]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: Clean up spapr_drc_populate_dt()
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
59
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_INTC 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 int spapr_max_server_number(SpaprMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 SpaprMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 SpaprDrc *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
504 }
505 if (env->spr_cb[SPR_SPURR].oea_read) {
506 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
507 }
508
509 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
512 }
513
514 /* Advertise VSX (vector extensions) if available
515 * 1 == VMX / Altivec available
516 * 2 == VSX available
517 *
518 * Only CPUs for which we create core types in spapr_cpu_core.c
519 * are possible, and all of those have VMX */
520 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
522 } else {
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
524 }
525
526 /* Advertise DFP (Decimal Floating Point) if available
527 * 0 / no property == no DFP
528 * 1 == DFP available */
529 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
531 }
532
533 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
534 sizeof(page_sizes_prop));
535 if (page_sizes_prop_size) {
536 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
537 page_sizes_prop, page_sizes_prop_size)));
538 }
539
540 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
541
542 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
543 cs->cpu_index / vcpus_per_socket)));
544
545 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
546 pft_size_prop, sizeof(pft_size_prop))));
547
548 if (nb_numa_nodes > 1) {
549 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
550 }
551
552 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
553
554 if (pcc->radix_page_info) {
555 for (i = 0; i < pcc->radix_page_info->count; i++) {
556 radix_AP_encodings[i] =
557 cpu_to_be32(pcc->radix_page_info->entries[i]);
558 }
559 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
560 radix_AP_encodings,
561 pcc->radix_page_info->count *
562 sizeof(radix_AP_encodings[0]))));
563 }
564
565 /*
566 * We set this property to let the guest know that it can use the large
567 * decrementer and its width in bits.
568 */
569 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
570 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
571 pcc->lrg_decr_bits)));
572 }
573
574 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
575 {
576 CPUState **rev;
577 CPUState *cs;
578 int n_cpus;
579 int cpus_offset;
580 char *nodename;
581 int i;
582
583 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
584 _FDT(cpus_offset);
585 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
587
588 /*
589 * We walk the CPUs in reverse order to ensure that CPU DT nodes
590 * created by fdt_add_subnode() end up in the right order in FDT
591 * for the guest kernel the enumerate the CPUs correctly.
592 *
593 * The CPU list cannot be traversed in reverse order, so we need
594 * to do extra work.
595 */
596 n_cpus = 0;
597 rev = NULL;
598 CPU_FOREACH(cs) {
599 rev = g_renew(CPUState *, rev, n_cpus + 1);
600 rev[n_cpus++] = cs;
601 }
602
603 for (i = n_cpus - 1; i >= 0; i--) {
604 CPUState *cs = rev[i];
605 PowerPCCPU *cpu = POWERPC_CPU(cs);
606 int index = spapr_get_vcpu_id(cpu);
607 DeviceClass *dc = DEVICE_GET_CLASS(cs);
608 int offset;
609
610 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
611 continue;
612 }
613
614 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
615 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
616 g_free(nodename);
617 _FDT(offset);
618 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
619 }
620
621 g_free(rev);
622 }
623
624 static int spapr_rng_populate_dt(void *fdt)
625 {
626 int node;
627 int ret;
628
629 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
630 if (node <= 0) {
631 return -1;
632 }
633 ret = fdt_setprop_string(fdt, node, "device_type",
634 "ibm,platform-facilities");
635 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
636 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
637
638 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
639 if (node <= 0) {
640 return -1;
641 }
642 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
643
644 return ret ? -1 : 0;
645 }
646
647 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
648 {
649 MemoryDeviceInfoList *info;
650
651 for (info = list; info; info = info->next) {
652 MemoryDeviceInfo *value = info->value;
653
654 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
655 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
656
657 if (addr >= pcdimm_info->addr &&
658 addr < (pcdimm_info->addr + pcdimm_info->size)) {
659 return pcdimm_info->node;
660 }
661 }
662 }
663
664 return -1;
665 }
666
667 struct sPAPRDrconfCellV2 {
668 uint32_t seq_lmbs;
669 uint64_t base_addr;
670 uint32_t drc_index;
671 uint32_t aa_index;
672 uint32_t flags;
673 } QEMU_PACKED;
674
675 typedef struct DrconfCellQueue {
676 struct sPAPRDrconfCellV2 cell;
677 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
678 } DrconfCellQueue;
679
680 static DrconfCellQueue *
681 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
682 uint32_t drc_index, uint32_t aa_index,
683 uint32_t flags)
684 {
685 DrconfCellQueue *elem;
686
687 elem = g_malloc0(sizeof(*elem));
688 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
689 elem->cell.base_addr = cpu_to_be64(base_addr);
690 elem->cell.drc_index = cpu_to_be32(drc_index);
691 elem->cell.aa_index = cpu_to_be32(aa_index);
692 elem->cell.flags = cpu_to_be32(flags);
693
694 return elem;
695 }
696
697 /* ibm,dynamic-memory-v2 */
698 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
699 int offset, MemoryDeviceInfoList *dimms)
700 {
701 MachineState *machine = MACHINE(spapr);
702 uint8_t *int_buf, *cur_index;
703 int ret;
704 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
705 uint64_t addr, cur_addr, size;
706 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
707 uint64_t mem_end = machine->device_memory->base +
708 memory_region_size(&machine->device_memory->mr);
709 uint32_t node, buf_len, nr_entries = 0;
710 SpaprDrc *drc;
711 DrconfCellQueue *elem, *next;
712 MemoryDeviceInfoList *info;
713 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
714 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
715
716 /* Entry to cover RAM and the gap area */
717 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
718 SPAPR_LMB_FLAGS_RESERVED |
719 SPAPR_LMB_FLAGS_DRC_INVALID);
720 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
721 nr_entries++;
722
723 cur_addr = machine->device_memory->base;
724 for (info = dimms; info; info = info->next) {
725 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
726
727 addr = di->addr;
728 size = di->size;
729 node = di->node;
730
731 /* Entry for hot-pluggable area */
732 if (cur_addr < addr) {
733 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
734 g_assert(drc);
735 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
736 cur_addr, spapr_drc_index(drc), -1, 0);
737 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
738 nr_entries++;
739 }
740
741 /* Entry for DIMM */
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell(size / lmb_size, addr,
745 spapr_drc_index(drc), node,
746 SPAPR_LMB_FLAGS_ASSIGNED);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
749 cur_addr = addr + size;
750 }
751
752 /* Entry for remaining hotpluggable area */
753 if (cur_addr < mem_end) {
754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
755 g_assert(drc);
756 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
757 cur_addr, spapr_drc_index(drc), -1, 0);
758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
759 nr_entries++;
760 }
761
762 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
763 int_buf = cur_index = g_malloc0(buf_len);
764 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
765 cur_index += sizeof(nr_entries);
766
767 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
768 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
769 cur_index += sizeof(elem->cell);
770 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
771 g_free(elem);
772 }
773
774 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
775 g_free(int_buf);
776 if (ret < 0) {
777 return -1;
778 }
779 return 0;
780 }
781
782 /* ibm,dynamic-memory */
783 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
784 int offset, MemoryDeviceInfoList *dimms)
785 {
786 MachineState *machine = MACHINE(spapr);
787 int i, ret;
788 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
789 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
790 uint32_t nr_lmbs = (machine->device_memory->base +
791 memory_region_size(&machine->device_memory->mr)) /
792 lmb_size;
793 uint32_t *int_buf, *cur_index, buf_len;
794
795 /*
796 * Allocate enough buffer size to fit in ibm,dynamic-memory
797 */
798 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
799 cur_index = int_buf = g_malloc0(buf_len);
800 int_buf[0] = cpu_to_be32(nr_lmbs);
801 cur_index++;
802 for (i = 0; i < nr_lmbs; i++) {
803 uint64_t addr = i * lmb_size;
804 uint32_t *dynamic_memory = cur_index;
805
806 if (i >= device_lmb_start) {
807 SpaprDrc *drc;
808
809 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
810 g_assert(drc);
811
812 dynamic_memory[0] = cpu_to_be32(addr >> 32);
813 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
814 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
815 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
816 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
817 if (memory_region_present(get_system_memory(), addr)) {
818 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
819 } else {
820 dynamic_memory[5] = cpu_to_be32(0);
821 }
822 } else {
823 /*
824 * LMB information for RMA, boot time RAM and gap b/n RAM and
825 * device memory region -- all these are marked as reserved
826 * and as having no valid DRC.
827 */
828 dynamic_memory[0] = cpu_to_be32(addr >> 32);
829 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
830 dynamic_memory[2] = cpu_to_be32(0);
831 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
832 dynamic_memory[4] = cpu_to_be32(-1);
833 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
834 SPAPR_LMB_FLAGS_DRC_INVALID);
835 }
836
837 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
838 }
839 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
840 g_free(int_buf);
841 if (ret < 0) {
842 return -1;
843 }
844 return 0;
845 }
846
847 /*
848 * Adds ibm,dynamic-reconfiguration-memory node.
849 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
850 * of this device tree node.
851 */
852 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
853 {
854 MachineState *machine = MACHINE(spapr);
855 int ret, i, offset;
856 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
857 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
858 uint32_t *int_buf, *cur_index, buf_len;
859 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
860 MemoryDeviceInfoList *dimms = NULL;
861
862 /*
863 * Don't create the node if there is no device memory
864 */
865 if (machine->ram_size == machine->maxram_size) {
866 return 0;
867 }
868
869 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
870
871 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
872 sizeof(prop_lmb_size));
873 if (ret < 0) {
874 return ret;
875 }
876
877 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
878 if (ret < 0) {
879 return ret;
880 }
881
882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
883 if (ret < 0) {
884 return ret;
885 }
886
887 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
888 dimms = qmp_memory_device_list();
889 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
890 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
891 } else {
892 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
893 }
894 qapi_free_MemoryDeviceInfoList(dimms);
895
896 if (ret < 0) {
897 return ret;
898 }
899
900 /* ibm,associativity-lookup-arrays */
901 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
902 cur_index = int_buf = g_malloc0(buf_len);
903 int_buf[0] = cpu_to_be32(nr_nodes);
904 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
905 cur_index += 2;
906 for (i = 0; i < nr_nodes; i++) {
907 uint32_t associativity[] = {
908 cpu_to_be32(0x0),
909 cpu_to_be32(0x0),
910 cpu_to_be32(0x0),
911 cpu_to_be32(i)
912 };
913 memcpy(cur_index, associativity, sizeof(associativity));
914 cur_index += 4;
915 }
916 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
917 (cur_index - int_buf) * sizeof(uint32_t));
918 g_free(int_buf);
919
920 return ret;
921 }
922
923 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
924 SpaprOptionVector *ov5_updates)
925 {
926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
927 int ret = 0, offset;
928
929 /* Generate ibm,dynamic-reconfiguration-memory node if required */
930 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
931 g_assert(smc->dr_lmb_enabled);
932 ret = spapr_populate_drconf_memory(spapr, fdt);
933 if (ret) {
934 goto out;
935 }
936 }
937
938 offset = fdt_path_offset(fdt, "/chosen");
939 if (offset < 0) {
940 offset = fdt_add_subnode(fdt, 0, "chosen");
941 if (offset < 0) {
942 return offset;
943 }
944 }
945 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
946 "ibm,architecture-vec-5");
947
948 out:
949 return ret;
950 }
951
952 static bool spapr_hotplugged_dev_before_cas(void)
953 {
954 Object *drc_container, *obj;
955 ObjectProperty *prop;
956 ObjectPropertyIterator iter;
957
958 drc_container = container_get(object_get_root(), "/dr-connector");
959 object_property_iter_init(&iter, drc_container);
960 while ((prop = object_property_iter_next(&iter))) {
961 if (!strstart(prop->type, "link<", NULL)) {
962 continue;
963 }
964 obj = object_property_get_link(drc_container, prop->name, NULL);
965 if (spapr_drc_needed(obj)) {
966 return true;
967 }
968 }
969 return false;
970 }
971
972 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
973 target_ulong addr, target_ulong size,
974 SpaprOptionVector *ov5_updates)
975 {
976 void *fdt, *fdt_skel;
977 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
978
979 if (spapr_hotplugged_dev_before_cas()) {
980 return 1;
981 }
982
983 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
984 error_report("SLOF provided an unexpected CAS buffer size "
985 TARGET_FMT_lu " (min: %zu, max: %u)",
986 size, sizeof(hdr), FW_MAX_SIZE);
987 exit(EXIT_FAILURE);
988 }
989
990 size -= sizeof(hdr);
991
992 /* Create skeleton */
993 fdt_skel = g_malloc0(size);
994 _FDT((fdt_create(fdt_skel, size)));
995 _FDT((fdt_finish_reservemap(fdt_skel)));
996 _FDT((fdt_begin_node(fdt_skel, "")));
997 _FDT((fdt_end_node(fdt_skel)));
998 _FDT((fdt_finish(fdt_skel)));
999 fdt = g_malloc0(size);
1000 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1001 g_free(fdt_skel);
1002
1003 /* Fixup cpu nodes */
1004 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1005
1006 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1007 return -1;
1008 }
1009
1010 /* Pack resulting tree */
1011 _FDT((fdt_pack(fdt)));
1012
1013 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1014 trace_spapr_cas_failed(size);
1015 return -1;
1016 }
1017
1018 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1019 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1020 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1021 g_free(fdt);
1022
1023 return 0;
1024 }
1025
1026 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1027 {
1028 int rtas;
1029 GString *hypertas = g_string_sized_new(256);
1030 GString *qemu_hypertas = g_string_sized_new(256);
1031 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1032 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1033 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1034 uint32_t lrdr_capacity[] = {
1035 cpu_to_be32(max_device_addr >> 32),
1036 cpu_to_be32(max_device_addr & 0xffffffff),
1037 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1038 cpu_to_be32(max_cpus / smp_threads),
1039 };
1040 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1041 uint32_t maxdomains[] = {
1042 cpu_to_be32(4),
1043 maxdomain,
1044 maxdomain,
1045 maxdomain,
1046 cpu_to_be32(spapr->gpu_numa_id),
1047 };
1048
1049 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1050
1051 /* hypertas */
1052 add_str(hypertas, "hcall-pft");
1053 add_str(hypertas, "hcall-term");
1054 add_str(hypertas, "hcall-dabr");
1055 add_str(hypertas, "hcall-interrupt");
1056 add_str(hypertas, "hcall-tce");
1057 add_str(hypertas, "hcall-vio");
1058 add_str(hypertas, "hcall-splpar");
1059 add_str(hypertas, "hcall-bulk");
1060 add_str(hypertas, "hcall-set-mode");
1061 add_str(hypertas, "hcall-sprg0");
1062 add_str(hypertas, "hcall-copy");
1063 add_str(hypertas, "hcall-debug");
1064 add_str(hypertas, "hcall-vphn");
1065 add_str(qemu_hypertas, "hcall-memop1");
1066
1067 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1068 add_str(hypertas, "hcall-multi-tce");
1069 }
1070
1071 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1072 add_str(hypertas, "hcall-hpt-resize");
1073 }
1074
1075 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1076 hypertas->str, hypertas->len));
1077 g_string_free(hypertas, TRUE);
1078 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1079 qemu_hypertas->str, qemu_hypertas->len));
1080 g_string_free(qemu_hypertas, TRUE);
1081
1082 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1083 refpoints, sizeof(refpoints)));
1084
1085 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1086 maxdomains, sizeof(maxdomains)));
1087
1088 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1089 RTAS_ERROR_LOG_MAX));
1090 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1091 RTAS_EVENT_SCAN_RATE));
1092
1093 g_assert(msi_nonbroken);
1094 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1095
1096 /*
1097 * According to PAPR, rtas ibm,os-term does not guarantee a return
1098 * back to the guest cpu.
