]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
59
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78
79 #include <libfdt.h>
80
81 /* SLOF memory layout:
82 *
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
85 *
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
88 *
89 * We load our kernel at 4M, leaving space for SLOF initial image
90 */
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98
99 #define MIN_RMA_SLOF 128UL
100
101 #define PHANDLE_XICP 0x00001111
102
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
106 */
107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 {
109 assert(spapr->vsmt);
110 return
111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 }
113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
114 PowerPCCPU *cpu)
115 {
116 assert(spapr->vsmt);
117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
118 }
119
120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
121 const char *type_ics,
122 int nr_irqs, Error **errp)
123 {
124 Error *local_err = NULL;
125 Object *obj;
126
127 obj = object_new(type_ics);
128 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
129 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
130 &error_abort);
131 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
132 if (local_err) {
133 goto error;
134 }
135 object_property_set_bool(obj, true, "realized", &local_err);
136 if (local_err) {
137 goto error;
138 }
139
140 return ICS_SIMPLE(obj);
141
142 error:
143 error_propagate(errp, local_err);
144 return NULL;
145 }
146
147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 {
149 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
150 * and newer QEMUs don't even have them. In both cases, we don't want
151 * to send anything on the wire.
152 */
153 return false;
154 }
155
156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
157 .name = "icp/server",
158 .version_id = 1,
159 .minimum_version_id = 1,
160 .needed = pre_2_10_vmstate_dummy_icp_needed,
161 .fields = (VMStateField[]) {
162 VMSTATE_UNUSED(4), /* uint32_t xirr */
163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
164 VMSTATE_UNUSED(1), /* uint8_t mfrr */
165 VMSTATE_END_OF_LIST()
166 },
167 };
168
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 {
171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172 (void *)(uintptr_t) i);
173 }
174
175 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 {
177 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
178 (void *)(uintptr_t) i);
179 }
180
181 static int xics_max_server_number(sPAPRMachineState *spapr)
182 {
183 assert(spapr->vsmt);
184 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
185 }
186
187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 {
189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 Error *local_err = NULL;
191
192 if (kvm_enabled()) {
193 if (machine_kernel_irqchip_allowed(machine) &&
194 !xics_kvm_init(spapr, &local_err)) {
195 spapr->icp_type = TYPE_KVM_ICP;
196 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs,
197 &local_err);
198 }
199 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
200 error_prepend(&local_err,
201 "kernel_irqchip requested but unavailable: ");
202 goto error;
203 }
204 error_free(local_err);
205 local_err = NULL;
206 }
207
208 if (!spapr->ics) {
209 xics_spapr_init(spapr);
210 spapr->icp_type = TYPE_ICP;
211 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs,
212 &local_err);
213 }
214
215 error:
216 error_propagate(errp, local_err);
217 }
218
219 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
220 int smt_threads)
221 {
222 int i, ret = 0;
223 uint32_t servers_prop[smt_threads];
224 uint32_t gservers_prop[smt_threads * 2];
225 int index = spapr_get_vcpu_id(cpu);
226
227 if (cpu->compat_pvr) {
228 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
229 if (ret < 0) {
230 return ret;
231 }
232 }
233
234 /* Build interrupt servers and gservers properties */
235 for (i = 0; i < smt_threads; i++) {
236 servers_prop[i] = cpu_to_be32(index + i);
237 /* Hack, direct the group queues back to cpu 0 */
238 gservers_prop[i*2] = cpu_to_be32(index + i);
239 gservers_prop[i*2 + 1] = 0;
240 }
241 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242 servers_prop, sizeof(servers_prop));
243 if (ret < 0) {
244 return ret;
245 }
246 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
247 gservers_prop, sizeof(gservers_prop));
248
249 return ret;
250 }
251
252 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
253 {
254 int index = spapr_get_vcpu_id(cpu);
255 uint32_t associativity[] = {cpu_to_be32(0x5),
256 cpu_to_be32(0x0),
257 cpu_to_be32(0x0),
258 cpu_to_be32(0x0),
259 cpu_to_be32(cpu->node_id),
260 cpu_to_be32(index)};
261
262 /* Advertise NUMA via ibm,associativity */
263 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
264 sizeof(associativity));
265 }
266
267 /* Populate the "ibm,pa-features" property */
268 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
269 PowerPCCPU *cpu,
270 void *fdt, int offset,
271 bool legacy_guest)
272 {
273 uint8_t pa_features_206[] = { 6, 0,
274 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
275 uint8_t pa_features_207[] = { 24, 0,
276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
277 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
278 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
279 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
280 uint8_t pa_features_300[] = { 66, 0,
281 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
282 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
283 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
284 /* 6: DS207 */
285 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
286 /* 16: Vector */
287 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
288 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
290 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
292 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
293 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
294 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
296 /* 42: PM, 44: PC RA, 46: SC vec'd */
297 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
298 /* 48: SIMD, 50: QP BFP, 52: String */
299 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
300 /* 54: DecFP, 56: DecI, 58: SHA */
301 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
302 /* 60: NM atomic, 62: RNG */
303 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
304 };
305 uint8_t *pa_features = NULL;
306 size_t pa_size;
307
308 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
309 pa_features = pa_features_206;
310 pa_size = sizeof(pa_features_206);
311 }
312 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
313 pa_features = pa_features_207;
314 pa_size = sizeof(pa_features_207);
315 }
316 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
317 pa_features = pa_features_300;
318 pa_size = sizeof(pa_features_300);
319 }
320 if (!pa_features) {
321 return;
322 }
323
324 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
325 /*
326 * Note: we keep CI large pages off by default because a 64K capable
327 * guest provisioned with large pages might otherwise try to map a qemu
328 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
329 * even if that qemu runs on a 4k host.
330 * We dd this bit back here if we are confident this is not an issue
331 */
332 pa_features[3] |= 0x20;
333 }
334 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
335 pa_features[24] |= 0x80; /* Transactional memory support */
336 }
337 if (legacy_guest && pa_size > 40) {
338 /* Workaround for broken kernels that attempt (guest) radix
339 * mode when they can't handle it, if they see the radix bit set
340 * in pa-features. So hide it from them. */
341 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
342 }
343
344 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
345 }
346
347 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
348 {
349 int ret = 0, offset, cpus_offset;
350 CPUState *cs;
351 char cpu_model[32];
352 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
353
354 CPU_FOREACH(cs) {
355 PowerPCCPU *cpu = POWERPC_CPU(cs);
356 DeviceClass *dc = DEVICE_GET_CLASS(cs);
357 int index = spapr_get_vcpu_id(cpu);
358 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
359
360 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
361 continue;
362 }
363
364 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
365
366 cpus_offset = fdt_path_offset(fdt, "/cpus");
367 if (cpus_offset < 0) {
368 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
369 if (cpus_offset < 0) {
370 return cpus_offset;
371 }
372 }
373 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
374 if (offset < 0) {
375 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
376 if (offset < 0) {
377 return offset;
378 }
379 }
380
381 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
382 pft_size_prop, sizeof(pft_size_prop));
383 if (ret < 0) {
384 return ret;
385 }
386
387 if (nb_numa_nodes > 1) {
388 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
389 if (ret < 0) {
390 return ret;
391 }
392 }
393
394 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
395 if (ret < 0) {
396 return ret;
397 }
398
399 spapr_populate_pa_features(spapr, cpu, fdt, offset,
400 spapr->cas_legacy_guest_workaround);
401 }
402 return ret;
403 }
404
405 static hwaddr spapr_node0_size(MachineState *machine)
406 {
407 if (nb_numa_nodes) {
408 int i;
409 for (i = 0; i < nb_numa_nodes; ++i) {
410 if (numa_info[i].node_mem) {
411 return MIN(pow2floor(numa_info[i].node_mem),
412 machine->ram_size);
413 }
414 }
415 }
416 return machine->ram_size;
417 }
418
419 static void add_str(GString *s, const gchar *s1)
420 {
421 g_string_append_len(s, s1, strlen(s1) + 1);
422 }
423
424 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
425 hwaddr size)
426 {
427 uint32_t associativity[] = {
428 cpu_to_be32(0x4), /* length */
429 cpu_to_be32(0x0), cpu_to_be32(0x0),
430 cpu_to_be32(0x0), cpu_to_be32(nodeid)
431 };
432 char mem_name[32];
433 uint64_t mem_reg_property[2];
434 int off;
435
436 mem_reg_property[0] = cpu_to_be64(start);
437 mem_reg_property[1] = cpu_to_be64(size);
438
439 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
440 off = fdt_add_subnode(fdt, 0, mem_name);
441 _FDT(off);
442 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
443 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
444 sizeof(mem_reg_property))));
445 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
446 sizeof(associativity))));
447 return off;
448 }
449
450 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
451 {
452 MachineState *machine = MACHINE(spapr);
453 hwaddr mem_start, node_size;
454 int i, nb_nodes = nb_numa_nodes;
455 NodeInfo *nodes = numa_info;
456 NodeInfo ramnode;
457
458 /* No NUMA nodes, assume there is just one node with whole RAM */
459 if (!nb_numa_nodes) {
460 nb_nodes = 1;
461 ramnode.node_mem = machine->ram_size;
462 nodes = &ramnode;
463 }
464
465 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
466 if (!nodes[i].node_mem) {
467 continue;
468 }
469 if (mem_start >= machine->ram_size) {
470 node_size = 0;
471 } else {
472 node_size = nodes[i].node_mem;
473 if (node_size > machine->ram_size - mem_start) {
474 node_size = machine->ram_size - mem_start;
475 }
476 }
477 if (!mem_start) {
478 /* spapr_machine_init() checks for rma_size <= node0_size
479 * already */
480 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
481 mem_start += spapr->rma_size;
482 node_size -= spapr->rma_size;
483 }
484 for ( ; node_size; ) {
485 hwaddr sizetmp = pow2floor(node_size);
486
487 /* mem_start != 0 here */
488 if (ctzl(mem_start) < ctzl(sizetmp)) {
489 sizetmp = 1ULL << ctzl(mem_start);
490 }
491
492 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
493 node_size -= sizetmp;
494 mem_start += sizetmp;
495 }
496 }
497
498 return 0;
499 }
500
501 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
502 sPAPRMachineState *spapr)
503 {
504 PowerPCCPU *cpu = POWERPC_CPU(cs);
505 CPUPPCState *env = &cpu->env;
506 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
507 int index = spapr_get_vcpu_id(cpu);
508 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
509 0xffffffff, 0xffffffff};
510 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
511 : SPAPR_TIMEBASE_FREQ;
512 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
513 uint32_t page_sizes_prop[64];
514 size_t page_sizes_prop_size;
515 uint32_t vcpus_per_socket = smp_threads * smp_cores;
516 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
517 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
518 sPAPRDRConnector *drc;
519 int drc_index;
520 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
521 int i;
522
523 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
524 if (drc) {
525 drc_index = spapr_drc_index(drc);
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
527 }
528
529 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
530 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
531
532 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
533 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
534 env->dcache_line_size)));
535 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
536 env->dcache_line_size)));
537 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
538 env->icache_line_size)));
539 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
540 env->icache_line_size)));
541
542 if (pcc->l1_dcache_size) {
543 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
544 pcc->l1_dcache_size)));
545 } else {
546 warn_report("Unknown L1 dcache size for cpu");
547 }
548 if (pcc->l1_icache_size) {
549 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
550 pcc->l1_icache_size)));
551 } else {
552 warn_report("Unknown L1 icache size for cpu");
553 }
554
555 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
556 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
557 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
558 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
559 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
560 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
561
562 if (env->spr_cb[SPR_PURR].oea_read) {
563 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
564 }
565
566 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
567 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
568 segs, sizeof(segs))));
569 }
570
571 /* Advertise VSX (vector extensions) if available
572 * 1 == VMX / Altivec available
573 * 2 == VSX available
574 *
575 * Only CPUs for which we create core types in spapr_cpu_core.c
576 * are possible, and all of those have VMX */
577 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
578 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
579 } else {
580 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
581 }
582
583 /* Advertise DFP (Decimal Floating Point) if available
584 * 0 / no property == no DFP
585 * 1 == DFP available */
586 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
587 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
588 }
589
590 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
591 sizeof(page_sizes_prop));
592 if (page_sizes_prop_size) {
593 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
594 page_sizes_prop, page_sizes_prop_size)));
595 }
596
597 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
598
599 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
600 cs->cpu_index / vcpus_per_socket)));
601
602 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
603 pft_size_prop, sizeof(pft_size_prop))));
604
605 if (nb_numa_nodes > 1) {
606 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
607 }
608
609 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
610
611 if (pcc->radix_page_info) {
612 for (i = 0; i < pcc->radix_page_info->count; i++) {
613 radix_AP_encodings[i] =
614 cpu_to_be32(pcc->radix_page_info->entries[i]);
615 }
616 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
617 radix_AP_encodings,
618 pcc->radix_page_info->count *
619 sizeof(radix_AP_encodings[0]))));
620 }
621 }
622
623 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
624 {
625 CPUState *cs;
626 int cpus_offset;
627 char *nodename;
628
629 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
630 _FDT(cpus_offset);
631 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
632 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
633
634 /*
635 * We walk the CPUs in reverse order to ensure that CPU DT nodes
636 * created by fdt_add_subnode() end up in the right order in FDT
637 * for the guest kernel the enumerate the CPUs correctly.
