free(nodename);
642 _FDT(offset);
643 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
644 }
645
646 }
647
648 /*
649 * Adds ibm,dynamic-reconfiguration-memory node.
650 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
651 * of this device tree node.
652 */
653 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
654 {
655 MachineState *machine = MACHINE(spapr);
656 int ret, i, offset;
657 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
658 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
659 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
660 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
661 memory_region_size(&spapr->hotplug_memory.mr)) /
662 lmb_size;
663 uint32_t *int_buf, *cur_index, buf_len;
664 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
665
666 /*
667 * Don't create the node if there is no hotpluggable memory
668 */
669 if (machine->ram_size == machine->maxram_size) {
670 return 0;
671 }
672
673 /*
674 * Allocate enough buffer size to fit in ibm,dynamic-memory
675 * or ibm,associativity-lookup-arrays
676 */
677 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
678 * sizeof(uint32_t);
679 cur_index = int_buf = g_malloc0(buf_len);
680
681 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
682
683 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
684 sizeof(prop_lmb_size));
685 if (ret < 0) {
686 goto out;
687 }
688
689 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
690 if (ret < 0) {
691 goto out;
692 }
693
694 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
695 if (ret < 0) {
696 goto out;
697 }
698
699 /* ibm,dynamic-memory */
700 int_buf[0] = cpu_to_be32(nr_lmbs);
701 cur_index++;
702 for (i = 0; i < nr_lmbs; i++) {
703 uint64_t addr = i * lmb_size;
704 uint32_t *dynamic_memory = cur_index;
705
706 if (i >= hotplug_lmb_start) {
707 sPAPRDRConnector *drc;
708
709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
710 g_assert(drc);
711
712 dynamic_memory[0] = cpu_to_be32(addr >> 32);
713 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
714 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
715 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
716 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
717 if (memory_region_present(get_system_memory(), addr)) {
718 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
719 } else {
720 dynamic_memory[5] = cpu_to_be32(0);
721 }
722 } else {
723 /*
724 * LMB information for RMA, boot time RAM and gap b/n RAM and
725 * hotplug memory region -- all these are marked as reserved
726 * and as having no valid DRC.
727 */
728 dynamic_memory[0] = cpu_to_be32(addr >> 32);
729 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
730 dynamic_memory[2] = cpu_to_be32(0);
731 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
732 dynamic_memory[4] = cpu_to_be32(-1);
733 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
734 SPAPR_LMB_FLAGS_DRC_INVALID);
735 }
736
737 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
738 }
739 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
740 if (ret < 0) {
741 goto out;
742 }
743
744 /* ibm,associativity-lookup-arrays */
745 cur_index = int_buf;
746 int_buf[0] = cpu_to_be32(nr_nodes);
747 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
748 cur_index += 2;
749 for (i = 0; i < nr_nodes; i++) {
750 uint32_t associativity[] = {
751 cpu_to_be32(0x0),
752 cpu_to_be32(0x0),
753 cpu_to_be32(0x0),
754 cpu_to_be32(i)
755 };
756 memcpy(cur_index, associativity, sizeof(associativity));
757 cur_index += 4;
758 }
759 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
760 (cur_index - int_buf) * sizeof(uint32_t));
761 out:
762 g_free(int_buf);
763 return ret;
764 }
765
766 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
767 sPAPROptionVector *ov5_updates)
768 {
769 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
770 int ret = 0, offset;
771
772 /* Generate ibm,dynamic-reconfiguration-memory node if required */
773 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
774 g_assert(smc->dr_lmb_enabled);
775 ret = spapr_populate_drconf_memory(spapr, fdt);
776 if (ret) {
777 goto out;
778 }
779 }
780
781 offset = fdt_path_offset(fdt, "/chosen");
782 if (offset < 0) {
783 offset = fdt_add_subnode(fdt, 0, "chosen");
784 if (offset < 0) {
785 return offset;
786 }
787 }
788 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
789 "ibm,architecture-vec-5");
790
791 out:
792 return ret;
793 }
794
795 static bool spapr_hotplugged_dev_before_cas(void)
796 {
797 Object *drc_container, *obj;
798 ObjectProperty *prop;
799 ObjectPropertyIterator iter;
800
801 drc_container = container_get(object_get_root(), "/dr-connector");
802 object_property_iter_init(&iter, drc_container);
803 while ((prop = object_property_iter_next(&iter))) {
804 if (!strstart(prop->type, "link<", NULL)) {
805 continue;
806 }
807 obj = object_property_get_link(drc_container, prop->name, NULL);
808 if (spapr_drc_needed(obj)) {
809 return true;
810 }
811 }
812 return false;
813 }
814
815 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
816 target_ulong addr, target_ulong size,
817 sPAPROptionVector *ov5_updates)
818 {
819 void *fdt, *fdt_skel;
820 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
821
822 if (spapr_hotplugged_dev_before_cas()) {
823 return 1;
824 }
825
826 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
827 error_report("SLOF provided an unexpected CAS buffer size "
828 TARGET_FMT_lu " (min: %zu, max: %u)",
829 size, sizeof(hdr), FW_MAX_SIZE);
830 exit(EXIT_FAILURE);
831 }
832
833 size -= sizeof(hdr);
834
835 /* Create skeleton */
836 fdt_skel = g_malloc0(size);
837 _FDT((fdt_create(fdt_skel, size)));
838 _FDT((fdt_begin_node(fdt_skel, "")));
839 _FDT((fdt_end_node(fdt_skel)));
840 _FDT((fdt_finish(fdt_skel)));
841 fdt = g_malloc0(size);
842 _FDT((fdt_open_into(fdt_skel, fdt, size)));
843 g_free(fdt_skel);
844
845 /* Fixup cpu nodes */
846 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
847
848 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
849 return -1;
850 }
851
852 /* Pack resulting tree */
853 _FDT((fdt_pack(fdt)));
854
855 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
856 trace_spapr_cas_failed(size);
857 return -1;
858 }
859
860 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
861 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
862 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
863 g_free(fdt);
864
865 return 0;
866 }
867
868 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
869 {
870 int rtas;
871 GString *hypertas = g_string_sized_new(256);
872 GString *qemu_hypertas = g_string_sized_new(256);
873 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
874 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
875 memory_region_size(&spapr->hotplug_memory.mr);
876 uint32_t lrdr_capacity[] = {
877 cpu_to_be32(max_hotplug_addr >> 32),
878 cpu_to_be32(max_hotplug_addr & 0xffffffff),
879 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
880 cpu_to_be32(max_cpus / smp_threads),
881 };
882
883 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
884
885 /* hypertas */
886 add_str(hypertas, "hcall-pft");
887 add_str(hypertas, "hcall-term");
888 add_str(hypertas, "hcall-dabr");
889 add_str(hypertas, "hcall-interrupt");
890 add_str(hypertas, "hcall-tce");
891 add_str(hypertas, "hcall-vio");
892 add_str(hypertas, "hcall-splpar");
893 add_str(hypertas, "hcall-bulk");
894 add_str(hypertas, "hcall-set-mode");
895 add_str(hypertas, "hcall-sprg0");
896 add_str(hypertas, "hcall-copy");
897 add_str(hypertas, "hcall-debug");
898 add_str(qemu_hypertas, "hcall-memop1");
899
900 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
901 add_str(hypertas, "hcall-multi-tce");
902 }
903
904 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
905 add_str(hypertas, "hcall-hpt-resize");
906 }
907
908 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
909 hypertas->str, hypertas->len));
910 g_string_free(hypertas, TRUE);
911 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
912 qemu_hypertas->str, qemu_hypertas->len));
913 g_string_free(qemu_hypertas, TRUE);
914
915 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
916 refpoints, sizeof(refpoints)));
917
918 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
919 RTAS_ERROR_LOG_MAX));
920 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
921 RTAS_EVENT_SCAN_RATE));
922
923 if (msi_nonbroken) {
924 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
925 }
926
927 /*
928 * According to PAPR, rtas ibm,os-term does not guarantee a return
929 * back to the guest cpu.
930 *
931 * While an additional ibm,extended-os-term property indicates
932 * that rtas call return will always occur. Set this property.
933 */
934 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
935
936 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
937 lrdr_capacity, sizeof(lrdr_capacity)));
938
939 spapr_dt_rtas_tokens(fdt, rtas);
940 }
941
942 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
943 * that the guest may request and thus the valid values for bytes 24..26 of
944 * option vector 5: */
945 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
946 {
947 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
948
949 char val[2 * 4] = {
950 23, 0x00, /* Xive mode, filled in below. */
951 24, 0x00, /* Hash/Radix, filled in below. */
952 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
953 26, 0x40, /* Radix options: GTSE == yes. */
954 };
955
956 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
957 first_ppc_cpu->compat_pvr)) {
958 /* If we're in a pre POWER9 compat mode then the guest should do hash */
959 val[3] = 0x00; /* Hash */
960 } else if (kvm_enabled()) {
961 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
962 val[3] = 0x80; /* OV5_MMU_BOTH */
963 } else if (kvmppc_has_cap_mmu_radix()) {
964 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
965 } else {
966 val[3] = 0x00; /* Hash */
967 }
968 } else {
969 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
970 val[3] = 0xC0;
971 }
972 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
973 val, sizeof(val)));
974 }
975
976 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
977 {
978 MachineState *machine = MACHINE(spapr);
979 int chosen;
980 const char *boot_device = machine->boot_order;
981 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
982 size_t cb = 0;
983 char *bootlist = get_boot_devices_list(&cb, true);
984
985 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
986
987 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
988 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
989 spapr->initrd_base));
990 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
991 spapr->initrd_base + spapr->initrd_size));
992
993 if (spapr->kernel_size) {
994 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
995 cpu_to_be64(spapr->kernel_size) };
996
997 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
998 &kprop, sizeof(kprop)));
999 if (spapr->kernel_le) {
1000 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1001 }
1002 }
1003 if (boot_menu) {
1004 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1005 }
1006 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1007 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1008 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1009
1010 if (cb && bootlist) {
1011 int i;
1012
1013 for (i = 0; i < cb; i++) {
1014 if (bootlist[i] == '\n') {
1015 bootlist[i] = ' ';
1016 }
1017 }
1018 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1019 }
1020
1021 if (boot_device && strlen(boot_device)) {
1022 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1023 }
1024
1025 if (!spapr->has_graphics && stdout_path) {
1026 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1027 }
1028
1029 spapr_dt_ov5_platform_support(fdt, chosen);
1030
1031 g_free(stdout_path);
1032 g_free(bootlist);
1033 }
1034
1035 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1036 {
1037 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1038 * KVM to work under pHyp with some guest co-operation */
1039 int hypervisor;
1040 uint8_t hypercall[16];
1041
1042 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1043 /* indicate KVM hypercall interface */
1044 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1045 if (kvmppc_has_cap_fixup_hcalls()) {
1046 /*
1047 * Older KVM versions with older guest kernels were broken
1048 * with the magic page, don't allow the guest to map it.