1099 *
1100 * While an additional ibm,extended-os-term property indicates
1101 * that rtas call return will always occur. Set this property.
1102 */
1103 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1104
1105 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1106 lrdr_capacity, sizeof(lrdr_capacity)));
1107
1108 spapr_dt_rtas_tokens(fdt, rtas);
1109 }
1110
1111 /*
1112 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1113 * and the XIVE features that the guest may request and thus the valid
1114 * values for bytes 23..26 of option vector 5:
1115 */
1116 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1117 int chosen)
1118 {
1119 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1120
1121 char val[2 * 4] = {
1122 23, spapr->irq->ov5, /* Xive mode. */
1123 24, 0x00, /* Hash/Radix, filled in below. */
1124 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1125 26, 0x40, /* Radix options: GTSE == yes. */
1126 };
1127
1128 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1129 first_ppc_cpu->compat_pvr)) {
1130 /*
1131 * If we're in a pre POWER9 compat mode then the guest should
1132 * do hash and use the legacy interrupt mode
1133 */
1134 val[1] = 0x00; /* XICS */
1135 val[3] = 0x00; /* Hash */
1136 } else if (kvm_enabled()) {
1137 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1138 val[3] = 0x80; /* OV5_MMU_BOTH */
1139 } else if (kvmppc_has_cap_mmu_radix()) {
1140 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1141 } else {
1142 val[3] = 0x00; /* Hash */
1143 }
1144 } else {
1145 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1146 val[3] = 0xC0;
1147 }
1148 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1149 val, sizeof(val)));
1150 }
1151
1152 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1153 {
1154 MachineState *machine = MACHINE(spapr);
1155 int chosen;
1156 const char *boot_device = machine->boot_order;
1157 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1158 size_t cb = 0;
1159 char *bootlist = get_boot_devices_list(&cb);
1160
1161 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1162
1163 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1165 spapr->initrd_base));
1166 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1167 spapr->initrd_base + spapr->initrd_size));
1168
1169 if (spapr->kernel_size) {
1170 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1171 cpu_to_be64(spapr->kernel_size) };
1172
1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1174 &kprop, sizeof(kprop)));
1175 if (spapr->kernel_le) {
1176 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1177 }
1178 }
1179 if (boot_menu) {
1180 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1181 }
1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1185
1186 if (cb && bootlist) {
1187 int i;
1188
1189 for (i = 0; i < cb; i++) {
1190 if (bootlist[i] == '\n') {
1191 bootlist[i] = ' ';
1192 }
1193 }
1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1195 }
1196
1197 if (boot_device && strlen(boot_device)) {
1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1199 }
1200
1201 if (!spapr->has_graphics && stdout_path) {
1202 /*
1203 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1204 * kernel. New platforms should only use the "stdout-path" property. Set
1205 * the new property and continue using older property to remain
1206 * compatible with the existing firmware.
1207 */
1208 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1209 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1210 }
1211
1212 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1213
1214 g_free(stdout_path);
1215 g_free(bootlist);
1216 }
1217
1218 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1219 {
1220 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1221 * KVM to work under pHyp with some guest co-operation */
1222 int hypervisor;
1223 uint8_t hypercall[16];
1224
1225 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1226 /* indicate KVM hypercall interface */
1227 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1228 if (kvmppc_has_cap_fixup_hcalls()) {
1229 /*
1230 * Older KVM versions with older guest kernels were broken
1231 * with the magic page, don't allow the guest to map it.
1232 */
1233 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1234 sizeof(hypercall))) {
1235 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1236 hypercall, sizeof(hypercall)));
1237 }
1238 }
1239 }
1240
1241 static void *spapr_build_fdt(SpaprMachineState *spapr)
1242 {
1243 MachineState *machine = MACHINE(spapr);
1244 MachineClass *mc = MACHINE_GET_CLASS(machine);
1245 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1246 int ret;
1247 void *fdt;
1248 SpaprPhbState *phb;
1249 char *buf;
1250
1251 fdt = g_malloc0(FDT_MAX_SIZE);
1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1253
1254 /* Root node */
1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1258
1259 /* Guest UUID & Name*/
1260 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1262 if (qemu_uuid_set) {
1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1264 }
1265 g_free(buf);
1266
1267 if (qemu_get_vm_name()) {
1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1269 qemu_get_vm_name()));
1270 }
1271
1272 /* Host Model & Serial Number */
1273 if (spapr->host_model) {
1274 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1275 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1276 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1277 g_free(buf);
1278 }
1279
1280 if (spapr->host_serial) {
1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1282 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1283 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1284 g_free(buf);
1285 }
1286
1287 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1288 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1289
1290 /* /interrupt controller */
1291 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1292 PHANDLE_INTC);
1293
1294 ret = spapr_populate_memory(spapr, fdt);
1295 if (ret < 0) {
1296 error_report("couldn't setup memory nodes in fdt");
1297 exit(1);
1298 }
1299
1300 /* /vdevice */
1301 spapr_dt_vdevice(spapr->vio_bus, fdt);
1302
1303 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1304 ret = spapr_rng_populate_dt(fdt);
1305 if (ret < 0) {
1306 error_report("could not set up rng device in the fdt");
1307 exit(1);
1308 }
1309 }
1310
1311 QLIST_FOREACH(phb, &spapr->phbs, list) {
1312 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1313 if (ret < 0) {
1314 error_report("couldn't setup PCI devices in fdt");
1315 exit(1);
1316 }
1317 }
1318
1319 /* cpus */
1320 spapr_populate_cpus_dt_node(fdt, spapr);
1321
1322 if (smc->dr_lmb_enabled) {
1323 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1324 }
1325
1326 if (mc->has_hotpluggable_cpus) {
1327 int offset = fdt_path_offset(fdt, "/cpus");
1328 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1329 if (ret < 0) {
1330 error_report("Couldn't set up CPU DR device tree properties");
1331 exit(1);
1332 }
1333 }
1334
1335 /* /event-sources */
1336 spapr_dt_events(spapr, fdt);
1337
1338 /* /rtas */
1339 spapr_dt_rtas(spapr, fdt);
1340
1341 /* /chosen */
1342 spapr_dt_chosen(spapr, fdt);
1343
1344 /* /hypervisor */
1345 if (kvm_enabled()) {
1346 spapr_dt_hypervisor(spapr, fdt);
1347 }
1348
1349 /* Build memory reserve map */
1350 if (spapr->kernel_size) {
1351 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1352 }
1353 if (spapr->initrd_size) {
1354 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1355 }
1356
1357 /* ibm,client-architecture-support updates */
1358 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1359 if (ret < 0) {
1360 error_report("couldn't setup CAS properties fdt");
1361 exit(1);
1362 }
1363
1364 if (smc->dr_phb_enabled) {
1365 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1366 if (ret < 0) {
1367 error_report("Couldn't set up PHB DR device tree properties");
1368 exit(1);
1369 }
1370 }
1371
1372 return fdt;
1373 }
1374
1375 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1376 {
1377 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1378 }
1379
1380 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1381 PowerPCCPU *cpu)
1382 {
1383 CPUPPCState *env = &cpu->env;
1384
1385 /* The TCG path should also be holding the BQL at this point */
1386 g_assert(qemu_mutex_iothread_locked());
1387
1388 if (msr_pr) {
1389 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1390 env->gpr[3] = H_PRIVILEGE;
1391 } else {
1392 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1393 }
1394 }
1395
1396 struct LPCRSyncState {
1397 target_ulong value;
1398 target_ulong mask;
1399 };
1400
1401 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1402 {
1403 struct LPCRSyncState *s = arg.host_ptr;
1404 PowerPCCPU *cpu = POWERPC_CPU(cs);
1405 CPUPPCState *env = &cpu->env;
1406 target_ulong lpcr;
1407
1408 cpu_synchronize_state(cs);
1409 lpcr = env->spr[SPR_LPCR];
1410 lpcr &= ~s->mask;
1411 lpcr |= s->value;
1412 ppc_store_lpcr(cpu, lpcr);
1413 }
1414
1415 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1416 {
1417 CPUState *cs;
1418 struct LPCRSyncState s = {
1419 .value = value,
1420 .mask = mask
1421 };
1422 CPU_FOREACH(cs) {
1423 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1424 }
1425 }
1426
1427 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1428 {
1429 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430
1431 /* Copy PATE1:GR into PATE0:HR */
1432 entry->dw0 = spapr->patb_entry & PATE0_HR;
1433 entry->dw1 = spapr->patb_entry;
1434 }
1435
1436 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1437 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1438 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1439 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1440 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1441
1442 /*
1443 * Get the fd to access the kernel htab, re-opening it if necessary
1444 */
1445 static int get_htab_fd(SpaprMachineState *spapr)
1446 {
1447 Error *local_err = NULL;
1448
1449 if (spapr->htab_fd >= 0) {
1450 return spapr->htab_fd;
1451 }
1452
1453 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1454 if (spapr->htab_fd < 0) {
1455 error_report_err(local_err);
1456 }
1457
1458 return spapr->htab_fd;
1459 }
1460
1461 void close_htab_fd(SpaprMachineState *spapr)
1462 {
1463 if (spapr->htab_fd >= 0) {
1464 close(spapr->htab_fd);
1465 }
1466 spapr->htab_fd = -1;
1467 }
1468
1469 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1470 {
1471 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472
1473 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1474 }
1475
1476 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1477 {
1478 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1479
1480 assert(kvm_enabled());
1481
1482 if (!spapr->htab) {
1483 return 0;
1484 }
1485
1486 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1487 }
1488
1489 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1490 hwaddr ptex, int n)
1491 {
1492 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1493 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1494
1495 if (!spapr->htab) {
1496 /*
1497 * HTAB is controlled by KVM. Fetch into temporary buffer
1498 */
1499 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1500 kvmppc_read_hptes(hptes, ptex, n);
1501 return hptes;
1502 }
1503
1504 /*
1505 * HTAB is controlled by QEMU. Just point to the internally
1506 * accessible PTEG.