638 */
639 CPU_FOREACH_REVERSE(cs) {
640 PowerPCCPU *cpu = POWERPC_CPU(cs);
641 int index = spapr_get_vcpu_id(cpu);
642 DeviceClass *dc = DEVICE_GET_CLASS(cs);
643 int offset;
644
645 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
646 continue;
647 }
648
649 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
650 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
651 g_free(nodename);
652 _FDT(offset);
653 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
654 }
655
656 }
657
658 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
659 {
660 MemoryDeviceInfoList *info;
661
662 for (info = list; info; info = info->next) {
663 MemoryDeviceInfo *value = info->value;
664
665 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
666 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
667
668 if (pcdimm_info->addr >= addr &&
669 addr < (pcdimm_info->addr + pcdimm_info->size)) {
670 return pcdimm_info->node;
671 }
672 }
673 }
674
675 return -1;
676 }
677
678 struct sPAPRDrconfCellV2 {
679 uint32_t seq_lmbs;
680 uint64_t base_addr;
681 uint32_t drc_index;
682 uint32_t aa_index;
683 uint32_t flags;
684 } QEMU_PACKED;
685
686 typedef struct DrconfCellQueue {
687 struct sPAPRDrconfCellV2 cell;
688 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
689 } DrconfCellQueue;
690
691 static DrconfCellQueue *
692 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
693 uint32_t drc_index, uint32_t aa_index,
694 uint32_t flags)
695 {
696 DrconfCellQueue *elem;
697
698 elem = g_malloc0(sizeof(*elem));
699 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
700 elem->cell.base_addr = cpu_to_be64(base_addr);
701 elem->cell.drc_index = cpu_to_be32(drc_index);
702 elem->cell.aa_index = cpu_to_be32(aa_index);
703 elem->cell.flags = cpu_to_be32(flags);
704
705 return elem;
706 }
707
708 /* ibm,dynamic-memory-v2 */
709 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
710 int offset, MemoryDeviceInfoList *dimms)
711 {
712 MachineState *machine = MACHINE(spapr);
713 uint8_t *int_buf, *cur_index, buf_len;
714 int ret;
715 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
716 uint64_t addr, cur_addr, size;
717 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
718 uint64_t mem_end = machine->device_memory->base +
719 memory_region_size(&machine->device_memory->mr);
720 uint32_t node, nr_entries = 0;
721 sPAPRDRConnector *drc;
722 DrconfCellQueue *elem, *next;
723 MemoryDeviceInfoList *info;
724 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
725 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
726
727 /* Entry to cover RAM and the gap area */
728 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
729 SPAPR_LMB_FLAGS_RESERVED |
730 SPAPR_LMB_FLAGS_DRC_INVALID);
731 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
732 nr_entries++;
733
734 cur_addr = machine->device_memory->base;
735 for (info = dimms; info; info = info->next) {
736 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
737
738 addr = di->addr;
739 size = di->size;
740 node = di->node;
741
742 /* Entry for hot-pluggable area */
743 if (cur_addr < addr) {
744 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
745 g_assert(drc);
746 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
747 cur_addr, spapr_drc_index(drc), -1, 0);
748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749 nr_entries++;
750 }
751
752 /* Entry for DIMM */
753 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
754 g_assert(drc);
755 elem = spapr_get_drconf_cell(size / lmb_size, addr,
756 spapr_drc_index(drc), node,
757 SPAPR_LMB_FLAGS_ASSIGNED);
758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
759 nr_entries++;
760 cur_addr = addr + size;
761 }
762
763 /* Entry for remaining hotpluggable area */
764 if (cur_addr < mem_end) {
765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
766 g_assert(drc);
767 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
768 cur_addr, spapr_drc_index(drc), -1, 0);
769 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
770 nr_entries++;
771 }
772
773 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
774 int_buf = cur_index = g_malloc0(buf_len);
775 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
776 cur_index += sizeof(nr_entries);
777
778 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
779 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
780 cur_index += sizeof(elem->cell);
781 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
782 g_free(elem);
783 }
784
785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
786 g_free(int_buf);
787 if (ret < 0) {
788 return -1;
789 }
790 return 0;
791 }
792
793 /* ibm,dynamic-memory */
794 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
795 int offset, MemoryDeviceInfoList *dimms)
796 {
797 MachineState *machine = MACHINE(spapr);
798 int i, ret;
799 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
800 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
801 uint32_t nr_lmbs = (machine->device_memory->base +
802 memory_region_size(&machine->device_memory->mr)) /
803 lmb_size;
804 uint32_t *int_buf, *cur_index, buf_len;
805
806 /*
807 * Allocate enough buffer size to fit in ibm,dynamic-memory
808 */
809 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
810 cur_index = int_buf = g_malloc0(buf_len);
811 int_buf[0] = cpu_to_be32(nr_lmbs);
812 cur_index++;
813 for (i = 0; i < nr_lmbs; i++) {
814 uint64_t addr = i * lmb_size;
815 uint32_t *dynamic_memory = cur_index;
816
817 if (i >= device_lmb_start) {
818 sPAPRDRConnector *drc;
819
820 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
821 g_assert(drc);
822
823 dynamic_memory[0] = cpu_to_be32(addr >> 32);
824 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
825 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
826 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
827 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
828 if (memory_region_present(get_system_memory(), addr)) {
829 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
830 } else {
831 dynamic_memory[5] = cpu_to_be32(0);
832 }
833 } else {
834 /*
835 * LMB information for RMA, boot time RAM and gap b/n RAM and
836 * device memory region -- all these are marked as reserved
837 * and as having no valid DRC.
838 */
839 dynamic_memory[0] = cpu_to_be32(addr >> 32);
840 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
841 dynamic_memory[2] = cpu_to_be32(0);
842 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
843 dynamic_memory[4] = cpu_to_be32(-1);
844 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
845 SPAPR_LMB_FLAGS_DRC_INVALID);
846 }
847
848 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
849 }
850 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
851 g_free(int_buf);
852 if (ret < 0) {
853 return -1;
854 }
855 return 0;
856 }
857
858 /*
859 * Adds ibm,dynamic-reconfiguration-memory node.
860 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
861 * of this device tree node.
862 */
863 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
864 {
865 MachineState *machine = MACHINE(spapr);
866 int ret, i, offset;
867 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
868 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
869 uint32_t *int_buf, *cur_index, buf_len;
870 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
871 MemoryDeviceInfoList *dimms = NULL;
872
873 /*
874 * Don't create the node if there is no device memory
875 */
876 if (machine->ram_size == machine->maxram_size) {
877 return 0;
878 }
879
880 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
881
882 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
883 sizeof(prop_lmb_size));
884 if (ret < 0) {
885 return ret;
886 }
887
888 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
889 if (ret < 0) {
890 return ret;
891 }
892
893 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
894 if (ret < 0) {
895 return ret;
896 }
897
898 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
899 dimms = qmp_memory_device_list();
900 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
901 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
902 } else {
903 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
904 }
905 qapi_free_MemoryDeviceInfoList(dimms);
906
907 if (ret < 0) {
908 return ret;
909 }
910
911 /* ibm,associativity-lookup-arrays */
912 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
913 cur_index = int_buf = g_malloc0(buf_len);
914
915 cur_index = int_buf;
916 int_buf[0] = cpu_to_be32(nr_nodes);
917 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
918 cur_index += 2;
919 for (i = 0; i < nr_nodes; i++) {
920 uint32_t associativity[] = {
921 cpu_to_be32(0x0),
922 cpu_to_be32(0x0),
923 cpu_to_be32(0x0),
924 cpu_to_be32(i)
925 };
926 memcpy(cur_index, associativity, sizeof(associativity));
927 cur_index += 4;
928 }
929 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
930 (cur_index - int_buf) * sizeof(uint32_t));
931 g_free(int_buf);
932
933 return ret;
934 }
935
936 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
937 sPAPROptionVector *ov5_updates)
938 {
939 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
940 int ret = 0, offset;
941
942 /* Generate ibm,dynamic-reconfiguration-memory node if required */
943 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
944 g_assert(smc->dr_lmb_enabled);
945 ret = spapr_populate_drconf_memory(spapr, fdt);
946 if (ret) {
947 goto out;
948 }
949 }
950
951 offset = fdt_path_offset(fdt, "/chosen");
952 if (offset < 0) {
953 offset = fdt_add_subnode(fdt, 0, "chosen");
954 if (offset < 0) {
955 return offset;
956 }
957 }
958 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
959 "ibm,architecture-vec-5");
960
961 out:
962 return ret;
963 }
964
965 static bool spapr_hotplugged_dev_before_cas(void)
966 {
967 Object *drc_container, *obj;
968 ObjectProperty *prop;
969 ObjectPropertyIterator iter;
970
971 drc_container = container_get(object_get_root(), "/dr-connector");
972 object_property_iter_init(&iter, drc_container);
973 while ((prop = object_property_iter_next(&iter))) {
974 if (!strstart(prop->type, "link<", NULL)) {
975 continue;
976 }
977 obj = object_property_get_link(drc_container, prop->name, NULL);
978 if (spapr_drc_needed(obj)) {
979 return true;
980 }
981 }
982 return false;
983 }
984
985 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
986 target_ulong addr, target_ulong size,
987 sPAPROptionVector *ov5_updates)
988 {
989 void *fdt, *fdt_skel;
990 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
991
992 if (spapr_hotplugged_dev_before_cas()) {
993 return 1;
994 }
995
996 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
997 error_report("SLOF provided an unexpected CAS buffer size "
998 TARGET_FMT_lu " (min: %zu, max: %u)",
999 size, sizeof(hdr), FW_MAX_SIZE);
1000 exit(EXIT_FAILURE);
1001 }
1002
1003 size -= sizeof(hdr);
1004
1005 /* Create skeleton */
1006 fdt_skel = g_malloc0(size);
1007 _FDT((fdt_create(fdt_skel, size)));
1008 _FDT((fdt_finish_reservemap(fdt_skel)));
1009 _FDT((fdt_begin_node(fdt_skel, "")));
1010 _FDT((fdt_end_node(fdt_skel)));
1011 _FDT((fdt_finish(fdt_skel)));
1012 fdt = g_malloc0(size);
1013 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1014 g_free(fdt_skel);
1015
1016 /* Fixup cpu nodes */
1017 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1018
1019 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1020 return -1;
1021 }
1022
1023 /* Pack resulting tree */
1024 _FDT((fdt_pack(fdt)));
1025
1026 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1027 trace_spapr_cas_failed(size);
1028 return -1;
1029 }
1030
1031 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1032 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1033 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1034 g_free(fdt);
1035
1036 return 0;
1037 }
1038
1039 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1040 {
1041 int rtas;
1042 GString *hypertas = g_string_sized_new(256);
1043 GString *qemu_hypertas = g_string_sized_new(256);
1044 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1045 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1046 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1047 uint32_t lrdr_capacity[] = {
1048 cpu_to_be32(max_device_addr >> 32),
1049 cpu_to_be32(max_device_addr & 0xffffffff),
1050 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1051 cpu_to_be32(max_cpus / smp_threads),
1052 };
1053 uint32_t maxdomains[] = {
1054 cpu_to_be32(4),
1055 cpu_to_be32(0),
1056 cpu_to_be32(0),
1057 cpu_to_be32(0),
1058 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1059 };
1060
1061 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1062
1063 /* hypertas */
1064 add_str(hypertas, "hcall-pft");
1065 add_str(hypertas, "hcall-term");
1066 add_str(hypertas, "hcall-dabr");
1067 add_str(hypertas, "hcall-interrupt");
1068 add_str(hypertas, "hcall-tce");
1069 add_str(hypertas, "hcall-vio");
1070 add_str(hypertas, "hcall-splpar");
1071 add_str(hypertas, "hcall-bulk");
1072 add_str(hypertas, "hcall-set-mode");
1073 add_str(hypertas, "hcall-sprg0");
1074 add_str(hypertas, "hcall-copy");
1075 add_str(hypertas, "hcall-debug");
1076 add_str(qemu_hypertas, "hcall-memop1");
1077
1078 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1079 add_str(hypertas, "hcall-multi-tce");
1080 }
1081
1082 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1083 add_str(hypertas, "hcall-hpt-resize");
1084 }
1085
1086 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1087 hypertas->str, hypertas->len));
1088 g_string_free(hypertas, TRUE);
1089 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1090 qemu_hypertas->str, qemu_hypertas->len));
1091 g_string_free(qemu_hypertas, TRUE);
1092
1093 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1094 refpoints, sizeof(refpoints)));
1095
1096 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1097 maxdomains, sizeof(maxdomains)));
1098
1099 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1100 RTAS_ERROR_LOG_MAX));
1101 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1102 RTAS_EVENT_SCAN_RATE));
1103
1104 g_assert(msi_nonbroken);
1105 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1106
1107 /*
1108 * According to PAPR, rtas ibm,os-term does not guarantee a return
1109 * back to the guest cpu.
1110 *
1111 * While an additional ibm,extended-os-term property indicates
1112 * that rtas call return will always occur. Set this property.
1113 */
1114 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1115
1116 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1117 lrdr_capacity, sizeof(lrdr_capacity)));
1118
1119 spapr_dt_rtas_tokens(fdt, rtas);
1120 }
1121
1122 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1123 * that the guest may request and thus the valid values for bytes 24..26 of
1124 * option vector 5: */
1125 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1126 {
1127 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1128
1129 char val[2 * 4] = {
1130 23, 0x00, /* Xive mode, filled in below. */
1131 24, 0x00, /* Hash/Radix, filled in below. */
1132 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1133 26, 0x40, /* Radix options: GTSE == yes. */
1134 };
1135
1136 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1137 first_ppc_cpu->compat_pvr)) {
1138 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1139 val[3] = 0x00; /* Hash */
1140 } else if (kvm_enabled()) {
1141 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1142 val[3] = 0x80; /* OV5_MMU_BOTH */
1143 } else if (kvmppc_has_cap_mmu_radix()) {
1144 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1145 } else {
1146 val[3] = 0x00; /* Hash */
1147 }
1148 } else {
1149 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1150 val[3] = 0xC0;
1151 }
1152 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1153 val, sizeof(val)));
1154 }
1155
1156 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1157 {
1158 MachineState *machine = MACHINE(spapr);
1159 int chosen;
1160 const char *boot_device = machine->boot_order;
1161 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1162 size_t cb = 0;
1163 char *bootlist = get_boot_devices_list(&cb, true);
1164
1165 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1166
1167 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1169 spapr->initrd_base));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1171 spapr->initrd_base + spapr->initrd_size));
1172
1173 if (spapr->kernel_size) {
1174 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1175 cpu_to_be64(spapr->kernel_size) };
1176
1177 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1178 &kprop, sizeof(kprop)));
1179 if (spapr->kernel_le) {
1180 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1181 }
1182 }
1183 if (boot_menu) {
1184 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1185 }
1186 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1187 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1188 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1189
1190 if (cb && bootlist) {
1191 int i;
1192
1193 for (i = 0; i < cb; i++) {
1194 if (bootlist[i] == '\n') {
1195 bootlist[i] = ' ';
1196 }
1197 }
1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1199 }
1200
1201 if (boot_device && strlen(boot_device)) {
1202 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1203 }
1204
1205 if (!spapr->has_graphics && stdout_path) {
1206 /*
1207 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1208 * kernel. New platforms should only use the "stdout-path" property. Set
1209 * the new property and continue using older property to remain
1210 * compatible with the existing firmware.
1211 */
1212 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1213 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1214 }
1215
1216 spapr_dt_ov5_platform_support(fdt, chosen);
1217
1218 g_free(stdout_path);
1219 g_free(bootlist);
1220 }
1221
1222 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1223 {
1224 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1225 * KVM to work under pHyp with some guest co-operation */
1226 int hypervisor;
1227 uint8_t hypercall[16];
1228
1229 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1230 /* indicate KVM hypercall interface */
1231 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1232 if (kvmppc_has_cap_fixup_hcalls()) {
1233 /*
1234 * Older KVM versions with older guest kernels were broken
1235 * with the magic page, don't allow the guest to map it.