1049 */
1050 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1051 sizeof(hypercall))) {
1052 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1053 hypercall, sizeof(hypercall)));
1054 }
1055 }
1056 }
1057
1058 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1059 hwaddr rtas_addr,
1060 hwaddr rtas_size)
1061 {
1062 MachineState *machine = MACHINE(spapr);
1063 MachineClass *mc = MACHINE_GET_CLASS(machine);
1064 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1065 int ret;
1066 void *fdt;
1067 sPAPRPHBState *phb;
1068 char *buf;
1069
1070 fdt = g_malloc0(FDT_MAX_SIZE);
1071 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1072
1073 /* Root node */
1074 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1075 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1076 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1077
1078 /*
1079 * Add info to guest to indentify which host is it being run on
1080 * and what is the uuid of the guest
1081 */
1082 if (kvmppc_get_host_model(&buf)) {
1083 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1084 g_free(buf);
1085 }
1086 if (kvmppc_get_host_serial(&buf)) {
1087 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1088 g_free(buf);
1089 }
1090
1091 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1092
1093 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1094 if (qemu_uuid_set) {
1095 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1096 }
1097 g_free(buf);
1098
1099 if (qemu_get_vm_name()) {
1100 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1101 qemu_get_vm_name()));
1102 }
1103
1104 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1105 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1106
1107 /* /interrupt controller */
1108 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1109
1110 ret = spapr_populate_memory(spapr, fdt);
1111 if (ret < 0) {
1112 error_report("couldn't setup memory nodes in fdt");
1113 exit(1);
1114 }
1115
1116 /* /vdevice */
1117 spapr_dt_vdevice(spapr->vio_bus, fdt);
1118
1119 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1120 ret = spapr_rng_populate_dt(fdt);
1121 if (ret < 0) {
1122 error_report("could not set up rng device in the fdt");
1123 exit(1);
1124 }
1125 }
1126
1127 QLIST_FOREACH(phb, &spapr->phbs, list) {
1128 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1129 if (ret < 0) {
1130 error_report("couldn't setup PCI devices in fdt");
1131 exit(1);
1132 }
1133 }
1134
1135 /* cpus */
1136 spapr_populate_cpus_dt_node(fdt, spapr);
1137
1138 if (smc->dr_lmb_enabled) {
1139 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1140 }
1141
1142 if (mc->has_hotpluggable_cpus) {
1143 int offset = fdt_path_offset(fdt, "/cpus");
1144 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1145 SPAPR_DR_CONNECTOR_TYPE_CPU);
1146 if (ret < 0) {
1147 error_report("Couldn't set up CPU DR device tree properties");
1148 exit(1);
1149 }
1150 }
1151
1152 /* /event-sources */
1153 spapr_dt_events(spapr, fdt);
1154
1155 /* /rtas */
1156 spapr_dt_rtas(spapr, fdt);
1157
1158 /* /chosen */
1159 spapr_dt_chosen(spapr, fdt);
1160
1161 /* /hypervisor */
1162 if (kvm_enabled()) {
1163 spapr_dt_hypervisor(spapr, fdt);
1164 }
1165
1166 /* Build memory reserve map */
1167 if (spapr->kernel_size) {
1168 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1169 }
1170 if (spapr->initrd_size) {
1171 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1172 }
1173
1174 /* ibm,client-architecture-support updates */
1175 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1176 if (ret < 0) {
1177 error_report("couldn't setup CAS properties fdt");
1178 exit(1);
1179 }
1180
1181 return fdt;
1182 }
1183
1184 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1185 {
1186 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1187 }
1188
1189 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1190 PowerPCCPU *cpu)
1191 {
1192 CPUPPCState *env = &cpu->env;
1193
1194 /* The TCG path should also be holding the BQL at this point */
1195 g_assert(qemu_mutex_iothread_locked());
1196
1197 if (msr_pr) {
1198 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1199 env->gpr[3] = H_PRIVILEGE;
1200 } else {
1201 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1202 }
1203 }
1204
1205 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1206 {
1207 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1208
1209 return spapr->patb_entry;
1210 }
1211
1212 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1213 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1214 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1215 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1216 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1217
1218 /*
1219 * Get the fd to access the kernel htab, re-opening it if necessary
1220 */
1221 static int get_htab_fd(sPAPRMachineState *spapr)
1222 {
1223 Error *local_err = NULL;
1224
1225 if (spapr->htab_fd >= 0) {
1226 return spapr->htab_fd;
1227 }
1228
1229 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1230 if (spapr->htab_fd < 0) {
1231 error_report_err(local_err);
1232 }
1233
1234 return spapr->htab_fd;
1235 }
1236
1237 void close_htab_fd(sPAPRMachineState *spapr)
1238 {
1239 if (spapr->htab_fd >= 0) {
1240 close(spapr->htab_fd);
1241 }
1242 spapr->htab_fd = -1;
1243 }
1244
1245 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1246 {
1247 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1248
1249 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1250 }
1251
1252 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1253 {
1254 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1255
1256 assert(kvm_enabled());
1257
1258 if (!spapr->htab) {
1259 return 0;
1260 }
1261
1262 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1263 }
1264
1265 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1266 hwaddr ptex, int n)
1267 {
1268 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1269 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1270
1271 if (!spapr->htab) {
1272 /*
1273 * HTAB is controlled by KVM. Fetch into temporary buffer
1274 */
1275 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1276 kvmppc_read_hptes(hptes, ptex, n);
1277 return hptes;
1278 }
1279
1280 /*
1281 * HTAB is controlled by QEMU. Just point to the internally
1282 * accessible PTEG.
1283 */
1284 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1285 }
1286
1287 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1288 const ppc_hash_pte64_t *hptes,
1289 hwaddr ptex, int n)
1290 {
1291 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292
1293 if (!spapr->htab) {
1294 g_free((void *)hptes);
1295 }
1296
1297 /* Nothing to do for qemu managed HPT */
1298 }
1299
1300 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1301 uint64_t pte0, uint64_t pte1)
1302 {
1303 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1304 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1305
1306 if (!spapr->htab) {
1307 kvmppc_write_hpte(ptex, pte0, pte1);
1308 } else {
1309 stq_p(spapr->htab + offset, pte0);
1310 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1311 }
1312 }
1313
1314 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1315 {
1316 int shift;
1317
1318 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1319 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1320 * that's much more than is needed for Linux guests */
1321 shift = ctz64(pow2ceil(ramsize)) - 7;
1322 shift = MAX(shift, 18); /* Minimum architected size */
1323 shift = MIN(shift, 46); /* Maximum architected size */
1324 return shift;
1325 }
1326
1327 void spapr_free_hpt(sPAPRMachineState *spapr)
1328 {
1329 g_free(spapr->htab);
1330 spapr->htab = NULL;
1331 spapr->htab_shift = 0;
1332 close_htab_fd(spapr);
1333 }
1334
1335 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1336 Error **errp)
1337 {
1338 long rc;
1339
1340 /* Clean up any HPT info from a previous boot */
1341 spapr_free_hpt(spapr);
1342
1343 rc = kvmppc_reset_htab(shift);
1344 if (rc < 0) {
1345 /* kernel-side HPT needed, but couldn't allocate one */
1346 error_setg_errno(errp, errno,
1347 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1348 shift);
1349 /* This is almost certainly fatal, but if the caller really
1350 * wants to carry on with shift == 0, it's welcome to try */
1351 } else if (rc > 0) {
1352 /* kernel-side HPT allocated */
1353 if (rc != shift) {
1354 error_setg(errp,
1355 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1356 shift, rc);
1357 }
1358
1359 spapr->htab_shift = shift;
1360 spapr->htab = NULL;
1361 } else {
1362 /* kernel-side HPT not needed, allocate in userspace instead */
1363 size_t size = 1ULL << shift;
1364 int i;
1365
1366 spapr->htab = qemu_memalign(size, size);
1367 if (!spapr->htab) {
1368 error_setg_errno(errp, errno,
1369 "Could not allocate HPT of order %d", shift);
1370 return;
1371 }
1372
1373 memset(spapr->htab, 0, size);
1374 spapr->htab_shift = shift;
1375
1376 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1377 DIRTY_HPTE(HPTE(spapr->htab, i));
1378 }
1379 }
1380 /* We're setting up a hash table, so that means we're not radix */
1381 spapr->patb_entry = 0;
1382 }
1383
1384 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1385 {
1386 int hpt_shift;
1387
1388 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1389 || (spapr->cas_reboot
1390 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1391 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1392 } else {
1393 uint64_t current_ram_size;
1394
1395 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1396 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1397 }
1398 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1399
1400 if (spapr->vrma_adjust) {
1401 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1402 spapr->htab_shift);
1403 }
1404 }
1405
1406 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1407 {
1408 bool matched = false;
1409
1410 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1411 matched = true;
1412 }
1413
1414 if (!matched) {
1415 error_report("Device %s is not supported by this machine yet.",
1416 qdev_fw_name(DEVICE(sbdev)));
1417 exit(1);
1418 }
1419 }
1420
1421 static int spapr_reset_drcs(Object *child, void *opaque)
1422 {
1423 sPAPRDRConnector *drc =
1424 (sPAPRDRConnector *) object_dynamic_cast(child,
1425 TYPE_SPAPR_DR_CONNECTOR);
1426
1427 if (drc) {
1428 spapr_drc_reset(drc);
1429 }
1430
1431 return 0;
1432 }
1433
1434 static void ppc_spapr_reset(void)
1435 {
1436 MachineState *machine = MACHINE(qdev_get_machine());
1437 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1438 PowerPCCPU *first_ppc_cpu;
1439 uint32_t rtas_limit;
1440 hwaddr rtas_addr, fdt_addr;
1441 void *fdt;
1442 int rc;
1443
1444 /* Check for unknown sysbus devices */
1445 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1446
1447 spapr_caps_reset(spapr);
1448
1449 first_ppc_cpu = POWERPC_CPU(first_cpu);
1450 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1451 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1452 spapr->max_compat_pvr)) {
1453 /* If using KVM with radix mode available, VCPUs can be started
1454 * without a HPT because KVM will start them in radix mode.
1455 * Set the GR bit in PATB so that we know there is no HPT. */
1456 spapr->patb_entry = PATBE1_GR;
1457 } else {
1458 spapr_setup_hpt_and_vrma(spapr);
1459 }
1460
1461 /* if this reset wasn't generated by CAS, we should reset our
1462 * negotiated options and start from scratch */
1463 if (!spapr->cas_reboot) {
1464 spapr_ovec_cleanup(spapr->ov5_cas);
1465 spapr->ov5_cas = spapr_ovec_new();
1466
1467 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1468 }
1469
1470 qemu_devices_reset();
1471
1472 /* DRC reset may cause a device to be unplugged. This will cause troubles
1473 * if this device is used by another device (eg, a running vhost backend
1474 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1475 * situations, we reset DRCs after all devices have been reset.