1507 */
1508 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1509 }
1510
1511 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1512 const ppc_hash_pte64_t *hptes,
1513 hwaddr ptex, int n)
1514 {
1515 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1516
1517 if (!spapr->htab) {
1518 g_free((void *)hptes);
1519 }
1520
1521 /* Nothing to do for qemu managed HPT */
1522 }
1523
1524 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1525 uint64_t pte0, uint64_t pte1)
1526 {
1527 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1528 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1529
1530 if (!spapr->htab) {
1531 kvmppc_write_hpte(ptex, pte0, pte1);
1532 } else {
1533 if (pte0 & HPTE64_V_VALID) {
1534 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1535 /*
1536 * When setting valid, we write PTE1 first. This ensures
1537 * proper synchronization with the reading code in
1538 * ppc_hash64_pteg_search()
1539 */
1540 smp_wmb();
1541 stq_p(spapr->htab + offset, pte0);
1542 } else {
1543 stq_p(spapr->htab + offset, pte0);
1544 /*
1545 * When clearing it we set PTE0 first. This ensures proper
1546 * synchronization with the reading code in
1547 * ppc_hash64_pteg_search()
1548 */
1549 smp_wmb();
1550 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1551 }
1552 }
1553 }
1554
1555 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1556 uint64_t pte1)
1557 {
1558 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1559 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1560
1561 if (!spapr->htab) {
1562 /* There should always be a hash table when this is called */
1563 error_report("spapr_hpte_set_c called with no hash table !");
1564 return;
1565 }
1566
1567 /* The HW performs a non-atomic byte update */
1568 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1569 }
1570
1571 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1572 uint64_t pte1)
1573 {
1574 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1575 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1576
1577 if (!spapr->htab) {
1578 /* There should always be a hash table when this is called */
1579 error_report("spapr_hpte_set_r called with no hash table !");
1580 return;
1581 }
1582
1583 /* The HW performs a non-atomic byte update */
1584 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1585 }
1586
1587 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1588 {
1589 int shift;
1590
1591 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1592 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1593 * that's much more than is needed for Linux guests */
1594 shift = ctz64(pow2ceil(ramsize)) - 7;
1595 shift = MAX(shift, 18); /* Minimum architected size */
1596 shift = MIN(shift, 46); /* Maximum architected size */
1597 return shift;
1598 }
1599
1600 void spapr_free_hpt(SpaprMachineState *spapr)
1601 {
1602 g_free(spapr->htab);
1603 spapr->htab = NULL;
1604 spapr->htab_shift = 0;
1605 close_htab_fd(spapr);
1606 }
1607
1608 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1609 Error **errp)
1610 {
1611 long rc;
1612
1613 /* Clean up any HPT info from a previous boot */
1614 spapr_free_hpt(spapr);
1615
1616 rc = kvmppc_reset_htab(shift);
1617 if (rc < 0) {
1618 /* kernel-side HPT needed, but couldn't allocate one */
1619 error_setg_errno(errp, errno,
1620 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1621 shift);
1622 /* This is almost certainly fatal, but if the caller really
1623 * wants to carry on with shift == 0, it's welcome to try */
1624 } else if (rc > 0) {
1625 /* kernel-side HPT allocated */
1626 if (rc != shift) {
1627 error_setg(errp,
1628 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1629 shift, rc);
1630 }
1631
1632 spapr->htab_shift = shift;
1633 spapr->htab = NULL;
1634 } else {
1635 /* kernel-side HPT not needed, allocate in userspace instead */
1636 size_t size = 1ULL << shift;
1637 int i;
1638
1639 spapr->htab = qemu_memalign(size, size);
1640 if (!spapr->htab) {
1641 error_setg_errno(errp, errno,
1642 "Could not allocate HPT of order %d", shift);
1643 return;
1644 }
1645
1646 memset(spapr->htab, 0, size);
1647 spapr->htab_shift = shift;
1648
1649 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1650 DIRTY_HPTE(HPTE(spapr->htab, i));
1651 }
1652 }
1653 /* We're setting up a hash table, so that means we're not radix */
1654 spapr->patb_entry = 0;
1655 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1656 }
1657
1658 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1659 {
1660 int hpt_shift;
1661
1662 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1663 || (spapr->cas_reboot
1664 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1665 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1666 } else {
1667 uint64_t current_ram_size;
1668
1669 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1670 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1671 }
1672 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1673
1674 if (spapr->vrma_adjust) {
1675 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1676 spapr->htab_shift);
1677 }
1678 }
1679
1680 static int spapr_reset_drcs(Object *child, void *opaque)
1681 {
1682 SpaprDrc *drc =
1683 (SpaprDrc *) object_dynamic_cast(child,
1684 TYPE_SPAPR_DR_CONNECTOR);
1685
1686 if (drc) {
1687 spapr_drc_reset(drc);
1688 }
1689
1690 return 0;
1691 }
1692
1693 static void spapr_machine_reset(void)
1694 {
1695 MachineState *machine = MACHINE(qdev_get_machine());
1696 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1697 PowerPCCPU *first_ppc_cpu;
1698 uint32_t rtas_limit;
1699 hwaddr rtas_addr, fdt_addr;
1700 void *fdt;
1701 int rc;
1702
1703 spapr_caps_apply(spapr);
1704
1705 first_ppc_cpu = POWERPC_CPU(first_cpu);
1706 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1707 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1708 spapr->max_compat_pvr)) {
1709 /*
1710 * If using KVM with radix mode available, VCPUs can be started
1711 * without a HPT because KVM will start them in radix mode.
1712 * Set the GR bit in PATE so that we know there is no HPT.
1713 */
1714 spapr->patb_entry = PATE1_GR;
1715 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1716 } else {
1717 spapr_setup_hpt_and_vrma(spapr);
1718 }
1719
1720 /*
1721 * If this reset wasn't generated by CAS, we should reset our
1722 * negotiated options and start from scratch
1723 */
1724 if (!spapr->cas_reboot) {
1725 spapr_ovec_cleanup(spapr->ov5_cas);
1726 spapr->ov5_cas = spapr_ovec_new();
1727
1728 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1729 }
1730
1731 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1732 spapr_irq_msi_reset(spapr);
1733 }
1734
1735 /*
1736 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1737 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1738 * called from vPHB reset handler so we initialize the counter here.
1739 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1740 * must be equally distant from any other node.
1741 * The final value of spapr->gpu_numa_id is going to be written to
1742 * max-associativity-domains in spapr_build_fdt().
1743 */
1744 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1745 qemu_devices_reset();
1746
1747 /*
1748 * This is fixing some of the default configuration of the XIVE
1749 * devices. To be called after the reset of the machine devices.
1750 */
1751 spapr_irq_reset(spapr, &error_fatal);
1752
1753 /*
1754 * There is no CAS under qtest. Simulate one to please the code that
1755 * depends on spapr->ov5_cas. This is especially needed to test device
1756 * unplug, so we do that before resetting the DRCs.
1757 */
1758 if (qtest_enabled()) {
1759 spapr_ovec_cleanup(spapr->ov5_cas);
1760 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1761 }
1762
1763 /* DRC reset may cause a device to be unplugged. This will cause troubles
1764 * if this device is used by another device (eg, a running vhost backend
1765 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1766 * situations, we reset DRCs after all devices have been reset.
1767 */
1768 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1769
1770 spapr_clear_pending_events(spapr);
1771
1772 /*
1773 * We place the device tree and RTAS just below either the top of the RMA,
1774 * or just below 2GB, whichever is lower, so that it can be
1775 * processed with 32-bit real mode code if necessary
1776 */
1777 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1778 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1779 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1780
1781 fdt = spapr_build_fdt(spapr);
1782
1783 spapr_load_rtas(spapr, fdt, rtas_addr);
1784
1785 rc = fdt_pack(fdt);
1786
1787 /* Should only fail if we've built a corrupted tree */
1788 assert(rc == 0);
1789
1790 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1791 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1792 fdt_totalsize(fdt), FDT_MAX_SIZE);
1793 exit(1);
1794 }
1795
1796 /* Load the fdt */
1797 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1798 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1799 g_free(spapr->fdt_blob);
1800 spapr->fdt_size = fdt_totalsize(fdt);
1801 spapr->fdt_initial_size = spapr->fdt_size;
1802 spapr->fdt_blob = fdt;
1803
1804 /* Set up the entry state */
1805 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1806 first_ppc_cpu->env.gpr[5] = 0;
1807
1808 spapr->cas_reboot = false;
1809 }
1810
1811 static void spapr_create_nvram(SpaprMachineState *spapr)
1812 {
1813 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1814 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1815
1816 if (dinfo) {
1817 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1818 &error_fatal);
1819 }
1820
1821 qdev_init_nofail(dev);
1822
1823 spapr->nvram = (struct SpaprNvram *)dev;
1824 }
1825
1826 static void spapr_rtc_create(SpaprMachineState *spapr)
1827 {
1828 object_initialize_child(OBJECT(spapr), "rtc",
1829 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1830 &error_fatal, NULL);
1831 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1832 &error_fatal);
1833 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1834 "date", &error_fatal);
1835 }
1836
1837 /* Returns whether we want to use VGA or not */
1838 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1839 {
1840 switch (vga_interface_type) {
1841 case VGA_NONE:
1842 return false;
1843 case VGA_DEVICE:
1844 return true;
1845 case VGA_STD:
1846 case VGA_VIRTIO:
1847 case VGA_CIRRUS:
1848 return pci_vga_init(pci_bus) != NULL;
1849 default:
1850 error_setg(errp,
1851 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1852 return false;
1853 }
1854 }
1855
1856 static int spapr_pre_load(void *opaque)
1857 {
1858 int rc;
1859
1860 rc = spapr_caps_pre_load(opaque);
1861 if (rc) {
1862 return rc;
1863 }
1864
1865 return 0;
1866 }
1867
1868 static int spapr_post_load(void *opaque, int version_id)
1869 {
1870 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1871 int err = 0;
1872
1873 err = spapr_caps_post_migration(spapr);
1874 if (err) {
1875 return err;
1876 }
1877
1878 /*
1879 * In earlier versions, there was no separate qdev for the PAPR
1880 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1881 * So when migrating from those versions, poke the incoming offset
1882 * value into the RTC device
1883 */
1884 if (version_id < 3) {
1885 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1886 if (err) {
1887 return err;
1888 }
1889 }
1890
1891 if (kvm_enabled() && spapr->patb_entry) {
1892 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1893 bool radix = !!(spapr->patb_entry & PATE1_GR);
1894 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1895
1896 /*
1897 * Update LPCR:HR and UPRT as they may not be set properly in
1898 * the stream
1899 */
1900 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1901 LPCR_HR | LPCR_UPRT);
1902
1903 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1904 if (err) {
1905 error_report("Process table config unsupported by the host");
1906 return -EINVAL;
1907 }
1908 }
1909
1910 err = spapr_irq_post_load(spapr, version_id);
1911 if (err) {
1912 return err;
1913 }
1914
1915 return err;
1916 }
1917
1918 static int spapr_pre_save(void *opaque)
1919 {
1920 int rc;
1921
1922 rc = spapr_caps_pre_save(opaque);
1923 if (rc) {
1924 return rc;
1925 }
1926
1927 return 0;
1928 }
1929
1930 static bool version_before_3(void *opaque, int version_id)
1931 {
1932 return version_id < 3;
1933 }
1934
1935 static bool spapr_pending_events_needed(void *opaque)
1936 {
1937 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1938 return !QTAILQ_EMPTY(&spapr->pending_events);
1939 }
1940
1941 static const VMStateDescription vmstate_spapr_event_entry = {
1942 .name = "spapr_event_log_entry",
1943 .version_id = 1,
1944 .minimum_version_id = 1,
1945 .fields = (VMStateField[]) {
1946 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1947 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1948 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1949 NULL, extended_length),
1950 VMSTATE_END_OF_LIST()
1951 },
1952 };
1953
1954 static const VMStateDescription vmstate_spapr_pending_events = {
1955 .name = "spapr_pending_events",
1956 .version_id = 1,
1957 .minimum_version_id = 1,
1958 .needed = spapr_pending_events_needed,
1959 .fields = (VMStateField[]) {
1960 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1961 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1962 VMSTATE_END_OF_LIST()
1963 },
1964 };
1965
1966 static bool spapr_ov5_cas_needed(void *opaque)
1967 {
1968 SpaprMachineState *spapr = opaque;
1969 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1970 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1971 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1972 bool cas_needed;
1973
1974 /* Prior to the introduction of SpaprOptionVector, we had two option
1975 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1976 * Both of these options encode machine topology into the device-tree
1977 * in such a way that the now-booted OS should still be able to interact
1978 * appropriately with QEMU regardless of what options were actually
1979 * negotiatied on the source side.
1980 *
1981 * As such, we can avoid migrating the CAS-negotiated options if these
1982 * are the only options available on the current machine/platform.
1983 * Since these are the only options available for pseries-2.7 and
1984 * earlier, this allows us to maintain old->new/new->old migration
1985 * compatibility.
1986 *
1987 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1988 * via default pseries-2.8 machines and explicit command-line parameters.
1989 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1990 * of the actual CAS-negotiated values to continue working properly. For
1991 * example, availability of memory unplug depends on knowing whether
1992 * OV5_HP_EVT was negotiated via CAS.
1993 *
1994 * Thus, for any cases where the set of available CAS-negotiatable
1995 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1996 * include the CAS-negotiated options in the migration stream, unless
1997 * if they affect boot time behaviour only.
1998 */
1999 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2000 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2001 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2002
2003 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2004 * the mask itself since in the future it's possible "legacy" bits may be
2005 * removed via machine options, which could generate a false positive
2006 * that breaks migration.