1236 */
1237 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1238 sizeof(hypercall))) {
1239 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1240 hypercall, sizeof(hypercall)));
1241 }
1242 }
1243 }
1244
1245 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1246 hwaddr rtas_addr,
1247 hwaddr rtas_size)
1248 {
1249 MachineState *machine = MACHINE(spapr);
1250 MachineClass *mc = MACHINE_GET_CLASS(machine);
1251 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1252 int ret;
1253 void *fdt;
1254 sPAPRPHBState *phb;
1255 char *buf;
1256
1257 fdt = g_malloc0(FDT_MAX_SIZE);
1258 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1259
1260 /* Root node */
1261 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1262 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1263 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1264
1265 /*
1266 * Add info to guest to indentify which host is it being run on
1267 * and what is the uuid of the guest
1268 */
1269 if (kvmppc_get_host_model(&buf)) {
1270 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1271 g_free(buf);
1272 }
1273 if (kvmppc_get_host_serial(&buf)) {
1274 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1275 g_free(buf);
1276 }
1277
1278 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1279
1280 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1281 if (qemu_uuid_set) {
1282 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1283 }
1284 g_free(buf);
1285
1286 if (qemu_get_vm_name()) {
1287 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1288 qemu_get_vm_name()));
1289 }
1290
1291 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1292 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1293
1294 /* /interrupt controller */
1295 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1296
1297 ret = spapr_populate_memory(spapr, fdt);
1298 if (ret < 0) {
1299 error_report("couldn't setup memory nodes in fdt");
1300 exit(1);
1301 }
1302
1303 /* /vdevice */
1304 spapr_dt_vdevice(spapr->vio_bus, fdt);
1305
1306 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1307 ret = spapr_rng_populate_dt(fdt);
1308 if (ret < 0) {
1309 error_report("could not set up rng device in the fdt");
1310 exit(1);
1311 }
1312 }
1313
1314 QLIST_FOREACH(phb, &spapr->phbs, list) {
1315 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1316 if (ret < 0) {
1317 error_report("couldn't setup PCI devices in fdt");
1318 exit(1);
1319 }
1320 }
1321
1322 /* cpus */
1323 spapr_populate_cpus_dt_node(fdt, spapr);
1324
1325 if (smc->dr_lmb_enabled) {
1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327 }
1328
1329 if (mc->has_hotpluggable_cpus) {
1330 int offset = fdt_path_offset(fdt, "/cpus");
1331 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332 SPAPR_DR_CONNECTOR_TYPE_CPU);
1333 if (ret < 0) {
1334 error_report("Couldn't set up CPU DR device tree properties");
1335 exit(1);
1336 }
1337 }
1338
1339 /* /event-sources */
1340 spapr_dt_events(spapr, fdt);
1341
1342 /* /rtas */
1343 spapr_dt_rtas(spapr, fdt);
1344
1345 /* /chosen */
1346 spapr_dt_chosen(spapr, fdt);
1347
1348 /* /hypervisor */
1349 if (kvm_enabled()) {
1350 spapr_dt_hypervisor(spapr, fdt);
1351 }
1352
1353 /* Build memory reserve map */
1354 if (spapr->kernel_size) {
1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356 }
1357 if (spapr->initrd_size) {
1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359 }
1360
1361 /* ibm,client-architecture-support updates */
1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363 if (ret < 0) {
1364 error_report("couldn't setup CAS properties fdt");
1365 exit(1);
1366 }
1367
1368 return fdt;
1369 }
1370
1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372 {
1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1374 }
1375
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377 PowerPCCPU *cpu)
1378 {
1379 CPUPPCState *env = &cpu->env;
1380
1381 /* The TCG path should also be holding the BQL at this point */
1382 g_assert(qemu_mutex_iothread_locked());
1383
1384 if (msr_pr) {
1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386 env->gpr[3] = H_PRIVILEGE;
1387 } else {
1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1389 }
1390 }
1391
1392 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1393 {
1394 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1395
1396 return spapr->patb_entry;
1397 }
1398
1399 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1400 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1401 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1402 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1403 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1404
1405 /*
1406 * Get the fd to access the kernel htab, re-opening it if necessary
1407 */
1408 static int get_htab_fd(sPAPRMachineState *spapr)
1409 {
1410 Error *local_err = NULL;
1411
1412 if (spapr->htab_fd >= 0) {
1413 return spapr->htab_fd;
1414 }
1415
1416 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1417 if (spapr->htab_fd < 0) {
1418 error_report_err(local_err);
1419 }
1420
1421 return spapr->htab_fd;
1422 }
1423
1424 void close_htab_fd(sPAPRMachineState *spapr)
1425 {
1426 if (spapr->htab_fd >= 0) {
1427 close(spapr->htab_fd);
1428 }
1429 spapr->htab_fd = -1;
1430 }
1431
1432 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1433 {
1434 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1435
1436 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1437 }
1438
1439 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1440 {
1441 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1442
1443 assert(kvm_enabled());
1444
1445 if (!spapr->htab) {
1446 return 0;
1447 }
1448
1449 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1450 }
1451
1452 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1453 hwaddr ptex, int n)
1454 {
1455 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1456 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1457
1458 if (!spapr->htab) {
1459 /*
1460 * HTAB is controlled by KVM. Fetch into temporary buffer
1461 */
1462 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1463 kvmppc_read_hptes(hptes, ptex, n);
1464 return hptes;
1465 }
1466
1467 /*
1468 * HTAB is controlled by QEMU. Just point to the internally
1469 * accessible PTEG.
1470 */
1471 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1472 }
1473
1474 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1475 const ppc_hash_pte64_t *hptes,
1476 hwaddr ptex, int n)
1477 {
1478 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1479
1480 if (!spapr->htab) {
1481 g_free((void *)hptes);
1482 }
1483
1484 /* Nothing to do for qemu managed HPT */
1485 }
1486
1487 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1488 uint64_t pte0, uint64_t pte1)
1489 {
1490 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1491 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1492
1493 if (!spapr->htab) {
1494 kvmppc_write_hpte(ptex, pte0, pte1);
1495 } else {
1496 stq_p(spapr->htab + offset, pte0);
1497 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1498 }
1499 }
1500
1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1502 {
1503 int shift;
1504
1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1507 * that's much more than is needed for Linux guests */
1508 shift = ctz64(pow2ceil(ramsize)) - 7;
1509 shift = MAX(shift, 18); /* Minimum architected size */
1510 shift = MIN(shift, 46); /* Maximum architected size */
1511 return shift;
1512 }
1513
1514 void spapr_free_hpt(sPAPRMachineState *spapr)
1515 {
1516 g_free(spapr->htab);
1517 spapr->htab = NULL;
1518 spapr->htab_shift = 0;
1519 close_htab_fd(spapr);
1520 }
1521
1522 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1523 Error **errp)
1524 {
1525 long rc;
1526
1527 /* Clean up any HPT info from a previous boot */
1528 spapr_free_hpt(spapr);
1529
1530 rc = kvmppc_reset_htab(shift);
1531 if (rc < 0) {
1532 /* kernel-side HPT needed, but couldn't allocate one */
1533 error_setg_errno(errp, errno,
1534 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1535 shift);
1536 /* This is almost certainly fatal, but if the caller really
1537 * wants to carry on with shift == 0, it's welcome to try */
1538 } else if (rc > 0) {
1539 /* kernel-side HPT allocated */
1540 if (rc != shift) {
1541 error_setg(errp,
1542 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1543 shift, rc);
1544 }
1545
1546 spapr->htab_shift = shift;
1547 spapr->htab = NULL;
1548 } else {
1549 /* kernel-side HPT not needed, allocate in userspace instead */
1550 size_t size = 1ULL << shift;
1551 int i;
1552
1553 spapr->htab = qemu_memalign(size, size);
1554 if (!spapr->htab) {
1555 error_setg_errno(errp, errno,
1556 "Could not allocate HPT of order %d", shift);
1557 return;
1558 }
1559
1560 memset(spapr->htab, 0, size);
1561 spapr->htab_shift = shift;
1562
1563 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1564 DIRTY_HPTE(HPTE(spapr->htab, i));
1565 }
1566 }
1567 /* We're setting up a hash table, so that means we're not radix */
1568 spapr->patb_entry = 0;
1569 }
1570
1571 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1572 {
1573 int hpt_shift;
1574
1575 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1576 || (spapr->cas_reboot
1577 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1578 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1579 } else {
1580 uint64_t current_ram_size;
1581
1582 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1583 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1584 }
1585 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1586
1587 if (spapr->vrma_adjust) {
1588 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1589 spapr->htab_shift);
1590 }
1591 }
1592
1593 static int spapr_reset_drcs(Object *child, void *opaque)
1594 {
1595 sPAPRDRConnector *drc =
1596 (sPAPRDRConnector *) object_dynamic_cast(child,
1597 TYPE_SPAPR_DR_CONNECTOR);
1598
1599 if (drc) {
1600 spapr_drc_reset(drc);
1601 }
1602
1603 return 0;
1604 }
1605
1606 static void spapr_machine_reset(void)
1607 {
1608 MachineState *machine = MACHINE(qdev_get_machine());
1609 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1610 PowerPCCPU *first_ppc_cpu;
1611 uint32_t rtas_limit;
1612 hwaddr rtas_addr, fdt_addr;
1613 void *fdt;
1614 int rc;
1615
1616 spapr_caps_apply(spapr);
1617
1618 first_ppc_cpu = POWERPC_CPU(first_cpu);
1619 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1620 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1621 spapr->max_compat_pvr)) {
1622 /* If using KVM with radix mode available, VCPUs can be started
1623 * without a HPT because KVM will start them in radix mode.
1624 * Set the GR bit in PATB so that we know there is no HPT. */
1625 spapr->patb_entry = PATBE1_GR;
1626 } else {
1627 spapr_setup_hpt_and_vrma(spapr);
1628 }
1629
1630 /* if this reset wasn't generated by CAS, we should reset our
1631 * negotiated options and start from scratch */
1632 if (!spapr->cas_reboot) {
1633 spapr_ovec_cleanup(spapr->ov5_cas);
1634 spapr->ov5_cas = spapr_ovec_new();
1635
1636 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1637 }
1638
1639 qemu_devices_reset();
1640
1641 /* DRC reset may cause a device to be unplugged. This will cause troubles
1642 * if this device is used by another device (eg, a running vhost backend
1643 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1644 * situations, we reset DRCs after all devices have been reset.
1645 */
1646 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1647
1648 spapr_clear_pending_events(spapr);
1649
1650 /*
1651 * We place the device tree and RTAS just below either the top of the RMA,
1652 * or just below 2GB, whichever is lowere, so that it can be
1653 * processed with 32-bit real mode code if necessary
1654 */
1655 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1656 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1657 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1658
1659 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1660
1661 spapr_load_rtas(spapr, fdt, rtas_addr);
1662
1663 rc = fdt_pack(fdt);
1664
1665 /* Should only fail if we've built a corrupted tree */
1666 assert(rc == 0);
1667
1668 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1669 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1670 fdt_totalsize(fdt), FDT_MAX_SIZE);
1671 exit(1);
1672 }
1673
1674 /* Load the fdt */
1675 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1676 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1677 g_free(fdt);
1678
1679 /* Set up the entry state */
1680 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1681 first_ppc_cpu->env.gpr[5] = 0;
1682
1683 spapr->cas_reboot = false;
1684 }
1685
1686 static void spapr_create_nvram(sPAPRMachineState *spapr)
1687 {
1688 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1689 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1690
1691 if (dinfo) {
1692 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1693 &error_fatal);
1694 }
1695
1696 qdev_init_nofail(dev);
1697
1698 spapr->nvram = (struct sPAPRNVRAM *)dev;
1699 }
1700
1701 static void spapr_rtc_create(sPAPRMachineState *spapr)
1702 {
1703 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1704 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1705 &error_fatal);
1706 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1707 &error_fatal);
1708 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1709 "date", &error_fatal);
1710 }
1711
1712 /* Returns whether we want to use VGA or not */
1713 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1714 {
1715 switch (vga_interface_type) {
1716 case VGA_NONE:
1717 return false;
1718 case VGA_DEVICE:
1719 return true;
1720 case VGA_STD:
1721 case VGA_VIRTIO:
1722 return pci_vga_init(pci_bus) != NULL;
1723 default:
1724 error_setg(errp,
1725 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1726 return false;
1727 }
1728 }
1729
1730 static int spapr_pre_load(void *opaque)
1731 {
1732 int rc;
1733
1734 rc = spapr_caps_pre_load(opaque);
1735 if (rc) {
1736 return rc;
1737 }
1738
1739 return 0;
1740 }
1741
1742 static int spapr_post_load(void *opaque, int version_id)
1743 {
1744 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1745 int err = 0;
1746
1747 err = spapr_caps_post_migration(spapr);
1748 if (err) {
1749 return err;
1750 }
1751
1752 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1753 CPUState *cs;
1754 CPU_FOREACH(cs) {
1755 PowerPCCPU *cpu = POWERPC_CPU(cs);
1756 icp_resend(ICP(cpu->intc));
1757 }
1758 }
1759
1760 /* In earlier versions, there was no separate qdev for the PAPR
1761 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1762 * So when migrating from those versions, poke the incoming offset
1763 * value into the RTC device */
1764 if (version_id < 3) {
1765 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1766 }
1767
1768 if (kvm_enabled() && spapr->patb_entry) {
1769 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1770 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1771 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1772
1773 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1774 if (err) {
1775 error_report("Process table config unsupported by the host");
1776 return -EINVAL;
1777 }
1778 }
1779
1780 return err;
1781 }
1782
1783 static int spapr_pre_save(void *opaque)
1784 {
1785 int rc;
1786
1787 rc = spapr_caps_pre_save(opaque);
1788 if (rc) {
1789 return rc;
1790 }
1791
1792 return 0;
1793 }
1794
1795 static bool version_before_3(void *opaque, int version_id)
1796 {
1797 return version_id < 3;
1798 }
1799
1800 static bool spapr_pending_events_needed(void *opaque)
1801 {
1802 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1803 return !QTAILQ_EMPTY(&spapr->pending_events);
1804 }
1805
1806 static const VMStateDescription vmstate_spapr_event_entry = {
1807 .name = "spapr_event_log_entry",
1808 .version_id = 1,
1809 .minimum_version_id = 1,
1810 .fields = (VMStateField[]) {
1811 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1812 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1813 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1814 NULL, extended_length),
1815 VMSTATE_END_OF_LIST()
1816 },
1817 };
1818
1819 static const VMStateDescription vmstate_spapr_pending_events = {
1820 .name = "spapr_pending_events",
1821 .version_id = 1,
1822 .minimum_version_id = 1,
1823 .needed = spapr_pending_events_needed,
1824 .fields = (VMStateField[]) {
1825 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1826 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1827 VMSTATE_END_OF_LIST()
1828 },
1829 };
1830
1831 static bool spapr_ov5_cas_needed(void *opaque)
1832 {
1833 sPAPRMachineState *spapr = opaque;
1834 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1835 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1836 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1837 bool cas_needed;
1838
1839 /* Prior to the introduction of sPAPROptionVector, we had two option
1840 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1841 * Both of these options encode machine topology into the device-tree
1842 * in such a way that the now-booted OS should still be able to interact
1843 * appropriately with QEMU regardless of what options were actually
1844 * negotiatied on the source side.
