]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge tag 'linux-user-fcntl64-pull-request' of https://github.com/hdeller/qemu-hppa...
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90
91 #include "monitor/monitor.h"
92
93 #include <libfdt.h>
94
95 /* SLOF memory layout:
96 *
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
99 *
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
102 *
103 * We load our kernel at 4M, leaving space for SLOF initial image
104 */
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
111
112 #define MIN_RMA_SLOF (128 * MiB)
113
114 #define PHANDLE_INTC 0x00001111
115
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
119 */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
124
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
131 {
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
141 */
142 return false;
143 }
144
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 .name = "icp/server",
147 .version_id = 1,
148 .minimum_version_id = 1,
149 .needed = pre_2_10_vmstate_dummy_icp_needed,
150 .fields = (VMStateField[]) {
151 VMSTATE_UNUSED(4), /* uint32_t xirr */
152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153 VMSTATE_UNUSED(1), /* uint8_t mfrr */
154 VMSTATE_END_OF_LIST()
155 },
156 };
157
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167 (void *)(uintptr_t) i);
168 }
169
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172 MachineState *ms = MACHINE(spapr);
173
174 assert(spapr->vsmt);
175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179 int smt_threads)
180 {
181 int i, ret = 0;
182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184 int index = spapr_get_vcpu_id(cpu);
185
186 if (cpu->compat_pvr) {
187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188 if (ret < 0) {
189 return ret;
190 }
191 }
192
193 /* Build interrupt servers and gservers properties */
194 for (i = 0; i < smt_threads; i++) {
195 servers_prop[i] = cpu_to_be32(index + i);
196 /* Hack, direct the group queues back to cpu 0 */
197 gservers_prop[i*2] = cpu_to_be32(index + i);
198 gservers_prop[i*2 + 1] = 0;
199 }
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201 servers_prop, sizeof(*servers_prop) * smt_threads);
202 if (ret < 0) {
203 return ret;
204 }
205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207
208 return ret;
209 }
210
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212 PowerPCCPU *cpu,
213 void *fdt, int offset)
214 {
215 uint8_t pa_features_206[] = { 6, 0,
216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217 uint8_t pa_features_207[] = { 24, 0,
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222 uint8_t pa_features_300[] = { 66, 0,
223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226 /* 6: DS207 */
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228 /* 16: Vector */
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238 /* 42: PM, 44: PC RA, 46: SC vec'd */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240 /* 48: SIMD, 50: QP BFP, 52: String */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242 /* 54: DecFP, 56: DecI, 58: SHA */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244 /* 60: NM atomic, 62: RNG */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246 };
247 uint8_t *pa_features = NULL;
248 size_t pa_size;
249
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_206;
252 pa_size = sizeof(pa_features_206);
253 }
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_207;
256 pa_size = sizeof(pa_features_207);
257 }
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_300;
260 pa_size = sizeof(pa_features_300);
261 }
262 if (!pa_features) {
263 return;
264 }
265
266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267 /*
268 * Note: we keep CI large pages off by default because a 64K capable
269 * guest provisioned with large pages might otherwise try to map a qemu
270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271 * even if that qemu runs on a 4k host.
272 * We dd this bit back here if we are confident this is not an issue
273 */
274 pa_features[3] |= 0x20;
275 }
276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277 pa_features[24] |= 0x80; /* Transactional memory support */
278 }
279 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280 /* Workaround for broken kernels that attempt (guest) radix
281 * mode when they can't handle it, if they see the radix bit set
282 * in pa-features. So hide it from them. */
283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 }
285
286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291 if (machine->numa_state->num_nodes) {
292 int i;
293 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294 if (machine->numa_state->nodes[i].node_mem) {
295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296 machine->ram_size);
297 }
298 }
299 }
300 return machine->ram_size;
301 }
302
303 static void add_str(GString *s, const gchar *s1)
304 {
305 g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309 hwaddr start, hwaddr size)
310 {
311 char mem_name[32];
312 uint64_t mem_reg_property[2];
313 int off;
314
315 mem_reg_property[0] = cpu_to_be64(start);
316 mem_reg_property[1] = cpu_to_be64(size);
317
318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319 off = fdt_add_subnode(fdt, 0, mem_name);
320 _FDT(off);
321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323 sizeof(mem_reg_property))));
324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325 return off;
326 }
327
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330 MemoryDeviceInfoList *info;
331
332 for (info = list; info; info = info->next) {
333 MemoryDeviceInfo *value = info->value;
334
335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337
338 if (addr >= pcdimm_info->addr &&
339 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340 return pcdimm_info->node;
341 }
342 }
343 }
344
345 return -1;
346 }
347
348 struct sPAPRDrconfCellV2 {
349 uint32_t seq_lmbs;
350 uint64_t base_addr;
351 uint32_t drc_index;
352 uint32_t aa_index;
353 uint32_t flags;
354 } QEMU_PACKED;
355
356 typedef struct DrconfCellQueue {
357 struct sPAPRDrconfCellV2 cell;
358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363 uint32_t drc_index, uint32_t aa_index,
364 uint32_t flags)
365 {
366 DrconfCellQueue *elem;
367
368 elem = g_malloc0(sizeof(*elem));
369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370 elem->cell.base_addr = cpu_to_be64(base_addr);
371 elem->cell.drc_index = cpu_to_be32(drc_index);
372 elem->cell.aa_index = cpu_to_be32(aa_index);
373 elem->cell.flags = cpu_to_be32(flags);
374
375 return elem;
376 }
377
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379 int offset, MemoryDeviceInfoList *dimms)
380 {
381 MachineState *machine = MACHINE(spapr);
382 uint8_t *int_buf, *cur_index;
383 int ret;
384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385 uint64_t addr, cur_addr, size;
386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387 uint64_t mem_end = machine->device_memory->base +
388 memory_region_size(&machine->device_memory->mr);
389 uint32_t node, buf_len, nr_entries = 0;
390 SpaprDrc *drc;
391 DrconfCellQueue *elem, *next;
392 MemoryDeviceInfoList *info;
393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395
396 /* Entry to cover RAM and the gap area */
397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398 SPAPR_LMB_FLAGS_RESERVED |
399 SPAPR_LMB_FLAGS_DRC_INVALID);
400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401 nr_entries++;
402
403 cur_addr = machine->device_memory->base;
404 for (info = dimms; info; info = info->next) {
405 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406
407 addr = di->addr;
408 size = di->size;
409 node = di->node;
410
411 /*
412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413 * area is marked hotpluggable in the next iteration for the bigger
414 * chunk including the NVDIMM occupied area.
415 */
416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417 continue;
418
419 /* Entry for hot-pluggable area */
420 if (cur_addr < addr) {
421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422 g_assert(drc);
423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424 cur_addr, spapr_drc_index(drc), -1, 0);
425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426 nr_entries++;
427 }
428
429 /* Entry for DIMM */
430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431 g_assert(drc);
432 elem = spapr_get_drconf_cell(size / lmb_size, addr,
433 spapr_drc_index(drc), node,
434 (SPAPR_LMB_FLAGS_ASSIGNED |
435 SPAPR_LMB_FLAGS_HOTREMOVABLE));
436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437 nr_entries++;
438 cur_addr = addr + size;
439 }
440
441 /* Entry for remaining hotpluggable area */
442 if (cur_addr < mem_end) {
443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444 g_assert(drc);
445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446 cur_addr, spapr_drc_index(drc), -1, 0);
447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448 nr_entries++;
449 }
450
451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452 int_buf = cur_index = g_malloc0(buf_len);
453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454 cur_index += sizeof(nr_entries);
455
456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458 cur_index += sizeof(elem->cell);
459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460 g_free(elem);
461 }
462
463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464 g_free(int_buf);
465 if (ret < 0) {
466 return -1;
467 }
468 return 0;
469 }
470
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472 int offset, MemoryDeviceInfoList *dimms)
473 {
474 MachineState *machine = MACHINE(spapr);
475 int i, ret;
476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478 uint32_t nr_lmbs = (machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr)) /
480 lmb_size;
481 uint32_t *int_buf, *cur_index, buf_len;
482
483 /*
484 * Allocate enough buffer size to fit in ibm,dynamic-memory
485 */
486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487 cur_index = int_buf = g_malloc0(buf_len);
488 int_buf[0] = cpu_to_be32(nr_lmbs);
489 cur_index++;
490 for (i = 0; i < nr_lmbs; i++) {
491 uint64_t addr = i * lmb_size;
492 uint32_t *dynamic_memory = cur_index;
493
494 if (i >= device_lmb_start) {
495 SpaprDrc *drc;
496
497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498 g_assert(drc);
499
500 dynamic_memory[0] = cpu_to_be32(addr >> 32);
501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505 if (memory_region_present(get_system_memory(), addr)) {
506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507 } else {
508 dynamic_memory[5] = cpu_to_be32(0);
509 }
510 } else {
511 /*
512 * LMB information for RMA, boot time RAM and gap b/n RAM and
513 * device memory region -- all these are marked as reserved
514 * and as having no valid DRC.