1476 */
1477 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1478
1479 spapr_clear_pending_events(spapr);
1480
1481 /*
1482 * We place the device tree and RTAS just below either the top of the RMA,
1483 * or just below 2GB, whichever is lowere, so that it can be
1484 * processed with 32-bit real mode code if necessary
1485 */
1486 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1487 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1488 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1489
1490 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1491
1492 spapr_load_rtas(spapr, fdt, rtas_addr);
1493
1494 rc = fdt_pack(fdt);
1495
1496 /* Should only fail if we've built a corrupted tree */
1497 assert(rc == 0);
1498
1499 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1500 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1501 fdt_totalsize(fdt), FDT_MAX_SIZE);
1502 exit(1);
1503 }
1504
1505 /* Load the fdt */
1506 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1507 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1508 g_free(fdt);
1509
1510 /* Set up the entry state */
1511 first_ppc_cpu->env.gpr[3] = fdt_addr;
1512 first_ppc_cpu->env.gpr[5] = 0;
1513 first_cpu->halted = 0;
1514 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1515
1516 spapr->cas_reboot = false;
1517 }
1518
1519 static void spapr_create_nvram(sPAPRMachineState *spapr)
1520 {
1521 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1522 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1523
1524 if (dinfo) {
1525 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1526 &error_fatal);
1527 }
1528
1529 qdev_init_nofail(dev);
1530
1531 spapr->nvram = (struct sPAPRNVRAM *)dev;
1532 }
1533
1534 static void spapr_rtc_create(sPAPRMachineState *spapr)
1535 {
1536 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1537 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1538 &error_fatal);
1539 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1540 &error_fatal);
1541 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1542 "date", &error_fatal);
1543 }
1544
1545 /* Returns whether we want to use VGA or not */
1546 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1547 {
1548 switch (vga_interface_type) {
1549 case VGA_NONE:
1550 return false;
1551 case VGA_DEVICE:
1552 return true;
1553 case VGA_STD:
1554 case VGA_VIRTIO:
1555 return pci_vga_init(pci_bus) != NULL;
1556 default:
1557 error_setg(errp,
1558 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1559 return false;
1560 }
1561 }
1562
1563 static int spapr_pre_load(void *opaque)
1564 {
1565 int rc;
1566
1567 rc = spapr_caps_pre_load(opaque);
1568 if (rc) {
1569 return rc;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int spapr_post_load(void *opaque, int version_id)
1576 {
1577 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1578 int err = 0;
1579
1580 err = spapr_caps_post_migration(spapr);
1581 if (err) {
1582 return err;
1583 }
1584
1585 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1586 CPUState *cs;
1587 CPU_FOREACH(cs) {
1588 PowerPCCPU *cpu = POWERPC_CPU(cs);
1589 icp_resend(ICP(cpu->intc));
1590 }
1591 }
1592
1593 /* In earlier versions, there was no separate qdev for the PAPR
1594 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1595 * So when migrating from those versions, poke the incoming offset
1596 * value into the RTC device */
1597 if (version_id < 3) {
1598 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1599 }
1600
1601 if (kvm_enabled() && spapr->patb_entry) {
1602 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1603 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1604 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1605
1606 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1607 if (err) {
1608 error_report("Process table config unsupported by the host");
1609 return -EINVAL;
1610 }
1611 }
1612
1613 return err;
1614 }
1615
1616 static int spapr_pre_save(void *opaque)
1617 {
1618 int rc;
1619
1620 rc = spapr_caps_pre_save(opaque);
1621 if (rc) {
1622 return rc;
1623 }
1624
1625 return 0;
1626 }
1627
1628 static bool version_before_3(void *opaque, int version_id)
1629 {
1630 return version_id < 3;
1631 }
1632
1633 static bool spapr_pending_events_needed(void *opaque)
1634 {
1635 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1636 return !QTAILQ_EMPTY(&spapr->pending_events);
1637 }
1638
1639 static const VMStateDescription vmstate_spapr_event_entry = {
1640 .name = "spapr_event_log_entry",
1641 .version_id = 1,
1642 .minimum_version_id = 1,
1643 .fields = (VMStateField[]) {
1644 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1645 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1646 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1647 NULL, extended_length),
1648 VMSTATE_END_OF_LIST()
1649 },
1650 };
1651
1652 static const VMStateDescription vmstate_spapr_pending_events = {
1653 .name = "spapr_pending_events",
1654 .version_id = 1,
1655 .minimum_version_id = 1,
1656 .needed = spapr_pending_events_needed,
1657 .fields = (VMStateField[]) {
1658 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1659 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1660 VMSTATE_END_OF_LIST()
1661 },
1662 };
1663
1664 static bool spapr_ov5_cas_needed(void *opaque)
1665 {
1666 sPAPRMachineState *spapr = opaque;
1667 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1668 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1669 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1670 bool cas_needed;
1671
1672 /* Prior to the introduction of sPAPROptionVector, we had two option
1673 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1674 * Both of these options encode machine topology into the device-tree
1675 * in such a way that the now-booted OS should still be able to interact
1676 * appropriately with QEMU regardless of what options were actually
1677 * negotiatied on the source side.
1678 *
1679 * As such, we can avoid migrating the CAS-negotiated options if these
1680 * are the only options available on the current machine/platform.
1681 * Since these are the only options available for pseries-2.7 and
1682 * earlier, this allows us to maintain old->new/new->old migration
1683 * compatibility.
1684 *
1685 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1686 * via default pseries-2.8 machines and explicit command-line parameters.
1687 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1688 * of the actual CAS-negotiated values to continue working properly. For
1689 * example, availability of memory unplug depends on knowing whether
1690 * OV5_HP_EVT was negotiated via CAS.
1691 *
1692 * Thus, for any cases where the set of available CAS-negotiatable
1693 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1694 * include the CAS-negotiated options in the migration stream.
1695 */
1696 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1697 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1698
1699 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1700 * the mask itself since in the future it's possible "legacy" bits may be
1701 * removed via machine options, which could generate a false positive
1702 * that breaks migration.
1703 */
1704 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1705 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1706
1707 spapr_ovec_cleanup(ov5_mask);
1708 spapr_ovec_cleanup(ov5_legacy);
1709 spapr_ovec_cleanup(ov5_removed);
1710
1711 return cas_needed;
1712 }
1713
1714 static const VMStateDescription vmstate_spapr_ov5_cas = {
1715 .name = "spapr_option_vector_ov5_cas",
1716 .version_id = 1,
1717 .minimum_version_id = 1,
1718 .needed = spapr_ov5_cas_needed,
1719 .fields = (VMStateField[]) {
1720 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1721 vmstate_spapr_ovec, sPAPROptionVector),
1722 VMSTATE_END_OF_LIST()
1723 },
1724 };
1725
1726 static bool spapr_patb_entry_needed(void *opaque)
1727 {
1728 sPAPRMachineState *spapr = opaque;
1729
1730 return !!spapr->patb_entry;
1731 }
1732
1733 static const VMStateDescription vmstate_spapr_patb_entry = {
1734 .name = "spapr_patb_entry",
1735 .version_id = 1,
1736 .minimum_version_id = 1,
1737 .needed = spapr_patb_entry_needed,
1738 .fields = (VMStateField[]) {
1739 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1740 VMSTATE_END_OF_LIST()
1741 },
1742 };
1743
1744 static const VMStateDescription vmstate_spapr = {
1745 .name = "spapr",
1746 .version_id = 3,
1747 .minimum_version_id = 1,
1748 .pre_load = spapr_pre_load,
1749 .post_load = spapr_post_load,
1750 .pre_save = spapr_pre_save,
1751 .fields = (VMStateField[]) {
1752 /* used to be @next_irq */
1753 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1754
1755 /* RTC offset */
1756 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1757
1758 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1759 VMSTATE_END_OF_LIST()
1760 },
1761 .subsections = (const VMStateDescription*[]) {
1762 &vmstate_spapr_ov5_cas,
1763 &vmstate_spapr_patb_entry,
1764 &vmstate_spapr_pending_events,
1765 &vmstate_spapr_cap_htm,
1766 &vmstate_spapr_cap_vsx,
1767 &vmstate_spapr_cap_dfp,
1768 &vmstate_spapr_cap_cfpc,
1769 &vmstate_spapr_cap_sbbc,
1770 NULL
1771 }
1772 };
1773
1774 static int htab_save_setup(QEMUFile *f, void *opaque)
1775 {
1776 sPAPRMachineState *spapr = opaque;
1777
1778 /* "Iteration" header */
1779 if (!spapr->htab_shift) {
1780 qemu_put_be32(f, -1);
1781 } else {
1782 qemu_put_be32(f, spapr->htab_shift);
1783 }
1784
1785 if (spapr->htab) {
1786 spapr->htab_save_index = 0;
1787 spapr->htab_first_pass = true;
1788 } else {
1789 if (spapr->htab_shift) {
1790 assert(kvm_enabled());
1791 }
1792 }
1793
1794
1795 return 0;
1796 }
1797
1798 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1799 int chunkstart, int n_valid, int n_invalid)
1800 {
1801 qemu_put_be32(f, chunkstart);
1802 qemu_put_be16(f, n_valid);
1803 qemu_put_be16(f, n_invalid);
1804 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1805 HASH_PTE_SIZE_64 * n_valid);
1806 }
1807
1808 static void htab_save_end_marker(QEMUFile *f)
1809 {
1810 qemu_put_be32(f, 0);
1811 qemu_put_be16(f, 0);
1812 qemu_put_be16(f, 0);
1813 }
1814
1815 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1816 int64_t max_ns)
1817 {
1818 bool has_timeout = max_ns != -1;
1819 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1820 int index = spapr->htab_save_index;
1821 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1822
1823 assert(spapr->htab_first_pass);
1824
1825 do {
1826 int chunkstart;
1827
1828 /* Consume invalid HPTEs */
1829 while ((index < htabslots)
1830 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1831 CLEAN_HPTE(HPTE(spapr->htab, index));
1832 index++;
1833 }
1834
1835 /* Consume valid HPTEs */
1836 chunkstart = index;
1837 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1838 && HPTE_VALID(HPTE(spapr->htab, index))) {
1839 CLEAN_HPTE(HPTE(spapr->htab, index));
1840 index++;
1841 }
1842
1843 if (index > chunkstart) {
1844 int n_valid = index - chunkstart;
1845
1846 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1847
1848 if (has_timeout &&
1849 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1850 break;
1851 }
1852 }
1853 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1854
1855 if (index >= htabslots) {
1856 assert(index == htabslots);
1857 index = 0;
1858 spapr->htab_first_pass = false;
1859 }
1860 spapr->htab_save_index = index;
1861 }
1862
1863 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1864 int64_t max_ns)
1865 {
1866 bool final = max_ns < 0;
1867 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1868 int examined = 0, sent = 0;
1869 int index = spapr->htab_save_index;
1870 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1871
1872 assert(!spapr->htab_first_pass);
1873
1874 do {
1875 int chunkstart, invalidstart;
1876
1877 /* Consume non-dirty HPTEs */
1878 while ((index < htabslots)
1879 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1880 index++;
1881 examined++;
1882 }
1883
1884 chunkstart = index;
1885 /* Consume valid dirty HPTEs */
1886 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1887 && HPTE_DIRTY(HPTE(spapr->htab, index))
1888 && HPTE_VALID(HPTE(spapr->htab, index))) {
1889 CLEAN_HPTE(HPTE(spapr->htab, index));
1890 index++;
1891 examined++;
1892 }
1893
1894 invalidstart = index;
1895 /* Consume invalid dirty HPTEs */
1896 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1897 && HPTE_DIRTY(HPTE(spapr->htab, index))
1898 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1899 CLEAN_HPTE(HPTE(spapr->htab, index));
1900 index++;
1901 examined++;
1902 }
1903
1904 if (index > chunkstart) {
1905 int n_valid = invalidstart - chunkstart;
1906 int n_invalid = index - invalidstart;
1907