2007 */
2008 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2009 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2010
2011 spapr_ovec_cleanup(ov5_mask);
2012 spapr_ovec_cleanup(ov5_legacy);
2013 spapr_ovec_cleanup(ov5_removed);
2014
2015 return cas_needed;
2016 }
2017
2018 static const VMStateDescription vmstate_spapr_ov5_cas = {
2019 .name = "spapr_option_vector_ov5_cas",
2020 .version_id = 1,
2021 .minimum_version_id = 1,
2022 .needed = spapr_ov5_cas_needed,
2023 .fields = (VMStateField[]) {
2024 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2025 vmstate_spapr_ovec, SpaprOptionVector),
2026 VMSTATE_END_OF_LIST()
2027 },
2028 };
2029
2030 static bool spapr_patb_entry_needed(void *opaque)
2031 {
2032 SpaprMachineState *spapr = opaque;
2033
2034 return !!spapr->patb_entry;
2035 }
2036
2037 static const VMStateDescription vmstate_spapr_patb_entry = {
2038 .name = "spapr_patb_entry",
2039 .version_id = 1,
2040 .minimum_version_id = 1,
2041 .needed = spapr_patb_entry_needed,
2042 .fields = (VMStateField[]) {
2043 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2044 VMSTATE_END_OF_LIST()
2045 },
2046 };
2047
2048 static bool spapr_irq_map_needed(void *opaque)
2049 {
2050 SpaprMachineState *spapr = opaque;
2051
2052 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2053 }
2054
2055 static const VMStateDescription vmstate_spapr_irq_map = {
2056 .name = "spapr_irq_map",
2057 .version_id = 1,
2058 .minimum_version_id = 1,
2059 .needed = spapr_irq_map_needed,
2060 .fields = (VMStateField[]) {
2061 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2062 VMSTATE_END_OF_LIST()
2063 },
2064 };
2065
2066 static bool spapr_dtb_needed(void *opaque)
2067 {
2068 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2069
2070 return smc->update_dt_enabled;
2071 }
2072
2073 static int spapr_dtb_pre_load(void *opaque)
2074 {
2075 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2076
2077 g_free(spapr->fdt_blob);
2078 spapr->fdt_blob = NULL;
2079 spapr->fdt_size = 0;
2080
2081 return 0;
2082 }
2083
2084 static const VMStateDescription vmstate_spapr_dtb = {
2085 .name = "spapr_dtb",
2086 .version_id = 1,
2087 .minimum_version_id = 1,
2088 .needed = spapr_dtb_needed,
2089 .pre_load = spapr_dtb_pre_load,
2090 .fields = (VMStateField[]) {
2091 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2092 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2093 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2094 fdt_size),
2095 VMSTATE_END_OF_LIST()
2096 },
2097 };
2098
2099 static const VMStateDescription vmstate_spapr = {
2100 .name = "spapr",
2101 .version_id = 3,
2102 .minimum_version_id = 1,
2103 .pre_load = spapr_pre_load,
2104 .post_load = spapr_post_load,
2105 .pre_save = spapr_pre_save,
2106 .fields = (VMStateField[]) {
2107 /* used to be @next_irq */
2108 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2109
2110 /* RTC offset */
2111 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2112
2113 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2114 VMSTATE_END_OF_LIST()
2115 },
2116 .subsections = (const VMStateDescription*[]) {
2117 &vmstate_spapr_ov5_cas,
2118 &vmstate_spapr_patb_entry,
2119 &vmstate_spapr_pending_events,
2120 &vmstate_spapr_cap_htm,
2121 &vmstate_spapr_cap_vsx,
2122 &vmstate_spapr_cap_dfp,
2123 &vmstate_spapr_cap_cfpc,
2124 &vmstate_spapr_cap_sbbc,
2125 &vmstate_spapr_cap_ibs,
2126 &vmstate_spapr_cap_hpt_maxpagesize,
2127 &vmstate_spapr_irq_map,
2128 &vmstate_spapr_cap_nested_kvm_hv,
2129 &vmstate_spapr_dtb,
2130 &vmstate_spapr_cap_large_decr,
2131 &vmstate_spapr_cap_ccf_assist,
2132 NULL
2133 }
2134 };
2135
2136 static int htab_save_setup(QEMUFile *f, void *opaque)
2137 {
2138 SpaprMachineState *spapr = opaque;
2139
2140 /* "Iteration" header */
2141 if (!spapr->htab_shift) {
2142 qemu_put_be32(f, -1);
2143 } else {
2144 qemu_put_be32(f, spapr->htab_shift);
2145 }
2146
2147 if (spapr->htab) {
2148 spapr->htab_save_index = 0;
2149 spapr->htab_first_pass = true;
2150 } else {
2151 if (spapr->htab_shift) {
2152 assert(kvm_enabled());
2153 }
2154 }
2155
2156
2157 return 0;
2158 }
2159
2160 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2161 int chunkstart, int n_valid, int n_invalid)
2162 {
2163 qemu_put_be32(f, chunkstart);
2164 qemu_put_be16(f, n_valid);
2165 qemu_put_be16(f, n_invalid);
2166 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2167 HASH_PTE_SIZE_64 * n_valid);
2168 }
2169
2170 static void htab_save_end_marker(QEMUFile *f)
2171 {
2172 qemu_put_be32(f, 0);
2173 qemu_put_be16(f, 0);
2174 qemu_put_be16(f, 0);
2175 }
2176
2177 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2178 int64_t max_ns)
2179 {
2180 bool has_timeout = max_ns != -1;
2181 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2182 int index = spapr->htab_save_index;
2183 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2184
2185 assert(spapr->htab_first_pass);
2186
2187 do {
2188 int chunkstart;
2189
2190 /* Consume invalid HPTEs */
2191 while ((index < htabslots)
2192 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2193 CLEAN_HPTE(HPTE(spapr->htab, index));
2194 index++;
2195 }
2196
2197 /* Consume valid HPTEs */
2198 chunkstart = index;
2199 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2200 && HPTE_VALID(HPTE(spapr->htab, index))) {
2201 CLEAN_HPTE(HPTE(spapr->htab, index));
2202 index++;
2203 }
2204
2205 if (index > chunkstart) {
2206 int n_valid = index - chunkstart;
2207
2208 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2209
2210 if (has_timeout &&
2211 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2212 break;
2213 }
2214 }
2215 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2216
2217 if (index >= htabslots) {
2218 assert(index == htabslots);
2219 index = 0;
2220 spapr->htab_first_pass = false;
2221 }
2222 spapr->htab_save_index = index;
2223 }
2224
2225 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2226 int64_t max_ns)
2227 {
2228 bool final = max_ns < 0;
2229 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2230 int examined = 0, sent = 0;
2231 int index = spapr->htab_save_index;
2232 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2233
2234 assert(!spapr->htab_first_pass);
2235
2236 do {
2237 int chunkstart, invalidstart;
2238
2239 /* Consume non-dirty HPTEs */
2240 while ((index < htabslots)
2241 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2242 index++;
2243 examined++;
2244 }
2245
2246 chunkstart = index;
2247 /* Consume valid dirty HPTEs */
2248 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2249 && HPTE_DIRTY(HPTE(spapr->htab, index))
2250 && HPTE_VALID(HPTE(spapr->htab, index))) {
2251 CLEAN_HPTE(HPTE(spapr->htab, index));
2252 index++;
2253 examined++;
2254 }
2255
2256 invalidstart = index;
2257 /* Consume invalid dirty HPTEs */
2258 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2259 && HPTE_DIRTY(HPTE(spapr->htab, index))
2260 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2261 CLEAN_HPTE(HPTE(spapr->htab, index));
2262 index++;
2263 examined++;
2264 }
2265
2266 if (index > chunkstart) {
2267 int n_valid = invalidstart - chunkstart;
2268 int n_invalid = index - invalidstart;
2269
2270 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2271 sent += index - chunkstart;
2272
2273 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2274 break;
2275 }
2276 }
2277
2278 if (examined >= htabslots) {
2279 break;
2280 }
2281
2282 if (index >= htabslots) {
2283 assert(index == htabslots);
2284 index = 0;
2285 }
2286 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2287
2288 if (index >= htabslots) {
2289 assert(index == htabslots);
2290 index = 0;
2291 }
2292
2293 spapr->htab_save_index = index;
2294
2295 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2296 }
2297
2298 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2299 #define MAX_KVM_BUF_SIZE 2048
2300
2301 static int htab_save_iterate(QEMUFile *f, void *opaque)
2302 {
2303 SpaprMachineState *spapr = opaque;
2304 int fd;
2305 int rc = 0;
2306
2307 /* Iteration header */
2308 if (!spapr->htab_shift) {
2309 qemu_put_be32(f, -1);
2310 return 1;
2311 } else {
2312 qemu_put_be32(f, 0);
2313 }
2314
2315 if (!spapr->htab) {
2316 assert(kvm_enabled());
2317
2318 fd = get_htab_fd(spapr);
2319 if (fd < 0) {
2320 return fd;
2321 }
2322
2323 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2324 if (rc < 0) {
2325 return rc;
2326 }
2327 } else if (spapr->htab_first_pass) {
2328 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2329 } else {
2330 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2331 }
2332
2333 htab_save_end_marker(f);
2334
2335 return rc;
2336 }
2337
2338 static int htab_save_complete(QEMUFile *f, void *opaque)
2339 {
2340 SpaprMachineState *spapr = opaque;
2341 int fd;
2342
2343 /* Iteration header */
2344 if (!spapr->htab_shift) {
2345 qemu_put_be32(f, -1);
2346 return 0;
2347 } else {
2348 qemu_put_be32(f, 0);
2349 }
2350
2351 if (!spapr->htab) {
2352 int rc;
2353
2354 assert(kvm_enabled());
2355
2356 fd = get_htab_fd(spapr);
2357 if (fd < 0) {
2358 return fd;
2359 }
2360
2361 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2362 if (rc < 0) {
2363 return rc;
2364 }
2365 } else {
2366 if (spapr->htab_first_pass) {
2367 htab_save_first_pass(f, spapr, -1);
2368 }
2369 htab_save_later_pass(f, spapr, -1);
2370 }
2371
2372 /* End marker */
2373 htab_save_end_marker(f);
2374
2375 return 0;
2376 }
2377
2378 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2379 {
2380 SpaprMachineState *spapr = opaque;
2381 uint32_t section_hdr;
2382 int fd = -1;
2383 Error *local_err = NULL;
2384
2385 if (version_id < 1 || version_id > 1) {
2386 error_report("htab_load() bad version");
2387 return -EINVAL;
2388 }
2389
2390 section_hdr = qemu_get_be32(f);
2391
2392 if (section_hdr == -1) {
2393 spapr_free_hpt(spapr);
2394 return 0;
2395 }
2396
2397 if (section_hdr) {
2398 /* First section gives the htab size */
2399 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2400 if (local_err) {
2401 error_report_err(local_err);
2402 return -EINVAL;
2403 }
2404 return 0;
2405 }
2406
2407 if (!spapr->htab) {
2408 assert(kvm_enabled());
2409
2410 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2411 if (fd < 0) {
2412 error_report_err(local_err);
2413 return fd;
2414 }
2415 }
2416
2417 while (true) {
2418 uint32_t index;
2419 uint16_t n_valid, n_invalid;
2420
2421 index = qemu_get_be32(f);
2422 n_valid = qemu_get_be16(f);
2423 n_invalid = qemu_get_be16(f);
2424
2425 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2426 /* End of Stream */
2427 break;
2428 }
2429
2430 if ((index + n_valid + n_invalid) >
2431 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2432 /* Bad index in stream */
2433 error_report(
2434 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2435 index, n_valid, n_invalid, spapr->htab_shift);
2436 return -EINVAL;
2437 }
2438
2439 if (spapr->htab) {
2440 if (n_valid) {
2441 qemu_get_buffer(f, HPTE(spapr->htab, index),
2442 HASH_PTE_SIZE_64 * n_valid);
2443 }
2444 if (n_invalid) {
2445 memset(HPTE(spapr->htab, index + n_valid), 0,
2446 HASH_PTE_SIZE_64 * n_invalid);
2447 }
2448 } else {
2449 int rc;
2450
2451 assert(fd >= 0);
2452
2453 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2454 if (rc < 0) {
2455 return rc;
2456 }
2457 }
2458 }
2459
2460 if (!spapr->htab) {
2461 assert(fd >= 0);
2462 close(fd);
2463 }
2464
2465 return 0;
2466 }
2467
2468 static void htab_save_cleanup(void *opaque)
2469 {
2470 SpaprMachineState *spapr = opaque;
2471
2472 close_htab_fd(spapr);
2473 }
2474
2475 static SaveVMHandlers savevm_htab_handlers = {
2476 .save_setup = htab_save_setup,
2477 .save_live_iterate = htab_save_iterate,
2478 .save_live_complete_precopy = htab_save_complete,
2479 .save_cleanup = htab_save_cleanup,
2480 .load_state = htab_load,
2481 };
2482
2483 static void spapr_boot_set(void *opaque, const char *boot_device,
2484 Error **errp)
2485 {
2486 MachineState *machine = MACHINE(opaque);
2487 machine->boot_order = g_strdup(boot_device);
2488 }
2489
2490 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2491 {
2492 MachineState *machine = MACHINE(spapr);
2493 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2494 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2495 int i;
2496
2497 for (i = 0; i < nr_lmbs; i++) {
2498 uint64_t addr;
2499
2500 addr = i * lmb_size + machine->device_memory->base;
2501 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2502 addr / lmb_size);
2503 }
2504 }
2505
2506 /*
2507 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2508 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2509 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2510 */
2511 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2512 {
2513 int i;
2514
2515 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2516 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2517 " is not aligned to %" PRIu64 " MiB",
2518 machine->ram_size,
2519 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2520 return;
2521 }
2522
2523 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2524 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2525 " is not aligned to %" PRIu64 " MiB",
2526 machine->ram_size,
2527 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2528 return;
2529 }
2530
2531 for (i = 0; i < nb_numa_nodes; i++) {
2532 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2533 error_setg(errp,
2534 "Node %d memory size 0x%" PRIx64
2535 " is not aligned to %" PRIu64 " MiB",
2536 i, numa_info[i].node_mem,
2537 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2538 return;
2539 }
2540 }
2541 }
2542
2543 /* find cpu slot in machine->possible_cpus by core_id */
2544 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2545 {
2546 int index = id / smp_threads;
2547
2548 if (index >= ms->possible_cpus->len) {
2549 return NULL;
2550 }
2551 if (idx) {
2552 *idx = index;
2553 }
2554 return &ms->possible_cpus->cpus[index];
2555 }
2556
2557 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2558 {
2559 Error *local_err = NULL;
2560 bool vsmt_user = !!spapr->vsmt;
2561 int kvm_smt = kvmppc_smt_threads();
2562 int ret;
2563
2564 if (!kvm_enabled() && (smp_threads > 1)) {
2565 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2566 "on a pseries machine");
2567 goto out;
2568 }
2569 if (!is_power_of_2(smp_threads)) {
2570 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2571 "machine because it must be a power of 2", smp_threads);
2572 goto out;
2573 }
2574
2575 /* Detemine the VSMT mode to use: */
2576 if (vsmt_user) {
2577 if (spapr->vsmt < smp_threads) {
2578 error_setg(&local_err, "Cannot support VSMT mode %d"
2579 " because it must be >= threads/core (%d)",
2580 spapr->vsmt, smp_threads);
2581 goto out;
2582 }
2583 /* In this case, spapr->vsmt has been set by the command line */
2584 } else {
2585 /*
2586 * Default VSMT value is tricky, because we need it to be as
2587 * consistent as possible (for migration), but this requires
2588 * changing it for at least some existing cases. We pick 8 as
2589 * the value that we'd get with KVM on POWER8, the
2590 * overwhelmingly common case in production systems.