515 */
516 dynamic_memory[0] = cpu_to_be32(addr >> 32);
517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518 dynamic_memory[2] = cpu_to_be32(0);
519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520 dynamic_memory[4] = cpu_to_be32(-1);
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522 SPAPR_LMB_FLAGS_DRC_INVALID);
523 }
524
525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526 }
527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528 g_free(int_buf);
529 if (ret < 0) {
530 return -1;
531 }
532 return 0;
533 }
534
535 /*
536 * Adds ibm,dynamic-reconfiguration-memory node.
537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538 * of this device tree node.
539 */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541 void *fdt)
542 {
543 MachineState *machine = MACHINE(spapr);
544 int ret, offset;
545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547 cpu_to_be32(lmb_size & 0xffffffff)};
548 MemoryDeviceInfoList *dimms = NULL;
549
550 /*
551 * Don't create the node if there is no device memory
552 */
553 if (machine->ram_size == machine->maxram_size) {
554 return 0;
555 }
556
557 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
558
559 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
560 sizeof(prop_lmb_size));
561 if (ret < 0) {
562 return ret;
563 }
564
565 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
566 if (ret < 0) {
567 return ret;
568 }
569
570 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
571 if (ret < 0) {
572 return ret;
573 }
574
575 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
576 dimms = qmp_memory_device_list();
577 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
578 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
579 } else {
580 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
581 }
582 qapi_free_MemoryDeviceInfoList(dimms);
583
584 if (ret < 0) {
585 return ret;
586 }
587
588 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
589
590 return ret;
591 }
592
593 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
594 {
595 MachineState *machine = MACHINE(spapr);
596 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
597 hwaddr mem_start, node_size;
598 int i, nb_nodes = machine->numa_state->num_nodes;
599 NodeInfo *nodes = machine->numa_state->nodes;
600
601 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
602 if (!nodes[i].node_mem) {
603 continue;
604 }
605 if (mem_start >= machine->ram_size) {
606 node_size = 0;
607 } else {
608 node_size = nodes[i].node_mem;
609 if (node_size > machine->ram_size - mem_start) {
610 node_size = machine->ram_size - mem_start;
611 }
612 }
613 if (!mem_start) {
614 /* spapr_machine_init() checks for rma_size <= node0_size
615 * already */
616 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
617 mem_start += spapr->rma_size;
618 node_size -= spapr->rma_size;
619 }
620 for ( ; node_size; ) {
621 hwaddr sizetmp = pow2floor(node_size);
622
623 /* mem_start != 0 here */
624 if (ctzl(mem_start) < ctzl(sizetmp)) {
625 sizetmp = 1ULL << ctzl(mem_start);
626 }
627
628 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
629 node_size -= sizetmp;
630 mem_start += sizetmp;
631 }
632 }
633
634 /* Generate ibm,dynamic-reconfiguration-memory node if required */
635 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
636 int ret;
637
638 g_assert(smc->dr_lmb_enabled);
639 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
640 if (ret) {
641 return ret;
642 }
643 }
644
645 return 0;
646 }
647
648 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
649 SpaprMachineState *spapr)
650 {
651 MachineState *ms = MACHINE(spapr);
652 PowerPCCPU *cpu = POWERPC_CPU(cs);
653 CPUPPCState *env = &cpu->env;
654 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
655 int index = spapr_get_vcpu_id(cpu);
656 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
657 0xffffffff, 0xffffffff};
658 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
659 : SPAPR_TIMEBASE_FREQ;
660 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
661 uint32_t page_sizes_prop[64];
662 size_t page_sizes_prop_size;
663 unsigned int smp_threads = ms->smp.threads;
664 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
665 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
666 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
667 SpaprDrc *drc;
668 int drc_index;
669 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
670 int i;
671
672 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
673 if (drc) {
674 drc_index = spapr_drc_index(drc);
675 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
676 }
677
678 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
679 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
680
681 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
685 env->dcache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
687 env->icache_line_size)));
688 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
689 env->icache_line_size)));
690
691 if (pcc->l1_dcache_size) {
692 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
693 pcc->l1_dcache_size)));
694 } else {
695 warn_report("Unknown L1 dcache size for cpu");
696 }
697 if (pcc->l1_icache_size) {
698 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
699 pcc->l1_icache_size)));
700 } else {
701 warn_report("Unknown L1 icache size for cpu");
702 }
703
704 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
705 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
706 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
707 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
708 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
709 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
710
711 if (ppc_has_spr(cpu, SPR_PURR)) {
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
713 }
714 if (ppc_has_spr(cpu, SPR_PURR)) {
715 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
716 }
717
718 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
719 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
720 segs, sizeof(segs))));
721 }
722
723 /* Advertise VSX (vector extensions) if available
724 * 1 == VMX / Altivec available
725 * 2 == VSX available
726 *
727 * Only CPUs for which we create core types in spapr_cpu_core.c
728 * are possible, and all of those have VMX */
729 if (env->insns_flags & PPC_ALTIVEC) {
730 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
732 } else {
733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
734 }
735 }
736
737 /* Advertise DFP (Decimal Floating Point) if available
738 * 0 / no property == no DFP
739 * 1 == DFP available */
740 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
742 }
743
744 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
745 sizeof(page_sizes_prop));
746 if (page_sizes_prop_size) {
747 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
748 page_sizes_prop, page_sizes_prop_size)));
749 }
750
751 spapr_dt_pa_features(spapr, cpu, fdt, offset);
752
753 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
754 cs->cpu_index / vcpus_per_socket)));
755
756 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
757 pft_size_prop, sizeof(pft_size_prop))));
758
759 if (ms->numa_state->num_nodes > 1) {
760 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
761 }
762
763 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
764
765 if (pcc->radix_page_info) {
766 for (i = 0; i < pcc->radix_page_info->count; i++) {
767 radix_AP_encodings[i] =
768 cpu_to_be32(pcc->radix_page_info->entries[i]);
769 }
770 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
771 radix_AP_encodings,
772 pcc->radix_page_info->count *
773 sizeof(radix_AP_encodings[0]))));
774 }
775
776 /*
777 * We set this property to let the guest know that it can use the large
778 * decrementer and its width in bits.
779 */
780 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
781 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
782 pcc->lrg_decr_bits)));
783 }
784
785 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
786 {
787 CPUState **rev;
788 CPUState *cs;
789 int n_cpus;
790 int cpus_offset;
791 int i;
792
793 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
794 _FDT(cpus_offset);
795 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
796 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
797
798 /*
799 * We walk the CPUs in reverse order to ensure that CPU DT nodes
800 * created by fdt_add_subnode() end up in the right order in FDT
801 * for the guest kernel the enumerate the CPUs correctly.
802 *
803 * The CPU list cannot be traversed in reverse order, so we need
804 * to do extra work.
805 */
806 n_cpus = 0;
807 rev = NULL;
808 CPU_FOREACH(cs) {
809 rev = g_renew(CPUState *, rev, n_cpus + 1);
810 rev[n_cpus++] = cs;
811 }
812
813 for (i = n_cpus - 1; i >= 0; i--) {
814 CPUState *cs = rev[i];
815 PowerPCCPU *cpu = POWERPC_CPU(cs);
816 int index = spapr_get_vcpu_id(cpu);
817 DeviceClass *dc = DEVICE_GET_CLASS(cs);
818 g_autofree char *nodename = NULL;
819 int offset;
820
821 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
822 continue;
823 }
824
825 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
826 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
827 _FDT(offset);
828 spapr_dt_cpu(cs, fdt, offset, spapr);
829 }
830
831 g_free(rev);
832 }
833
834 static int spapr_dt_rng(void *fdt)
835 {
836 int node;
837 int ret;
838
839 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
840 if (node <= 0) {
841 return -1;
842 }
843 ret = fdt_setprop_string(fdt, node, "device_type",
844 "ibm,platform-facilities");
845 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
846 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
847
848 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
849 if (node <= 0) {
850 return -1;
851 }
852 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
853
854 return ret ? -1 : 0;
855 }
856
857 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
858 {
859 MachineState *ms = MACHINE(spapr);
860 int rtas;
861 GString *hypertas = g_string_sized_new(256);
862 GString *qemu_hypertas = g_string_sized_new(256);
863 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
864 memory_region_size(&MACHINE(spapr)->device_memory->mr);
865 uint32_t lrdr_capacity[] = {
866 cpu_to_be32(max_device_addr >> 32),
867 cpu_to_be32(max_device_addr & 0xffffffff),
868 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
869 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
870 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
871 };
872
873 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
874
875 /* hypertas */
876 add_str(hypertas, "hcall-pft");
877 add_str(hypertas, "hcall-term");
878 add_str(hypertas, "hcall-dabr");
879 add_str(hypertas, "hcall-interrupt");
880 add_str(hypertas, "hcall-tce");
881 add_str(hypertas, "hcall-vio");
882 add_str(hypertas, "hcall-splpar");
883 add_str(hypertas, "hcall-join");
884 add_str(hypertas, "hcall-bulk");
885 add_str(hypertas, "hcall-set-mode");
886 add_str(hypertas, "hcall-sprg0");
887 add_str(hypertas, "hcall-copy");
888 add_str(hypertas, "hcall-debug");
889 add_str(hypertas, "hcall-vphn");
890 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
891 add_str(hypertas, "hcall-rpt-invalidate");
892 }
893
894 add_str(qemu_hypertas, "hcall-memop1");
895
896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897 add_str(hypertas, "hcall-multi-tce");
898 }
899
900 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
901 add_str(hypertas, "hcall-hpt-resize");
902 }
903
904 add_str(hypertas, "hcall-watchdog");
905
906 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
907 hypertas->str, hypertas->len));
908 g_string_free(hypertas, TRUE);
909 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
910 qemu_hypertas->str, qemu_hypertas->len));
911 g_string_free(qemu_hypertas, TRUE);
912
913 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
914
915 /*
916 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
917 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
918 *
919 * The system reset requirements are driven by existing Linux and PowerVM
920 * implementation which (contrary to PAPR) saves r3 in the error log
921 * structure like machine check, so Linux expects to find the saved r3
922 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
923 * does not look at the error value).