1845 *
1846 * As such, we can avoid migrating the CAS-negotiated options if these
1847 * are the only options available on the current machine/platform.
1848 * Since these are the only options available for pseries-2.7 and
1849 * earlier, this allows us to maintain old->new/new->old migration
1850 * compatibility.
1851 *
1852 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1853 * via default pseries-2.8 machines and explicit command-line parameters.
1854 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1855 * of the actual CAS-negotiated values to continue working properly. For
1856 * example, availability of memory unplug depends on knowing whether
1857 * OV5_HP_EVT was negotiated via CAS.
1858 *
1859 * Thus, for any cases where the set of available CAS-negotiatable
1860 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1861 * include the CAS-negotiated options in the migration stream, unless
1862 * if they affect boot time behaviour only.
1863 */
1864 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1865 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1866 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1867
1868 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1869 * the mask itself since in the future it's possible "legacy" bits may be
1870 * removed via machine options, which could generate a false positive
1871 * that breaks migration.
1872 */
1873 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1874 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1875
1876 spapr_ovec_cleanup(ov5_mask);
1877 spapr_ovec_cleanup(ov5_legacy);
1878 spapr_ovec_cleanup(ov5_removed);
1879
1880 return cas_needed;
1881 }
1882
1883 static const VMStateDescription vmstate_spapr_ov5_cas = {
1884 .name = "spapr_option_vector_ov5_cas",
1885 .version_id = 1,
1886 .minimum_version_id = 1,
1887 .needed = spapr_ov5_cas_needed,
1888 .fields = (VMStateField[]) {
1889 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1890 vmstate_spapr_ovec, sPAPROptionVector),
1891 VMSTATE_END_OF_LIST()
1892 },
1893 };
1894
1895 static bool spapr_patb_entry_needed(void *opaque)
1896 {
1897 sPAPRMachineState *spapr = opaque;
1898
1899 return !!spapr->patb_entry;
1900 }
1901
1902 static const VMStateDescription vmstate_spapr_patb_entry = {
1903 .name = "spapr_patb_entry",
1904 .version_id = 1,
1905 .minimum_version_id = 1,
1906 .needed = spapr_patb_entry_needed,
1907 .fields = (VMStateField[]) {
1908 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1909 VMSTATE_END_OF_LIST()
1910 },
1911 };
1912
1913 static const VMStateDescription vmstate_spapr = {
1914 .name = "spapr",
1915 .version_id = 3,
1916 .minimum_version_id = 1,
1917 .pre_load = spapr_pre_load,
1918 .post_load = spapr_post_load,
1919 .pre_save = spapr_pre_save,
1920 .fields = (VMStateField[]) {
1921 /* used to be @next_irq */
1922 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923
1924 /* RTC offset */
1925 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926
1927 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1928 VMSTATE_END_OF_LIST()
1929 },
1930 .subsections = (const VMStateDescription*[]) {
1931 &vmstate_spapr_ov5_cas,
1932 &vmstate_spapr_patb_entry,
1933 &vmstate_spapr_pending_events,
1934 &vmstate_spapr_cap_htm,
1935 &vmstate_spapr_cap_vsx,
1936 &vmstate_spapr_cap_dfp,
1937 &vmstate_spapr_cap_cfpc,
1938 &vmstate_spapr_cap_sbbc,
1939 &vmstate_spapr_cap_ibs,
1940 NULL
1941 }
1942 };
1943
1944 static int htab_save_setup(QEMUFile *f, void *opaque)
1945 {
1946 sPAPRMachineState *spapr = opaque;
1947
1948 /* "Iteration" header */
1949 if (!spapr->htab_shift) {
1950 qemu_put_be32(f, -1);
1951 } else {
1952 qemu_put_be32(f, spapr->htab_shift);
1953 }
1954
1955 if (spapr->htab) {
1956 spapr->htab_save_index = 0;
1957 spapr->htab_first_pass = true;
1958 } else {
1959 if (spapr->htab_shift) {
1960 assert(kvm_enabled());
1961 }
1962 }
1963
1964
1965 return 0;
1966 }
1967
1968 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1969 int chunkstart, int n_valid, int n_invalid)
1970 {
1971 qemu_put_be32(f, chunkstart);
1972 qemu_put_be16(f, n_valid);
1973 qemu_put_be16(f, n_invalid);
1974 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1975 HASH_PTE_SIZE_64 * n_valid);
1976 }
1977
1978 static void htab_save_end_marker(QEMUFile *f)
1979 {
1980 qemu_put_be32(f, 0);
1981 qemu_put_be16(f, 0);
1982 qemu_put_be16(f, 0);
1983 }
1984
1985 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1986 int64_t max_ns)
1987 {
1988 bool has_timeout = max_ns != -1;
1989 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1990 int index = spapr->htab_save_index;
1991 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1992
1993 assert(spapr->htab_first_pass);
1994
1995 do {
1996 int chunkstart;
1997
1998 /* Consume invalid HPTEs */
1999 while ((index < htabslots)
2000 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2001 CLEAN_HPTE(HPTE(spapr->htab, index));
2002 index++;
2003 }
2004
2005 /* Consume valid HPTEs */
2006 chunkstart = index;
2007 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2008 && HPTE_VALID(HPTE(spapr->htab, index))) {
2009 CLEAN_HPTE(HPTE(spapr->htab, index));
2010 index++;
2011 }
2012
2013 if (index > chunkstart) {
2014 int n_valid = index - chunkstart;
2015
2016 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2017
2018 if (has_timeout &&
2019 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2020 break;
2021 }
2022 }
2023 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2024
2025 if (index >= htabslots) {
2026 assert(index == htabslots);
2027 index = 0;
2028 spapr->htab_first_pass = false;
2029 }
2030 spapr->htab_save_index = index;
2031 }
2032
2033 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2034 int64_t max_ns)
2035 {
2036 bool final = max_ns < 0;
2037 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2038 int examined = 0, sent = 0;
2039 int index = spapr->htab_save_index;
2040 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2041
2042 assert(!spapr->htab_first_pass);
2043
2044 do {
2045 int chunkstart, invalidstart;
2046
2047 /* Consume non-dirty HPTEs */
2048 while ((index < htabslots)
2049 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2050 index++;
2051 examined++;
2052 }
2053
2054 chunkstart = index;
2055 /* Consume valid dirty HPTEs */
2056 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2057 && HPTE_DIRTY(HPTE(spapr->htab, index))
2058 && HPTE_VALID(HPTE(spapr->htab, index))) {
2059 CLEAN_HPTE(HPTE(spapr->htab, index));
2060 index++;
2061 examined++;
2062 }
2063
2064 invalidstart = index;
2065 /* Consume invalid dirty HPTEs */
2066 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2067 && HPTE_DIRTY(HPTE(spapr->htab, index))
2068 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2069 CLEAN_HPTE(HPTE(spapr->htab, index));
2070 index++;
2071 examined++;
2072 }
2073
2074 if (index > chunkstart) {
2075 int n_valid = invalidstart - chunkstart;
2076 int n_invalid = index - invalidstart;
2077
2078 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2079 sent += index - chunkstart;
2080
2081 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2082 break;
2083 }
2084 }
2085
2086 if (examined >= htabslots) {
2087 break;
2088 }
2089
2090 if (index >= htabslots) {
2091 assert(index == htabslots);
2092 index = 0;
2093 }
2094 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2095
2096 if (index >= htabslots) {
2097 assert(index == htabslots);
2098 index = 0;
2099 }
2100
2101 spapr->htab_save_index = index;
2102
2103 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2104 }
2105
2106 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2107 #define MAX_KVM_BUF_SIZE 2048
2108
2109 static int htab_save_iterate(QEMUFile *f, void *opaque)
2110 {
2111 sPAPRMachineState *spapr = opaque;
2112 int fd;
2113 int rc = 0;
2114
2115 /* Iteration header */
2116 if (!spapr->htab_shift) {
2117 qemu_put_be32(f, -1);
2118 return 1;
2119 } else {
2120 qemu_put_be32(f, 0);
2121 }
2122
2123 if (!spapr->htab) {
2124 assert(kvm_enabled());
2125
2126 fd = get_htab_fd(spapr);
2127 if (fd < 0) {
2128 return fd;
2129 }
2130
2131 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2132 if (rc < 0) {
2133 return rc;
2134 }
2135 } else if (spapr->htab_first_pass) {
2136 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2137 } else {
2138 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2139 }
2140
2141 htab_save_end_marker(f);
2142
2143 return rc;
2144 }
2145
2146 static int htab_save_complete(QEMUFile *f, void *opaque)
2147 {
2148 sPAPRMachineState *spapr = opaque;
2149 int fd;
2150
2151 /* Iteration header */
2152 if (!spapr->htab_shift) {
2153 qemu_put_be32(f, -1);
2154 return 0;
2155 } else {
2156 qemu_put_be32(f, 0);
2157 }
2158
2159 if (!spapr->htab) {
2160 int rc;
2161
2162 assert(kvm_enabled());
2163
2164 fd = get_htab_fd(spapr);
2165 if (fd < 0) {
2166 return fd;
2167 }
2168
2169 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2170 if (rc < 0) {
2171 return rc;
2172 }
2173 } else {
2174 if (spapr->htab_first_pass) {
2175 htab_save_first_pass(f, spapr, -1);
2176 }
2177 htab_save_later_pass(f, spapr, -1);
2178 }
2179
2180 /* End marker */
2181 htab_save_end_marker(f);
2182
2183 return 0;
2184 }
2185
2186 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2187 {
2188 sPAPRMachineState *spapr = opaque;
2189 uint32_t section_hdr;
2190 int fd = -1;
2191 Error *local_err = NULL;
2192
2193 if (version_id < 1 || version_id > 1) {
2194 error_report("htab_load() bad version");
2195 return -EINVAL;
2196 }
2197
2198 section_hdr = qemu_get_be32(f);
2199
2200 if (section_hdr == -1) {
2201 spapr_free_hpt(spapr);
2202 return 0;
2203 }
2204
2205 if (section_hdr) {
2206 /* First section gives the htab size */
2207 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2208 if (local_err) {
2209 error_report_err(local_err);
2210 return -EINVAL;
2211 }
2212 return 0;
2213 }
2214
2215 if (!spapr->htab) {
2216 assert(kvm_enabled());
2217
2218 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2219 if (fd < 0) {
2220 error_report_err(local_err);
2221 return fd;
2222 }
2223 }
2224
2225 while (true) {
2226 uint32_t index;
2227 uint16_t n_valid, n_invalid;
2228
2229 index = qemu_get_be32(f);
2230 n_valid = qemu_get_be16(f);
2231 n_invalid = qemu_get_be16(f);
2232
2233 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2234 /* End of Stream */
2235 break;
2236 }
2237
2238 if ((index + n_valid + n_invalid) >
2239 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2240 /* Bad index in stream */
2241 error_report(
2242 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2243 index, n_valid, n_invalid, spapr->htab_shift);
2244 return -EINVAL;
2245 }
2246
2247 if (spapr->htab) {
2248 if (n_valid) {
2249 qemu_get_buffer(f, HPTE(spapr->htab, index),
2250 HASH_PTE_SIZE_64 * n_valid);
2251 }
2252 if (n_invalid) {
2253 memset(HPTE(spapr->htab, index + n_valid), 0,
2254 HASH_PTE_SIZE_64 * n_invalid);
2255 }
2256 } else {
2257 int rc;
2258
2259 assert(fd >= 0);
2260
2261 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2262 if (rc < 0) {
2263 return rc;
2264 }
2265 }
2266 }
2267
2268 if (!spapr->htab) {
2269 assert(fd >= 0);
2270 close(fd);
2271 }
2272
2273 return 0;
2274 }
2275
2276 static void htab_save_cleanup(void *opaque)
2277 {
2278 sPAPRMachineState *spapr = opaque;
2279
2280 close_htab_fd(spapr);
2281 }
2282
2283 static SaveVMHandlers savevm_htab_handlers = {
2284 .save_setup = htab_save_setup,
2285 .save_live_iterate = htab_save_iterate,
2286 .save_live_complete_precopy = htab_save_complete,
2287 .save_cleanup = htab_save_cleanup,
2288 .load_state = htab_load,
2289 };
2290
2291 static void spapr_boot_set(void *opaque, const char *boot_device,
2292 Error **errp)
2293 {
2294 MachineState *machine = MACHINE(opaque);
2295 machine->boot_order = g_strdup(boot_device);
2296 }
2297
2298 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2299 {
2300 MachineState *machine = MACHINE(spapr);
2301 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2302 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2303 int i;
2304
2305 for (i = 0; i < nr_lmbs; i++) {
2306 uint64_t addr;
2307
2308 addr = i * lmb_size + machine->device_memory->base;
2309 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2310 addr / lmb_size);
2311 }
2312 }
2313
2314 /*
2315 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2316 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2317 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2318 */
2319 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2320 {
2321 int i;
2322
2323 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2324 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2325 " is not aligned to %" PRIu64 " MiB",
2326 machine->ram_size,
2327 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2328 return;
2329 }
2330
2331 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2332 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2333 " is not aligned to %" PRIu64 " MiB",
2334 machine->ram_size,
2335 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2336 return;
2337 }
2338
2339 for (i = 0; i < nb_numa_nodes; i++) {
2340 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2341 error_setg(errp,
2342 "Node %d memory size 0x%" PRIx64
2343 " is not aligned to %" PRIu64 " MiB",
2344 i, numa_info[i].node_mem,
2345 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2346 return;
2347 }
2348 }
2349 }
2350
2351 /* find cpu slot in machine->possible_cpus by core_id */
2352 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2353 {
2354 int index = id / smp_threads;
2355
2356 if (index >= ms->possible_cpus->len) {
2357 return NULL;
2358 }
2359 if (idx) {
2360 *idx = index;
2361 }
2362 return &ms->possible_cpus->cpus[index];
2363 }
2364
2365 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2366 {
2367 Error *local_err = NULL;
2368 bool vsmt_user = !!spapr->vsmt;
2369 int kvm_smt = kvmppc_smt_threads();
2370 int ret;
2371
2372 if (!kvm_enabled() && (smp_threads > 1)) {
2373 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2374 "on a pseries machine");
2375 goto out;
2376 }
2377 if (!is_power_of_2(smp_threads)) {
2378 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2379 "machine because it must be a power of 2", smp_threads);
2380 goto out;
2381 }
2382
2383 /* Detemine the VSMT mode to use: */
2384 if (vsmt_user) {
2385 if (spapr->vsmt < smp_threads) {
2386 error_setg(&local_err, "Cannot support VSMT mode %d"
2387 " because it must be >= threads/core (%d)",
2388 spapr->vsmt, smp_threads);
2389 goto out;
2390 }
2391 /* In this case, spapr->vsmt has been set by the command line */
2392 } else {
2393 /*
2394 * Default VSMT value is tricky, because we need it to be as
2395 * consistent as possible (for migration), but this requires
2396 * changing it for at least some existing cases. We pick 8 as
2397 * the value that we'd get with KVM on POWER8, the
2398 * overwhelmingly common case in production systems.