2591 */
2592 spapr->vsmt = MAX(8, smp_threads);
2593 }
2594
2595 /* KVM: If necessary, set the SMT mode: */
2596 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2597 ret = kvmppc_set_smt_threads(spapr->vsmt);
2598 if (ret) {
2599 /* Looks like KVM isn't able to change VSMT mode */
2600 error_setg(&local_err,
2601 "Failed to set KVM's VSMT mode to %d (errno %d)",
2602 spapr->vsmt, ret);
2603 /* We can live with that if the default one is big enough
2604 * for the number of threads, and a submultiple of the one
2605 * we want. In this case we'll waste some vcpu ids, but
2606 * behaviour will be correct */
2607 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2608 warn_report_err(local_err);
2609 local_err = NULL;
2610 goto out;
2611 } else {
2612 if (!vsmt_user) {
2613 error_append_hint(&local_err,
2614 "On PPC, a VM with %d threads/core"
2615 " on a host with %d threads/core"
2616 " requires the use of VSMT mode %d.\n",
2617 smp_threads, kvm_smt, spapr->vsmt);
2618 }
2619 kvmppc_hint_smt_possible(&local_err);
2620 goto out;
2621 }
2622 }
2623 }
2624 /* else TCG: nothing to do currently */
2625 out:
2626 error_propagate(errp, local_err);
2627 }
2628
2629 static void spapr_init_cpus(SpaprMachineState *spapr)
2630 {
2631 MachineState *machine = MACHINE(spapr);
2632 MachineClass *mc = MACHINE_GET_CLASS(machine);
2633 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2634 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2635 const CPUArchIdList *possible_cpus;
2636 int boot_cores_nr = smp_cpus / smp_threads;
2637 int i;
2638
2639 possible_cpus = mc->possible_cpu_arch_ids(machine);
2640 if (mc->has_hotpluggable_cpus) {
2641 if (smp_cpus % smp_threads) {
2642 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2643 smp_cpus, smp_threads);
2644 exit(1);
2645 }
2646 if (max_cpus % smp_threads) {
2647 error_report("max_cpus (%u) must be multiple of threads (%u)",
2648 max_cpus, smp_threads);
2649 exit(1);
2650 }
2651 } else {
2652 if (max_cpus != smp_cpus) {
2653 error_report("This machine version does not support CPU hotplug");
2654 exit(1);
2655 }
2656 boot_cores_nr = possible_cpus->len;
2657 }
2658
2659 if (smc->pre_2_10_has_unused_icps) {
2660 int i;
2661
2662 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2663 /* Dummy entries get deregistered when real ICPState objects
2664 * are registered during CPU core hotplug.
2665 */
2666 pre_2_10_vmstate_register_dummy_icp(i);
2667 }
2668 }
2669
2670 for (i = 0; i < possible_cpus->len; i++) {
2671 int core_id = i * smp_threads;
2672
2673 if (mc->has_hotpluggable_cpus) {
2674 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2675 spapr_vcpu_id(spapr, core_id));
2676 }
2677
2678 if (i < boot_cores_nr) {
2679 Object *core = object_new(type);
2680 int nr_threads = smp_threads;
2681
2682 /* Handle the partially filled core for older machine types */
2683 if ((i + 1) * smp_threads >= smp_cpus) {
2684 nr_threads = smp_cpus - i * smp_threads;
2685 }
2686
2687 object_property_set_int(core, nr_threads, "nr-threads",
2688 &error_fatal);
2689 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2690 &error_fatal);
2691 object_property_set_bool(core, true, "realized", &error_fatal);
2692
2693 object_unref(core);
2694 }
2695 }
2696 }
2697
2698 static PCIHostState *spapr_create_default_phb(void)
2699 {
2700 DeviceState *dev;
2701
2702 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2703 qdev_prop_set_uint32(dev, "index", 0);
2704 qdev_init_nofail(dev);
2705
2706 return PCI_HOST_BRIDGE(dev);
2707 }
2708
2709 /* pSeries LPAR / sPAPR hardware init */
2710 static void spapr_machine_init(MachineState *machine)
2711 {
2712 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2713 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2714 const char *kernel_filename = machine->kernel_filename;
2715 const char *initrd_filename = machine->initrd_filename;
2716 PCIHostState *phb;
2717 int i;
2718 MemoryRegion *sysmem = get_system_memory();
2719 MemoryRegion *ram = g_new(MemoryRegion, 1);
2720 hwaddr node0_size = spapr_node0_size(machine);
2721 long load_limit, fw_size;
2722 char *filename;
2723 Error *resize_hpt_err = NULL;
2724
2725 msi_nonbroken = true;
2726
2727 QLIST_INIT(&spapr->phbs);
2728 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2729
2730 /* Determine capabilities to run with */
2731 spapr_caps_init(spapr);
2732
2733 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2734 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2735 /*
2736 * If the user explicitly requested a mode we should either
2737 * supply it, or fail completely (which we do below). But if
2738 * it's not set explicitly, we reset our mode to something
2739 * that works
2740 */
2741 if (resize_hpt_err) {
2742 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2743 error_free(resize_hpt_err);
2744 resize_hpt_err = NULL;
2745 } else {
2746 spapr->resize_hpt = smc->resize_hpt_default;
2747 }
2748 }
2749
2750 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2751
2752 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2753 /*
2754 * User requested HPT resize, but this host can't supply it. Bail out
2755 */
2756 error_report_err(resize_hpt_err);
2757 exit(1);
2758 }
2759
2760 spapr->rma_size = node0_size;
2761
2762 /* With KVM, we don't actually know whether KVM supports an
2763 * unbounded RMA (PR KVM) or is limited by the hash table size
2764 * (HV KVM using VRMA), so we always assume the latter
2765 *
2766 * In that case, we also limit the initial allocations for RTAS
2767 * etc... to 256M since we have no way to know what the VRMA size
2768 * is going to be as it depends on the size of the hash table
2769 * which isn't determined yet.
2770 */
2771 if (kvm_enabled()) {
2772 spapr->vrma_adjust = 1;
2773 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2774 }
2775
2776 /* Actually we don't support unbounded RMA anymore since we added
2777 * proper emulation of HV mode. The max we can get is 16G which
2778 * also happens to be what we configure for PAPR mode so make sure
2779 * we don't do anything bigger than that
2780 */
2781 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2782
2783 if (spapr->rma_size > node0_size) {
2784 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2785 spapr->rma_size);
2786 exit(1);
2787 }
2788
2789 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2791
2792 /*
2793 * VSMT must be set in order to be able to compute VCPU ids, ie to
2794 * call spapr_max_server_number() or spapr_vcpu_id().
2795 */
2796 spapr_set_vsmt_mode(spapr, &error_fatal);
2797
2798 /* Set up Interrupt Controller before we create the VCPUs */
2799 spapr_irq_init(spapr, &error_fatal);
2800
2801 /* Set up containers for ibm,client-architecture-support negotiated options
2802 */
2803 spapr->ov5 = spapr_ovec_new();
2804 spapr->ov5_cas = spapr_ovec_new();
2805
2806 if (smc->dr_lmb_enabled) {
2807 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2808 spapr_validate_node_memory(machine, &error_fatal);
2809 }
2810
2811 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2812
2813 /* advertise support for dedicated HP event source to guests */
2814 if (spapr->use_hotplug_event_source) {
2815 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2816 }
2817
2818 /* advertise support for HPT resizing */
2819 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2820 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2821 }
2822
2823 /* advertise support for ibm,dyamic-memory-v2 */
2824 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2825
2826 /* advertise XIVE on POWER9 machines */
2827 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2828 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2829 }
2830
2831 /* init CPUs */
2832 spapr_init_cpus(spapr);
2833
2834 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2835 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2836 spapr->max_compat_pvr)) {
2837 /* KVM and TCG always allow GTSE with radix... */
2838 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2839 }
2840 /* ... but not with hash (currently). */
2841
2842 if (kvm_enabled()) {
2843 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2844 kvmppc_enable_logical_ci_hcalls();
2845 kvmppc_enable_set_mode_hcall();
2846
2847 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2848 kvmppc_enable_clear_ref_mod_hcalls();
2849
2850 /* Enable H_PAGE_INIT */
2851 kvmppc_enable_h_page_init();
2852 }
2853
2854 /* allocate RAM */
2855 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2856 machine->ram_size);
2857 memory_region_add_subregion(sysmem, 0, ram);
2858
2859 /* always allocate the device memory information */
2860 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2861
2862 /* initialize hotplug memory address space */
2863 if (machine->ram_size < machine->maxram_size) {
2864 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2865 /*
2866 * Limit the number of hotpluggable memory slots to half the number
2867 * slots that KVM supports, leaving the other half for PCI and other
2868 * devices. However ensure that number of slots doesn't drop below 32.
2869 */
2870 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2871 SPAPR_MAX_RAM_SLOTS;
2872
2873 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2874 max_memslots = SPAPR_MAX_RAM_SLOTS;
2875 }
2876 if (machine->ram_slots > max_memslots) {
2877 error_report("Specified number of memory slots %"
2878 PRIu64" exceeds max supported %d",
2879 machine->ram_slots, max_memslots);
2880 exit(1);
2881 }
2882
2883 machine->device_memory->base = ROUND_UP(machine->ram_size,
2884 SPAPR_DEVICE_MEM_ALIGN);
2885 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2886 "device-memory", device_mem_size);
2887 memory_region_add_subregion(sysmem, machine->device_memory->base,
2888 &machine->device_memory->mr);
2889 }
2890
2891 if (smc->dr_lmb_enabled) {
2892 spapr_create_lmb_dr_connectors(spapr);
2893 }
2894
2895 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2896 if (!filename) {
2897 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2898 exit(1);
2899 }
2900 spapr->rtas_size = get_image_size(filename);
2901 if (spapr->rtas_size < 0) {
2902 error_report("Could not get size of LPAR rtas '%s'", filename);
2903 exit(1);
2904 }
2905 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2906 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2907 error_report("Could not load LPAR rtas '%s'", filename);
2908 exit(1);
2909 }
2910 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2911 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2912 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2913 exit(1);
2914 }
2915 g_free(filename);
2916
2917 /* Set up RTAS event infrastructure */
2918 spapr_events_init(spapr);
2919
2920 /* Set up the RTC RTAS interfaces */
2921 spapr_rtc_create(spapr);
2922
2923 /* Set up VIO bus */
2924 spapr->vio_bus = spapr_vio_bus_init();
2925
2926 for (i = 0; i < serial_max_hds(); i++) {
2927 if (serial_hd(i)) {
2928 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2929 }
2930 }
2931
2932 /* We always have at least the nvram device on VIO */
2933 spapr_create_nvram(spapr);
2934
2935 /*
2936 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2937 * connectors (described in root DT node's "ibm,drc-types" property)
2938 * are pre-initialized here. additional child connectors (such as
2939 * connectors for a PHBs PCI slots) are added as needed during their
2940 * parent's realization.
2941 */
2942 if (smc->dr_phb_enabled) {
2943 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2944 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2945 }
2946 }
2947
2948 /* Set up PCI */
2949 spapr_pci_rtas_init();
2950
2951 phb = spapr_create_default_phb();
2952
2953 for (i = 0; i < nb_nics; i++) {
2954 NICInfo *nd = &nd_table[i];
2955
2956 if (!nd->model) {
2957 nd->model = g_strdup("spapr-vlan");
2958 }
2959
2960 if (g_str_equal(nd->model, "spapr-vlan") ||
2961 g_str_equal(nd->model, "ibmveth")) {
2962 spapr_vlan_create(spapr->vio_bus, nd);
2963 } else {
2964 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2965 }
2966 }
2967
2968 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2969 spapr_vscsi_create(spapr->vio_bus);
2970 }
2971
2972 /* Graphics */
2973 if (spapr_vga_init(phb->bus, &error_fatal)) {
2974 spapr->has_graphics = true;
2975 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2976 }
2977
2978 if (machine->usb) {
2979 if (smc->use_ohci_by_default) {
2980 pci_create_simple(phb->bus, -1, "pci-ohci");
2981 } else {
2982 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2983 }
2984
2985 if (spapr->has_graphics) {
2986 USBBus *usb_bus = usb_bus_find(-1);
2987
2988 usb_create_simple(usb_bus, "usb-kbd");
2989 usb_create_simple(usb_bus, "usb-mouse");
2990 }
2991 }
2992
2993 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2994 error_report(
2995 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2996 MIN_RMA_SLOF);
2997 exit(1);
2998 }
2999
3000 if (kernel_filename) {
3001 uint64_t lowaddr = 0;
3002
3003 spapr->kernel_size = load_elf(kernel_filename, NULL,
3004 translate_kernel_address, NULL,
3005 NULL, &lowaddr, NULL, 1,
3006 PPC_ELF_MACHINE, 0, 0);
3007 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3008 spapr->kernel_size = load_elf(kernel_filename, NULL,
3009 translate_kernel_address, NULL, NULL,
3010 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3011 0, 0);
3012 spapr->kernel_le = spapr->kernel_size > 0;
3013 }
3014 if (spapr->kernel_size < 0) {
3015 error_report("error loading %s: %s", kernel_filename,
3016 load_elf_strerror(spapr->kernel_size));
3017 exit(1);
3018 }
3019
3020 /* load initrd */
3021 if (initrd_filename) {
3022 /* Try to locate the initrd in the gap between the kernel
3023 * and the firmware. Add a bit of space just in case
3024 */
3025 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3026 + 0x1ffff) & ~0xffff;
3027 spapr->initrd_size = load_image_targphys(initrd_filename,
3028 spapr->initrd_base,
3029 load_limit
3030 - spapr->initrd_base);
3031 if (spapr->initrd_size < 0) {
3032 error_report("could not load initial ram disk '%s'",
3033 initrd_filename);
3034 exit(1);
3035 }
3036 }
3037 }
3038
3039 if (bios_name == NULL) {
3040 bios_name = FW_FILE_NAME;
3041 }
3042 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3043 if (!filename) {
3044 error_report("Could not find LPAR firmware '%s'", bios_name);
3045 exit(1);
3046 }
3047 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3048 if (fw_size <= 0) {
3049 error_report("Could not load LPAR firmware '%s'", filename);
3050 exit(1);
3051 }
3052 g_free(filename);
3053
3054 /* FIXME: Should register things through the MachineState's qdev
3055 * interface, this is a legacy from the sPAPREnvironment structure
3056 * which predated MachineState but had a similar function */
3057 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3058 register_savevm_live(NULL, "spapr/htab", -1, 1,
3059 &savevm_htab_handlers, spapr);
3060
3061 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3062 &error_fatal);
3063
3064 qemu_register_boot_set(spapr_boot_set, spapr);
3065
3066 if (kvm_enabled()) {
3067 /* to stop and start vmclock */
3068 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3069 &spapr->tb);
3070
3071 kvmppc_spapr_enable_inkernel_multitce();
3072 }
3073 }
3074
3075 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3076 {
3077 if (!vm_type) {
3078 return 0;
3079 }
3080
3081 if (!strcmp(vm_type, "HV")) {
3082 return 1;
3083 }
3084
3085 if (!strcmp(vm_type, "PR")) {
3086 return 2;
3087 }
3088
3089 error_report("Unknown kvm-type specified '%s'", vm_type);
3090 exit(1);
3091 }
3092
3093 /*
3094 * Implementation of an interface to adjust firmware path
3095 * for the bootindex property handling.