924 *
925 * System reset interrupts are not subject to interlock like machine
926 * check, so this memory area could be corrupted if the sreset is
927 * interrupted by a machine check (or vice versa) if it was shared. To
928 * prevent this, system reset uses per-CPU areas for the sreset save
929 * area. A system reset that interrupts a system reset handler could
930 * still overwrite this area, but Linux doesn't try to recover in that
931 * case anyway.
932 *
933 * The extra 8 bytes is required because Linux's FWNMI error log check
934 * is off-by-one.
935 *
936 * RTAS_MIN_SIZE is required for the RTAS blob itself.
937 */
938 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
939 RTAS_ERROR_LOG_MAX +
940 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
941 sizeof(uint64_t)));
942 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
943 RTAS_ERROR_LOG_MAX));
944 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
945 RTAS_EVENT_SCAN_RATE));
946
947 g_assert(msi_nonbroken);
948 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
949
950 /*
951 * According to PAPR, rtas ibm,os-term does not guarantee a return
952 * back to the guest cpu.
953 *
954 * While an additional ibm,extended-os-term property indicates
955 * that rtas call return will always occur. Set this property.
956 */
957 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
958
959 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
960 lrdr_capacity, sizeof(lrdr_capacity)));
961
962 spapr_dt_rtas_tokens(fdt, rtas);
963 }
964
965 /*
966 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
967 * and the XIVE features that the guest may request and thus the valid
968 * values for bytes 23..26 of option vector 5:
969 */
970 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
971 int chosen)
972 {
973 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
974
975 char val[2 * 4] = {
976 23, 0x00, /* XICS / XIVE mode */
977 24, 0x00, /* Hash/Radix, filled in below. */
978 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
979 26, 0x40, /* Radix options: GTSE == yes. */
980 };
981
982 if (spapr->irq->xics && spapr->irq->xive) {
983 val[1] = SPAPR_OV5_XIVE_BOTH;
984 } else if (spapr->irq->xive) {
985 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
986 } else {
987 assert(spapr->irq->xics);
988 val[1] = SPAPR_OV5_XIVE_LEGACY;
989 }
990
991 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
992 first_ppc_cpu->compat_pvr)) {
993 /*
994 * If we're in a pre POWER9 compat mode then the guest should
995 * do hash and use the legacy interrupt mode
996 */
997 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
998 val[3] = 0x00; /* Hash */
999 spapr_check_mmu_mode(false);
1000 } else if (kvm_enabled()) {
1001 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1002 val[3] = 0x80; /* OV5_MMU_BOTH */
1003 } else if (kvmppc_has_cap_mmu_radix()) {
1004 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1005 } else {
1006 val[3] = 0x00; /* Hash */
1007 }
1008 } else {
1009 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1010 val[3] = 0xC0;
1011 }
1012 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1013 val, sizeof(val)));
1014 }
1015
1016 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1017 {
1018 MachineState *machine = MACHINE(spapr);
1019 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1020 uint8_t rng_seed[32];
1021 int chosen;
1022
1023 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1024
1025 if (reset) {
1026 const char *boot_device = spapr->boot_device;
1027 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1028 size_t cb = 0;
1029 g_autofree char *bootlist = get_boot_devices_list(&cb);
1030
1031 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1032 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1033 machine->kernel_cmdline));
1034 }
1035
1036 if (spapr->initrd_size) {
1037 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1038 spapr->initrd_base));
1039 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1040 spapr->initrd_base + spapr->initrd_size));
1041 }
1042
1043 if (spapr->kernel_size) {
1044 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1045 cpu_to_be64(spapr->kernel_size) };
1046
1047 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1048 &kprop, sizeof(kprop)));
1049 if (spapr->kernel_le) {
1050 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1051 }
1052 }
1053 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1054 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1055 }
1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1057 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1058 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1059
1060 if (cb && bootlist) {
1061 int i;
1062
1063 for (i = 0; i < cb; i++) {
1064 if (bootlist[i] == '\n') {
1065 bootlist[i] = ' ';
1066 }
1067 }
1068 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1069 }
1070
1071 if (boot_device && strlen(boot_device)) {
1072 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1073 }
1074
1075 if (spapr->want_stdout_path && stdout_path) {
1076 /*
1077 * "linux,stdout-path" and "stdout" properties are
1078 * deprecated by linux kernel. New platforms should only
1079 * use the "stdout-path" property. Set the new property
1080 * and continue using older property to remain compatible
1081 * with the existing firmware.
1082 */
1083 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1084 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1085 }
1086
1087 /*
1088 * We can deal with BAR reallocation just fine, advertise it
1089 * to the guest
1090 */
1091 if (smc->linux_pci_probe) {
1092 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1093 }
1094
1095 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1096 }
1097
1098 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1099 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1100
1101 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1102 }
1103
1104 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1105 {
1106 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1107 * KVM to work under pHyp with some guest co-operation */
1108 int hypervisor;
1109 uint8_t hypercall[16];
1110
1111 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1112 /* indicate KVM hypercall interface */
1113 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1114 if (kvmppc_has_cap_fixup_hcalls()) {
1115 /*
1116 * Older KVM versions with older guest kernels were broken
1117 * with the magic page, don't allow the guest to map it.
1118 */
1119 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1120 sizeof(hypercall))) {
1121 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1122 hypercall, sizeof(hypercall)));
1123 }
1124 }
1125 }
1126
1127 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1128 {
1129 MachineState *machine = MACHINE(spapr);
1130 MachineClass *mc = MACHINE_GET_CLASS(machine);
1131 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1132 uint32_t root_drc_type_mask = 0;
1133 int ret;
1134 void *fdt;
1135 SpaprPhbState *phb;
1136 char *buf;
1137
1138 fdt = g_malloc0(space);
1139 _FDT((fdt_create_empty_tree(fdt, space)));
1140
1141 /* Root node */
1142 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1143 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1144 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1145
1146 /* Guest UUID & Name*/
1147 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1148 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1149 if (qemu_uuid_set) {
1150 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1151 }
1152 g_free(buf);
1153
1154 if (qemu_get_vm_name()) {
1155 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1156 qemu_get_vm_name()));
1157 }
1158
1159 /* Host Model & Serial Number */
1160 if (spapr->host_model) {
1161 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1162 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1163 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1164 g_free(buf);
1165 }
1166
1167 if (spapr->host_serial) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1169 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1170 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1171 g_free(buf);
1172 }
1173
1174 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1175 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1176
1177 /* /interrupt controller */
1178 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1179
1180 ret = spapr_dt_memory(spapr, fdt);
1181 if (ret < 0) {
1182 error_report("couldn't setup memory nodes in fdt");
1183 exit(1);
1184 }
1185
1186 /* /vdevice */
1187 spapr_dt_vdevice(spapr->vio_bus, fdt);
1188
1189 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1190 ret = spapr_dt_rng(fdt);
1191 if (ret < 0) {
1192 error_report("could not set up rng device in the fdt");
1193 exit(1);
1194 }
1195 }
1196
1197 QLIST_FOREACH(phb, &spapr->phbs, list) {
1198 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1199 if (ret < 0) {
1200 error_report("couldn't setup PCI devices in fdt");
1201 exit(1);
1202 }
1203 }
1204
1205 spapr_dt_cpus(fdt, spapr);
1206
1207 /* ibm,drc-indexes and friends */
1208 if (smc->dr_lmb_enabled) {
1209 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1210 }
1211 if (smc->dr_phb_enabled) {
1212 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1213 }
1214 if (mc->nvdimm_supported) {
1215 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1216 }
1217 if (root_drc_type_mask) {
1218 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1219 }
1220
1221 if (mc->has_hotpluggable_cpus) {
1222 int offset = fdt_path_offset(fdt, "/cpus");
1223 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1224 if (ret < 0) {
1225 error_report("Couldn't set up CPU DR device tree properties");
1226 exit(1);
1227 }
1228 }
1229
1230 /* /event-sources */
1231 spapr_dt_events(spapr, fdt);
1232
1233 /* /rtas */
1234 spapr_dt_rtas(spapr, fdt);
1235
1236 /* /chosen */
1237 spapr_dt_chosen(spapr, fdt, reset);
1238
1239 /* /hypervisor */
1240 if (kvm_enabled()) {
1241 spapr_dt_hypervisor(spapr, fdt);
1242 }
1243
1244 /* Build memory reserve map */
1245 if (reset) {
1246 if (spapr->kernel_size) {
1247 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1248 spapr->kernel_size)));
1249 }
1250 if (spapr->initrd_size) {
1251 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1252 spapr->initrd_size)));
1253 }
1254 }
1255
1256 /* NVDIMM devices */
1257 if (mc->nvdimm_supported) {
1258 spapr_dt_persistent_memory(spapr, fdt);
1259 }
1260
1261 return fdt;
1262 }
1263
1264 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1265 {
1266 SpaprMachineState *spapr = opaque;