1908 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1909 sent += index - chunkstart;
1910
1911 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1912 break;
1913 }
1914 }
1915
1916 if (examined >= htabslots) {
1917 break;
1918 }
1919
1920 if (index >= htabslots) {
1921 assert(index == htabslots);
1922 index = 0;
1923 }
1924 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1925
1926 if (index >= htabslots) {
1927 assert(index == htabslots);
1928 index = 0;
1929 }
1930
1931 spapr->htab_save_index = index;
1932
1933 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1934 }
1935
1936 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1937 #define MAX_KVM_BUF_SIZE 2048
1938
1939 static int htab_save_iterate(QEMUFile *f, void *opaque)
1940 {
1941 sPAPRMachineState *spapr = opaque;
1942 int fd;
1943 int rc = 0;
1944
1945 /* Iteration header */
1946 if (!spapr->htab_shift) {
1947 qemu_put_be32(f, -1);
1948 return 1;
1949 } else {
1950 qemu_put_be32(f, 0);
1951 }
1952
1953 if (!spapr->htab) {
1954 assert(kvm_enabled());
1955
1956 fd = get_htab_fd(spapr);
1957 if (fd < 0) {
1958 return fd;
1959 }
1960
1961 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1962 if (rc < 0) {
1963 return rc;
1964 }
1965 } else if (spapr->htab_first_pass) {
1966 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1967 } else {
1968 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1969 }
1970
1971 htab_save_end_marker(f);
1972
1973 return rc;
1974 }
1975
1976 static int htab_save_complete(QEMUFile *f, void *opaque)
1977 {
1978 sPAPRMachineState *spapr = opaque;
1979 int fd;
1980
1981 /* Iteration header */
1982 if (!spapr->htab_shift) {
1983 qemu_put_be32(f, -1);
1984 return 0;
1985 } else {
1986 qemu_put_be32(f, 0);
1987 }
1988
1989 if (!spapr->htab) {
1990 int rc;
1991
1992 assert(kvm_enabled());
1993
1994 fd = get_htab_fd(spapr);
1995 if (fd < 0) {
1996 return fd;
1997 }
1998
1999 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2000 if (rc < 0) {
2001 return rc;
2002 }
2003 } else {
2004 if (spapr->htab_first_pass) {
2005 htab_save_first_pass(f, spapr, -1);
2006 }
2007 htab_save_later_pass(f, spapr, -1);
2008 }
2009
2010 /* End marker */
2011 htab_save_end_marker(f);
2012
2013 return 0;
2014 }
2015
2016 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2017 {
2018 sPAPRMachineState *spapr = opaque;
2019 uint32_t section_hdr;
2020 int fd = -1;
2021 Error *local_err = NULL;
2022
2023 if (version_id < 1 || version_id > 1) {
2024 error_report("htab_load() bad version");
2025 return -EINVAL;
2026 }
2027
2028 section_hdr = qemu_get_be32(f);
2029
2030 if (section_hdr == -1) {
2031 spapr_free_hpt(spapr);
2032 return 0;
2033 }
2034
2035 if (section_hdr) {
2036 /* First section gives the htab size */
2037 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2038 if (local_err) {
2039 error_report_err(local_err);
2040 return -EINVAL;
2041 }
2042 return 0;
2043 }
2044
2045 if (!spapr->htab) {
2046 assert(kvm_enabled());
2047
2048 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2049 if (fd < 0) {
2050 error_report_err(local_err);
2051 return fd;
2052 }
2053 }
2054
2055 while (true) {
2056 uint32_t index;
2057 uint16_t n_valid, n_invalid;
2058
2059 index = qemu_get_be32(f);
2060 n_valid = qemu_get_be16(f);
2061 n_invalid = qemu_get_be16(f);
2062
2063 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2064 /* End of Stream */
2065 break;
2066 }
2067
2068 if ((index + n_valid + n_invalid) >
2069 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2070 /* Bad index in stream */
2071 error_report(
2072 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2073 index, n_valid, n_invalid, spapr->htab_shift);
2074 return -EINVAL;
2075 }
2076
2077 if (spapr->htab) {
2078 if (n_valid) {
2079 qemu_get_buffer(f, HPTE(spapr->htab, index),
2080 HASH_PTE_SIZE_64 * n_valid);
2081 }
2082 if (n_invalid) {
2083 memset(HPTE(spapr->htab, index + n_valid), 0,
2084 HASH_PTE_SIZE_64 * n_invalid);
2085 }
2086 } else {
2087 int rc;
2088
2089 assert(fd >= 0);
2090
2091 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2092 if (rc < 0) {
2093 return rc;
2094 }
2095 }
2096 }
2097
2098 if (!spapr->htab) {
2099 assert(fd >= 0);
2100 close(fd);
2101 }
2102
2103 return 0;
2104 }
2105
2106 static void htab_save_cleanup(void *opaque)
2107 {
2108 sPAPRMachineState *spapr = opaque;
2109
2110 close_htab_fd(spapr);
2111 }
2112
2113 static SaveVMHandlers savevm_htab_handlers = {
2114 .save_setup = htab_save_setup,
2115 .save_live_iterate = htab_save_iterate,
2116 .save_live_complete_precopy = htab_save_complete,
2117 .save_cleanup = htab_save_cleanup,
2118 .load_state = htab_load,
2119 };
2120
2121 static void spapr_boot_set(void *opaque, const char *boot_device,
2122 Error **errp)
2123 {
2124 MachineState *machine = MACHINE(opaque);
2125 machine->boot_order = g_strdup(boot_device);
2126 }
2127
2128 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2129 {
2130 MachineState *machine = MACHINE(spapr);
2131 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2132 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2133 int i;
2134
2135 for (i = 0; i < nr_lmbs; i++) {
2136 uint64_t addr;
2137
2138 addr = i * lmb_size + spapr->hotplug_memory.base;
2139 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2140 addr / lmb_size);
2141 }
2142 }
2143
2144 /*
2145 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2146 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2147 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2148 */
2149 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2150 {
2151 int i;
2152
2153 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2154 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2155 " is not aligned to %llu MiB",
2156 machine->ram_size,
2157 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2158 return;
2159 }
2160
2161 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2162 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2163 " is not aligned to %llu MiB",
2164 machine->ram_size,
2165 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2166 return;
2167 }
2168
2169 for (i = 0; i < nb_numa_nodes; i++) {
2170 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2171 error_setg(errp,
2172 "Node %d memory size 0x%" PRIx64
2173 " is not aligned to %llu MiB",
2174 i, numa_info[i].node_mem,
2175 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2176 return;
2177 }
2178 }
2179 }
2180
2181 /* find cpu slot in machine->possible_cpus by core_id */
2182 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2183 {
2184 int index = id / smp_threads;
2185
2186 if (index >= ms->possible_cpus->len) {
2187 return NULL;
2188 }
2189 if (idx) {
2190 *idx = index;
2191 }
2192 return &ms->possible_cpus->cpus[index];
2193 }
2194
2195 static void spapr_init_cpus(sPAPRMachineState *spapr)
2196 {
2197 MachineState *machine = MACHINE(spapr);
2198 MachineClass *mc = MACHINE_GET_CLASS(machine);
2199 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2200 int smt = kvmppc_smt_threads();
2201 const CPUArchIdList *possible_cpus;
2202 int boot_cores_nr = smp_cpus / smp_threads;
2203 int i;
2204
2205 if (!type) {
2206 error_report("Unable to find sPAPR CPU Core definition");
2207 exit(1);
2208 }
2209
2210 possible_cpus = mc->possible_cpu_arch_ids(machine);
2211 if (mc->has_hotpluggable_cpus) {
2212 if (smp_cpus % smp_threads) {
2213 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2214 smp_cpus, smp_threads);
2215 exit(1);
2216 }
2217 if (max_cpus % smp_threads) {
2218 error_report("max_cpus (%u) must be multiple of threads (%u)",
2219 max_cpus, smp_threads);
2220 exit(1);
2221 }
2222 } else {
2223 if (max_cpus != smp_cpus) {
2224 error_report("This machine version does not support CPU hotplug");
2225 exit(1);
2226 }
2227 boot_cores_nr = possible_cpus->len;
2228 }
2229
2230 for (i = 0; i < possible_cpus->len; i++) {
2231 int core_id = i * smp_threads;
2232
2233 if (mc->has_hotpluggable_cpus) {
2234 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2235 (core_id / smp_threads) * smt);
2236 }
2237
2238 if (i < boot_cores_nr) {
2239 Object *core = object_new(type);
2240 int nr_threads = smp_threads;
2241
2242 /* Handle the partially filled core for older machine types */
2243 if ((i + 1) * smp_threads >= smp_cpus) {
2244 nr_threads = smp_cpus - i * smp_threads;
2245 }
2246
2247 object_property_set_int(core, nr_threads, "nr-threads",
2248 &error_fatal);
2249 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2250 &error_fatal);
2251 object_property_set_bool(core, true, "realized", &error_fatal);
2252 }
2253 }
2254 }
2255
2256 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2257 {
2258 Error *local_err = NULL;
2259 bool vsmt_user = !!spapr->vsmt;
2260 int kvm_smt = kvmppc_smt_threads();
2261 int ret;
2262
2263 if (!kvm_enabled() && (smp_threads > 1)) {
2264 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2265 "on a pseries machine");
2266 goto out;
2267 }
2268 if (!is_power_of_2(smp_threads)) {
2269 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2270 "machine because it must be a power of 2", smp_threads);
2271 goto out;
2272 }
2273
2274 /* Detemine the VSMT mode to use: */
2275 if (vsmt_user) {
2276 if (spapr->vsmt < smp_threads) {
2277 error_setg(&local_err, "Cannot support VSMT mode %d"
2278 " because it must be >= threads/core (%d)",
2279 spapr->vsmt, smp_threads);
2280 goto out;
2281 }
2282 /* In this case, spapr->vsmt has been set by the command line */
2283 } else {
2284 /* Choose a VSMT mode that may be higher than necessary but is
2285 * likely to be compatible with hosts that don't have VSMT. */
2286 spapr->vsmt = MAX(kvm_smt, smp_threads);
2287 }
2288
2289 /* KVM: If necessary, set the SMT mode: */
2290 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2291 ret = kvmppc_set_smt_threads(spapr->vsmt);
2292 if (ret) {
2293 error_setg(&local_err,
2294 "Failed to set KVM's VSMT mode to %d (errno %d)",
2295 spapr->vsmt, ret);
2296 if (!vsmt_user) {
2297 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2298 "core on a host with %d threads/core requires "
2299 " the use of VSMT mode %d.\n",
2300 smp_threads, kvm_smt, spapr->vsmt);
2301 }
2302 kvmppc_hint_smt_possible(&local_err);
2303 goto out;
2304 }
2305 }
2306 /* else TCG: nothing to do currently */
2307 out:
2308 error_propagate(errp, local_err);
2309 }
2310
2311 /* pSeries LPAR / sPAPR hardware init */
2312 static void ppc_spapr_init(MachineState *machine)
2313 {
2314 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2315 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2316 const char *kernel_filename = machine->kernel_filename;
2317 const char *initrd_filename = machine->initrd_filename;
2318 PCIHostState *phb;
2319 int i;
2320 MemoryRegion *sysmem = get_system_memory();
2321 MemoryRegion *ram = g_new(MemoryRegion, 1);
2322 MemoryRegion *rma_region;
2323 void *rma = NULL;
2324 hwaddr rma_alloc_size;
2325 hwaddr node0_size = spapr_node0_size(machine);
2326 long load_limit, fw_size;
2327 char *filename;
2328 Error *resize_hpt_err = NULL;
2329
2330 msi_nonbroken = true;
2331
2332 QLIST_INIT(&spapr->phbs);
2333 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2334
2335 /* Check HPT resizing availability */
2336 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2337 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2338 /*
2339 * If the user explicitly requested a mode we should either
2340 * supply it, or fail completely (which we do below). But if
2341 * it's not set explicitly, we reset our mode to something
2342 * that works
2343 */
2344 if (resize_hpt_err) {
2345 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2346 error_free(resize_hpt_err);
2347 resize_hpt_err = NULL;
2348 } else {
2349 spapr->resize_hpt = smc->resize_hpt_default;
2350 }
2351 }
2352
2353 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2354
2355 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2356 /*
2357 * User requested HPT resize, but this host can't supply it. Bail out
2358 */
2359 error_report_err(resize_hpt_err);
2360 exit(1);
2361 }
2362
2363 /* Allocate RMA if necessary */
2364 rma_alloc_size = kvmppc_alloc_rma(&rma);
2365
2366 if (rma_alloc_size == -1) {
2367 error_report("Unable to create RMA");
2368 exit(1);
2369 }
2370
2371 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2372 spapr->rma_size = rma_alloc_size;
2373 } else {
2374 spapr->rma_size = node0_size;
2375
2376 /* With KVM, we don't actually know whether KVM supports an
2377 * unbounded RMA (PR KVM) or is limited by the hash table size
2378 * (HV KVM using VRMA), so we always assume the latter
2379 *
2380 * In that case, we also limit the initial allocations for RTAS
2381 * etc... to 256M since we have no way to know what the VRMA size
2382 * is going to be as it depends on the size of the hash table
2383 * isn't determined yet.