3096 */
3097 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3098 DeviceState *dev)
3099 {
3100 #define CAST(type, obj, name) \
3101 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3102 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3103 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3104 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3105
3106 if (d) {
3107 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3108 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3109 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3110
3111 if (spapr) {
3112 /*
3113 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3114 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3115 * 0x8000 | (target << 8) | (bus << 5) | lun
3116 * (see the "Logical unit addressing format" table in SAM5)
3117 */
3118 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3120 (uint64_t)id << 48);
3121 } else if (virtio) {
3122 /*
3123 * We use SRP luns of the form 01000000 | (target << 8) | lun
3124 * in the top 32 bits of the 64-bit LUN
3125 * Note: the quote above is from SLOF and it is wrong,
3126 * the actual binding is:
3127 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3128 */
3129 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3130 if (d->lun >= 256) {
3131 /* Use the LUN "flat space addressing method" */
3132 id |= 0x4000;
3133 }
3134 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3135 (uint64_t)id << 32);
3136 } else if (usb) {
3137 /*
3138 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3139 * in the top 32 bits of the 64-bit LUN
3140 */
3141 unsigned usb_port = atoi(usb->port->path);
3142 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3143 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3144 (uint64_t)id << 32);
3145 }
3146 }
3147
3148 /*
3149 * SLOF probes the USB devices, and if it recognizes that the device is a
3150 * storage device, it changes its name to "storage" instead of "usb-host",
3151 * and additionally adds a child node for the SCSI LUN, so the correct
3152 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3153 */
3154 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3155 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3156 if (usb_host_dev_is_scsi_storage(usbdev)) {
3157 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3158 }
3159 }
3160
3161 if (phb) {
3162 /* Replace "pci" with "pci@800000020000000" */
3163 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3164 }
3165
3166 if (vsc) {
3167 /* Same logic as virtio above */
3168 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3169 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3170 }
3171
3172 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3173 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3174 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3175 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3176 }
3177
3178 return NULL;
3179 }
3180
3181 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3182 {
3183 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184
3185 return g_strdup(spapr->kvm_type);
3186 }
3187
3188 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3189 {
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191
3192 g_free(spapr->kvm_type);
3193 spapr->kvm_type = g_strdup(value);
3194 }
3195
3196 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3197 {
3198 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199
3200 return spapr->use_hotplug_event_source;
3201 }
3202
3203 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3204 Error **errp)
3205 {
3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207
3208 spapr->use_hotplug_event_source = value;
3209 }
3210
3211 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3212 {
3213 return true;
3214 }
3215
3216 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3217 {
3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219
3220 switch (spapr->resize_hpt) {
3221 case SPAPR_RESIZE_HPT_DEFAULT:
3222 return g_strdup("default");
3223 case SPAPR_RESIZE_HPT_DISABLED:
3224 return g_strdup("disabled");
3225 case SPAPR_RESIZE_HPT_ENABLED:
3226 return g_strdup("enabled");
3227 case SPAPR_RESIZE_HPT_REQUIRED:
3228 return g_strdup("required");
3229 }
3230 g_assert_not_reached();
3231 }
3232
3233 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3234 {
3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236
3237 if (strcmp(value, "default") == 0) {
3238 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3239 } else if (strcmp(value, "disabled") == 0) {
3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3241 } else if (strcmp(value, "enabled") == 0) {
3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3243 } else if (strcmp(value, "required") == 0) {
3244 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3245 } else {
3246 error_setg(errp, "Bad value for \"resize-hpt\" property");
3247 }
3248 }
3249
3250 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3251 void *opaque, Error **errp)
3252 {
3253 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3254 }
3255
3256 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3257 void *opaque, Error **errp)
3258 {
3259 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3260 }
3261
3262 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3263 {
3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265
3266 if (spapr->irq == &spapr_irq_xics_legacy) {
3267 return g_strdup("legacy");
3268 } else if (spapr->irq == &spapr_irq_xics) {
3269 return g_strdup("xics");
3270 } else if (spapr->irq == &spapr_irq_xive) {
3271 return g_strdup("xive");
3272 } else if (spapr->irq == &spapr_irq_dual) {
3273 return g_strdup("dual");
3274 }
3275 g_assert_not_reached();
3276 }
3277
3278 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3279 {
3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281
3282 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3283 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3284 return;
3285 }
3286
3287 /* The legacy IRQ backend can not be set */
3288 if (strcmp(value, "xics") == 0) {
3289 spapr->irq = &spapr_irq_xics;
3290 } else if (strcmp(value, "xive") == 0) {
3291 spapr->irq = &spapr_irq_xive;
3292 } else if (strcmp(value, "dual") == 0) {
3293 spapr->irq = &spapr_irq_dual;
3294 } else {
3295 error_setg(errp, "Bad value for \"ic-mode\" property");
3296 }
3297 }
3298
3299 static char *spapr_get_host_model(Object *obj, Error **errp)
3300 {
3301 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302
3303 return g_strdup(spapr->host_model);
3304 }
3305
3306 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3307 {
3308 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3309
3310 g_free(spapr->host_model);
3311 spapr->host_model = g_strdup(value);
3312 }
3313
3314 static char *spapr_get_host_serial(Object *obj, Error **errp)
3315 {
3316 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3317
3318 return g_strdup(spapr->host_serial);
3319 }
3320
3321 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3322 {
3323 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3324
3325 g_free(spapr->host_serial);
3326 spapr->host_serial = g_strdup(value);
3327 }
3328
3329 static void spapr_instance_init(Object *obj)
3330 {
3331 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3333
3334 spapr->htab_fd = -1;
3335 spapr->use_hotplug_event_source = true;
3336 object_property_add_str(obj, "kvm-type",
3337 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3338 object_property_set_description(obj, "kvm-type",
3339 "Specifies the KVM virtualization mode (HV, PR)",
3340 NULL);
3341 object_property_add_bool(obj, "modern-hotplug-events",
3342 spapr_get_modern_hotplug_events,
3343 spapr_set_modern_hotplug_events,
3344 NULL);
3345 object_property_set_description(obj, "modern-hotplug-events",
3346 "Use dedicated hotplug event mechanism in"
3347 " place of standard EPOW events when possible"
3348 " (required for memory hot-unplug support)",
3349 NULL);
3350 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3351 "Maximum permitted CPU compatibility mode",
3352 &error_fatal);
3353
3354 object_property_add_str(obj, "resize-hpt",
3355 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3356 object_property_set_description(obj, "resize-hpt",
3357 "Resizing of the Hash Page Table (enabled, disabled, required)",
3358 NULL);
3359 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3360 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3361 object_property_set_description(obj, "vsmt",
3362 "Virtual SMT: KVM behaves as if this were"
3363 " the host's SMT mode", &error_abort);
3364 object_property_add_bool(obj, "vfio-no-msix-emulation",
3365 spapr_get_msix_emulation, NULL, NULL);
3366
3367 /* The machine class defines the default interrupt controller mode */
3368 spapr->irq = smc->irq;
3369 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3370 spapr_set_ic_mode, NULL);
3371 object_property_set_description(obj, "ic-mode",
3372 "Specifies the interrupt controller mode (xics, xive, dual)",
3373 NULL);
3374
3375 object_property_add_str(obj, "host-model",
3376 spapr_get_host_model, spapr_set_host_model,
3377 &error_abort);
3378 object_property_set_description(obj, "host-model",
3379 "Host model to advertise in guest device tree", &error_abort);
3380 object_property_add_str(obj, "host-serial",
3381 spapr_get_host_serial, spapr_set_host_serial,
3382 &error_abort);
3383 object_property_set_description(obj, "host-serial",
3384 "Host serial number to advertise in guest device tree", &error_abort);
3385 }
3386
3387 static void spapr_machine_finalizefn(Object *obj)
3388 {
3389 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3390
3391 g_free(spapr->kvm_type);
3392 }
3393
3394 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3395 {
3396 cpu_synchronize_state(cs);
3397 ppc_cpu_do_system_reset(cs);
3398 }
3399
3400 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3401 {
3402 CPUState *cs;
3403
3404 CPU_FOREACH(cs) {
3405 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3406 }
3407 }
3408
3409 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3410 void *fdt, int *fdt_start_offset, Error **errp)
3411 {
3412 uint64_t addr;
3413 uint32_t node;
3414
3415 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3416 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3417 &error_abort);
3418 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3419 SPAPR_MEMORY_BLOCK_SIZE);
3420 return 0;
3421 }
3422
3423 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3424 bool dedicated_hp_event_source, Error **errp)
3425 {
3426 SpaprDrc *drc;
3427 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3428 int i;
3429 uint64_t addr = addr_start;
3430 bool hotplugged = spapr_drc_hotplugged(dev);
3431 Error *local_err = NULL;
3432
3433 for (i = 0; i < nr_lmbs; i++) {
3434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3435 addr / SPAPR_MEMORY_BLOCK_SIZE);
3436 g_assert(drc);
3437
3438 spapr_drc_attach(drc, dev, &local_err);
3439 if (local_err) {
3440 while (addr > addr_start) {
3441 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3443 addr / SPAPR_MEMORY_BLOCK_SIZE);
3444 spapr_drc_detach(drc);
3445 }
3446 error_propagate(errp, local_err);
3447 return;
3448 }
3449 if (!hotplugged) {
3450 spapr_drc_reset(drc);
3451 }
3452 addr += SPAPR_MEMORY_BLOCK_SIZE;
3453 }
3454 /* send hotplug notification to the
3455 * guest only in case of hotplugged memory
3456 */
3457 if (hotplugged) {
3458 if (dedicated_hp_event_source) {
3459 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3460 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3461 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3462 nr_lmbs,
3463 spapr_drc_index(drc));
3464 } else {
3465 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3466 nr_lmbs);
3467 }
3468 }
3469 }
3470
3471 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3472 Error **errp)
3473 {
3474 Error *local_err = NULL;
3475 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3476 PCDIMMDevice *dimm = PC_DIMM(dev);
3477 uint64_t size, addr;
3478
3479 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3480
3481 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3482 if (local_err) {
3483 goto out;
3484 }
3485
3486 addr = object_property_get_uint(OBJECT(dimm),
3487 PC_DIMM_ADDR_PROP, &local_err);
3488 if (local_err) {
3489 goto out_unplug;
3490 }
3491
3492 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3493 &local_err);
3494 if (local_err) {
3495 goto out_unplug;
3496 }
3497
3498 return;
3499
3500 out_unplug:
3501 pc_dimm_unplug(dimm, MACHINE(ms));
3502 out:
3503 error_propagate(errp, local_err);
3504 }
3505
3506 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3507 Error **errp)
3508 {
3509 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3510 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3511 PCDIMMDevice *dimm = PC_DIMM(dev);
3512 Error *local_err = NULL;
3513 uint64_t size;
3514 Object *memdev;
3515 hwaddr pagesize;
3516
3517 if (!smc->dr_lmb_enabled) {
3518 error_setg(errp, "Memory hotplug not supported for this machine");
3519 return;
3520 }
3521
3522 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3523 if (local_err) {
3524 error_propagate(errp, local_err);
3525 return;
3526 }
3527
3528 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3529 error_setg(errp, "Hotplugged memory size must be a multiple of "
3530 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3531 return;
3532 }
3533
3534 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3535 &error_abort);
3536 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3537 spapr_check_pagesize(spapr, pagesize, &local_err);
3538 if (local_err) {
3539 error_propagate(errp, local_err);
3540 return;
3541 }
3542
3543 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3544 }
3545
3546 struct SpaprDimmState {
3547 PCDIMMDevice *dimm;
3548 uint32_t nr_lmbs;
3549 QTAILQ_ENTRY(SpaprDimmState) next;
3550 };
3551
3552 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3553 PCDIMMDevice *dimm)
3554 {
3555 SpaprDimmState *dimm_state = NULL;
3556
3557 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3558 if (dimm_state->dimm == dimm) {
3559 break;
3560 }
3561 }
3562 return dimm_state;
3563 }
3564
3565 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3566 uint32_t nr_lmbs,
3567 PCDIMMDevice *dimm)
3568 {
3569 SpaprDimmState *ds = NULL;
3570
3571 /*
3572 * If this request is for a DIMM whose removal had failed earlier
3573 * (due to guest's refusal to remove the LMBs), we would have this
3574 * dimm already in the pending_dimm_unplugs list. In that
3575 * case don't add again.
3576 */
3577 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3578 if (!ds) {
3579 ds = g_malloc0(sizeof(SpaprDimmState));
3580 ds->nr_lmbs = nr_lmbs;
3581 ds->dimm = dimm;
3582 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3583 }
3584 return ds;
3585 }
3586
3587 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3588 SpaprDimmState *dimm_state)
3589 {
3590 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3591 g_free(dimm_state);
3592 }
3593
3594 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3595 PCDIMMDevice *dimm)
3596 {
3597 SpaprDrc *drc;
3598 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3599 &error_abort);
3600 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3601 uint32_t avail_lmbs = 0;
3602 uint64_t addr_start, addr;
3603 int i;
3604
3605 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3606 &error_abort);
3607
3608 addr = addr_start;
3609 for (i = 0; i < nr_lmbs; i++) {
3610 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3611 addr / SPAPR_MEMORY_BLOCK_SIZE);
3612 g_assert(drc);
3613 if (drc->dev) {
3614 avail_lmbs++;
3615 }
3616 addr += SPAPR_MEMORY_BLOCK_SIZE;
3617 }
3618
3619 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3620 }
3621
3622 /* Callback to be called during DRC release. */
3623 void spapr_lmb_release(DeviceState *dev)
3624 {
3625 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3626 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3627 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3628
3629 /* This information will get lost if a migration occurs
3630 * during the unplug process. In this case recover it. */
3631 if (ds == NULL) {
3632 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3633 g_assert(ds);
3634 /* The DRC being examined by the caller at least must be counted */
3635 g_assert(ds->nr_lmbs);
3636 }
3637
3638 if (--ds->nr_lmbs) {
3639 return;
3640 }
3641
3642 /*
3643 * Now that all the LMBs have been removed by the guest, call the
3644 * unplug handler chain. This can never fail.