1267
1268 return (addr & 0x0fffffff) + spapr->kernel_addr;
1269 }
1270
1271 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1272 PowerPCCPU *cpu)
1273 {
1274 CPUPPCState *env = &cpu->env;
1275
1276 /* The TCG path should also be holding the BQL at this point */
1277 g_assert(qemu_mutex_iothread_locked());
1278
1279 g_assert(!vhyp_cpu_in_nested(cpu));
1280
1281 if (FIELD_EX64(env->msr, MSR, PR)) {
1282 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1283 env->gpr[3] = H_PRIVILEGE;
1284 } else {
1285 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1286 }
1287 }
1288
1289 struct LPCRSyncState {
1290 target_ulong value;
1291 target_ulong mask;
1292 };
1293
1294 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1295 {
1296 struct LPCRSyncState *s = arg.host_ptr;
1297 PowerPCCPU *cpu = POWERPC_CPU(cs);
1298 CPUPPCState *env = &cpu->env;
1299 target_ulong lpcr;
1300
1301 cpu_synchronize_state(cs);
1302 lpcr = env->spr[SPR_LPCR];
1303 lpcr &= ~s->mask;
1304 lpcr |= s->value;
1305 ppc_store_lpcr(cpu, lpcr);
1306 }
1307
1308 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1309 {
1310 CPUState *cs;
1311 struct LPCRSyncState s = {
1312 .value = value,
1313 .mask = mask
1314 };
1315 CPU_FOREACH(cs) {
1316 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1317 }
1318 }
1319
1320 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1321 target_ulong lpid, ppc_v3_pate_t *entry)
1322 {
1323 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1324 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1325
1326 if (!spapr_cpu->in_nested) {
1327 assert(lpid == 0);
1328
1329 /* Copy PATE1:GR into PATE0:HR */
1330 entry->dw0 = spapr->patb_entry & PATE0_HR;
1331 entry->dw1 = spapr->patb_entry;
1332
1333 } else {
1334 uint64_t patb, pats;
1335
1336 assert(lpid != 0);
1337
1338 patb = spapr->nested_ptcr & PTCR_PATB;
1339 pats = spapr->nested_ptcr & PTCR_PATS;
1340
1341 /* Check if partition table is properly aligned */
1342 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1343 return false;
1344 }
1345
1346 /* Calculate number of entries */
1347 pats = 1ull << (pats + 12 - 4);
1348 if (pats <= lpid) {
1349 return false;
1350 }
1351
1352 /* Grab entry */
1353 patb += 16 * lpid;
1354 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1355 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1356 }
1357
1358 return true;
1359 }
1360
1361 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1362 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1363 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1364 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1365 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1366
1367 /*
1368 * Get the fd to access the kernel htab, re-opening it if necessary
1369 */
1370 static int get_htab_fd(SpaprMachineState *spapr)
1371 {
1372 Error *local_err = NULL;
1373
1374 if (spapr->htab_fd >= 0) {
1375 return spapr->htab_fd;
1376 }
1377
1378 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1379 if (spapr->htab_fd < 0) {
1380 error_report_err(local_err);
1381 }
1382
1383 return spapr->htab_fd;
1384 }
1385
1386 void close_htab_fd(SpaprMachineState *spapr)
1387 {
1388 if (spapr->htab_fd >= 0) {
1389 close(spapr->htab_fd);
1390 }
1391 spapr->htab_fd = -1;
1392 }
1393
1394 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1395 {
1396 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1397
1398 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1399 }
1400
1401 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1402 {
1403 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404
1405 assert(kvm_enabled());
1406
1407 if (!spapr->htab) {
1408 return 0;
1409 }
1410
1411 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1412 }
1413
1414 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1415 hwaddr ptex, int n)
1416 {
1417 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1418 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1419
1420 if (!spapr->htab) {
1421 /*
1422 * HTAB is controlled by KVM. Fetch into temporary buffer
1423 */
1424 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1425 kvmppc_read_hptes(hptes, ptex, n);
1426 return hptes;
1427 }
1428
1429 /*
1430 * HTAB is controlled by QEMU. Just point to the internally
1431 * accessible PTEG.
1432 */
1433 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1434 }
1435
1436 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1437 const ppc_hash_pte64_t *hptes,
1438 hwaddr ptex, int n)
1439 {
1440 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1441
1442 if (!spapr->htab) {
1443 g_free((void *)hptes);
1444 }
1445
1446 /* Nothing to do for qemu managed HPT */
1447 }
1448
1449 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1450 uint64_t pte0, uint64_t pte1)
1451 {
1452 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1453 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1454
1455 if (!spapr->htab) {
1456 kvmppc_write_hpte(ptex, pte0, pte1);
1457 } else {
1458 if (pte0 & HPTE64_V_VALID) {
1459 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1460 /*
1461 * When setting valid, we write PTE1 first. This ensures
1462 * proper synchronization with the reading code in
1463 * ppc_hash64_pteg_search()
1464 */
1465 smp_wmb();
1466 stq_p(spapr->htab + offset, pte0);
1467 } else {
1468 stq_p(spapr->htab + offset, pte0);
1469 /*
1470 * When clearing it we set PTE0 first. This ensures proper
1471 * synchronization with the reading code in
1472 * ppc_hash64_pteg_search()
1473 */
1474 smp_wmb();
1475 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1476 }
1477 }
1478 }
1479
1480 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1481 uint64_t pte1)
1482 {
1483 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1484 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1485
1486 if (!spapr->htab) {
1487 /* There should always be a hash table when this is called */
1488 error_report("spapr_hpte_set_c called with no hash table !");
1489 return;
1490 }
1491
1492 /* The HW performs a non-atomic byte update */
1493 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1494 }
1495
1496 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1497 uint64_t pte1)
1498 {
1499 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1500 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1501
1502 if (!spapr->htab) {
1503 /* There should always be a hash table when this is called */
1504 error_report("spapr_hpte_set_r called with no hash table !");
1505 return;
1506 }
1507
1508 /* The HW performs a non-atomic byte update */
1509 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1510 }
1511
1512 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1513 {
1514 int shift;
1515
1516 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1517 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1518 * that's much more than is needed for Linux guests */
1519 shift = ctz64(pow2ceil(ramsize)) - 7;
1520 shift = MAX(shift, 18); /* Minimum architected size */
1521 shift = MIN(shift, 46); /* Maximum architected size */
1522 return shift;
1523 }
1524
1525 void spapr_free_hpt(SpaprMachineState *spapr)
1526 {
1527 qemu_vfree(spapr->htab);
1528 spapr->htab = NULL;
1529 spapr->htab_shift = 0;
1530 close_htab_fd(spapr);
1531 }
1532
1533 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1534 {
1535 ERRP_GUARD();
1536 long rc;
1537
1538 /* Clean up any HPT info from a previous boot */
1539 spapr_free_hpt(spapr);
1540
1541 rc = kvmppc_reset_htab(shift);
1542
1543 if (rc == -EOPNOTSUPP) {
1544 error_setg(errp, "HPT not supported in nested guests");
1545 return -EOPNOTSUPP;
1546 }
1547
1548 if (rc < 0) {
1549 /* kernel-side HPT needed, but couldn't allocate one */
1550 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1551 shift);
1552 error_append_hint(errp, "Try smaller maxmem?\n");
1553 return -errno;
1554 } else if (rc > 0) {
1555 /* kernel-side HPT allocated */
1556 if (rc != shift) {
1557 error_setg(errp,
1558 "Requested order %d HPT, but kernel allocated order %ld",
1559 shift, rc);
1560 error_append_hint(errp, "Try smaller maxmem?\n");
1561 return -ENOSPC;
1562 }
1563
1564 spapr->htab_shift = shift;
1565 spapr->htab = NULL;
1566 } else {
1567 /* kernel-side HPT not needed, allocate in userspace instead */
1568 size_t size = 1ULL << shift;
1569 int i;
1570
1571 spapr->htab = qemu_memalign(size, size);
1572 memset(spapr->htab, 0, size);
1573 spapr->htab_shift = shift;
1574
1575 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1576 DIRTY_HPTE(HPTE(spapr->htab, i));
1577 }
1578 }
1579 /* We're setting up a hash table, so that means we're not radix */
1580 spapr->patb_entry = 0;
1581 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1582 return 0;
1583 }
1584
1585 void spapr_setup_hpt(SpaprMachineState *spapr)
1586 {
1587 int hpt_shift;
1588
1589 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1590 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1591 } else {
1592 uint64_t current_ram_size;
1593
1594 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1595 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1596 }
1597 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1598
1599 if (kvm_enabled()) {
1600 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1601
1602 /* Check our RMA fits in the possible VRMA */
1603 if (vrma_limit < spapr->rma_size) {
1604 error_report("Unable to create %" HWADDR_PRIu
1605 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1606 spapr->rma_size / MiB, vrma_limit / MiB);
1607 exit(EXIT_FAILURE);
1608 }
1609 }
1610 }
1611
1612 void spapr_check_mmu_mode(bool guest_radix)
1613 {
1614 if (guest_radix) {
1615 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1616 error_report("Guest requested unavailable MMU mode (radix).");
1617 exit(EXIT_FAILURE);
1618 }
1619 } else {
1620 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1621 && !kvmppc_has_cap_mmu_hash_v3()) {
1622 error_report("Guest requested unavailable MMU mode (hash).");
1623 exit(EXIT_FAILURE);
1624 }
1625 }
1626 }
1627
1628 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1629 {
1630 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1631 PowerPCCPU *first_ppc_cpu;
1632 hwaddr fdt_addr;
1633 void *fdt;
1634 int rc;
1635
1636 pef_kvm_reset(machine->cgs, &error_fatal);
1637 spapr_caps_apply(spapr);
1638
1639 first_ppc_cpu = POWERPC_CPU(first_cpu);
1640 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1641 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1642 spapr->max_compat_pvr)) {
1643 /*
1644 * If using KVM with radix mode available, VCPUs can be started
1645 * without a HPT because KVM will start them in radix mode.