2399 */
2400 spapr->vsmt = MAX(8, smp_threads);
2401 }
2402
2403 /* KVM: If necessary, set the SMT mode: */
2404 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2405 ret = kvmppc_set_smt_threads(spapr->vsmt);
2406 if (ret) {
2407 /* Looks like KVM isn't able to change VSMT mode */
2408 error_setg(&local_err,
2409 "Failed to set KVM's VSMT mode to %d (errno %d)",
2410 spapr->vsmt, ret);
2411 /* We can live with that if the default one is big enough
2412 * for the number of threads, and a submultiple of the one
2413 * we want. In this case we'll waste some vcpu ids, but
2414 * behaviour will be correct */
2415 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2416 warn_report_err(local_err);
2417 local_err = NULL;
2418 goto out;
2419 } else {
2420 if (!vsmt_user) {
2421 error_append_hint(&local_err,
2422 "On PPC, a VM with %d threads/core"
2423 " on a host with %d threads/core"
2424 " requires the use of VSMT mode %d.\n",
2425 smp_threads, kvm_smt, spapr->vsmt);
2426 }
2427 kvmppc_hint_smt_possible(&local_err);
2428 goto out;
2429 }
2430 }
2431 }
2432 /* else TCG: nothing to do currently */
2433 out:
2434 error_propagate(errp, local_err);
2435 }
2436
2437 static void spapr_init_cpus(sPAPRMachineState *spapr)
2438 {
2439 MachineState *machine = MACHINE(spapr);
2440 MachineClass *mc = MACHINE_GET_CLASS(machine);
2441 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2442 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2443 const CPUArchIdList *possible_cpus;
2444 int boot_cores_nr = smp_cpus / smp_threads;
2445 int i;
2446
2447 possible_cpus = mc->possible_cpu_arch_ids(machine);
2448 if (mc->has_hotpluggable_cpus) {
2449 if (smp_cpus % smp_threads) {
2450 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2451 smp_cpus, smp_threads);
2452 exit(1);
2453 }
2454 if (max_cpus % smp_threads) {
2455 error_report("max_cpus (%u) must be multiple of threads (%u)",
2456 max_cpus, smp_threads);
2457 exit(1);
2458 }
2459 } else {
2460 if (max_cpus != smp_cpus) {
2461 error_report("This machine version does not support CPU hotplug");
2462 exit(1);
2463 }
2464 boot_cores_nr = possible_cpus->len;
2465 }
2466
2467 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2468 * call xics_max_server_number() or spapr_vcpu_id().
2469 */
2470 spapr_set_vsmt_mode(spapr, &error_fatal);
2471
2472 if (smc->pre_2_10_has_unused_icps) {
2473 int i;
2474
2475 for (i = 0; i < xics_max_server_number(spapr); i++) {
2476 /* Dummy entries get deregistered when real ICPState objects
2477 * are registered during CPU core hotplug.
2478 */
2479 pre_2_10_vmstate_register_dummy_icp(i);
2480 }
2481 }
2482
2483 for (i = 0; i < possible_cpus->len; i++) {
2484 int core_id = i * smp_threads;
2485
2486 if (mc->has_hotpluggable_cpus) {
2487 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2488 spapr_vcpu_id(spapr, core_id));
2489 }
2490
2491 if (i < boot_cores_nr) {
2492 Object *core = object_new(type);
2493 int nr_threads = smp_threads;
2494
2495 /* Handle the partially filled core for older machine types */
2496 if ((i + 1) * smp_threads >= smp_cpus) {
2497 nr_threads = smp_cpus - i * smp_threads;
2498 }
2499
2500 object_property_set_int(core, nr_threads, "nr-threads",
2501 &error_fatal);
2502 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2503 &error_fatal);
2504 object_property_set_bool(core, true, "realized", &error_fatal);
2505 }
2506 }
2507 }
2508
2509 /* pSeries LPAR / sPAPR hardware init */
2510 static void spapr_machine_init(MachineState *machine)
2511 {
2512 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2513 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2514 const char *kernel_filename = machine->kernel_filename;
2515 const char *initrd_filename = machine->initrd_filename;
2516 PCIHostState *phb;
2517 int i;
2518 MemoryRegion *sysmem = get_system_memory();
2519 MemoryRegion *ram = g_new(MemoryRegion, 1);
2520 hwaddr node0_size = spapr_node0_size(machine);
2521 long load_limit, fw_size;
2522 char *filename;
2523 Error *resize_hpt_err = NULL;
2524
2525 msi_nonbroken = true;
2526
2527 QLIST_INIT(&spapr->phbs);
2528 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2529
2530 /* Determine capabilities to run with */
2531 spapr_caps_init(spapr);
2532
2533 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2534 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2535 /*
2536 * If the user explicitly requested a mode we should either
2537 * supply it, or fail completely (which we do below). But if
2538 * it's not set explicitly, we reset our mode to something
2539 * that works
2540 */
2541 if (resize_hpt_err) {
2542 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2543 error_free(resize_hpt_err);
2544 resize_hpt_err = NULL;
2545 } else {
2546 spapr->resize_hpt = smc->resize_hpt_default;
2547 }
2548 }
2549
2550 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2551
2552 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2553 /*
2554 * User requested HPT resize, but this host can't supply it. Bail out
2555 */
2556 error_report_err(resize_hpt_err);
2557 exit(1);
2558 }
2559
2560 spapr->rma_size = node0_size;
2561
2562 /* With KVM, we don't actually know whether KVM supports an
2563 * unbounded RMA (PR KVM) or is limited by the hash table size
2564 * (HV KVM using VRMA), so we always assume the latter
2565 *
2566 * In that case, we also limit the initial allocations for RTAS
2567 * etc... to 256M since we have no way to know what the VRMA size
2568 * is going to be as it depends on the size of the hash table
2569 * which isn't determined yet.
2570 */
2571 if (kvm_enabled()) {
2572 spapr->vrma_adjust = 1;
2573 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2574 }
2575
2576 /* Actually we don't support unbounded RMA anymore since we added
2577 * proper emulation of HV mode. The max we can get is 16G which
2578 * also happens to be what we configure for PAPR mode so make sure
2579 * we don't do anything bigger than that
2580 */
2581 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2582
2583 if (spapr->rma_size > node0_size) {
2584 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2585 spapr->rma_size);
2586 exit(1);
2587 }
2588
2589 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2590 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2591
2592 /* Set up Interrupt Controller before we create the VCPUs */
2593 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2594
2595 /* Set up containers for ibm,client-architecture-support negotiated options
2596 */
2597 spapr->ov5 = spapr_ovec_new();
2598 spapr->ov5_cas = spapr_ovec_new();
2599
2600 if (smc->dr_lmb_enabled) {
2601 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2602 spapr_validate_node_memory(machine, &error_fatal);
2603 }
2604
2605 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2606
2607 /* advertise support for dedicated HP event source to guests */
2608 if (spapr->use_hotplug_event_source) {
2609 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2610 }
2611
2612 /* advertise support for HPT resizing */
2613 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2614 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2615 }
2616
2617 /* advertise support for ibm,dyamic-memory-v2 */
2618 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2619
2620 /* init CPUs */
2621 spapr_init_cpus(spapr);
2622
2623 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2624 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2625 spapr->max_compat_pvr)) {
2626 /* KVM and TCG always allow GTSE with radix... */
2627 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2628 }
2629 /* ... but not with hash (currently). */
2630
2631 if (kvm_enabled()) {
2632 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2633 kvmppc_enable_logical_ci_hcalls();
2634 kvmppc_enable_set_mode_hcall();
2635
2636 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2637 kvmppc_enable_clear_ref_mod_hcalls();
2638 }
2639
2640 /* allocate RAM */
2641 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2642 machine->ram_size);
2643 memory_region_add_subregion(sysmem, 0, ram);
2644
2645 /* always allocate the device memory information */
2646 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2647
2648 /* initialize hotplug memory address space */
2649 if (machine->ram_size < machine->maxram_size) {
2650 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2651 /*
2652 * Limit the number of hotpluggable memory slots to half the number
2653 * slots that KVM supports, leaving the other half for PCI and other
2654 * devices. However ensure that number of slots doesn't drop below 32.
2655 */
2656 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2657 SPAPR_MAX_RAM_SLOTS;
2658
2659 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2660 max_memslots = SPAPR_MAX_RAM_SLOTS;
2661 }
2662 if (machine->ram_slots > max_memslots) {
2663 error_report("Specified number of memory slots %"
2664 PRIu64" exceeds max supported %d",
2665 machine->ram_slots, max_memslots);
2666 exit(1);
2667 }
2668
2669 machine->device_memory->base = ROUND_UP(machine->ram_size,
2670 SPAPR_DEVICE_MEM_ALIGN);
2671 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2672 "device-memory", device_mem_size);
2673 memory_region_add_subregion(sysmem, machine->device_memory->base,
2674 &machine->device_memory->mr);
2675 }
2676
2677 if (smc->dr_lmb_enabled) {
2678 spapr_create_lmb_dr_connectors(spapr);
2679 }
2680
2681 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2682 if (!filename) {
2683 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2684 exit(1);
2685 }
2686 spapr->rtas_size = get_image_size(filename);
2687 if (spapr->rtas_size < 0) {
2688 error_report("Could not get size of LPAR rtas '%s'", filename);
2689 exit(1);
2690 }
2691 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2692 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2693 error_report("Could not load LPAR rtas '%s'", filename);
2694 exit(1);
2695 }
2696 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2697 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2698 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2699 exit(1);
2700 }
2701 g_free(filename);
2702
2703 /* Set up RTAS event infrastructure */
2704 spapr_events_init(spapr);
2705
2706 /* Set up the RTC RTAS interfaces */
2707 spapr_rtc_create(spapr);
2708
2709 /* Set up VIO bus */
2710 spapr->vio_bus = spapr_vio_bus_init();
2711
2712 for (i = 0; i < serial_max_hds(); i++) {
2713 if (serial_hd(i)) {
2714 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2715 }
2716 }
2717
2718 /* We always have at least the nvram device on VIO */
2719 spapr_create_nvram(spapr);
2720
2721 /* Set up PCI */
2722 spapr_pci_rtas_init();
2723
2724 phb = spapr_create_phb(spapr, 0);
2725
2726 for (i = 0; i < nb_nics; i++) {
2727 NICInfo *nd = &nd_table[i];
2728
2729 if (!nd->model) {
2730 nd->model = g_strdup("spapr-vlan");
2731 }
2732
2733 if (g_str_equal(nd->model, "spapr-vlan") ||
2734 g_str_equal(nd->model, "ibmveth")) {
2735 spapr_vlan_create(spapr->vio_bus, nd);
2736 } else {
2737 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2738 }
2739 }
2740
2741 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2742 spapr_vscsi_create(spapr->vio_bus);
2743 }
2744
2745 /* Graphics */
2746 if (spapr_vga_init(phb->bus, &error_fatal)) {
2747 spapr->has_graphics = true;
2748 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2749 }
2750
2751 if (machine->usb) {
2752 if (smc->use_ohci_by_default) {
2753 pci_create_simple(phb->bus, -1, "pci-ohci");
2754 } else {
2755 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2756 }
2757
2758 if (spapr->has_graphics) {
2759 USBBus *usb_bus = usb_bus_find(-1);
2760
2761 usb_create_simple(usb_bus, "usb-kbd");
2762 usb_create_simple(usb_bus, "usb-mouse");
2763 }
2764 }
2765
2766 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2767 error_report(
2768 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2769 MIN_RMA_SLOF);
2770 exit(1);
2771 }
2772
2773 if (kernel_filename) {
2774 uint64_t lowaddr = 0;
2775
2776 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2777 NULL, NULL, &lowaddr, NULL, 1,
2778 PPC_ELF_MACHINE, 0, 0);
2779 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2780 spapr->kernel_size = load_elf(kernel_filename,
2781 translate_kernel_address, NULL, NULL,
2782 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2783 0, 0);
2784 spapr->kernel_le = spapr->kernel_size > 0;
2785 }
2786 if (spapr->kernel_size < 0) {
2787 error_report("error loading %s: %s", kernel_filename,
2788 load_elf_strerror(spapr->kernel_size));
2789 exit(1);
2790 }
2791
2792 /* load initrd */
2793 if (initrd_filename) {
2794 /* Try to locate the initrd in the gap between the kernel
2795 * and the firmware. Add a bit of space just in case
2796 */
2797 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2798 + 0x1ffff) & ~0xffff;
2799 spapr->initrd_size = load_image_targphys(initrd_filename,
2800 spapr->initrd_base,
2801 load_limit
2802 - spapr->initrd_base);
2803 if (spapr->initrd_size < 0) {
2804 error_report("could not load initial ram disk '%s'",
2805 initrd_filename);
2806 exit(1);
2807 }
2808 }
2809 }
2810
2811 if (bios_name == NULL) {
2812 bios_name = FW_FILE_NAME;
2813 }
2814 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2815 if (!filename) {
2816 error_report("Could not find LPAR firmware '%s'", bios_name);
2817 exit(1);
2818 }
2819 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2820 if (fw_size <= 0) {
2821 error_report("Could not load LPAR firmware '%s'", filename);
2822 exit(1);
2823 }
2824 g_free(filename);
2825
2826 /* FIXME: Should register things through the MachineState's qdev
2827 * interface, this is a legacy from the sPAPREnvironment structure
2828 * which predated MachineState but had a similar function */
2829 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2830 register_savevm_live(NULL, "spapr/htab", -1, 1,
2831 &savevm_htab_handlers, spapr);
2832
2833 qemu_register_boot_set(spapr_boot_set, spapr);
2834
2835 if (kvm_enabled()) {
2836 /* to stop and start vmclock */
2837 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2838 &spapr->tb);
2839
2840 kvmppc_spapr_enable_inkernel_multitce();
2841 }
2842 }
2843
2844 static int spapr_kvm_type(const char *vm_type)
2845 {
2846 if (!vm_type) {
2847 return 0;
2848 }
2849
2850 if (!strcmp(vm_type, "HV")) {
2851 return 1;
2852 }
2853
2854 if (!strcmp(vm_type, "PR")) {
2855 return 2;
2856 }
2857
2858 error_report("Unknown kvm-type specified '%s'", vm_type);
2859 exit(1);
2860 }
2861
2862 /*
2863 * Implementation of an interface to adjust firmware path
2864 * for the bootindex property handling.