2384 */
2385 if (kvm_enabled()) {
2386 spapr->vrma_adjust = 1;
2387 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2388 }
2389
2390 /* Actually we don't support unbounded RMA anymore since we
2391 * added proper emulation of HV mode. The max we can get is
2392 * 16G which also happens to be what we configure for PAPR
2393 * mode so make sure we don't do anything bigger than that
2394 */
2395 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2396 }
2397
2398 if (spapr->rma_size > node0_size) {
2399 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2400 spapr->rma_size);
2401 exit(1);
2402 }
2403
2404 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2405 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2406
2407 /* Set up Interrupt Controller before we create the VCPUs */
2408 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2409
2410 /* Set up containers for ibm,client-architecture-support negotiated options
2411 */
2412 spapr->ov5 = spapr_ovec_new();
2413 spapr->ov5_cas = spapr_ovec_new();
2414
2415 if (smc->dr_lmb_enabled) {
2416 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2417 spapr_validate_node_memory(machine, &error_fatal);
2418 }
2419
2420 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2421 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2422 /* KVM and TCG always allow GTSE with radix... */
2423 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2424 }
2425 /* ... but not with hash (currently). */
2426
2427 /* advertise support for dedicated HP event source to guests */
2428 if (spapr->use_hotplug_event_source) {
2429 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2430 }
2431
2432 /* advertise support for HPT resizing */
2433 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2434 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2435 }
2436
2437 /* init CPUs */
2438 spapr_set_vsmt_mode(spapr, &error_fatal);
2439
2440 spapr_init_cpus(spapr);
2441
2442 if (kvm_enabled()) {
2443 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2444 kvmppc_enable_logical_ci_hcalls();
2445 kvmppc_enable_set_mode_hcall();
2446
2447 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2448 kvmppc_enable_clear_ref_mod_hcalls();
2449 }
2450
2451 /* allocate RAM */
2452 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2453 machine->ram_size);
2454 memory_region_add_subregion(sysmem, 0, ram);
2455
2456 if (rma_alloc_size && rma) {
2457 rma_region = g_new(MemoryRegion, 1);
2458 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2459 rma_alloc_size, rma);
2460 vmstate_register_ram_global(rma_region);
2461 memory_region_add_subregion(sysmem, 0, rma_region);
2462 }
2463
2464 /* initialize hotplug memory address space */
2465 if (machine->ram_size < machine->maxram_size) {
2466 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2467 /*
2468 * Limit the number of hotpluggable memory slots to half the number
2469 * slots that KVM supports, leaving the other half for PCI and other
2470 * devices. However ensure that number of slots doesn't drop below 32.
2471 */
2472 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2473 SPAPR_MAX_RAM_SLOTS;
2474
2475 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2476 max_memslots = SPAPR_MAX_RAM_SLOTS;
2477 }
2478 if (machine->ram_slots > max_memslots) {
2479 error_report("Specified number of memory slots %"
2480 PRIu64" exceeds max supported %d",
2481 machine->ram_slots, max_memslots);
2482 exit(1);
2483 }
2484
2485 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2486 SPAPR_HOTPLUG_MEM_ALIGN);
2487 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2488 "hotplug-memory", hotplug_mem_size);
2489 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2490 &spapr->hotplug_memory.mr);
2491 }
2492
2493 if (smc->dr_lmb_enabled) {
2494 spapr_create_lmb_dr_connectors(spapr);
2495 }
2496
2497 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2498 if (!filename) {
2499 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2500 exit(1);
2501 }
2502 spapr->rtas_size = get_image_size(filename);
2503 if (spapr->rtas_size < 0) {
2504 error_report("Could not get size of LPAR rtas '%s'", filename);
2505 exit(1);
2506 }
2507 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2508 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2509 error_report("Could not load LPAR rtas '%s'", filename);
2510 exit(1);
2511 }
2512 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2513 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2514 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2515 exit(1);
2516 }
2517 g_free(filename);
2518
2519 /* Set up RTAS event infrastructure */
2520 spapr_events_init(spapr);
2521
2522 /* Set up the RTC RTAS interfaces */
2523 spapr_rtc_create(spapr);
2524
2525 /* Set up VIO bus */
2526 spapr->vio_bus = spapr_vio_bus_init();
2527
2528 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2529 if (serial_hds[i]) {
2530 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2531 }
2532 }
2533
2534 /* We always have at least the nvram device on VIO */
2535 spapr_create_nvram(spapr);
2536
2537 /* Set up PCI */
2538 spapr_pci_rtas_init();
2539
2540 phb = spapr_create_phb(spapr, 0);
2541
2542 for (i = 0; i < nb_nics; i++) {
2543 NICInfo *nd = &nd_table[i];
2544
2545 if (!nd->model) {
2546 nd->model = g_strdup("ibmveth");
2547 }
2548
2549 if (strcmp(nd->model, "ibmveth") == 0) {
2550 spapr_vlan_create(spapr->vio_bus, nd);
2551 } else {
2552 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2553 }
2554 }
2555
2556 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2557 spapr_vscsi_create(spapr->vio_bus);
2558 }
2559
2560 /* Graphics */
2561 if (spapr_vga_init(phb->bus, &error_fatal)) {
2562 spapr->has_graphics = true;
2563 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2564 }
2565
2566 if (machine->usb) {
2567 if (smc->use_ohci_by_default) {
2568 pci_create_simple(phb->bus, -1, "pci-ohci");
2569 } else {
2570 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2571 }
2572
2573 if (spapr->has_graphics) {
2574 USBBus *usb_bus = usb_bus_find(-1);
2575
2576 usb_create_simple(usb_bus, "usb-kbd");
2577 usb_create_simple(usb_bus, "usb-mouse");
2578 }
2579 }
2580
2581 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2582 error_report(
2583 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2584 MIN_RMA_SLOF);
2585 exit(1);
2586 }
2587
2588 if (kernel_filename) {
2589 uint64_t lowaddr = 0;
2590
2591 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2592 NULL, NULL, &lowaddr, NULL, 1,
2593 PPC_ELF_MACHINE, 0, 0);
2594 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2595 spapr->kernel_size = load_elf(kernel_filename,
2596 translate_kernel_address, NULL, NULL,
2597 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2598 0, 0);
2599 spapr->kernel_le = spapr->kernel_size > 0;
2600 }
2601 if (spapr->kernel_size < 0) {
2602 error_report("error loading %s: %s", kernel_filename,
2603 load_elf_strerror(spapr->kernel_size));
2604 exit(1);
2605 }
2606
2607 /* load initrd */
2608 if (initrd_filename) {
2609 /* Try to locate the initrd in the gap between the kernel
2610 * and the firmware. Add a bit of space just in case
2611 */
2612 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2613 + 0x1ffff) & ~0xffff;
2614 spapr->initrd_size = load_image_targphys(initrd_filename,
2615 spapr->initrd_base,
2616 load_limit
2617 - spapr->initrd_base);
2618 if (spapr->initrd_size < 0) {
2619 error_report("could not load initial ram disk '%s'",
2620 initrd_filename);
2621 exit(1);
2622 }
2623 }
2624 }
2625
2626 if (bios_name == NULL) {
2627 bios_name = FW_FILE_NAME;
2628 }
2629 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2630 if (!filename) {
2631 error_report("Could not find LPAR firmware '%s'", bios_name);
2632 exit(1);
2633 }
2634 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2635 if (fw_size <= 0) {
2636 error_report("Could not load LPAR firmware '%s'", filename);
2637 exit(1);
2638 }
2639 g_free(filename);
2640
2641 /* FIXME: Should register things through the MachineState's qdev
2642 * interface, this is a legacy from the sPAPREnvironment structure
2643 * which predated MachineState but had a similar function */
2644 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2645 register_savevm_live(NULL, "spapr/htab", -1, 1,
2646 &savevm_htab_handlers, spapr);
2647
2648 qemu_register_boot_set(spapr_boot_set, spapr);
2649
2650 if (kvm_enabled()) {
2651 /* to stop and start vmclock */
2652 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2653 &spapr->tb);
2654
2655 kvmppc_spapr_enable_inkernel_multitce();
2656 }
2657 }
2658
2659 static int spapr_kvm_type(const char *vm_type)
2660 {
2661 if (!vm_type) {
2662 return 0;
2663 }
2664
2665 if (!strcmp(vm_type, "HV")) {
2666 return 1;
2667 }
2668
2669 if (!strcmp(vm_type, "PR")) {
2670 return 2;
2671 }
2672
2673 error_report("Unknown kvm-type specified '%s'", vm_type);
2674 exit(1);
2675 }
2676
2677 /*
2678 * Implementation of an interface to adjust firmware path
2679 * for the bootindex property handling.
2680 */
2681 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2682 DeviceState *dev)
2683 {
2684 #define CAST(type, obj, name) \
2685 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2686 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2687 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2688 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2689
2690 if (d) {
2691 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2692 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2693 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2694
2695 if (spapr) {
2696 /*
2697 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2698 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2699 * in the top 16 bits of the 64-bit LUN
2700 */
2701 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2702 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2703 (uint64_t)id << 48);
2704 } else if (virtio) {
2705 /*
2706 * We use SRP luns of the form 01000000 | (target << 8) | lun
2707 * in the top 32 bits of the 64-bit LUN
2708 * Note: the quote above is from SLOF and it is wrong,
2709 * the actual binding is:
2710 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2711 */
2712 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2713 if (d->lun >= 256) {
2714 /* Use the LUN "flat space addressing method" */
2715 id |= 0x4000;
2716 }
2717 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2718 (uint64_t)id << 32);
2719 } else if (usb) {
2720 /*
2721 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2722 * in the top 32 bits of the 64-bit LUN
2723 */
2724 unsigned usb_port = atoi(usb->port->path);
2725 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2726 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2727 (uint64_t)id << 32);
2728 }
2729 }
2730
2731 /*
2732 * SLOF probes the USB devices, and if it recognizes that the device is a
2733 * storage device, it changes its name to "storage" instead of "usb-host",
2734 * and additionally adds a child node for the SCSI LUN, so the correct
2735 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2736 */
2737 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2738 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2739 if (usb_host_dev_is_scsi_storage(usbdev)) {
2740 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2741 }
2742 }
2743
2744 if (phb) {
2745 /* Replace "pci" with "pci@800000020000000" */
2746 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2747 }
2748
2749 if (vsc) {
2750 /* Same logic as virtio above */
2751 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2752 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2753 }
2754
2755 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2756 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2757 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2758 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2759 }
2760
2761 return NULL;
2762 }
2763
2764 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2765 {
2766 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2767
2768 return g_strdup(spapr->kvm_type);
2769 }
2770
2771 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2772 {
2773 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2774
2775 g_free(spapr->kvm_type);
2776 spapr->kvm_type = g_strdup(value);
2777 }
2778
2779 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2780 {
2781 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2782
2783 return spapr->use_hotplug_event_source;
2784 }
2785
2786 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2787 Error **errp)
2788 {
2789 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2790
2791 spapr->use_hotplug_event_source = value;
2792 }
2793
2794 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2795 {
2796 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2797
2798 switch (spapr->resize_hpt) {
2799 case SPAPR_RESIZE_HPT_DEFAULT:
2800 return g_strdup("default");
2801 case SPAPR_RESIZE_HPT_DISABLED:
2802 return g_strdup("disabled");
2803 case SPAPR_RESIZE_HPT_ENABLED:
2804 return g_strdup("enabled");
2805 case SPAPR_RESIZE_HPT_REQUIRED:
2806 return g_strdup("required");
2807 }
2808 g_assert_not_reached();
2809 }
2810
2811 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2812 {
2813 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2814
2815 if (strcmp(value, "default") == 0) {
2816 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2817 } else if (strcmp(value, "disabled") == 0) {
2818 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2819 } else if (strcmp(value, "enabled") == 0) {
2820 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2821 } else if (strcmp(value, "required") == 0) {
2822 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2823 } else {
2824 error_setg(errp, "Bad value for \"resize-hpt\" property");
2825 }
2826 }
2827
2828 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2829 void *opaque, Error **errp)
2830 {
2831 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2832 }
2833
2834 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2835 void *opaque, Error **errp)