1646 * Set the GR bit in PATE so that we know there is no HPT.
1647 */
1648 spapr->patb_entry = PATE1_GR;
1649 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1650 } else {
1651 spapr_setup_hpt(spapr);
1652 }
1653
1654 qemu_devices_reset(reason);
1655
1656 spapr_ovec_cleanup(spapr->ov5_cas);
1657 spapr->ov5_cas = spapr_ovec_new();
1658
1659 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1660
1661 /*
1662 * This is fixing some of the default configuration of the XIVE
1663 * devices. To be called after the reset of the machine devices.
1664 */
1665 spapr_irq_reset(spapr, &error_fatal);
1666
1667 /*
1668 * There is no CAS under qtest. Simulate one to please the code that
1669 * depends on spapr->ov5_cas. This is especially needed to test device
1670 * unplug, so we do that before resetting the DRCs.
1671 */
1672 if (qtest_enabled()) {
1673 spapr_ovec_cleanup(spapr->ov5_cas);
1674 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1675 }
1676
1677 spapr_nvdimm_finish_flushes();
1678
1679 /* DRC reset may cause a device to be unplugged. This will cause troubles
1680 * if this device is used by another device (eg, a running vhost backend
1681 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1682 * situations, we reset DRCs after all devices have been reset.
1683 */
1684 spapr_drc_reset_all(spapr);
1685
1686 spapr_clear_pending_events(spapr);
1687
1688 /*
1689 * We place the device tree just below either the top of the RMA,
1690 * or just below 2GB, whichever is lower, so that it can be
1691 * processed with 32-bit real mode code if necessary
1692 */
1693 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1694
1695 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1696 if (spapr->vof) {
1697 spapr_vof_reset(spapr, fdt, &error_fatal);
1698 /*
1699 * Do not pack the FDT as the client may change properties.
1700 * VOF client does not expect the FDT so we do not load it to the VM.
1701 */
1702 } else {
1703 rc = fdt_pack(fdt);
1704 /* Should only fail if we've built a corrupted tree */
1705 assert(rc == 0);
1706
1707 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1708 0, fdt_addr, 0);
1709 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1710 }
1711 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1712
1713 g_free(spapr->fdt_blob);
1714 spapr->fdt_size = fdt_totalsize(fdt);
1715 spapr->fdt_initial_size = spapr->fdt_size;
1716 spapr->fdt_blob = fdt;
1717
1718 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1719 machine->fdt = fdt;
1720
1721 /* Set up the entry state */
1722 first_ppc_cpu->env.gpr[5] = 0;
1723
1724 spapr->fwnmi_system_reset_addr = -1;
1725 spapr->fwnmi_machine_check_addr = -1;
1726 spapr->fwnmi_machine_check_interlock = -1;
1727
1728 /* Signal all vCPUs waiting on this condition */
1729 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1730
1731 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1732 }
1733
1734 static void spapr_create_nvram(SpaprMachineState *spapr)
1735 {
1736 DeviceState *dev = qdev_new("spapr-nvram");
1737 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1738
1739 if (dinfo) {
1740 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1741 &error_fatal);
1742 }
1743
1744 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1745
1746 spapr->nvram = (struct SpaprNvram *)dev;
1747 }
1748
1749 static void spapr_rtc_create(SpaprMachineState *spapr)
1750 {
1751 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1752 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1753 &error_fatal, NULL);
1754 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1755 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1756 "date");
1757 }
1758
1759 /* Returns whether we want to use VGA or not */
1760 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1761 {
1762 vga_interface_created = true;
1763 switch (vga_interface_type) {
1764 case VGA_NONE:
1765 return false;
1766 case VGA_DEVICE:
1767 return true;
1768 case VGA_STD:
1769 case VGA_VIRTIO:
1770 case VGA_CIRRUS:
1771 return pci_vga_init(pci_bus) != NULL;
1772 default:
1773 error_setg(errp,
1774 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1775 return false;
1776 }
1777 }
1778
1779 static int spapr_pre_load(void *opaque)
1780 {
1781 int rc;
1782
1783 rc = spapr_caps_pre_load(opaque);
1784 if (rc) {
1785 return rc;
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int spapr_post_load(void *opaque, int version_id)
1792 {
1793 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1794 int err = 0;
1795
1796 err = spapr_caps_post_migration(spapr);
1797 if (err) {
1798 return err;
1799 }
1800
1801 /*
1802 * In earlier versions, there was no separate qdev for the PAPR
1803 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1804 * So when migrating from those versions, poke the incoming offset
1805 * value into the RTC device
1806 */
1807 if (version_id < 3) {
1808 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1809 if (err) {
1810 return err;
1811 }
1812 }
1813
1814 if (kvm_enabled() && spapr->patb_entry) {
1815 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1816 bool radix = !!(spapr->patb_entry & PATE1_GR);
1817 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1818
1819 /*
1820 * Update LPCR:HR and UPRT as they may not be set properly in
1821 * the stream
1822 */
1823 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1824 LPCR_HR | LPCR_UPRT);
1825
1826 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1827 if (err) {
1828 error_report("Process table config unsupported by the host");
1829 return -EINVAL;
1830 }
1831 }
1832
1833 err = spapr_irq_post_load(spapr, version_id);
1834 if (err) {
1835 return err;
1836 }
1837
1838 return err;
1839 }
1840
1841 static int spapr_pre_save(void *opaque)
1842 {
1843 int rc;
1844
1845 rc = spapr_caps_pre_save(opaque);
1846 if (rc) {
1847 return rc;
1848 }
1849
1850 return 0;
1851 }
1852
1853 static bool version_before_3(void *opaque, int version_id)
1854 {
1855 return version_id < 3;
1856 }
1857
1858 static bool spapr_pending_events_needed(void *opaque)
1859 {
1860 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1861 return !QTAILQ_EMPTY(&spapr->pending_events);
1862 }
1863
1864 static const VMStateDescription vmstate_spapr_event_entry = {
1865 .name = "spapr_event_log_entry",
1866 .version_id = 1,
1867 .minimum_version_id = 1,
1868 .fields = (VMStateField[]) {
1869 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1870 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1871 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1872 NULL, extended_length),
1873 VMSTATE_END_OF_LIST()
1874 },
1875 };
1876
1877 static const VMStateDescription vmstate_spapr_pending_events = {
1878 .name = "spapr_pending_events",
1879 .version_id = 1,
1880 .minimum_version_id = 1,
1881 .needed = spapr_pending_events_needed,
1882 .fields = (VMStateField[]) {
1883 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1884 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1885 VMSTATE_END_OF_LIST()
1886 },
1887 };
1888
1889 static bool spapr_ov5_cas_needed(void *opaque)
1890 {
1891 SpaprMachineState *spapr = opaque;
1892 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1893 bool cas_needed;
1894
1895 /* Prior to the introduction of SpaprOptionVector, we had two option
1896 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1897 * Both of these options encode machine topology into the device-tree
1898 * in such a way that the now-booted OS should still be able to interact
1899 * appropriately with QEMU regardless of what options were actually
1900 * negotiatied on the source side.
1901 *
1902 * As such, we can avoid migrating the CAS-negotiated options if these
1903 * are the only options available on the current machine/platform.
1904 * Since these are the only options available for pseries-2.7 and
1905 * earlier, this allows us to maintain old->new/new->old migration
1906 * compatibility.
1907 *
1908 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1909 * via default pseries-2.8 machines and explicit command-line parameters.