2865 */
2866 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2867 DeviceState *dev)
2868 {
2869 #define CAST(type, obj, name) \
2870 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2871 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2872 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2873 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2874
2875 if (d) {
2876 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2877 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2878 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2879
2880 if (spapr) {
2881 /*
2882 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2883 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2884 * in the top 16 bits of the 64-bit LUN
2885 */
2886 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2887 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2888 (uint64_t)id << 48);
2889 } else if (virtio) {
2890 /*
2891 * We use SRP luns of the form 01000000 | (target << 8) | lun
2892 * in the top 32 bits of the 64-bit LUN
2893 * Note: the quote above is from SLOF and it is wrong,
2894 * the actual binding is:
2895 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2896 */
2897 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2898 if (d->lun >= 256) {
2899 /* Use the LUN "flat space addressing method" */
2900 id |= 0x4000;
2901 }
2902 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2903 (uint64_t)id << 32);
2904 } else if (usb) {
2905 /*
2906 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2907 * in the top 32 bits of the 64-bit LUN
2908 */
2909 unsigned usb_port = atoi(usb->port->path);
2910 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2911 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2912 (uint64_t)id << 32);
2913 }
2914 }
2915
2916 /*
2917 * SLOF probes the USB devices, and if it recognizes that the device is a
2918 * storage device, it changes its name to "storage" instead of "usb-host",
2919 * and additionally adds a child node for the SCSI LUN, so the correct
2920 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2921 */
2922 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2923 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2924 if (usb_host_dev_is_scsi_storage(usbdev)) {
2925 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2926 }
2927 }
2928
2929 if (phb) {
2930 /* Replace "pci" with "pci@800000020000000" */
2931 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2932 }
2933
2934 if (vsc) {
2935 /* Same logic as virtio above */
2936 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2937 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2938 }
2939
2940 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2941 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2942 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2943 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2944 }
2945
2946 return NULL;
2947 }
2948
2949 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2950 {
2951 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2952
2953 return g_strdup(spapr->kvm_type);
2954 }
2955
2956 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2957 {
2958 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2959
2960 g_free(spapr->kvm_type);
2961 spapr->kvm_type = g_strdup(value);
2962 }
2963
2964 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2965 {
2966 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2967
2968 return spapr->use_hotplug_event_source;
2969 }
2970
2971 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2972 Error **errp)
2973 {
2974 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2975
2976 spapr->use_hotplug_event_source = value;
2977 }
2978
2979 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2980 {
2981 return true;
2982 }
2983
2984 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2985 {
2986 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2987
2988 switch (spapr->resize_hpt) {
2989 case SPAPR_RESIZE_HPT_DEFAULT:
2990 return g_strdup("default");
2991 case SPAPR_RESIZE_HPT_DISABLED:
2992 return g_strdup("disabled");
2993 case SPAPR_RESIZE_HPT_ENABLED:
2994 return g_strdup("enabled");
2995 case SPAPR_RESIZE_HPT_REQUIRED:
2996 return g_strdup("required");
2997 }
2998 g_assert_not_reached();
2999 }
3000
3001 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3002 {
3003 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3004
3005 if (strcmp(value, "default") == 0) {
3006 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3007 } else if (strcmp(value, "disabled") == 0) {
3008 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3009 } else if (strcmp(value, "enabled") == 0) {
3010 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3011 } else if (strcmp(value, "required") == 0) {
3012 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3013 } else {
3014 error_setg(errp, "Bad value for \"resize-hpt\" property");
3015 }
3016 }
3017
3018 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3019 void *opaque, Error **errp)
3020 {
3021 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3022 }
3023
3024 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3025 void *opaque, Error **errp)
3026 {
3027 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3028 }
3029
3030 static void spapr_instance_init(Object *obj)
3031 {
3032 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3033
3034 spapr->htab_fd = -1;
3035 spapr->use_hotplug_event_source = true;
3036 object_property_add_str(obj, "kvm-type",
3037 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3038 object_property_set_description(obj, "kvm-type",
3039 "Specifies the KVM virtualization mode (HV, PR)",
3040 NULL);
3041 object_property_add_bool(obj, "modern-hotplug-events",
3042 spapr_get_modern_hotplug_events,
3043 spapr_set_modern_hotplug_events,
3044 NULL);
3045 object_property_set_description(obj, "modern-hotplug-events",
3046 "Use dedicated hotplug event mechanism in"
3047 " place of standard EPOW events when possible"
3048 " (required for memory hot-unplug support)",
3049 NULL);
3050 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3051 "Maximum permitted CPU compatibility mode",
3052 &error_fatal);
3053
3054 object_property_add_str(obj, "resize-hpt",
3055 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3056 object_property_set_description(obj, "resize-hpt",
3057 "Resizing of the Hash Page Table (enabled, disabled, required)",
3058 NULL);
3059 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3060 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3061 object_property_set_description(obj, "vsmt",
3062 "Virtual SMT: KVM behaves as if this were"
3063 " the host's SMT mode", &error_abort);
3064 object_property_add_bool(obj, "vfio-no-msix-emulation",
3065 spapr_get_msix_emulation, NULL, NULL);
3066 }
3067
3068 static void spapr_machine_finalizefn(Object *obj)
3069 {
3070 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3071
3072 g_free(spapr->kvm_type);
3073 }
3074
3075 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3076 {
3077 cpu_synchronize_state(cs);
3078 ppc_cpu_do_system_reset(cs);
3079 }
3080
3081 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3082 {
3083 CPUState *cs;
3084
3085 CPU_FOREACH(cs) {
3086 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3087 }
3088 }
3089
3090 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3091 uint32_t node, bool dedicated_hp_event_source,
3092 Error **errp)
3093 {
3094 sPAPRDRConnector *drc;
3095 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3096 int i, fdt_offset, fdt_size;
3097 void *fdt;
3098 uint64_t addr = addr_start;
3099 bool hotplugged = spapr_drc_hotplugged(dev);
3100 Error *local_err = NULL;
3101
3102 for (i = 0; i < nr_lmbs; i++) {
3103 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3104 addr / SPAPR_MEMORY_BLOCK_SIZE);
3105 g_assert(drc);
3106
3107 fdt = create_device_tree(&fdt_size);
3108 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3109 SPAPR_MEMORY_BLOCK_SIZE);
3110
3111 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3112 if (local_err) {
3113 while (addr > addr_start) {
3114 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3115 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3116 addr / SPAPR_MEMORY_BLOCK_SIZE);
3117 spapr_drc_detach(drc);
3118 }
3119 g_free(fdt);
3120 error_propagate(errp, local_err);
3121 return;
3122 }
3123 if (!hotplugged) {
3124 spapr_drc_reset(drc);
3125 }
3126 addr += SPAPR_MEMORY_BLOCK_SIZE;
3127 }
3128 /* send hotplug notification to the
3129 * guest only in case of hotplugged memory
3130 */
3131 if (hotplugged) {
3132 if (dedicated_hp_event_source) {
3133 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3134 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3135 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3136 nr_lmbs,
3137 spapr_drc_index(drc));
3138 } else {
3139 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3140 nr_lmbs);
3141 }
3142 }
3143 }
3144
3145 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3146 Error **errp)
3147 {
3148 Error *local_err = NULL;
3149 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3150 PCDIMMDevice *dimm = PC_DIMM(dev);
3151 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3152 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3153 uint64_t align, size, addr;
3154 uint32_t node;
3155
3156 align = memory_region_get_alignment(mr);
3157 size = memory_region_size(mr);
3158
3159 pc_dimm_plug(dev, MACHINE(ms), align, &local_err);
3160 if (local_err) {
3161 goto out;
3162 }
3163
3164 addr = object_property_get_uint(OBJECT(dimm),
3165 PC_DIMM_ADDR_PROP, &local_err);
3166 if (local_err) {
3167 goto out_unplug;
3168 }
3169
3170 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3171 &error_abort);
3172 spapr_add_lmbs(dev, addr, size, node,
3173 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3174 &local_err);
3175 if (local_err) {
3176 goto out_unplug;
3177 }
3178
3179 return;
3180
3181 out_unplug:
3182 pc_dimm_unplug(dev, MACHINE(ms));
3183 out:
3184 error_propagate(errp, local_err);
3185 }
3186
3187 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3188 Error **errp)
3189 {
3190 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3191 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3192 PCDIMMDevice *dimm = PC_DIMM(dev);
3193 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3194 MemoryRegion *mr;
3195 uint64_t size;
3196 Object *memdev;
3197 hwaddr pagesize;
3198
3199 if (!smc->dr_lmb_enabled) {
3200 error_setg(errp, "Memory hotplug not supported for this machine");
3201 return;
3202 }
3203
3204 mr = ddc->get_memory_region(dimm, errp);
3205 if (!mr) {
3206 return;
3207 }
3208 size = memory_region_size(mr);
3209
3210 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3211 error_setg(errp, "Hotplugged memory size must be a multiple of "
3212 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3213 return;
3214 }
3215
3216 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3217 &error_abort);
3218 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3219 spapr_check_pagesize(spapr, pagesize, errp);
3220 }
3221
3222 struct sPAPRDIMMState {
3223 PCDIMMDevice *dimm;
3224 uint32_t nr_lmbs;
3225 QTAILQ_ENTRY(sPAPRDIMMState) next;
3226 };
3227
3228 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3229 PCDIMMDevice *dimm)
3230 {
3231 sPAPRDIMMState *dimm_state = NULL;
3232
3233 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3234 if (dimm_state->dimm == dimm) {
3235 break;
3236 }
3237 }
3238 return dimm_state;
3239 }
3240
3241 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3242 uint32_t nr_lmbs,
3243 PCDIMMDevice *dimm)
3244 {
3245 sPAPRDIMMState *ds = NULL;
3246
3247 /*
3248 * If this request is for a DIMM whose removal had failed earlier
3249 * (due to guest's refusal to remove the LMBs), we would have this
3250 * dimm already in the pending_dimm_unplugs list. In that
3251 * case don't add again.
3252 */
3253 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3254 if (!ds) {
3255 ds = g_malloc0(sizeof(sPAPRDIMMState));
3256 ds->nr_lmbs = nr_lmbs;
3257 ds->dimm = dimm;
3258 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3259 }
3260 return ds;
3261 }
3262
3263 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3264 sPAPRDIMMState *dimm_state)
3265 {
3266 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3267 g_free(dimm_state);
3268 }
3269
3270 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3271 PCDIMMDevice *dimm)
3272 {
3273 sPAPRDRConnector *drc;
3274 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3275 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3276 uint64_t size = memory_region_size(mr);
3277 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3278 uint32_t avail_lmbs = 0;
3279 uint64_t addr_start, addr;
3280 int i;
3281
3282 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3283 &error_abort);
3284
3285 addr = addr_start;
3286 for (i = 0; i < nr_lmbs; i++) {
3287 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3288 addr / SPAPR_MEMORY_BLOCK_SIZE);
3289 g_assert(drc);
3290 if (drc->dev) {
3291 avail_lmbs++;
3292 }
3293 addr += SPAPR_MEMORY_BLOCK_SIZE;
3294 }
3295
3296 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3297 }
3298
3299 /* Callback to be called during DRC release. */
3300 void spapr_lmb_release(DeviceState *dev)
3301 {
3302 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3303 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3304 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3305
3306 /* This information will get lost if a migration occurs
3307 * during the unplug process. In this case recover it. */
3308 if (ds == NULL) {
3309 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3310 g_assert(ds);
3311 /* The DRC being examined by the caller at least must be counted */
3312 g_assert(ds->nr_lmbs);
3313 }
3314
3315 if (--ds->nr_lmbs) {
3316 return;
3317 }
3318
3319 /*
3320 * Now that all the LMBs have been removed by the guest, call the
3321 * unplug handler chain. This can never fail.
3322 */
3323 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3324 }
3325
3326 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3327 {
3328 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3329 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3330
3331 pc_dimm_unplug(dev, MACHINE(hotplug_dev));
3332 object_unparent(OBJECT(dev));
3333 spapr_pending_dimm_unplugs_remove(spapr, ds);
3334 }
3335
3336 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3337 DeviceState *dev, Error **errp)
3338 {
3339 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3340 Error *local_err = NULL;
3341 PCDIMMDevice *dimm = PC_DIMM(dev);
3342 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3343 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3344 uint32_t nr_lmbs;
3345 uint64_t size, addr_start, addr;
3346 int i;
3347 sPAPRDRConnector *drc;
3348
3349 size = memory_region_size(mr);
3350 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3351
3352 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3353 &local_err);
3354 if (local_err) {
3355 goto out;
3356 }
3357
3358 /*
3359 * An existing pending dimm state for this DIMM means that there is an
3360 * unplug operation in progress, waiting for the spapr_lmb_release
3361 * callback to complete the job (BQL can't cover that far). In this case,
3362 * bail out to avoid detaching DRCs that were already released.