2836 {
2837 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2838 }
2839
2840 static void spapr_machine_initfn(Object *obj)
2841 {
2842 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2843
2844 spapr->htab_fd = -1;
2845 spapr->use_hotplug_event_source = true;
2846 object_property_add_str(obj, "kvm-type",
2847 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2848 object_property_set_description(obj, "kvm-type",
2849 "Specifies the KVM virtualization mode (HV, PR)",
2850 NULL);
2851 object_property_add_bool(obj, "modern-hotplug-events",
2852 spapr_get_modern_hotplug_events,
2853 spapr_set_modern_hotplug_events,
2854 NULL);
2855 object_property_set_description(obj, "modern-hotplug-events",
2856 "Use dedicated hotplug event mechanism in"
2857 " place of standard EPOW events when possible"
2858 " (required for memory hot-unplug support)",
2859 NULL);
2860
2861 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2862 "Maximum permitted CPU compatibility mode",
2863 &error_fatal);
2864
2865 object_property_add_str(obj, "resize-hpt",
2866 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2867 object_property_set_description(obj, "resize-hpt",
2868 "Resizing of the Hash Page Table (enabled, disabled, required)",
2869 NULL);
2870 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2871 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2872 object_property_set_description(obj, "vsmt",
2873 "Virtual SMT: KVM behaves as if this were"
2874 " the host's SMT mode", &error_abort);
2875 }
2876
2877 static void spapr_machine_finalizefn(Object *obj)
2878 {
2879 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2880
2881 g_free(spapr->kvm_type);
2882 }
2883
2884 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2885 {
2886 cpu_synchronize_state(cs);
2887 ppc_cpu_do_system_reset(cs);
2888 }
2889
2890 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2891 {
2892 CPUState *cs;
2893
2894 CPU_FOREACH(cs) {
2895 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2896 }
2897 }
2898
2899 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2900 uint32_t node, bool dedicated_hp_event_source,
2901 Error **errp)
2902 {
2903 sPAPRDRConnector *drc;
2904 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2905 int i, fdt_offset, fdt_size;
2906 void *fdt;
2907 uint64_t addr = addr_start;
2908 bool hotplugged = spapr_drc_hotplugged(dev);
2909 Error *local_err = NULL;
2910
2911 for (i = 0; i < nr_lmbs; i++) {
2912 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2913 addr / SPAPR_MEMORY_BLOCK_SIZE);
2914 g_assert(drc);
2915
2916 fdt = create_device_tree(&fdt_size);
2917 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2918 SPAPR_MEMORY_BLOCK_SIZE);
2919
2920 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2921 if (local_err) {
2922 while (addr > addr_start) {
2923 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2924 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2925 addr / SPAPR_MEMORY_BLOCK_SIZE);
2926 spapr_drc_detach(drc);
2927 }
2928 g_free(fdt);
2929 error_propagate(errp, local_err);
2930 return;
2931 }
2932 if (!hotplugged) {
2933 spapr_drc_reset(drc);
2934 }
2935 addr += SPAPR_MEMORY_BLOCK_SIZE;
2936 }
2937 /* send hotplug notification to the
2938 * guest only in case of hotplugged memory
2939 */
2940 if (hotplugged) {
2941 if (dedicated_hp_event_source) {
2942 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2943 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2944 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2945 nr_lmbs,
2946 spapr_drc_index(drc));
2947 } else {
2948 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2949 nr_lmbs);
2950 }
2951 }
2952 }
2953
2954 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2955 uint32_t node, Error **errp)
2956 {
2957 Error *local_err = NULL;
2958 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2959 PCDIMMDevice *dimm = PC_DIMM(dev);
2960 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2961 MemoryRegion *mr;
2962 uint64_t align, size, addr;
2963
2964 mr = ddc->get_memory_region(dimm, &local_err);
2965 if (local_err) {
2966 goto out;
2967 }
2968 align = memory_region_get_alignment(mr);
2969 size = memory_region_size(mr);
2970
2971 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2972 if (local_err) {
2973 goto out;
2974 }
2975
2976 addr = object_property_get_uint(OBJECT(dimm),
2977 PC_DIMM_ADDR_PROP, &local_err);
2978 if (local_err) {
2979 goto out_unplug;
2980 }
2981
2982 spapr_add_lmbs(dev, addr, size, node,
2983 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2984 &local_err);
2985 if (local_err) {
2986 goto out_unplug;
2987 }
2988
2989 return;
2990
2991 out_unplug:
2992 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2993 out:
2994 error_propagate(errp, local_err);
2995 }
2996
2997 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2998 Error **errp)
2999 {
3000 PCDIMMDevice *dimm = PC_DIMM(dev);
3001 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3002 MemoryRegion *mr;
3003 uint64_t size;
3004 char *mem_dev;
3005
3006 mr = ddc->get_memory_region(dimm, errp);
3007 if (!mr) {
3008 return;
3009 }
3010 size = memory_region_size(mr);
3011
3012 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3013 error_setg(errp, "Hotplugged memory size must be a multiple of "
3014 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3015 return;
3016 }
3017
3018 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3019 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3020 error_setg(errp, "Memory backend has bad page size. "
3021 "Use 'memory-backend-file' with correct mem-path.");
3022 goto out;
3023 }
3024
3025 out:
3026 g_free(mem_dev);
3027 }
3028
3029 struct sPAPRDIMMState {
3030 PCDIMMDevice *dimm;
3031 uint32_t nr_lmbs;
3032 QTAILQ_ENTRY(sPAPRDIMMState) next;
3033 };
3034
3035 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3036 PCDIMMDevice *dimm)
3037 {
3038 sPAPRDIMMState *dimm_state = NULL;
3039
3040 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3041 if (dimm_state->dimm == dimm) {
3042 break;
3043 }
3044 }
3045 return dimm_state;
3046 }
3047
3048 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3049 uint32_t nr_lmbs,
3050 PCDIMMDevice *dimm)
3051 {
3052 sPAPRDIMMState *ds = NULL;
3053
3054 /*
3055 * If this request is for a DIMM whose removal had failed earlier
3056 * (due to guest's refusal to remove the LMBs), we would have this
3057 * dimm already in the pending_dimm_unplugs list. In that
3058 * case don't add again.
3059 */
3060 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3061 if (!ds) {
3062 ds = g_malloc0(sizeof(sPAPRDIMMState));
3063 ds->nr_lmbs = nr_lmbs;
3064 ds->dimm = dimm;
3065 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3066 }
3067 return ds;
3068 }
3069
3070 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3071 sPAPRDIMMState *dimm_state)
3072 {
3073 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3074 g_free(dimm_state);
3075 }
3076
3077 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3078 PCDIMMDevice *dimm)
3079 {
3080 sPAPRDRConnector *drc;
3081 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3082 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3083 uint64_t size = memory_region_size(mr);
3084 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3085 uint32_t avail_lmbs = 0;
3086 uint64_t addr_start, addr;
3087 int i;
3088
3089 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3090 &error_abort);
3091
3092 addr = addr_start;
3093 for (i = 0; i < nr_lmbs; i++) {
3094 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3095 addr / SPAPR_MEMORY_BLOCK_SIZE);
3096 g_assert(drc);
3097 if (drc->dev) {
3098 avail_lmbs++;
3099 }
3100 addr += SPAPR_MEMORY_BLOCK_SIZE;
3101 }
3102
3103 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3104 }
3105
3106 /* Callback to be called during DRC release. */
3107 void spapr_lmb_release(DeviceState *dev)
3108 {
3109 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3110 PCDIMMDevice *dimm = PC_DIMM(dev);
3111 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3112 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3113 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3114
3115 /* This information will get lost if a migration occurs
3116 * during the unplug process. In this case recover it. */
3117 if (ds == NULL) {
3118 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3119 g_assert(ds);
3120 /* The DRC being examined by the caller at least must be counted */
3121 g_assert(ds->nr_lmbs);
3122 }
3123
3124 if (--ds->nr_lmbs) {
3125 return;
3126 }
3127
3128 /*
3129 * Now that all the LMBs have been removed by the guest, call the
3130 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3131 */
3132 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3133 object_unparent(OBJECT(dev));
3134 spapr_pending_dimm_unplugs_remove(spapr, ds);
3135 }
3136
3137 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3138 DeviceState *dev, Error **errp)
3139 {
3140 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3141 Error *local_err = NULL;
3142 PCDIMMDevice *dimm = PC_DIMM(dev);
3143 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3144 MemoryRegion *mr;
3145 uint32_t nr_lmbs;
3146 uint64_t size, addr_start, addr;
3147 int i;
3148 sPAPRDRConnector *drc;
3149
3150 mr = ddc->get_memory_region(dimm, &local_err);
3151 if (local_err) {
3152 goto out;
3153 }
3154 size = memory_region_size(mr);
3155 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3156
3157 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3158 &local_err);
3159 if (local_err) {
3160 goto out;
3161 }
3162
3163 /*
3164 * An existing pending dimm state for this DIMM means that there is an
3165 * unplug operation in progress, waiting for the spapr_lmb_release
3166 * callback to complete the job (BQL can't cover that far). In this case,
3167 * bail out to avoid detaching DRCs that were already released.
3168 */
3169 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3170 error_setg(&local_err,
3171 "Memory unplug already in progress for device %s",
3172 dev->id);
3173 goto out;
3174 }
3175
3176 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3177
3178 addr = addr_start;
3179 for (i = 0; i < nr_lmbs; i++) {
3180 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3181 addr / SPAPR_MEMORY_BLOCK_SIZE);
3182 g_assert(drc);
3183
3184 spapr_drc_detach(drc);
3185 addr += SPAPR_MEMORY_BLOCK_SIZE;
3186 }
3187
3188 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3189 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3190 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3191 nr_lmbs, spapr_drc_index(drc));
3192 out:
3193 error_propagate(errp, local_err);
3194 }
3195
3196 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3197 sPAPRMachineState *spapr)
3198 {
3199 PowerPCCPU *cpu = POWERPC_CPU(cs);
3200 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3201 int id = spapr_vcpu_id(cpu);
3202 void *fdt;
3203 int offset, fdt_size;
3204 char *nodename;
3205
3206 fdt = create_device_tree(&fdt_size);
3207 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3208 offset = fdt_add_subnode(fdt, 0, nodename);
3209
3210 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3211 g_free(nodename);
3212
3213 *fdt_offset = offset;
3214 return fdt;
3215 }
3216
3217 /* Callback to be called during DRC release. */
3218 void spapr_core_release(DeviceState *dev)
3219 {
3220 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3221 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3222 CPUCore *cc = CPU_CORE(dev);
3223 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3224
3225 if (smc->pre_2_10_has_unused_icps) {
3226 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3227 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3228 size_t size = object_type_get_instance_size(scc->cpu_type);
3229 int i;
3230
3231 for (i = 0; i < cc->nr_threads; i++) {
3232 CPUState *cs = CPU(sc->threads + i * size);
3233
3234 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3235 }
3236 }
3237
3238 assert(core_slot);
3239 core_slot->cpu = NULL;
3240 object_unparent(OBJECT(dev));
3241 }
3242
3243 static
3244 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3245 Error **errp)
3246 {
3247 int index;
3248 sPAPRDRConnector *drc;
3249 CPUCore *cc = CPU_CORE(dev);
3250 int smt = kvmppc_smt_threads();
3251
3252 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3253 error_setg(errp, "Unable to find CPU core with core-id: %d",
3254 cc->core_id);
3255 return;
3256 }
3257 if (index == 0) {
3258 error_setg(errp, "Boot CPU core may not be unplugged");
3259 return;
3260 }
3261
3262 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3263 g_assert(drc);
3264
3265 spapr_drc_detach(drc);
3266
3267 spapr_hotplug_req_remove_by_index(drc);
3268 }
3269
3270 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3271 Error **errp)
3272 {
3273 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3274 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3275 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3276 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3277 CPUCore *cc = CPU_CORE(dev);
3278 CPUState *cs = CPU(core->threads);
3279 sPAPRDRConnector *drc;
3280 Error *local_err = NULL;
3281 int smt = kvmppc_smt_threads();
3282 CPUArchId *core_slot;
3283 int index;
3284 bool hotplugged = spapr_drc_hotplugged(dev);
3285
3286 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3287 if (!core_slot) {
3288 error_setg(errp, "Unable to find CPU core with core-id: %d",
3289 cc->core_id);
3290 return;
3291 }
3292 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3293
3294 g_assert(drc || !mc->has_hotpluggable_cpus);
3295
3296 if (drc) {
3297 void *fdt;
3298 int fdt_offset;
3299
3300 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3301
3302 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3303 if (local_err) {
3304 g_free(fdt);
3305 error_propagate(errp, local_err);
3306 return;
3307 }
3308
3309 if (hotplugged) {
3310 /*
3311 * Send hotplug notification interrupt to the guest only
3312 * in case of hotplugged CPUs.