3645 */
3646 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3647 object_unparent(OBJECT(dev));
3648 }
3649
3650 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3651 {
3652 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3653 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3654
3655 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3656 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3657 spapr_pending_dimm_unplugs_remove(spapr, ds);
3658 }
3659
3660 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3661 DeviceState *dev, Error **errp)
3662 {
3663 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3664 Error *local_err = NULL;
3665 PCDIMMDevice *dimm = PC_DIMM(dev);
3666 uint32_t nr_lmbs;
3667 uint64_t size, addr_start, addr;
3668 int i;
3669 SpaprDrc *drc;
3670
3671 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3672 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3673
3674 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3675 &local_err);
3676 if (local_err) {
3677 goto out;
3678 }
3679
3680 /*
3681 * An existing pending dimm state for this DIMM means that there is an
3682 * unplug operation in progress, waiting for the spapr_lmb_release
3683 * callback to complete the job (BQL can't cover that far). In this case,
3684 * bail out to avoid detaching DRCs that were already released.
3685 */
3686 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3687 error_setg(&local_err,
3688 "Memory unplug already in progress for device %s",
3689 dev->id);
3690 goto out;
3691 }
3692
3693 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3694
3695 addr = addr_start;
3696 for (i = 0; i < nr_lmbs; i++) {
3697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3698 addr / SPAPR_MEMORY_BLOCK_SIZE);
3699 g_assert(drc);
3700
3701 spapr_drc_detach(drc);
3702 addr += SPAPR_MEMORY_BLOCK_SIZE;
3703 }
3704
3705 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3706 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3707 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3708 nr_lmbs, spapr_drc_index(drc));
3709 out:
3710 error_propagate(errp, local_err);
3711 }
3712
3713 /* Callback to be called during DRC release. */
3714 void spapr_core_release(DeviceState *dev)
3715 {
3716 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3717
3718 /* Call the unplug handler chain. This can never fail. */
3719 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3720 object_unparent(OBJECT(dev));
3721 }
3722
3723 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3724 {
3725 MachineState *ms = MACHINE(hotplug_dev);
3726 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3727 CPUCore *cc = CPU_CORE(dev);
3728 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3729
3730 if (smc->pre_2_10_has_unused_icps) {
3731 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3732 int i;
3733
3734 for (i = 0; i < cc->nr_threads; i++) {
3735 CPUState *cs = CPU(sc->threads[i]);
3736
3737 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3738 }
3739 }
3740
3741 assert(core_slot);
3742 core_slot->cpu = NULL;
3743 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3744 }
3745
3746 static
3747 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3748 Error **errp)
3749 {
3750 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3751 int index;
3752 SpaprDrc *drc;
3753 CPUCore *cc = CPU_CORE(dev);
3754
3755 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3756 error_setg(errp, "Unable to find CPU core with core-id: %d",
3757 cc->core_id);
3758 return;
3759 }
3760 if (index == 0) {
3761 error_setg(errp, "Boot CPU core may not be unplugged");
3762 return;
3763 }
3764
3765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3766 spapr_vcpu_id(spapr, cc->core_id));
3767 g_assert(drc);
3768
3769 spapr_drc_detach(drc);
3770
3771 spapr_hotplug_req_remove_by_index(drc);
3772 }
3773
3774 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3775 void *fdt, int *fdt_start_offset, Error **errp)
3776 {
3777 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3778 CPUState *cs = CPU(core->threads[0]);
3779 PowerPCCPU *cpu = POWERPC_CPU(cs);
3780 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3781 int id = spapr_get_vcpu_id(cpu);
3782 char *nodename;
3783 int offset;
3784
3785 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3786 offset = fdt_add_subnode(fdt, 0, nodename);
3787 g_free(nodename);
3788
3789 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3790
3791 *fdt_start_offset = offset;
3792 return 0;
3793 }
3794
3795 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3796 Error **errp)
3797 {
3798 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3799 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3800 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3801 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3802 CPUCore *cc = CPU_CORE(dev);
3803 CPUState *cs;
3804 SpaprDrc *drc;
3805 Error *local_err = NULL;
3806 CPUArchId *core_slot;
3807 int index;
3808 bool hotplugged = spapr_drc_hotplugged(dev);
3809
3810 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3811 if (!core_slot) {
3812 error_setg(errp, "Unable to find CPU core with core-id: %d",
3813 cc->core_id);
3814 return;
3815 }
3816 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3817 spapr_vcpu_id(spapr, cc->core_id));
3818
3819 g_assert(drc || !mc->has_hotpluggable_cpus);
3820
3821 if (drc) {
3822 spapr_drc_attach(drc, dev, &local_err);
3823 if (local_err) {
3824 error_propagate(errp, local_err);
3825 return;
3826 }
3827
3828 if (hotplugged) {
3829 /*
3830 * Send hotplug notification interrupt to the guest only
3831 * in case of hotplugged CPUs.
3832 */
3833 spapr_hotplug_req_add_by_index(drc);
3834 } else {
3835 spapr_drc_reset(drc);
3836 }
3837 }
3838
3839 core_slot->cpu = OBJECT(dev);
3840
3841 if (smc->pre_2_10_has_unused_icps) {
3842 int i;
3843
3844 for (i = 0; i < cc->nr_threads; i++) {
3845 cs = CPU(core->threads[i]);
3846 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3847 }
3848 }
3849 }
3850
3851 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3852 Error **errp)
3853 {
3854 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3855 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3856 Error *local_err = NULL;
3857 CPUCore *cc = CPU_CORE(dev);
3858 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3859 const char *type = object_get_typename(OBJECT(dev));
3860 CPUArchId *core_slot;
3861 int index;
3862
3863 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3864 error_setg(&local_err, "CPU hotplug not supported for this machine");
3865 goto out;
3866 }
3867
3868 if (strcmp(base_core_type, type)) {
3869 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3870 goto out;
3871 }
3872
3873 if (cc->core_id % smp_threads) {
3874 error_setg(&local_err, "invalid core id %d", cc->core_id);
3875 goto out;
3876 }
3877
3878 /*
3879 * In general we should have homogeneous threads-per-core, but old
3880 * (pre hotplug support) machine types allow the last core to have
3881 * reduced threads as a compatibility hack for when we allowed
3882 * total vcpus not a multiple of threads-per-core.
3883 */
3884 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3885 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3886 cc->nr_threads, smp_threads);
3887 goto out;
3888 }
3889
3890 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3891 if (!core_slot) {
3892 error_setg(&local_err, "core id %d out of range", cc->core_id);
3893 goto out;
3894 }
3895
3896 if (core_slot->cpu) {
3897 error_setg(&local_err, "core %d already populated", cc->core_id);
3898 goto out;
3899 }
3900
3901 numa_cpu_pre_plug(core_slot, dev, &local_err);
3902
3903 out:
3904 error_propagate(errp, local_err);
3905 }
3906
3907 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3908 void *fdt, int *fdt_start_offset, Error **errp)
3909 {
3910 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3911 int intc_phandle;
3912
3913 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3914 if (intc_phandle <= 0) {
3915 return -1;
3916 }
3917
3918 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3919 fdt_start_offset)) {
3920 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3921 return -1;
3922 }
3923
3924 /* generally SLOF creates these, for hotplug it's up to QEMU */
3925 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3926
3927 return 0;
3928 }
3929
3930 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3931 Error **errp)
3932 {
3933 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3936 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3937
3938 if (dev->hotplugged && !smc->dr_phb_enabled) {
3939 error_setg(errp, "PHB hotplug not supported for this machine");
3940 return;
3941 }
3942
3943 if (sphb->index == (uint32_t)-1) {
3944 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3945 return;
3946 }
3947
3948 /*
3949 * This will check that sphb->index doesn't exceed the maximum number of
3950 * PHBs for the current machine type.
3951 */
3952 smc->phb_placement(spapr, sphb->index,
3953 &sphb->buid, &sphb->io_win_addr,
3954 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3955 windows_supported, sphb->dma_liobn,
3956 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3957 errp);
3958 }
3959
3960 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3961 Error **errp)
3962 {
3963 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3964 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3965 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3966 SpaprDrc *drc;
3967 bool hotplugged = spapr_drc_hotplugged(dev);
3968 Error *local_err = NULL;
3969
3970 if (!smc->dr_phb_enabled) {
3971 return;
3972 }
3973
3974 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3975 /* hotplug hooks should check it's enabled before getting this far */
3976 assert(drc);
3977
3978 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3979 if (local_err) {
3980 error_propagate(errp, local_err);
3981 return;
3982 }
3983
3984 if (hotplugged) {
3985 spapr_hotplug_req_add_by_index(drc);
3986 } else {
3987 spapr_drc_reset(drc);
3988 }
3989 }
3990
3991 void spapr_phb_release(DeviceState *dev)
3992 {
3993 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3994
3995 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3996 object_unparent(OBJECT(dev));
3997 }
3998
3999 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4000 {
4001 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4002 }
4003
4004 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4005 DeviceState *dev, Error **errp)
4006 {
4007 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4008 SpaprDrc *drc;
4009
4010 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4011 assert(drc);
4012
4013 if (!spapr_drc_unplug_requested(drc)) {
4014 spapr_drc_detach(drc);
4015 spapr_hotplug_req_remove_by_index(drc);
4016 }
4017 }
4018
4019 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4020 DeviceState *dev, Error **errp)
4021 {
4022 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4023 spapr_memory_plug(hotplug_dev, dev, errp);
4024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4025 spapr_core_plug(hotplug_dev, dev, errp);
4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4027 spapr_phb_plug(hotplug_dev, dev, errp);
4028 }
4029 }
4030
4031 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4032 DeviceState *dev, Error **errp)
4033 {
4034 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4035 spapr_memory_unplug(hotplug_dev, dev);
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4037 spapr_core_unplug(hotplug_dev, dev);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4039 spapr_phb_unplug(hotplug_dev, dev);
4040 }
4041 }
4042
4043 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4044 DeviceState *dev, Error **errp)
4045 {
4046 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4047 MachineClass *mc = MACHINE_GET_CLASS(sms);
4048 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4049
4050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4051 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4052 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4053 } else {
4054 /* NOTE: this means there is a window after guest reset, prior to
4055 * CAS negotiation, where unplug requests will fail due to the
4056 * capability not being detected yet. This is a bit different than
4057 * the case with PCI unplug, where the events will be queued and
4058 * eventually handled by the guest after boot
4059 */
4060 error_setg(errp, "Memory hot unplug not supported for this guest");
4061 }
4062 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4063 if (!mc->has_hotpluggable_cpus) {
4064 error_setg(errp, "CPU hot unplug not supported on this machine");
4065 return;
4066 }
4067 spapr_core_unplug_request(hotplug_dev, dev, errp);
4068 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4069 if (!smc->dr_phb_enabled) {
4070 error_setg(errp, "PHB hot unplug not supported on this machine");
4071 return;
4072 }
4073 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4074 }
4075 }
4076
4077 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4078 DeviceState *dev, Error **errp)
4079 {
4080 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4081 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083 spapr_core_pre_plug(hotplug_dev, dev, errp);
4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4085 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4086 }
4087 }
4088
4089 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4090 DeviceState *dev)
4091 {
4092 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4095 return HOTPLUG_HANDLER(machine);
4096 }
4097 return NULL;
4098 }
4099
4100 static CpuInstanceProperties
4101 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4102 {
4103 CPUArchId *core_slot;
4104 MachineClass *mc = MACHINE_GET_CLASS(machine);
4105
4106 /* make sure possible_cpu are intialized */
4107 mc->possible_cpu_arch_ids(machine);
4108 /* get CPU core slot containing thread that matches cpu_index */
4109 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4110 assert(core_slot);
4111 return core_slot->props;
4112 }
4113
4114 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4115 {
4116 return idx / smp_cores % nb_numa_nodes;
4117 }
4118
4119 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4120 {
4121 int i;
4122 const char *core_type;
4123 int spapr_max_cores = max_cpus / smp_threads;
4124 MachineClass *mc = MACHINE_GET_CLASS(machine);
4125
4126 if (!mc->has_hotpluggable_cpus) {
4127 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4128 }
4129 if (machine->possible_cpus) {
4130 assert(machine->possible_cpus->len == spapr_max_cores);
4131 return machine->possible_cpus;
4132 }
4133
4134 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4135 if (!core_type) {
4136 error_report("Unable to find sPAPR CPU Core definition");
4137 exit(1);
4138 }
4139
4140 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4141 sizeof(CPUArchId) * spapr_max_cores);
4142 machine->possible_cpus->len = spapr_max_cores;
4143 for (i = 0; i < machine->possible_cpus->len; i++) {
4144 int core_id = i * smp_threads;
4145
4146 machine->possible_cpus->cpus[i].type = core_type;
4147 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4148 machine->possible_cpus->cpus[i].arch_id = core_id;
4149 machine->possible_cpus->cpus[i].props.has_core_id = true;
4150 machine->possible_cpus->cpus[i].props.core_id = core_id;
4151 }
4152 return machine->possible_cpus;
4153 }
4154
4155 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4156 uint64_t *buid, hwaddr *pio,
4157 hwaddr *mmio32, hwaddr *mmio64,
4158 unsigned n_dma, uint32_t *liobns,
4159 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4160 {
4161 /*
4162 * New-style PHB window placement.
4163 *
4164 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4165 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4166 * windows.
4167 *
4168 * Some guest kernels can't work with MMIO windows above 1<<46
4169 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4170 *
4171 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4172 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4173 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4174 * 1TiB 64-bit MMIO windows for each PHB.