1910 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1911 * of the actual CAS-negotiated values to continue working properly. For
1912 * example, availability of memory unplug depends on knowing whether
1913 * OV5_HP_EVT was negotiated via CAS.
1914 *
1915 * Thus, for any cases where the set of available CAS-negotiatable
1916 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1917 * include the CAS-negotiated options in the migration stream, unless
1918 * if they affect boot time behaviour only.
1919 */
1920 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1921 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1922 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1923
1924 /* We need extra information if we have any bits outside the mask
1925 * defined above */
1926 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1927
1928 spapr_ovec_cleanup(ov5_mask);
1929
1930 return cas_needed;
1931 }
1932
1933 static const VMStateDescription vmstate_spapr_ov5_cas = {
1934 .name = "spapr_option_vector_ov5_cas",
1935 .version_id = 1,
1936 .minimum_version_id = 1,
1937 .needed = spapr_ov5_cas_needed,
1938 .fields = (VMStateField[]) {
1939 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1940 vmstate_spapr_ovec, SpaprOptionVector),
1941 VMSTATE_END_OF_LIST()
1942 },
1943 };
1944
1945 static bool spapr_patb_entry_needed(void *opaque)
1946 {
1947 SpaprMachineState *spapr = opaque;
1948
1949 return !!spapr->patb_entry;
1950 }
1951
1952 static const VMStateDescription vmstate_spapr_patb_entry = {
1953 .name = "spapr_patb_entry",
1954 .version_id = 1,
1955 .minimum_version_id = 1,
1956 .needed = spapr_patb_entry_needed,
1957 .fields = (VMStateField[]) {
1958 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1959 VMSTATE_END_OF_LIST()
1960 },
1961 };
1962
1963 static bool spapr_irq_map_needed(void *opaque)
1964 {
1965 SpaprMachineState *spapr = opaque;
1966
1967 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1968 }
1969
1970 static const VMStateDescription vmstate_spapr_irq_map = {
1971 .name = "spapr_irq_map",
1972 .version_id = 1,
1973 .minimum_version_id = 1,
1974 .needed = spapr_irq_map_needed,
1975 .fields = (VMStateField[]) {
1976 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1977 VMSTATE_END_OF_LIST()
1978 },
1979 };
1980
1981 static bool spapr_dtb_needed(void *opaque)
1982 {
1983 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1984
1985 return smc->update_dt_enabled;
1986 }
1987
1988 static int spapr_dtb_pre_load(void *opaque)
1989 {
1990 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1991
1992 g_free(spapr->fdt_blob);
1993 spapr->fdt_blob = NULL;
1994 spapr->fdt_size = 0;
1995
1996 return 0;
1997 }
1998
1999 static const VMStateDescription vmstate_spapr_dtb = {
2000 .name = "spapr_dtb",
2001 .version_id = 1,
2002 .minimum_version_id = 1,
2003 .needed = spapr_dtb_needed,
2004 .pre_load = spapr_dtb_pre_load,
2005 .fields = (VMStateField[]) {
2006 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2007 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2008 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2009 fdt_size),
2010 VMSTATE_END_OF_LIST()
2011 },
2012 };
2013
2014 static bool spapr_fwnmi_needed(void *opaque)
2015 {
2016 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2017
2018 return spapr->fwnmi_machine_check_addr != -1;
2019 }
2020
2021 static int spapr_fwnmi_pre_save(void *opaque)
2022 {
2023 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2024
2025 /*
2026 * Check if machine check handling is in progress and print a
2027 * warning message.
2028 */
2029 if (spapr->fwnmi_machine_check_interlock != -1) {
2030 warn_report("A machine check is being handled during migration. The"
2031 "handler may run and log hardware error on the destination");
2032 }
2033
2034 return 0;
2035 }
2036
2037 static const VMStateDescription vmstate_spapr_fwnmi = {
2038 .name = "spapr_fwnmi",
2039 .version_id = 1,
2040 .minimum_version_id = 1,
2041 .needed = spapr_fwnmi_needed,
2042 .pre_save = spapr_fwnmi_pre_save,
2043 .fields = (VMStateField[]) {
2044 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2045 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2046 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2047 VMSTATE_END_OF_LIST()
2048 },
2049 };
2050
2051 static const VMStateDescription vmstate_spapr = {
2052 .name = "spapr",
2053 .version_id = 3,
2054 .minimum_version_id = 1,
2055 .pre_load = spapr_pre_load,
2056 .post_load = spapr_post_load,
2057 .pre_save = spapr_pre_save,
2058 .fields = (VMStateField[]) {
2059 /* used to be @next_irq */
2060 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2061
2062 /* RTC offset */
2063 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2064
2065 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2066 VMSTATE_END_OF_LIST()
2067 },
2068 .subsections = (const VMStateDescription*[]) {
2069 &vmstate_spapr_ov5_cas,
2070 &vmstate_spapr_patb_entry,
2071 &vmstate_spapr_pending_events,
2072 &vmstate_spapr_cap_htm,
2073 &vmstate_spapr_cap_vsx,
2074 &vmstate_spapr_cap_dfp,
2075 &vmstate_spapr_cap_cfpc,
2076 &vmstate_spapr_cap_sbbc,
2077 &vmstate_spapr_cap_ibs,
2078 &vmstate_spapr_cap_hpt_maxpagesize,
2079 &vmstate_spapr_irq_map,
2080 &vmstate_spapr_cap_nested_kvm_hv,
2081 &vmstate_spapr_dtb,
2082 &vmstate_spapr_cap_large_decr,
2083 &vmstate_spapr_cap_ccf_assist,
2084 &vmstate_spapr_cap_fwnmi,
2085 &vmstate_spapr_fwnmi,
2086 &vmstate_spapr_cap_rpt_invalidate,
2087 NULL
2088 }
2089 };
2090
2091 static int htab_save_setup(QEMUFile *f, void *opaque)
2092 {
2093 SpaprMachineState *spapr = opaque;
2094
2095 /* "Iteration" header */
2096 if (!spapr->htab_shift) {
2097 qemu_put_be32(f, -1);
2098 } else {
2099 qemu_put_be32(f, spapr->htab_shift);
2100 }
2101
2102 if (spapr->htab) {
2103 spapr->htab_save_index = 0;
2104 spapr->htab_first_pass = true;
2105 } else {
2106 if (spapr->htab_shift) {
2107 assert(kvm_enabled());
2108 }
2109 }
2110
2111
2112 return 0;
2113 }
2114
2115 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2116 int chunkstart, int n_valid, int n_invalid)
2117 {
2118 qemu_put_be32(f, chunkstart);
2119 qemu_put_be16(f, n_valid);
2120 qemu_put_be16(f, n_invalid);
2121 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2122 HASH_PTE_SIZE_64 * n_valid);
2123 }
2124
2125 static void htab_save_end_marker(QEMUFile *f)
2126 {
2127 qemu_put_be32(f, 0);
2128 qemu_put_be16(f, 0);
2129 qemu_put_be16(f, 0);
2130 }
2131
2132 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2133 int64_t max_ns)
2134 {
2135 bool has_timeout = max_ns != -1;
2136 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137 int index = spapr->htab_save_index;
2138 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2139
2140 assert(spapr->htab_first_pass);
2141
2142 do {
2143 int chunkstart;
2144
2145 /* Consume invalid HPTEs */
2146 while ((index < htabslots)
2147 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2148 CLEAN_HPTE(HPTE(spapr->htab, index));
2149 index++;
2150 }
2151
2152 /* Consume valid HPTEs */
2153 chunkstart = index;
2154 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2155 && HPTE_VALID(HPTE(spapr->htab, index))) {
2156 CLEAN_HPTE(HPTE(spapr->htab, index));
2157 index++;
2158 }
2159
2160 if (index > chunkstart) {
2161 int n_valid = index - chunkstart;
2162
2163 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2164
2165 if (has_timeout &&
2166 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2167 break;
2168 }
2169 }
2170 } while ((index < htabslots) && !migration_rate_exceeded(f));
2171
2172 if (index >= htabslots) {
2173 assert(index == htabslots);
2174 index = 0;
2175 spapr->htab_first_pass = false;
2176 }
2177 spapr->htab_save_index = index;
2178 }
2179
2180 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2181 int64_t max_ns)
2182 {
2183 bool final = max_ns < 0;
2184 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2185 int examined = 0, sent = 0;
2186 int index = spapr->htab_save_index;
2187 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2188
2189 assert(!spapr->htab_first_pass);
2190
2191 do {
2192 int chunkstart, invalidstart;
2193
2194 /* Consume non-dirty HPTEs */
2195 while ((index < htabslots)
2196 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2197 index++;
2198 examined++;
2199 }
2200
2201 chunkstart = index;
2202 /* Consume valid dirty HPTEs */
2203 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2204 && HPTE_DIRTY(HPTE(spapr->htab, index))
2205 && HPTE_VALID(HPTE(spapr->htab, index))) {
2206 CLEAN_HPTE(HPTE(spapr->htab, index));
2207 index++;
2208 examined++;
2209 }
2210
2211 invalidstart = index;
2212 /* Consume invalid dirty HPTEs */
2213 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2214 && HPTE_DIRTY(HPTE(spapr->htab, index))