3363 */
3364 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3365 error_setg(&local_err,
3366 "Memory unplug already in progress for device %s",
3367 dev->id);
3368 goto out;
3369 }
3370
3371 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3372
3373 addr = addr_start;
3374 for (i = 0; i < nr_lmbs; i++) {
3375 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3376 addr / SPAPR_MEMORY_BLOCK_SIZE);
3377 g_assert(drc);
3378
3379 spapr_drc_detach(drc);
3380 addr += SPAPR_MEMORY_BLOCK_SIZE;
3381 }
3382
3383 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3384 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3385 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3386 nr_lmbs, spapr_drc_index(drc));
3387 out:
3388 error_propagate(errp, local_err);
3389 }
3390
3391 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3392 sPAPRMachineState *spapr)
3393 {
3394 PowerPCCPU *cpu = POWERPC_CPU(cs);
3395 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3396 int id = spapr_get_vcpu_id(cpu);
3397 void *fdt;
3398 int offset, fdt_size;
3399 char *nodename;
3400
3401 fdt = create_device_tree(&fdt_size);
3402 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3403 offset = fdt_add_subnode(fdt, 0, nodename);
3404
3405 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3406 g_free(nodename);
3407
3408 *fdt_offset = offset;
3409 return fdt;
3410 }
3411
3412 /* Callback to be called during DRC release. */
3413 void spapr_core_release(DeviceState *dev)
3414 {
3415 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3416
3417 /* Call the unplug handler chain. This can never fail. */
3418 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3419 }
3420
3421 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3422 {
3423 MachineState *ms = MACHINE(hotplug_dev);
3424 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3425 CPUCore *cc = CPU_CORE(dev);
3426 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3427
3428 if (smc->pre_2_10_has_unused_icps) {
3429 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3430 int i;
3431
3432 for (i = 0; i < cc->nr_threads; i++) {
3433 CPUState *cs = CPU(sc->threads[i]);
3434
3435 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3436 }
3437 }
3438
3439 assert(core_slot);
3440 core_slot->cpu = NULL;
3441 object_unparent(OBJECT(dev));
3442 }
3443
3444 static
3445 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3446 Error **errp)
3447 {
3448 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3449 int index;
3450 sPAPRDRConnector *drc;
3451 CPUCore *cc = CPU_CORE(dev);
3452
3453 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3454 error_setg(errp, "Unable to find CPU core with core-id: %d",
3455 cc->core_id);
3456 return;
3457 }
3458 if (index == 0) {
3459 error_setg(errp, "Boot CPU core may not be unplugged");
3460 return;
3461 }
3462
3463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3464 spapr_vcpu_id(spapr, cc->core_id));
3465 g_assert(drc);
3466
3467 spapr_drc_detach(drc);
3468
3469 spapr_hotplug_req_remove_by_index(drc);
3470 }
3471
3472 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3473 Error **errp)
3474 {
3475 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3476 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3477 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3478 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3479 CPUCore *cc = CPU_CORE(dev);
3480 CPUState *cs = CPU(core->threads[0]);
3481 sPAPRDRConnector *drc;
3482 Error *local_err = NULL;
3483 CPUArchId *core_slot;
3484 int index;
3485 bool hotplugged = spapr_drc_hotplugged(dev);
3486
3487 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3488 if (!core_slot) {
3489 error_setg(errp, "Unable to find CPU core with core-id: %d",
3490 cc->core_id);
3491 return;
3492 }
3493 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3494 spapr_vcpu_id(spapr, cc->core_id));
3495
3496 g_assert(drc || !mc->has_hotpluggable_cpus);
3497
3498 if (drc) {
3499 void *fdt;
3500 int fdt_offset;
3501
3502 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3503
3504 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3505 if (local_err) {
3506 g_free(fdt);
3507 error_propagate(errp, local_err);
3508 return;
3509 }
3510
3511 if (hotplugged) {
3512 /*
3513 * Send hotplug notification interrupt to the guest only
3514 * in case of hotplugged CPUs.
3515 */
3516 spapr_hotplug_req_add_by_index(drc);
3517 } else {
3518 spapr_drc_reset(drc);
3519 }
3520 }
3521
3522 core_slot->cpu = OBJECT(dev);
3523
3524 if (smc->pre_2_10_has_unused_icps) {
3525 int i;
3526
3527 for (i = 0; i < cc->nr_threads; i++) {
3528 cs = CPU(core->threads[i]);
3529 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3530 }
3531 }
3532 }
3533
3534 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3535 Error **errp)
3536 {
3537 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3538 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3539 Error *local_err = NULL;
3540 CPUCore *cc = CPU_CORE(dev);
3541 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3542 const char *type = object_get_typename(OBJECT(dev));
3543 CPUArchId *core_slot;
3544 int index;
3545
3546 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3547 error_setg(&local_err, "CPU hotplug not supported for this machine");
3548 goto out;
3549 }
3550
3551 if (strcmp(base_core_type, type)) {
3552 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3553 goto out;
3554 }
3555
3556 if (cc->core_id % smp_threads) {
3557 error_setg(&local_err, "invalid core id %d", cc->core_id);
3558 goto out;
3559 }
3560
3561 /*
3562 * In general we should have homogeneous threads-per-core, but old
3563 * (pre hotplug support) machine types allow the last core to have
3564 * reduced threads as a compatibility hack for when we allowed
3565 * total vcpus not a multiple of threads-per-core.
3566 */
3567 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3568 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3569 cc->nr_threads, smp_threads);
3570 goto out;
3571 }
3572
3573 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3574 if (!core_slot) {
3575 error_setg(&local_err, "core id %d out of range", cc->core_id);
3576 goto out;
3577 }
3578
3579 if (core_slot->cpu) {
3580 error_setg(&local_err, "core %d already populated", cc->core_id);
3581 goto out;
3582 }
3583
3584 numa_cpu_pre_plug(core_slot, dev, &local_err);
3585
3586 out:
3587 error_propagate(errp, local_err);
3588 }
3589
3590 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3591 DeviceState *dev, Error **errp)
3592 {
3593 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3594 spapr_memory_plug(hotplug_dev, dev, errp);
3595 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3596 spapr_core_plug(hotplug_dev, dev, errp);
3597 }
3598 }
3599
3600 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3601 DeviceState *dev, Error **errp)
3602 {
3603 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3604 spapr_memory_unplug(hotplug_dev, dev);
3605 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3606 spapr_core_unplug(hotplug_dev, dev);
3607 }
3608 }
3609
3610 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3611 DeviceState *dev, Error **errp)
3612 {
3613 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3614 MachineClass *mc = MACHINE_GET_CLASS(sms);
3615
3616 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3617 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3618 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3619 } else {
3620 /* NOTE: this means there is a window after guest reset, prior to
3621 * CAS negotiation, where unplug requests will fail due to the
3622 * capability not being detected yet. This is a bit different than
3623 * the case with PCI unplug, where the events will be queued and
3624 * eventually handled by the guest after boot
3625 */
3626 error_setg(errp, "Memory hot unplug not supported for this guest");
3627 }
3628 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3629 if (!mc->has_hotpluggable_cpus) {
3630 error_setg(errp, "CPU hot unplug not supported on this machine");
3631 return;
3632 }
3633 spapr_core_unplug_request(hotplug_dev, dev, errp);
3634 }
3635 }
3636
3637 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3638 DeviceState *dev, Error **errp)
3639 {
3640 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3641 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3642 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3643 spapr_core_pre_plug(hotplug_dev, dev, errp);
3644 }
3645 }
3646
3647 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3648 DeviceState *dev)
3649 {
3650 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3651 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3652 return HOTPLUG_HANDLER(machine);
3653 }
3654 return NULL;
3655 }
3656
3657 static CpuInstanceProperties
3658 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3659 {
3660 CPUArchId *core_slot;
3661 MachineClass *mc = MACHINE_GET_CLASS(machine);
3662
3663 /* make sure possible_cpu are intialized */
3664 mc->possible_cpu_arch_ids(machine);
3665 /* get CPU core slot containing thread that matches cpu_index */
3666 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3667 assert(core_slot);
3668 return core_slot->props;
3669 }
3670
3671 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3672 {
3673 return idx / smp_cores % nb_numa_nodes;
3674 }
3675
3676 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3677 {
3678 int i;
3679 const char *core_type;
3680 int spapr_max_cores = max_cpus / smp_threads;
3681 MachineClass *mc = MACHINE_GET_CLASS(machine);
3682
3683 if (!mc->has_hotpluggable_cpus) {
3684 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3685 }
3686 if (machine->possible_cpus) {
3687 assert(machine->possible_cpus->len == spapr_max_cores);
3688 return machine->possible_cpus;
3689 }
3690
3691 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3692 if (!core_type) {
3693 error_report("Unable to find sPAPR CPU Core definition");
3694 exit(1);
3695 }
3696
3697 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3698 sizeof(CPUArchId) * spapr_max_cores);
3699 machine->possible_cpus->len = spapr_max_cores;
3700 for (i = 0; i < machine->possible_cpus->len; i++) {
3701 int core_id = i * smp_threads;
3702
3703 machine->possible_cpus->cpus[i].type = core_type;
3704 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3705 machine->possible_cpus->cpus[i].arch_id = core_id;
3706 machine->possible_cpus->cpus[i].props.has_core_id = true;
3707 machine->possible_cpus->cpus[i].props.core_id = core_id;
3708 }
3709 return machine->possible_cpus;
3710 }
3711
3712 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3713 uint64_t *buid, hwaddr *pio,
3714 hwaddr *mmio32, hwaddr *mmio64,
3715 unsigned n_dma, uint32_t *liobns, Error **errp)
3716 {
3717 /*
3718 * New-style PHB window placement.
3719 *
3720 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3721 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3722 * windows.
3723 *
3724 * Some guest kernels can't work with MMIO windows above 1<<46
3725 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3726 *
3727 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3728 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3729 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3730 * 1TiB 64-bit MMIO windows for each PHB.
3731 */
3732 const uint64_t base_buid = 0x800000020000000ULL;
3733 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3734 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3735 int i;
3736
3737 /* Sanity check natural alignments */
3738 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3739 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3740 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3742 /* Sanity check bounds */
3743 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3744 SPAPR_PCI_MEM32_WIN_SIZE);
3745 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3746 SPAPR_PCI_MEM64_WIN_SIZE);
3747
3748 if (index >= SPAPR_MAX_PHBS) {
3749 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3750 SPAPR_MAX_PHBS - 1);
3751 return;
3752 }
3753
3754 *buid = base_buid + index;
3755 for (i = 0; i < n_dma; ++i) {
3756 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3757 }
3758
3759 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3760 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3761 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3762 }
3763
3764 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3765 {
3766 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3767
3768 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3769 }
3770
3771 static void spapr_ics_resend(XICSFabric *dev)
3772 {
3773 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3774
3775 ics_resend(spapr->ics);
3776 }
3777
3778 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3779 {
3780 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3781
3782 return cpu ? ICP(cpu->intc) : NULL;
3783 }
3784
3785 #define ICS_IRQ_FREE(ics, srcno) \
3786 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3787
3788 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3789 {
3790 int first, i;
3791
3792 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3793 if (num > (ics->nr_irqs - first)) {
3794 return -1;
3795 }
3796 for (i = first; i < first + num; ++i) {
3797 if (!ICS_IRQ_FREE(ics, i)) {
3798 break;
3799 }
3800 }
3801 if (i == (first + num)) {
3802 return first;
3803 }
3804 }
3805
3806 return -1;
3807 }
3808
3809 int spapr_irq_find(sPAPRMachineState *spapr, int num, bool align, Error **errp)
3810 {
3811 ICSState *ics = spapr->ics;
3812 int first = -1;
3813
3814 assert(ics);
3815
3816 /*
3817 * MSIMesage::data is used for storing VIRQ so
3818 * it has to be aligned to num to support multiple
3819 * MSI vectors. MSI-X is not affected by this.
3820 * The hint is used for the first IRQ, the rest should
3821 * be allocated continuously.