4175 */
4176 const uint64_t base_buid = 0x800000020000000ULL;
4177 int i;
4178
4179 /* Sanity check natural alignments */
4180 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4181 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4182 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4183 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4184 /* Sanity check bounds */
4185 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4186 SPAPR_PCI_MEM32_WIN_SIZE);
4187 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4188 SPAPR_PCI_MEM64_WIN_SIZE);
4189
4190 if (index >= SPAPR_MAX_PHBS) {
4191 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4192 SPAPR_MAX_PHBS - 1);
4193 return;
4194 }
4195
4196 *buid = base_buid + index;
4197 for (i = 0; i < n_dma; ++i) {
4198 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4199 }
4200
4201 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4202 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4203 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4204
4205 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4206 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4207 }
4208
4209 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4210 {
4211 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4212
4213 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4214 }
4215
4216 static void spapr_ics_resend(XICSFabric *dev)
4217 {
4218 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4219
4220 ics_resend(spapr->ics);
4221 }
4222
4223 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4224 {
4225 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4226
4227 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4228 }
4229
4230 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4231 Monitor *mon)
4232 {
4233 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4234
4235 spapr->irq->print_info(spapr, mon);
4236 }
4237
4238 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4239 {
4240 return cpu->vcpu_id;
4241 }
4242
4243 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4244 {
4245 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4246 int vcpu_id;
4247
4248 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4249
4250 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4251 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4252 error_append_hint(errp, "Adjust the number of cpus to %d "
4253 "or try to raise the number of threads per core\n",
4254 vcpu_id * smp_threads / spapr->vsmt);
4255 return;
4256 }
4257
4258 cpu->vcpu_id = vcpu_id;
4259 }
4260
4261 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4262 {
4263 CPUState *cs;
4264
4265 CPU_FOREACH(cs) {
4266 PowerPCCPU *cpu = POWERPC_CPU(cs);
4267
4268 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4269 return cpu;
4270 }
4271 }
4272
4273 return NULL;
4274 }
4275
4276 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4277 {
4278 MachineClass *mc = MACHINE_CLASS(oc);
4279 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4280 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4281 NMIClass *nc = NMI_CLASS(oc);
4282 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4283 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4284 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4285 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4286
4287 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4288 mc->ignore_boot_device_suffixes = true;
4289
4290 /*
4291 * We set up the default / latest behaviour here. The class_init
4292 * functions for the specific versioned machine types can override
4293 * these details for backwards compatibility
4294 */
4295 mc->init = spapr_machine_init;
4296 mc->reset = spapr_machine_reset;
4297 mc->block_default_type = IF_SCSI;
4298 mc->max_cpus = 1024;
4299 mc->no_parallel = 1;
4300 mc->default_boot_order = "";
4301 mc->default_ram_size = 512 * MiB;
4302 mc->default_display = "std";
4303 mc->kvm_type = spapr_kvm_type;
4304 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4305 mc->pci_allow_0_address = true;
4306 assert(!mc->get_hotplug_handler);
4307 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4308 hc->pre_plug = spapr_machine_device_pre_plug;
4309 hc->plug = spapr_machine_device_plug;
4310 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4311 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4312 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4313 hc->unplug_request = spapr_machine_device_unplug_request;
4314 hc->unplug = spapr_machine_device_unplug;
4315
4316 smc->dr_lmb_enabled = true;
4317 smc->update_dt_enabled = true;
4318 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4319 mc->has_hotpluggable_cpus = true;
4320 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4321 fwc->get_dev_path = spapr_get_fw_dev_path;
4322 nc->nmi_monitor_handler = spapr_nmi;
4323 smc->phb_placement = spapr_phb_placement;
4324 vhc->hypercall = emulate_spapr_hypercall;
4325 vhc->hpt_mask = spapr_hpt_mask;
4326 vhc->map_hptes = spapr_map_hptes;
4327 vhc->unmap_hptes = spapr_unmap_hptes;
4328 vhc->hpte_set_c = spapr_hpte_set_c;
4329 vhc->hpte_set_r = spapr_hpte_set_r;
4330 vhc->get_pate = spapr_get_pate;
4331 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4332 xic->ics_get = spapr_ics_get;
4333 xic->ics_resend = spapr_ics_resend;
4334 xic->icp_get = spapr_icp_get;
4335 ispc->print_info = spapr_pic_print_info;
4336 /* Force NUMA node memory size to be a multiple of
4337 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4338 * in which LMBs are represented and hot-added
4339 */
4340 mc->numa_mem_align_shift = 28;
4341
4342 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4343 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4344 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4345 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4346 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4347 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4348 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4349 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4350 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4351 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4352 spapr_caps_add_properties(smc, &error_abort);
4353 smc->irq = &spapr_irq_dual;
4354 smc->dr_phb_enabled = true;
4355 }
4356
4357 static const TypeInfo spapr_machine_info = {
4358 .name = TYPE_SPAPR_MACHINE,
4359 .parent = TYPE_MACHINE,
4360 .abstract = true,
4361 .instance_size = sizeof(SpaprMachineState),
4362 .instance_init = spapr_instance_init,
4363 .instance_finalize = spapr_machine_finalizefn,
4364 .class_size = sizeof(SpaprMachineClass),
4365 .class_init = spapr_machine_class_init,
4366 .interfaces = (InterfaceInfo[]) {
4367 { TYPE_FW_PATH_PROVIDER },
4368 { TYPE_NMI },
4369 { TYPE_HOTPLUG_HANDLER },
4370 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4371 { TYPE_XICS_FABRIC },
4372 { TYPE_INTERRUPT_STATS_PROVIDER },
4373 { }
4374 },
4375 };
4376
4377 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4378 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4379 void *data) \
4380 { \
4381 MachineClass *mc = MACHINE_CLASS(oc); \
4382 spapr_machine_##suffix##_class_options(mc); \
4383 if (latest) { \
4384 mc->alias = "pseries"; \
4385 mc->is_default = 1; \
4386 } \
4387 } \
4388 static const TypeInfo spapr_machine_##suffix##_info = { \
4389 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4390 .parent = TYPE_SPAPR_MACHINE, \
4391 .class_init = spapr_machine_##suffix##_class_init, \
4392 }; \
4393 static void spapr_machine_register_##suffix(void) \
4394 { \
4395 type_register(&spapr_machine_##suffix##_info); \
4396 } \
4397 type_init(spapr_machine_register_##suffix)
4398
4399 /*
4400 * pseries-4.1
4401 */
4402 static void spapr_machine_4_1_class_options(MachineClass *mc)
4403 {
4404 /* Defaults for the latest behaviour inherited from the base class */
4405 }
4406
4407 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4408
4409 /*
4410 * pseries-4.0
4411 */
4412 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4413 uint64_t *buid, hwaddr *pio,
4414 hwaddr *mmio32, hwaddr *mmio64,
4415 unsigned n_dma, uint32_t *liobns,
4416 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4417 {
4418 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4419 nv2gpa, nv2atsd, errp);
4420 *nv2gpa = 0;
4421 *nv2atsd = 0;
4422 }
4423
4424 static void spapr_machine_4_0_class_options(MachineClass *mc)
4425 {
4426 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4427
4428 spapr_machine_4_1_class_options(mc);
4429 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4430 smc->phb_placement = phb_placement_4_0;
4431 smc->irq = &spapr_irq_xics;
4432 smc->pre_4_1_migration = true;
4433 }
4434
4435 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4436
4437 /*
4438 * pseries-3.1
4439 */
4440 static void spapr_machine_3_1_class_options(MachineClass *mc)
4441 {
4442 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4443
4444 spapr_machine_4_0_class_options(mc);
4445 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4446
4447 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4448 smc->update_dt_enabled = false;
4449 smc->dr_phb_enabled = false;
4450 smc->broken_host_serial_model = true;
4451 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4452 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4453 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4454 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4455 }
4456
4457 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4458
4459 /*
4460 * pseries-3.0
4461 */
4462
4463 static void spapr_machine_3_0_class_options(MachineClass *mc)
4464 {
4465 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4466
4467 spapr_machine_3_1_class_options(mc);
4468 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4469
4470 smc->legacy_irq_allocation = true;
4471 smc->irq = &spapr_irq_xics_legacy;
4472 }
4473
4474 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4475
4476 /*
4477 * pseries-2.12
4478 */
4479 static void spapr_machine_2_12_class_options(MachineClass *mc)
4480 {
4481 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4482 static GlobalProperty compat[] = {
4483 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4484 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4485 };
4486
4487 spapr_machine_3_0_class_options(mc);
4488 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4489 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4490
4491 /* We depend on kvm_enabled() to choose a default value for the
4492 * hpt-max-page-size capability. Of course we can't do it here
4493 * because this is too early and the HW accelerator isn't initialzed
4494 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4495 */
4496 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4497 }
4498
4499 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4500
4501 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4502 {
4503 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4504
4505 spapr_machine_2_12_class_options(mc);
4506 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4507 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4508 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4509 }
4510
4511 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4512
4513 /*
4514 * pseries-2.11
4515 */
4516
4517 static void spapr_machine_2_11_class_options(MachineClass *mc)
4518 {
4519 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4520
4521 spapr_machine_2_12_class_options(mc);
4522 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4523 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4524 }
4525
4526 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4527
4528 /*
4529 * pseries-2.10
4530 */
4531
4532 static void spapr_machine_2_10_class_options(MachineClass *mc)
4533 {
4534 spapr_machine_2_11_class_options(mc);
4535 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4536 }
4537
4538 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4539
4540 /*
4541 * pseries-2.9
4542 */
4543
4544 static void spapr_machine_2_9_class_options(MachineClass *mc)
4545 {
4546 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4547 static GlobalProperty compat[] = {
4548 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4549 };
4550
4551 spapr_machine_2_10_class_options(mc);
4552 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4553 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4554 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4555 smc->pre_2_10_has_unused_icps = true;
4556 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4557 }
4558
4559 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4560
4561 /*
4562 * pseries-2.8
4563 */
4564
4565 static void spapr_machine_2_8_class_options(MachineClass *mc)
4566 {
4567 static GlobalProperty compat[] = {
4568 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4569 };
4570
4571 spapr_machine_2_9_class_options(mc);
4572 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4573 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4574 mc->numa_mem_align_shift = 23;
4575 }
4576
4577 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4578
4579 /*
4580 * pseries-2.7
4581 */
4582
4583 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4584 uint64_t *buid, hwaddr *pio,
4585 hwaddr *mmio32, hwaddr *mmio64,
4586 unsigned n_dma, uint32_t *liobns,
4587 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4588 {
4589 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4590 const uint64_t base_buid = 0x800000020000000ULL;
4591 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4592 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4593 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4594 const uint32_t max_index = 255;
4595 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4596
4597 uint64_t ram_top = MACHINE(spapr)->ram_size;
4598 hwaddr phb0_base, phb_base;
4599 int i;
4600
4601 /* Do we have device memory? */
4602 if (MACHINE(spapr)->maxram_size > ram_top) {
4603 /* Can't just use maxram_size, because there may be an
4604 * alignment gap between normal and device memory regions
4605 */
4606 ram_top = MACHINE(spapr)->device_memory->base +
4607 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4608 }
4609
4610 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4611
4612 if (index > max_index) {
4613 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4614 max_index);
4615 return;
4616 }
4617
4618 *buid = base_buid + index;
4619 for (i = 0; i < n_dma; ++i) {
4620 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4621 }
4622
4623 phb_base = phb0_base + index * phb_spacing;
4624 *pio = phb_base + pio_offset;
4625 *mmio32 = phb_base + mmio_offset;
4626 /*
4627 * We don't set the 64-bit MMIO window, relying on the PHB's
4628 * fallback behaviour of automatically splitting a large "32-bit"
4629 * window into contiguous 32-bit and 64-bit windows
4630 */
4631
4632 *nv2gpa = 0;
4633 *nv2atsd = 0;
4634 }
4635
4636 static void spapr_machine_2_7_class_options(MachineClass *mc)
4637 {
4638 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4639 static GlobalProperty compat[] = {
4640 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4641 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4642 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4643 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4644 };
4645
4646 spapr_machine_2_8_class_options(mc);
4647 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4648 mc->default_machine_opts = "modern-hotplug-events=off";
4649 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4650 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4651 smc->phb_placement = phb_placement_2_7;
4652 }
4653
4654 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4655
4656 /*
4657 * pseries-2.6
4658 */
4659
4660 static void spapr_machine_2_6_class_options(MachineClass *mc)
4661 {
4662 static GlobalProperty compat[] = {
4663 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4664 };
4665
4666 spapr_machine_2_7_class_options(mc);
4667 mc->has_hotpluggable_cpus = false;
4668 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4669 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4670 }
4671
4672 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4673
4674 /*
4675 * pseries-2.5
4676 */
4677
4678 static void spapr_machine_2_5_class_options(MachineClass *mc)
4679 {
4680 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4681 static GlobalProperty compat[] = {
4682 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4683 };
4684
4685 spapr_machine_2_6_class_options(mc);
4686 smc->use_ohci_by_default = true;
4687 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4688 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4689 }
4690
4691 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4692
4693 /*
4694 * pseries-2.4
4695 */
4696
4697 static void spapr_machine_2_4_class_options(MachineClass *mc)
4698 {
4699 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700
4701 spapr_machine_2_5_class_options(mc);
4702 smc->dr_lmb_enabled = false;
4703 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4704 }
4705
4706 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4707
4708 /*
4709 * pseries-2.3
4710 */
4711
4712 static void spapr_machine_2_3_class_options(MachineClass *mc)
4713 {
4714 static GlobalProperty compat[] = {
4715 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4716 };
4717 spapr_machine_2_4_class_options(mc);
4718 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4719 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4720 }
4721 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4722
4723 /*
4724 * pseries-2.2
4725 */
4726
4727 static void spapr_machine_2_2_class_options(MachineClass *mc)
4728 {
4729 static GlobalProperty compat[] = {
4730 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4731 };
4732
4733 spapr_machine_2_3_class_options(mc);
4734 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4735 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4736 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4737 }
4738 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4739
4740 /*
4741 * pseries-2.1
4742 */
4743
4744 static void spapr_machine_2_1_class_options(MachineClass *mc)
4745 {
4746 spapr_machine_2_2_class_options(mc);
4747 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4748 }
4749 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4750
4751 static void spapr_machine_register_types(void)
4752 {
4753 type_register_static(&spapr_machine_info);
4754 }
4755
4756 type_init(spapr_machine_register_types)