2215 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2216 CLEAN_HPTE(HPTE(spapr->htab, index));
2217 index++;
2218 examined++;
2219 }
2220
2221 if (index > chunkstart) {
2222 int n_valid = invalidstart - chunkstart;
2223 int n_invalid = index - invalidstart;
2224
2225 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2226 sent += index - chunkstart;
2227
2228 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2229 break;
2230 }
2231 }
2232
2233 if (examined >= htabslots) {
2234 break;
2235 }
2236
2237 if (index >= htabslots) {
2238 assert(index == htabslots);
2239 index = 0;
2240 }
2241 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2242
2243 if (index >= htabslots) {
2244 assert(index == htabslots);
2245 index = 0;
2246 }
2247
2248 spapr->htab_save_index = index;
2249
2250 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2251 }
2252
2253 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2254 #define MAX_KVM_BUF_SIZE 2048
2255
2256 static int htab_save_iterate(QEMUFile *f, void *opaque)
2257 {
2258 SpaprMachineState *spapr = opaque;
2259 int fd;
2260 int rc = 0;
2261
2262 /* Iteration header */
2263 if (!spapr->htab_shift) {
2264 qemu_put_be32(f, -1);
2265 return 1;
2266 } else {
2267 qemu_put_be32(f, 0);
2268 }
2269
2270 if (!spapr->htab) {
2271 assert(kvm_enabled());
2272
2273 fd = get_htab_fd(spapr);
2274 if (fd < 0) {
2275 return fd;
2276 }
2277
2278 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2279 if (rc < 0) {
2280 return rc;
2281 }
2282 } else if (spapr->htab_first_pass) {
2283 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2284 } else {
2285 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2286 }
2287
2288 htab_save_end_marker(f);
2289
2290 return rc;
2291 }
2292
2293 static int htab_save_complete(QEMUFile *f, void *opaque)
2294 {
2295 SpaprMachineState *spapr = opaque;
2296 int fd;
2297
2298 /* Iteration header */
2299 if (!spapr->htab_shift) {
2300 qemu_put_be32(f, -1);
2301 return 0;
2302 } else {
2303 qemu_put_be32(f, 0);
2304 }
2305
2306 if (!spapr->htab) {
2307 int rc;
2308
2309 assert(kvm_enabled());
2310
2311 fd = get_htab_fd(spapr);
2312 if (fd < 0) {
2313 return fd;
2314 }
2315
2316 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2317 if (rc < 0) {
2318 return rc;
2319 }
2320 } else {
2321 if (spapr->htab_first_pass) {
2322 htab_save_first_pass(f, spapr, -1);
2323 }
2324 htab_save_later_pass(f, spapr, -1);
2325 }
2326
2327 /* End marker */
2328 htab_save_end_marker(f);
2329
2330 return 0;
2331 }
2332
2333 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2334 {
2335 SpaprMachineState *spapr = opaque;
2336 uint32_t section_hdr;
2337 int fd = -1;
2338 Error *local_err = NULL;
2339
2340 if (version_id < 1 || version_id > 1) {
2341 error_report("htab_load() bad version");
2342 return -EINVAL;
2343 }
2344
2345 section_hdr = qemu_get_be32(f);
2346
2347 if (section_hdr == -1) {
2348 spapr_free_hpt(spapr);
2349 return 0;
2350 }
2351
2352 if (section_hdr) {
2353 int ret;
2354
2355 /* First section gives the htab size */
2356 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2357 if (ret < 0) {
2358 error_report_err(local_err);
2359 return ret;
2360 }
2361 return 0;
2362 }
2363
2364 if (!spapr->htab) {
2365 assert(kvm_enabled());
2366
2367 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2368 if (fd < 0) {
2369 error_report_err(local_err);
2370 return fd;
2371 }
2372 }
2373
2374 while (true) {
2375 uint32_t index;
2376 uint16_t n_valid, n_invalid;
2377
2378 index = qemu_get_be32(f);
2379 n_valid = qemu_get_be16(f);
2380 n_invalid = qemu_get_be16(f);
2381
2382 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2383 /* End of Stream */
2384 break;
2385 }
2386
2387 if ((index + n_valid + n_invalid) >
2388 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2389 /* Bad index in stream */
2390 error_report(
2391 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2392 index, n_valid, n_invalid, spapr->htab_shift);
2393 return -EINVAL;
2394 }
2395
2396 if (spapr->htab) {
2397 if (n_valid) {
2398 qemu_get_buffer(f, HPTE(spapr->htab, index),
2399 HASH_PTE_SIZE_64 * n_valid);
2400 }
2401 if (n_invalid) {
2402 memset(HPTE(spapr->htab, index + n_valid), 0,
2403 HASH_PTE_SIZE_64 * n_invalid);
2404 }
2405 } else {
2406 int rc;
2407
2408 assert(fd >= 0);
2409
2410 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2411 &local_err);
2412 if (rc < 0) {
2413 error_report_err(local_err);
2414 return rc;
2415 }
2416 }
2417 }
2418
2419 if (!spapr->htab) {
2420 assert(fd >= 0);
2421 close(fd);
2422 }
2423
2424 return 0;
2425 }
2426
2427 static void htab_save_cleanup(void *opaque)
2428 {
2429 SpaprMachineState *spapr = opaque;
2430
2431 close_htab_fd(spapr);
2432 }
2433
2434 static SaveVMHandlers savevm_htab_handlers = {
2435 .save_setup = htab_save_setup,
2436 .save_live_iterate = htab_save_iterate,
2437 .save_live_complete_precopy = htab_save_complete,
2438 .save_cleanup = htab_save_cleanup,
2439 .load_state = htab_load,
2440 };
2441
2442 static void spapr_boot_set(void *opaque, const char *boot_device,
2443 Error **errp)
2444 {
2445 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2446
2447 g_free(spapr->boot_device);
2448 spapr->boot_device = g_strdup(boot_device);
2449 }
2450
2451 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2452 {
2453 MachineState *machine = MACHINE(spapr);
2454 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2455 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2456 int i;
2457
2458 for (i = 0; i < nr_lmbs; i++) {
2459 uint64_t addr;
2460
2461 addr = i * lmb_size + machine->device_memory->base;
2462 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2463 addr / lmb_size);
2464 }
2465 }
2466
2467 /*
2468 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2469 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2470 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2471 */
2472 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2473 {
2474 int i;
2475
2476 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2477 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2478 " is not aligned to %" PRIu64 " MiB",
2479 machine->ram_size,
2480 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481 return;
2482 }
2483
2484 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2485 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2486 " is not aligned to %" PRIu64 " MiB",
2487 machine->ram_size,
2488 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2489 return;
2490 }
2491
2492 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2493 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2494 error_setg(errp,
2495 "Node %d memory size 0x%" PRIx64
2496 " is not aligned to %" PRIu64 " MiB",
2497 i, machine->numa_state->nodes[i].node_mem,
2498 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2499 return;
2500 }
2501 }
2502 }
2503
2504 /* find cpu slot in machine->possible_cpus by core_id */
2505 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2506 {
2507 int index = id / ms->smp.threads;
2508
2509 if (index >= ms->possible_cpus->len) {
2510 return NULL;
2511 }
2512 if (idx) {
2513 *idx = index;
2514 }
2515 return &ms->possible_cpus->cpus[index];
2516 }
2517
2518 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2519 {
2520 MachineState *ms = MACHINE(spapr);
2521 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2522 Error *local_err = NULL;
2523 bool vsmt_user = !!spapr->vsmt;
2524 int kvm_smt = kvmppc_smt_threads();
2525 int ret;
2526 unsigned int smp_threads = ms->smp.threads;
2527
2528 if (tcg_enabled()) {
2529 if (smp_threads > 1 &&
2530 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2531 spapr->max_compat_pvr)) {
2532 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2533 return;
2534 }
2535
2536 if (smp_threads > 8) {
2537 error_setg(errp, "TCG cannot support more than 8 threads/core "
2538 "on a pseries machine");
2539 return;
2540 }
2541 }
2542 if (!is_power_of_2(smp_threads)) {
2543 error_setg(errp, "Cannot support %d threads/core on a pseries "
2544 "machine because it must be a power of 2", smp_threads);
2545 return;
2546 }
2547
2548 /* Detemine the VSMT mode to use: */
2549 if (vsmt_user) {
2550 if (spapr->vsmt < smp_threads) {
2551 error_setg(errp, "Cannot support VSMT mode %d"
2552 " because it must be >= threads/core (%d)",
2553 spapr->vsmt, smp_threads);
2554 return;
2555 }
2556 /* In this case, spapr->vsmt has been set by the command line */
2557 } else if (!smc->smp_threads_vsmt) {
2558 /*
2559 * Default VSMT value is tricky, because we need it to be as
2560 * consistent as possible (for migration), but this requires
2561 * changing it for at least some existing cases. We pick 8 as
2562 * the value that we'd get with KVM on POWER8, the
2563 * overwhelmingly common case in production systems.