3313 */
3314 spapr_hotplug_req_add_by_index(drc);
3315 } else {
3316 spapr_drc_reset(drc);
3317 }
3318 }
3319
3320 core_slot->cpu = OBJECT(dev);
3321
3322 if (smc->pre_2_10_has_unused_icps) {
3323 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3324 size_t size = object_type_get_instance_size(scc->cpu_type);
3325 int i;
3326
3327 for (i = 0; i < cc->nr_threads; i++) {
3328 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3329 void *obj = sc->threads + i * size;
3330
3331 cs = CPU(obj);
3332 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3333 }
3334 }
3335 }
3336
3337 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3338 Error **errp)
3339 {
3340 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3341 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3342 Error *local_err = NULL;
3343 CPUCore *cc = CPU_CORE(dev);
3344 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3345 const char *type = object_get_typename(OBJECT(dev));
3346 CPUArchId *core_slot;
3347 int index;
3348
3349 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3350 error_setg(&local_err, "CPU hotplug not supported for this machine");
3351 goto out;
3352 }
3353
3354 if (strcmp(base_core_type, type)) {
3355 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3356 goto out;
3357 }
3358
3359 if (cc->core_id % smp_threads) {
3360 error_setg(&local_err, "invalid core id %d", cc->core_id);
3361 goto out;
3362 }
3363
3364 /*
3365 * In general we should have homogeneous threads-per-core, but old
3366 * (pre hotplug support) machine types allow the last core to have
3367 * reduced threads as a compatibility hack for when we allowed
3368 * total vcpus not a multiple of threads-per-core.
3369 */
3370 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3371 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3372 cc->nr_threads, smp_threads);
3373 goto out;
3374 }
3375
3376 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3377 if (!core_slot) {
3378 error_setg(&local_err, "core id %d out of range", cc->core_id);
3379 goto out;
3380 }
3381
3382 if (core_slot->cpu) {
3383 error_setg(&local_err, "core %d already populated", cc->core_id);
3384 goto out;
3385 }
3386
3387 numa_cpu_pre_plug(core_slot, dev, &local_err);
3388
3389 out:
3390 error_propagate(errp, local_err);
3391 }
3392
3393 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3394 DeviceState *dev, Error **errp)
3395 {
3396 MachineState *ms = MACHINE(hotplug_dev);
3397 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3398
3399 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3400 int node;
3401
3402 if (!smc->dr_lmb_enabled) {
3403 error_setg(errp, "Memory hotplug not supported for this machine");
3404 return;
3405 }
3406 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3407 if (*errp) {
3408 return;
3409 }
3410 if (node < 0 || node >= MAX_NODES) {
3411 error_setg(errp, "Invaild node %d", node);
3412 return;
3413 }
3414
3415 /*
3416 * Currently PowerPC kernel doesn't allow hot-adding memory to
3417 * memory-less node, but instead will silently add the memory
3418 * to the first node that has some memory. This causes two
3419 * unexpected behaviours for the user.
3420 *
3421 * - Memory gets hotplugged to a different node than what the user
3422 * specified.
3423 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3424 * to memory-less node, a reboot will set things accordingly
3425 * and the previously hotplugged memory now ends in the right node.
3426 * This appears as if some memory moved from one node to another.
3427 *
3428 * So until kernel starts supporting memory hotplug to memory-less
3429 * nodes, just prevent such attempts upfront in QEMU.
3430 */
3431 if (nb_numa_nodes && !numa_info[node].node_mem) {
3432 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3433 node);
3434 return;
3435 }
3436
3437 spapr_memory_plug(hotplug_dev, dev, node, errp);
3438 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3439 spapr_core_plug(hotplug_dev, dev, errp);
3440 }
3441 }
3442
3443 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3444 DeviceState *dev, Error **errp)
3445 {
3446 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3447 MachineClass *mc = MACHINE_GET_CLASS(sms);
3448
3449 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3450 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3451 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3452 } else {
3453 /* NOTE: this means there is a window after guest reset, prior to
3454 * CAS negotiation, where unplug requests will fail due to the
3455 * capability not being detected yet. This is a bit different than
3456 * the case with PCI unplug, where the events will be queued and
3457 * eventually handled by the guest after boot
3458 */
3459 error_setg(errp, "Memory hot unplug not supported for this guest");
3460 }
3461 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3462 if (!mc->has_hotpluggable_cpus) {
3463 error_setg(errp, "CPU hot unplug not supported on this machine");
3464 return;
3465 }
3466 spapr_core_unplug_request(hotplug_dev, dev, errp);
3467 }
3468 }
3469
3470 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3471 DeviceState *dev, Error **errp)
3472 {
3473 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3474 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3475 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3476 spapr_core_pre_plug(hotplug_dev, dev, errp);
3477 }
3478 }
3479
3480 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3481 DeviceState *dev)
3482 {
3483 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3484 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3485 return HOTPLUG_HANDLER(machine);
3486 }
3487 return NULL;
3488 }
3489
3490 static CpuInstanceProperties
3491 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3492 {
3493 CPUArchId *core_slot;
3494 MachineClass *mc = MACHINE_GET_CLASS(machine);
3495
3496 /* make sure possible_cpu are intialized */
3497 mc->possible_cpu_arch_ids(machine);
3498 /* get CPU core slot containing thread that matches cpu_index */
3499 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3500 assert(core_slot);
3501 return core_slot->props;
3502 }
3503
3504 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3505 {
3506 return idx / smp_cores % nb_numa_nodes;
3507 }
3508
3509 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3510 {
3511 int i;
3512 int spapr_max_cores = max_cpus / smp_threads;
3513 MachineClass *mc = MACHINE_GET_CLASS(machine);
3514
3515 if (!mc->has_hotpluggable_cpus) {
3516 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3517 }
3518 if (machine->possible_cpus) {
3519 assert(machine->possible_cpus->len == spapr_max_cores);
3520 return machine->possible_cpus;
3521 }
3522
3523 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3524 sizeof(CPUArchId) * spapr_max_cores);
3525 machine->possible_cpus->len = spapr_max_cores;
3526 for (i = 0; i < machine->possible_cpus->len; i++) {
3527 int core_id = i * smp_threads;
3528
3529 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3530 machine->possible_cpus->cpus[i].arch_id = core_id;
3531 machine->possible_cpus->cpus[i].props.has_core_id = true;
3532 machine->possible_cpus->cpus[i].props.core_id = core_id;
3533 }
3534 return machine->possible_cpus;
3535 }
3536
3537 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3538 uint64_t *buid, hwaddr *pio,
3539 hwaddr *mmio32, hwaddr *mmio64,
3540 unsigned n_dma, uint32_t *liobns, Error **errp)
3541 {
3542 /*
3543 * New-style PHB window placement.
3544 *
3545 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3546 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3547 * windows.
3548 *
3549 * Some guest kernels can't work with MMIO windows above 1<<46
3550 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3551 *
3552 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3553 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3554 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3555 * 1TiB 64-bit MMIO windows for each PHB.
3556 */
3557 const uint64_t base_buid = 0x800000020000000ULL;
3558 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3559 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3560 int i;
3561
3562 /* Sanity check natural alignments */
3563 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3564 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3565 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3566 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3567 /* Sanity check bounds */
3568 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3569 SPAPR_PCI_MEM32_WIN_SIZE);
3570 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3571 SPAPR_PCI_MEM64_WIN_SIZE);
3572
3573 if (index >= SPAPR_MAX_PHBS) {
3574 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3575 SPAPR_MAX_PHBS - 1);
3576 return;
3577 }
3578
3579 *buid = base_buid + index;
3580 for (i = 0; i < n_dma; ++i) {
3581 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3582 }
3583
3584 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3585 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3586 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3587 }
3588
3589 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3590 {
3591 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3592
3593 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3594 }
3595
3596 static void spapr_ics_resend(XICSFabric *dev)
3597 {
3598 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3599
3600 ics_resend(spapr->ics);
3601 }
3602
3603 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3604 {
3605 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3606
3607 return cpu ? ICP(cpu->intc) : NULL;
3608 }
3609
3610 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3611 Monitor *mon)
3612 {
3613 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3614 CPUState *cs;
3615
3616 CPU_FOREACH(cs) {
3617 PowerPCCPU *cpu = POWERPC_CPU(cs);
3618
3619 icp_pic_print_info(ICP(cpu->intc), mon);
3620 }
3621
3622 ics_pic_print_info(spapr->ics, mon);
3623 }
3624
3625 int spapr_vcpu_id(PowerPCCPU *cpu)
3626 {
3627 CPUState *cs = CPU(cpu);
3628
3629 if (kvm_enabled()) {
3630 return kvm_arch_vcpu_id(cs);
3631 } else {
3632 return cs->cpu_index;
3633 }
3634 }
3635
3636 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3637 {
3638 CPUState *cs;
3639
3640 CPU_FOREACH(cs) {
3641 PowerPCCPU *cpu = POWERPC_CPU(cs);
3642
3643 if (spapr_vcpu_id(cpu) == vcpu_id) {
3644 return cpu;
3645 }
3646 }
3647
3648 return NULL;
3649 }
3650
3651 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3652 {
3653 MachineClass *mc = MACHINE_CLASS(oc);
3654 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3655 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3656 NMIClass *nc = NMI_CLASS(oc);
3657 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3658 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3659 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3660 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3661
3662 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3663
3664 /*
3665 * We set up the default / latest behaviour here. The class_init
3666 * functions for the specific versioned machine types can override
3667 * these details for backwards compatibility
3668 */
3669 mc->init = ppc_spapr_init;
3670 mc->reset = ppc_spapr_reset;
3671 mc->block_default_type = IF_SCSI;
3672 mc->max_cpus = 1024;
3673 mc->no_parallel = 1;
3674 mc->default_boot_order = "";
3675 mc->default_ram_size = 512 * M_BYTE;
3676 mc->kvm_type = spapr_kvm_type;
3677 mc->has_dynamic_sysbus = true;
3678 mc->pci_allow_0_address = true;
3679 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3680 hc->pre_plug = spapr_machine_device_pre_plug;
3681 hc->plug = spapr_machine_device_plug;
3682 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3683 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3684 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3685 hc->unplug_request = spapr_machine_device_unplug_request;
3686
3687 smc->dr_lmb_enabled = true;
3688 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3689 mc->has_hotpluggable_cpus = true;
3690 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3691 fwc->get_dev_path = spapr_get_fw_dev_path;
3692 nc->nmi_monitor_handler = spapr_nmi;
3693 smc->phb_placement = spapr_phb_placement;
3694 vhc->hypercall = emulate_spapr_hypercall;
3695 vhc->hpt_mask = spapr_hpt_mask;