3822 */
3823 if (align) {
3824 assert((num == 1) || (num == 2) || (num == 4) ||
3825 (num == 8) || (num == 16) || (num == 32));
3826 first = ics_find_free_block(ics, num, num);
3827 } else {
3828 first = ics_find_free_block(ics, num, 1);
3829 }
3830
3831 if (first < 0) {
3832 error_setg(errp, "can't find a free %d-IRQ block", num);
3833 return -1;
3834 }
3835
3836 return first + ics->offset;
3837 }
3838
3839 int spapr_irq_claim(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp)
3840 {
3841 ICSState *ics = spapr->ics;
3842
3843 assert(ics);
3844
3845 if (!ics_valid_irq(ics, irq)) {
3846 error_setg(errp, "IRQ %d is invalid", irq);
3847 return -1;
3848 }
3849
3850 if (!ICS_IRQ_FREE(ics, irq - ics->offset)) {
3851 error_setg(errp, "IRQ %d is not free", irq);
3852 return -1;
3853 }
3854
3855 ics_set_irq_type(ics, irq - ics->offset, lsi);
3856 return 0;
3857 }
3858
3859 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3860 {
3861 ICSState *ics = spapr->ics;
3862 int srcno = irq - ics->offset;
3863 int i;
3864
3865 if (ics_valid_irq(ics, irq)) {
3866 trace_spapr_irq_free(0, irq, num);
3867 for (i = srcno; i < srcno + num; ++i) {
3868 if (ICS_IRQ_FREE(ics, i)) {
3869 trace_spapr_irq_free_warn(0, i + ics->offset);
3870 }
3871 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3872 }
3873 }
3874 }
3875
3876 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3877 {
3878 ICSState *ics = spapr->ics;
3879
3880 if (ics_valid_irq(ics, irq)) {
3881 return ics->qirqs[irq - ics->offset];
3882 }
3883
3884 return NULL;
3885 }
3886
3887 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3888 Monitor *mon)
3889 {
3890 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3891 CPUState *cs;
3892
3893 CPU_FOREACH(cs) {
3894 PowerPCCPU *cpu = POWERPC_CPU(cs);
3895
3896 icp_pic_print_info(ICP(cpu->intc), mon);
3897 }
3898
3899 ics_pic_print_info(spapr->ics, mon);
3900 }
3901
3902 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3903 {
3904 return cpu->vcpu_id;
3905 }
3906
3907 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3908 {
3909 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3910 int vcpu_id;
3911
3912 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3913
3914 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3915 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3916 error_append_hint(errp, "Adjust the number of cpus to %d "
3917 "or try to raise the number of threads per core\n",
3918 vcpu_id * smp_threads / spapr->vsmt);
3919 return;
3920 }
3921
3922 cpu->vcpu_id = vcpu_id;
3923 }
3924
3925 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3926 {
3927 CPUState *cs;
3928
3929 CPU_FOREACH(cs) {
3930 PowerPCCPU *cpu = POWERPC_CPU(cs);
3931
3932 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3933 return cpu;
3934 }
3935 }
3936
3937 return NULL;
3938 }
3939
3940 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3941 {
3942 MachineClass *mc = MACHINE_CLASS(oc);
3943 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3944 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3945 NMIClass *nc = NMI_CLASS(oc);
3946 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3947 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3948 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3949 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3950
3951 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3952
3953 /*
3954 * We set up the default / latest behaviour here. The class_init
3955 * functions for the specific versioned machine types can override
3956 * these details for backwards compatibility
3957 */
3958 mc->init = spapr_machine_init;
3959 mc->reset = spapr_machine_reset;
3960 mc->block_default_type = IF_SCSI;
3961 mc->max_cpus = 1024;
3962 mc->no_parallel = 1;
3963 mc->default_boot_order = "";
3964 mc->default_ram_size = 512 * MiB;
3965 mc->kvm_type = spapr_kvm_type;
3966 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3967 mc->pci_allow_0_address = true;
3968 assert(!mc->get_hotplug_handler);
3969 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3970 hc->pre_plug = spapr_machine_device_pre_plug;
3971 hc->plug = spapr_machine_device_plug;
3972 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3973 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3974 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3975 hc->unplug_request = spapr_machine_device_unplug_request;
3976 hc->unplug = spapr_machine_device_unplug;
3977
3978 smc->dr_lmb_enabled = true;
3979 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3980 mc->has_hotpluggable_cpus = true;
3981 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3982 fwc->get_dev_path = spapr_get_fw_dev_path;
3983 nc->nmi_monitor_handler = spapr_nmi;
3984 smc->phb_placement = spapr_phb_placement;
3985 vhc->hypercall = emulate_spapr_hypercall;
3986 vhc->hpt_mask = spapr_hpt_mask;
3987 vhc->map_hptes = spapr_map_hptes;
3988 vhc->unmap_hptes = spapr_unmap_hptes;
3989 vhc->store_hpte = spapr_store_hpte;
3990 vhc->get_patbe = spapr_get_patbe;
3991 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3992 xic->ics_get = spapr_ics_get;
3993 xic->ics_resend = spapr_ics_resend;
3994 xic->icp_get = spapr_icp_get;
3995 ispc->print_info = spapr_pic_print_info;
3996 /* Force NUMA node memory size to be a multiple of
3997 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3998 * in which LMBs are represented and hot-added
3999 */
4000 mc->numa_mem_align_shift = 28;
4001
4002 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4003 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4004 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4005 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4006 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4007 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4008 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4009 spapr_caps_add_properties(smc, &error_abort);
4010 }
4011
4012 static const TypeInfo spapr_machine_info = {
4013 .name = TYPE_SPAPR_MACHINE,
4014 .parent = TYPE_MACHINE,
4015 .abstract = true,
4016 .instance_size = sizeof(sPAPRMachineState),
4017 .instance_init = spapr_instance_init,
4018 .instance_finalize = spapr_machine_finalizefn,
4019 .class_size = sizeof(sPAPRMachineClass),
4020 .class_init = spapr_machine_class_init,
4021 .interfaces = (InterfaceInfo[]) {
4022 { TYPE_FW_PATH_PROVIDER },
4023 { TYPE_NMI },
4024 { TYPE_HOTPLUG_HANDLER },
4025 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4026 { TYPE_XICS_FABRIC },
4027 { TYPE_INTERRUPT_STATS_PROVIDER },
4028 { }
4029 },
4030 };
4031
4032 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4033 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4034 void *data) \
4035 { \
4036 MachineClass *mc = MACHINE_CLASS(oc); \
4037 spapr_machine_##suffix##_class_options(mc); \
4038 if (latest) { \
4039 mc->alias = "pseries"; \
4040 mc->is_default = 1; \
4041 } \
4042 } \
4043 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4044 { \
4045 MachineState *machine = MACHINE(obj); \
4046 spapr_machine_##suffix##_instance_options(machine); \
4047 } \
4048 static const TypeInfo spapr_machine_##suffix##_info = { \
4049 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4050 .parent = TYPE_SPAPR_MACHINE, \
4051 .class_init = spapr_machine_##suffix##_class_init, \
4052 .instance_init = spapr_machine_##suffix##_instance_init, \
4053 }; \
4054 static void spapr_machine_register_##suffix(void) \
4055 { \
4056 type_register(&spapr_machine_##suffix##_info); \
4057 } \
4058 type_init(spapr_machine_register_##suffix)
4059
4060 /*
4061 * pseries-3.0
4062 */
4063 static void spapr_machine_3_0_instance_options(MachineState *machine)
4064 {
4065 }
4066
4067 static void spapr_machine_3_0_class_options(MachineClass *mc)
4068 {
4069 /* Defaults for the latest behaviour inherited from the base class */
4070 }
4071
4072 DEFINE_SPAPR_MACHINE(3_0, "3.0", true);
4073
4074 /*
4075 * pseries-2.12
4076 */
4077 #define SPAPR_COMPAT_2_12 \
4078 HW_COMPAT_2_12 \
4079 { \
4080 .driver = TYPE_POWERPC_CPU, \
4081 .property = "pre-3.0-migration", \
4082 .value = "on", \
4083 }, \
4084 { \
4085 .driver = TYPE_SPAPR_CPU_CORE, \
4086 .property = "pre-3.0-migration", \
4087 .value = "on", \
4088 },
4089
4090 static void spapr_machine_2_12_instance_options(MachineState *machine)
4091 {
4092 spapr_machine_3_0_instance_options(machine);
4093 }
4094
4095 static void spapr_machine_2_12_class_options(MachineClass *mc)
4096 {
4097 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4098 uint8_t mps;
4099
4100 spapr_machine_3_0_class_options(mc);
4101 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4102
4103 if (kvmppc_hpt_needs_host_contiguous_pages()) {
4104 mps = ctz64(qemu_getrampagesize());
4105 } else {
4106 mps = 34; /* allow everything up to 16GiB, i.e. everything */
4107 }
4108 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = mps;
4109 }
4110
4111 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4112
4113 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4114 {
4115 spapr_machine_2_12_instance_options(machine);
4116 }
4117
4118 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4119 {
4120 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4121
4122 spapr_machine_2_12_class_options(mc);
4123 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4124 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4125 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4126 }
4127
4128 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4129
4130 /*
4131 * pseries-2.11
4132 */
4133 #define SPAPR_COMPAT_2_11 \
4134 HW_COMPAT_2_11
4135
4136 static void spapr_machine_2_11_instance_options(MachineState *machine)
4137 {
4138 spapr_machine_2_12_instance_options(machine);
4139 }
4140
4141 static void spapr_machine_2_11_class_options(MachineClass *mc)
4142 {
4143 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4144
4145 spapr_machine_2_12_class_options(mc);
4146 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4147 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4148 }
4149
4150 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4151
4152 /*
4153 * pseries-2.10
4154 */
4155 #define SPAPR_COMPAT_2_10 \
4156 HW_COMPAT_2_10
4157
4158 static void spapr_machine_2_10_instance_options(MachineState *machine)
4159 {
4160 spapr_machine_2_11_instance_options(machine);
4161 }
4162
4163 static void spapr_machine_2_10_class_options(MachineClass *mc)
4164 {
4165 spapr_machine_2_11_class_options(mc);
4166 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4167 }
4168
4169 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4170
4171 /*
4172 * pseries-2.9
4173 */
4174 #define SPAPR_COMPAT_2_9 \
4175 HW_COMPAT_2_9 \
4176 { \
4177 .driver = TYPE_POWERPC_CPU, \
4178 .property = "pre-2.10-migration", \
4179 .value = "on", \
4180 }, \
4181
4182 static void spapr_machine_2_9_instance_options(MachineState *machine)
4183 {
4184 spapr_machine_2_10_instance_options(machine);
4185 }
4186
4187 static void spapr_machine_2_9_class_options(MachineClass *mc)
4188 {
4189 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4190
4191 spapr_machine_2_10_class_options(mc);
4192 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4193 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4194 smc->pre_2_10_has_unused_icps = true;
4195 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4196 }
4197
4198 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4199
4200 /*
4201 * pseries-2.8
4202 */
4203 #define SPAPR_COMPAT_2_8 \
4204 HW_COMPAT_2_8 \
4205 { \
4206 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4207 .property = "pcie-extended-configuration-space", \
4208 .value = "off", \
4209 },
4210
4211 static void spapr_machine_2_8_instance_options(MachineState *machine)
4212 {
4213 spapr_machine_2_9_instance_options(machine);
4214 }
4215
4216 static void spapr_machine_2_8_class_options(MachineClass *mc)
4217 {
4218 spapr_machine_2_9_class_options(mc);
4219 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4220 mc->numa_mem_align_shift = 23;
4221 }
4222
4223 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4224
4225 /*
4226 * pseries-2.7
4227 */
4228 #define SPAPR_COMPAT_2_7 \
4229 HW_COMPAT_2_7 \
4230 { \
4231 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4232 .property = "mem_win_size", \
4233 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4234 }, \
4235 { \
4236 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4237 .property = "mem64_win_size", \
4238 .value = "0", \
4239 }, \
4240 { \
4241 .driver = TYPE_POWERPC_CPU, \
4242 .property = "pre-2.8-migration", \
4243 .value = "on", \
4244 }, \
4245 { \
4246 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4247 .property = "pre-2.8-migration", \
4248 .value = "on", \
4249 },
4250
4251 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4252 uint64_t *buid, hwaddr *pio,
4253 hwaddr *mmio32, hwaddr *mmio64,
4254 unsigned n_dma, uint32_t *liobns, Error **errp)
4255 {
4256 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4257 const uint64_t base_buid = 0x800000020000000ULL;
4258 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4259 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4260 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4261 const uint32_t max_index = 255;
4262 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4263
4264 uint64_t ram_top = MACHINE(spapr)->ram_size;
4265 hwaddr phb0_base, phb_base;
4266 int i;
4267
4268 /* Do we have device memory? */
4269 if (MACHINE(spapr)->maxram_size > ram_top) {
4270 /* Can't just use maxram_size, because there may be an
4271 * alignment gap between normal and device memory regions
4272 */
4273 ram_top = MACHINE(spapr)->device_memory->base +
4274 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4275 }
4276
4277 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4278
4279 if (index > max_index) {
4280 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4281 max_index);
4282 return;
4283 }
4284
4285 *buid = base_buid + index;
4286 for (i = 0; i < n_dma; ++i) {
4287 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4288 }
4289
4290 phb_base = phb0_base + index * phb_spacing;
4291 *pio = phb_base + pio_offset;
4292 *mmio32 = phb_base + mmio_offset;
4293 /*
4294 * We don't set the 64-bit MMIO window, relying on the PHB's
4295 * fallback behaviour of automatically splitting a large "32-bit"
4296 * window into contiguous 32-bit and 64-bit windows
4297 */
4298 }
4299
4300 static void spapr_machine_2_7_instance_options(MachineState *machine)
4301 {
4302 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4303
4304 spapr_machine_2_8_instance_options(machine);
4305 spapr->use_hotplug_event_source = false;
4306 }
4307
4308 static void spapr_machine_2_7_class_options(MachineClass *mc)
4309 {
4310 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4311
4312 spapr_machine_2_8_class_options(mc);
4313 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4314 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4315 smc->phb_placement = phb_placement_2_7;
4316 }
4317
4318 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4319
4320 /*
4321 * pseries-2.6
4322 */
4323 #define SPAPR_COMPAT_2_6 \
4324 HW_COMPAT_2_6 \
4325 { \
4326 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4327 .property = "ddw",\
4328 .value = stringify(off),\
4329 },
4330
4331 static void spapr_machine_2_6_instance_options(MachineState *machine)
4332 {
4333 spapr_machine_2_7_instance_options(machine);
4334 }
4335
4336 static void spapr_machine_2_6_class_options(MachineClass *mc)
4337 {
4338 spapr_machine_2_7_class_options(mc);
4339 mc->has_hotpluggable_cpus = false;
4340 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4341 }
4342
4343 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4344
4345 /*
4346 * pseries-2.5
4347 */
4348 #define SPAPR_COMPAT_2_5 \
4349 HW_COMPAT_2_5 \
4350 { \
4351 .driver = "spapr-vlan", \
4352 .property = "use-rx-buffer-pools", \
4353 .value = "off", \
4354 },
4355
4356 static void spapr_machine_2_5_instance_options(MachineState *machine)
4357 {
4358 spapr_machine_2_6_instance_options(machine);
4359 }
4360
4361 static void spapr_machine_2_5_class_options(MachineClass *mc)
4362 {
4363 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4364
4365 spapr_machine_2_6_class_options(mc);
4366 smc->use_ohci_by_default = true;
4367 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4368 }
4369
4370 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4371
4372 /*
4373 * pseries-2.4
4374 */
4375 #define SPAPR_COMPAT_2_4 \
4376 HW_COMPAT_2_4
4377
4378 static void spapr_machine_2_4_instance_options(MachineState *machine)
4379 {
4380 spapr_machine_2_5_instance_options(machine);
4381 }
4382
4383 static void spapr_machine_2_4_class_options(MachineClass *mc)
4384 {
4385 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4386
4387 spapr_machine_2_5_class_options(mc);
4388 smc->dr_lmb_enabled = false;
4389 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4390 }
4391
4392 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4393
4394 /*
4395 * pseries-2.3
4396 */
4397 #define SPAPR_COMPAT_2_3 \
4398 HW_COMPAT_2_3 \
4399 {\
4400 .driver = "spapr-pci-host-bridge",\
4401 .property = "dynamic-reconfiguration",\
4402 .value = "off",\
4403 },
4404
4405 static void spapr_machine_2_3_instance_options(MachineState *machine)
4406 {
4407 spapr_machine_2_4_instance_options(machine);
4408 }
4409
4410 static void spapr_machine_2_3_class_options(MachineClass *mc)
4411 {
4412 spapr_machine_2_4_class_options(mc);
4413 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4414 }
4415 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4416
4417 /*
4418 * pseries-2.2
4419 */
4420
4421 #define SPAPR_COMPAT_2_2 \
4422 HW_COMPAT_2_2 \
4423 {\
4424 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4425 .property = "mem_win_size",\
4426 .value = "0x20000000",\
4427 },
4428
4429 static void spapr_machine_2_2_instance_options(MachineState *machine)
4430 {
4431 spapr_machine_2_3_instance_options(machine);
4432 machine->suppress_vmdesc = true;
4433 }
4434
4435 static void spapr_machine_2_2_class_options(MachineClass *mc)
4436 {
4437 spapr_machine_2_3_class_options(mc);
4438 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4439 }
4440 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4441
4442 /*
4443 * pseries-2.1
4444 */
4445 #define SPAPR_COMPAT_2_1 \
4446 HW_COMPAT_2_1
4447
4448 static void spapr_machine_2_1_instance_options(MachineState *machine)
4449 {
4450 spapr_machine_2_2_instance_options(machine);
4451 }
4452
4453 static void spapr_machine_2_1_class_options(MachineClass *mc)
4454 {
4455 spapr_machine_2_2_class_options(mc);
4456 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4457 }
4458 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4459
4460 static void spapr_machine_register_types(void)
4461 {
4462 type_register_static(&spapr_machine_info);
4463 }
4464
4465 type_init(spapr_machine_register_types)