3696 vhc->map_hptes = spapr_map_hptes;
3697 vhc->unmap_hptes = spapr_unmap_hptes;
3698 vhc->store_hpte = spapr_store_hpte;
3699 vhc->get_patbe = spapr_get_patbe;
3700 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3701 xic->ics_get = spapr_ics_get;
3702 xic->ics_resend = spapr_ics_resend;
3703 xic->icp_get = spapr_icp_get;
3704 ispc->print_info = spapr_pic_print_info;
3705 /* Force NUMA node memory size to be a multiple of
3706 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3707 * in which LMBs are represented and hot-added
3708 */
3709 mc->numa_mem_align_shift = 28;
3710
3711 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3712 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3713 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3714 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3715 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3716 spapr_caps_add_properties(smc, &error_abort);
3717 }
3718
3719 static const TypeInfo spapr_machine_info = {
3720 .name = TYPE_SPAPR_MACHINE,
3721 .parent = TYPE_MACHINE,
3722 .abstract = true,
3723 .instance_size = sizeof(sPAPRMachineState),
3724 .instance_init = spapr_machine_initfn,
3725 .instance_finalize = spapr_machine_finalizefn,
3726 .class_size = sizeof(sPAPRMachineClass),
3727 .class_init = spapr_machine_class_init,
3728 .interfaces = (InterfaceInfo[]) {
3729 { TYPE_FW_PATH_PROVIDER },
3730 { TYPE_NMI },
3731 { TYPE_HOTPLUG_HANDLER },
3732 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3733 { TYPE_XICS_FABRIC },
3734 { TYPE_INTERRUPT_STATS_PROVIDER },
3735 { }
3736 },
3737 };
3738
3739 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3740 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3741 void *data) \
3742 { \
3743 MachineClass *mc = MACHINE_CLASS(oc); \
3744 spapr_machine_##suffix##_class_options(mc); \
3745 if (latest) { \
3746 mc->alias = "pseries"; \
3747 mc->is_default = 1; \
3748 } \
3749 } \
3750 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3751 { \
3752 MachineState *machine = MACHINE(obj); \
3753 spapr_machine_##suffix##_instance_options(machine); \
3754 } \
3755 static const TypeInfo spapr_machine_##suffix##_info = { \
3756 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3757 .parent = TYPE_SPAPR_MACHINE, \
3758 .class_init = spapr_machine_##suffix##_class_init, \
3759 .instance_init = spapr_machine_##suffix##_instance_init, \
3760 }; \
3761 static void spapr_machine_register_##suffix(void) \
3762 { \
3763 type_register(&spapr_machine_##suffix##_info); \
3764 } \
3765 type_init(spapr_machine_register_##suffix)
3766
3767 /*
3768 * pseries-2.12
3769 */
3770 static void spapr_machine_2_12_instance_options(MachineState *machine)
3771 {
3772 }
3773
3774 static void spapr_machine_2_12_class_options(MachineClass *mc)
3775 {
3776 /* Defaults for the latest behaviour inherited from the base class */
3777 }
3778
3779 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3780
3781 /*
3782 * pseries-2.11
3783 */
3784 #define SPAPR_COMPAT_2_11 \
3785 HW_COMPAT_2_11
3786
3787 static void spapr_machine_2_11_instance_options(MachineState *machine)
3788 {
3789 spapr_machine_2_12_instance_options(machine);
3790 }
3791
3792 static void spapr_machine_2_11_class_options(MachineClass *mc)
3793 {
3794 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3795
3796 spapr_machine_2_12_class_options(mc);
3797 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
3798 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
3799 }
3800
3801 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
3802
3803 /*
3804 * pseries-2.10
3805 */
3806 #define SPAPR_COMPAT_2_10 \
3807 HW_COMPAT_2_10
3808
3809 static void spapr_machine_2_10_instance_options(MachineState *machine)
3810 {
3811 spapr_machine_2_11_instance_options(machine);
3812 }
3813
3814 static void spapr_machine_2_10_class_options(MachineClass *mc)
3815 {
3816 spapr_machine_2_11_class_options(mc);
3817 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3818 }
3819
3820 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3821
3822 /*
3823 * pseries-2.9
3824 */
3825 #define SPAPR_COMPAT_2_9 \
3826 HW_COMPAT_2_9 \
3827 { \
3828 .driver = TYPE_POWERPC_CPU, \
3829 .property = "pre-2.10-migration", \
3830 .value = "on", \
3831 }, \
3832
3833 static void spapr_machine_2_9_instance_options(MachineState *machine)
3834 {
3835 spapr_machine_2_10_instance_options(machine);
3836 }
3837
3838 static void spapr_machine_2_9_class_options(MachineClass *mc)
3839 {
3840 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3841
3842 spapr_machine_2_10_class_options(mc);
3843 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3844 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3845 smc->pre_2_10_has_unused_icps = true;
3846 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3847 }
3848
3849 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3850
3851 /*
3852 * pseries-2.8
3853 */
3854 #define SPAPR_COMPAT_2_8 \
3855 HW_COMPAT_2_8 \
3856 { \
3857 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3858 .property = "pcie-extended-configuration-space", \
3859 .value = "off", \
3860 },
3861
3862 static void spapr_machine_2_8_instance_options(MachineState *machine)
3863 {
3864 spapr_machine_2_9_instance_options(machine);
3865 }
3866
3867 static void spapr_machine_2_8_class_options(MachineClass *mc)
3868 {
3869 spapr_machine_2_9_class_options(mc);
3870 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3871 mc->numa_mem_align_shift = 23;
3872 }
3873
3874 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3875
3876 /*
3877 * pseries-2.7
3878 */
3879 #define SPAPR_COMPAT_2_7 \
3880 HW_COMPAT_2_7 \
3881 { \
3882 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3883 .property = "mem_win_size", \
3884 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3885 }, \
3886 { \
3887 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3888 .property = "mem64_win_size", \
3889 .value = "0", \
3890 }, \
3891 { \
3892 .driver = TYPE_POWERPC_CPU, \
3893 .property = "pre-2.8-migration", \
3894 .value = "on", \
3895 }, \
3896 { \
3897 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3898 .property = "pre-2.8-migration", \
3899 .value = "on", \
3900 },
3901
3902 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3903 uint64_t *buid, hwaddr *pio,
3904 hwaddr *mmio32, hwaddr *mmio64,
3905 unsigned n_dma, uint32_t *liobns, Error **errp)
3906 {
3907 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3908 const uint64_t base_buid = 0x800000020000000ULL;
3909 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3910 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3911 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3912 const uint32_t max_index = 255;
3913 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3914
3915 uint64_t ram_top = MACHINE(spapr)->ram_size;
3916 hwaddr phb0_base, phb_base;
3917 int i;
3918
3919 /* Do we have hotpluggable memory? */
3920 if (MACHINE(spapr)->maxram_size > ram_top) {
3921 /* Can't just use maxram_size, because there may be an
3922 * alignment gap between normal and hotpluggable memory
3923 * regions */
3924 ram_top = spapr->hotplug_memory.base +
3925 memory_region_size(&spapr->hotplug_memory.mr);
3926 }
3927
3928 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3929
3930 if (index > max_index) {
3931 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3932 max_index);
3933 return;
3934 }
3935
3936 *buid = base_buid + index;
3937 for (i = 0; i < n_dma; ++i) {
3938 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3939 }
3940
3941 phb_base = phb0_base + index * phb_spacing;
3942 *pio = phb_base + pio_offset;
3943 *mmio32 = phb_base + mmio_offset;
3944 /*
3945 * We don't set the 64-bit MMIO window, relying on the PHB's
3946 * fallback behaviour of automatically splitting a large "32-bit"
3947 * window into contiguous 32-bit and 64-bit windows
3948 */
3949 }
3950
3951 static void spapr_machine_2_7_instance_options(MachineState *machine)
3952 {
3953 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3954
3955 spapr_machine_2_8_instance_options(machine);
3956 spapr->use_hotplug_event_source = false;
3957 }
3958
3959 static void spapr_machine_2_7_class_options(MachineClass *mc)
3960 {
3961 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3962
3963 spapr_machine_2_8_class_options(mc);
3964 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
3965 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3966 smc->phb_placement = phb_placement_2_7;
3967 }
3968
3969 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3970
3971 /*
3972 * pseries-2.6
3973 */
3974 #define SPAPR_COMPAT_2_6 \
3975 HW_COMPAT_2_6 \
3976 { \
3977 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3978 .property = "ddw",\
3979 .value = stringify(off),\
3980 },
3981
3982 static void spapr_machine_2_6_instance_options(MachineState *machine)
3983 {
3984 spapr_machine_2_7_instance_options(machine);
3985 }
3986
3987 static void spapr_machine_2_6_class_options(MachineClass *mc)
3988 {
3989 spapr_machine_2_7_class_options(mc);
3990 mc->has_hotpluggable_cpus = false;
3991 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3992 }
3993
3994 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3995
3996 /*
3997 * pseries-2.5
3998 */
3999 #define SPAPR_COMPAT_2_5 \
4000 HW_COMPAT_2_5 \
4001 { \
4002 .driver = "spapr-vlan", \
4003 .property = "use-rx-buffer-pools", \
4004 .value = "off", \
4005 },
4006
4007 static void spapr_machine_2_5_instance_options(MachineState *machine)
4008 {
4009 spapr_machine_2_6_instance_options(machine);
4010 }
4011
4012 static void spapr_machine_2_5_class_options(MachineClass *mc)
4013 {
4014 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4015
4016 spapr_machine_2_6_class_options(mc);
4017 smc->use_ohci_by_default = true;
4018 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4019 }
4020
4021 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4022
4023 /*
4024 * pseries-2.4
4025 */
4026 #define SPAPR_COMPAT_2_4 \
4027 HW_COMPAT_2_4
4028
4029 static void spapr_machine_2_4_instance_options(MachineState *machine)
4030 {
4031 spapr_machine_2_5_instance_options(machine);
4032 }
4033
4034 static void spapr_machine_2_4_class_options(MachineClass *mc)
4035 {
4036 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4037
4038 spapr_machine_2_5_class_options(mc);
4039 smc->dr_lmb_enabled = false;
4040 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4041 }
4042
4043 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4044
4045 /*
4046 * pseries-2.3
4047 */
4048 #define SPAPR_COMPAT_2_3 \
4049 HW_COMPAT_2_3 \
4050 {\
4051 .driver = "spapr-pci-host-bridge",\
4052 .property = "dynamic-reconfiguration",\
4053 .value = "off",\
4054 },
4055
4056 static void spapr_machine_2_3_instance_options(MachineState *machine)
4057 {
4058 spapr_machine_2_4_instance_options(machine);
4059 }
4060
4061 static void spapr_machine_2_3_class_options(MachineClass *mc)
4062 {
4063 spapr_machine_2_4_class_options(mc);
4064 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4065 }
4066 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4067
4068 /*
4069 * pseries-2.2
4070 */
4071
4072 #define SPAPR_COMPAT_2_2 \
4073 HW_COMPAT_2_2 \
4074 {\
4075 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4076 .property = "mem_win_size",\
4077 .value = "0x20000000",\
4078 },
4079
4080 static void spapr_machine_2_2_instance_options(MachineState *machine)
4081 {
4082 spapr_machine_2_3_instance_options(machine);
4083 machine->suppress_vmdesc = true;
4084 }
4085
4086 static void spapr_machine_2_2_class_options(MachineClass *mc)
4087 {
4088 spapr_machine_2_3_class_options(mc);
4089 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4090 }
4091 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4092
4093 /*
4094 * pseries-2.1
4095 */
4096 #define SPAPR_COMPAT_2_1 \
4097 HW_COMPAT_2_1
4098
4099 static void spapr_machine_2_1_instance_options(MachineState *machine)
4100 {
4101 spapr_machine_2_2_instance_options(machine);
4102 }
4103
4104 static void spapr_machine_2_1_class_options(MachineClass *mc)
4105 {
4106 spapr_machine_2_2_class_options(mc);
4107 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4108 }
4109 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4110
4111 static void spapr_machine_register_types(void)
4112 {
4113 type_register_static(&spapr_machine_info);
4114 }
4115
4116 type_init(spapr_machine_register_types)