2564 */
2565 spapr->vsmt = MAX(8, smp_threads);
2566 } else {
2567 spapr->vsmt = smp_threads;
2568 }
2569
2570 /* KVM: If necessary, set the SMT mode: */
2571 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2572 ret = kvmppc_set_smt_threads(spapr->vsmt);
2573 if (ret) {
2574 /* Looks like KVM isn't able to change VSMT mode */
2575 error_setg(&local_err,
2576 "Failed to set KVM's VSMT mode to %d (errno %d)",
2577 spapr->vsmt, ret);
2578 /* We can live with that if the default one is big enough
2579 * for the number of threads, and a submultiple of the one
2580 * we want. In this case we'll waste some vcpu ids, but
2581 * behaviour will be correct */
2582 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2583 warn_report_err(local_err);
2584 } else {
2585 if (!vsmt_user) {
2586 error_append_hint(&local_err,
2587 "On PPC, a VM with %d threads/core"
2588 " on a host with %d threads/core"
2589 " requires the use of VSMT mode %d.\n",
2590 smp_threads, kvm_smt, spapr->vsmt);
2591 }
2592 kvmppc_error_append_smt_possible_hint(&local_err);
2593 error_propagate(errp, local_err);
2594 }
2595 }
2596 }
2597 /* else TCG: nothing to do currently */
2598 }
2599
2600 static void spapr_init_cpus(SpaprMachineState *spapr)
2601 {
2602 MachineState *machine = MACHINE(spapr);
2603 MachineClass *mc = MACHINE_GET_CLASS(machine);
2604 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2605 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2606 const CPUArchIdList *possible_cpus;
2607 unsigned int smp_cpus = machine->smp.cpus;
2608 unsigned int smp_threads = machine->smp.threads;
2609 unsigned int max_cpus = machine->smp.max_cpus;
2610 int boot_cores_nr = smp_cpus / smp_threads;
2611 int i;
2612
2613 possible_cpus = mc->possible_cpu_arch_ids(machine);
2614 if (mc->has_hotpluggable_cpus) {
2615 if (smp_cpus % smp_threads) {
2616 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2617 smp_cpus, smp_threads);
2618 exit(1);
2619 }
2620 if (max_cpus % smp_threads) {
2621 error_report("max_cpus (%u) must be multiple of threads (%u)",
2622 max_cpus, smp_threads);
2623 exit(1);
2624 }
2625 } else {
2626 if (max_cpus != smp_cpus) {
2627 error_report("This machine version does not support CPU hotplug");
2628 exit(1);
2629 }
2630 boot_cores_nr = possible_cpus->len;
2631 }
2632
2633 if (smc->pre_2_10_has_unused_icps) {
2634 int i;
2635
2636 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2637 /* Dummy entries get deregistered when real ICPState objects
2638 * are registered during CPU core hotplug.
2639 */
2640 pre_2_10_vmstate_register_dummy_icp(i);
2641 }
2642 }
2643
2644 for (i = 0; i < possible_cpus->len; i++) {
2645 int core_id = i * smp_threads;
2646
2647 if (mc->has_hotpluggable_cpus) {
2648 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2649 spapr_vcpu_id(spapr, core_id));
2650 }
2651
2652 if (i < boot_cores_nr) {
2653 Object *core = object_new(type);
2654 int nr_threads = smp_threads;
2655
2656 /* Handle the partially filled core for older machine types */
2657 if ((i + 1) * smp_threads >= smp_cpus) {
2658 nr_threads = smp_cpus - i * smp_threads;
2659 }
2660
2661 object_property_set_int(core, "nr-threads", nr_threads,
2662 &error_fatal);
2663 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2664 &error_fatal);
2665 qdev_realize(DEVICE(core), NULL, &error_fatal);
2666
2667 object_unref(core);
2668 }
2669 }
2670 }
2671
2672 static PCIHostState *spapr_create_default_phb(void)
2673 {
2674 DeviceState *dev;
2675
2676 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2677 qdev_prop_set_uint32(dev, "index", 0);
2678 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2679
2680 return PCI_HOST_BRIDGE(dev);
2681 }
2682
2683 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2684 {
2685 MachineState *machine = MACHINE(spapr);
2686 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2687 hwaddr rma_size = machine->ram_size;
2688 hwaddr node0_size = spapr_node0_size(machine);
2689
2690 /* RMA has to fit in the first NUMA node */
2691 rma_size = MIN(rma_size, node0_size);
2692
2693 /*
2694 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2695 * never exceed that
2696 */
2697 rma_size = MIN(rma_size, 1 * TiB);
2698
2699 /*
2700 * Clamp the RMA size based on machine type. This is for
2701 * migration compatibility with older qemu versions, which limited
2702 * the RMA size for complicated and mostly bad reasons.
2703 */
2704 if (smc->rma_limit) {
2705 rma_size = MIN(rma_size, smc->rma_limit);
2706 }
2707
2708 if (rma_size < MIN_RMA_SLOF) {
2709 error_setg(errp,
2710 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2711 "ldMiB guest RMA (Real Mode Area memory)",
2712 MIN_RMA_SLOF / MiB);
2713 return 0;
2714 }
2715
2716 return rma_size;
2717 }
2718
2719 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2720 {
2721 MachineState *machine = MACHINE(spapr);
2722 int i;
2723
2724 for (i = 0; i < machine->ram_slots; i++) {
2725 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2726 }
2727 }
2728
2729 /* pSeries LPAR / sPAPR hardware init */
2730 static void spapr_machine_init(MachineState *machine)
2731 {
2732 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2733 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2734 MachineClass *mc = MACHINE_GET_CLASS(machine);
2735 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2736 const char *bios_name = machine->firmware ?: bios_default;
2737 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2738 const char *kernel_filename = machine->kernel_filename;
2739 const char *initrd_filename = machine->initrd_filename;
2740 PCIHostState *phb;
2741 bool has_vga;
2742 int i;
2743 MemoryRegion *sysmem = get_system_memory();
2744 long load_limit, fw_size;
2745 Error *resize_hpt_err = NULL;
2746
2747 if (!filename) {
2748 error_report("Could not find LPAR firmware '%s'", bios_name);
2749 exit(1);
2750 }
2751 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2752 if (fw_size <= 0) {
2753 error_report("Could not load LPAR firmware '%s'", filename);
2754 exit(1);
2755 }
2756
2757 /*
2758 * if Secure VM (PEF) support is configured, then initialize it
2759 */
2760 pef_kvm_init(machine->cgs, &error_fatal);
2761
2762 msi_nonbroken = true;
2763
2764 QLIST_INIT(&spapr->phbs);
2765 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2766
2767 /* Determine capabilities to run with */
2768 spapr_caps_init(spapr);
2769
2770 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2771 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2772 /*
2773 * If the user explicitly requested a mode we should either
2774 * supply it, or fail completely (which we do below). But if
2775 * it's not set explicitly, we reset our mode to something
2776 * that works
2777 */
2778 if (resize_hpt_err) {
2779 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2780 error_free(resize_hpt_err);
2781 resize_hpt_err = NULL;
2782 } else {
2783 spapr->resize_hpt = smc->resize_hpt_default;
2784 }
2785 }
2786
2787 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2788
2789 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2790 /*
2791 * User requested HPT resize, but this host can't supply it. Bail out
2792 */
2793 error_report_err(resize_hpt_err);
2794 exit(1);
2795 }
2796 error_free(resize_hpt_err);
2797
2798 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2799
2800 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2801 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2802
2803 /*
2804 * VSMT must be set in order to be able to compute VCPU ids, ie to
2805 * call spapr_max_server_number() or spapr_vcpu_id().
2806 */
2807 spapr_set_vsmt_mode(spapr, &error_fatal);
2808
2809 /* Set up Interrupt Controller before we create the VCPUs */
2810 spapr_irq_init(spapr, &error_fatal);
2811
2812 /* Set up containers for ibm,client-architecture-support negotiated options
2813 */
2814 spapr->ov5 = spapr_ovec_new();
2815 spapr->ov5_cas = spapr_ovec_new();
2816
2817 if (smc->dr_lmb_enabled) {
2818 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2819 spapr_validate_node_memory(machine, &error_fatal);
2820 }
2821
2822 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2823
2824 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2825 if (!smc->pre_6_2_numa_affinity) {
2826 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2827 }
2828
2829 /* advertise support for dedicated HP event source to guests */
2830 if (spapr->use_hotplug_event_source) {
2831 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2832 }
2833
2834 /* advertise support for HPT resizing */
2835 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2836 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2837 }
2838
2839 /* advertise support for ibm,dyamic-memory-v2 */
2840 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2841
2842 /* advertise XIVE on POWER9 machines */
2843 if (spapr->irq->xive) {
2844 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2845 }
2846
2847 /* init CPUs */
2848 spapr_init_cpus(spapr);
2849
2850 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2851
2852 /* Init numa_assoc_array */
2853 spapr_numa_associativity_init(spapr, machine);
2854
2855 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2856 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2857 spapr->max_compat_pvr)) {
2858 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2859 /* KVM and TCG always allow GTSE with radix... */
2860 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2861 }
2862 /* ... but not with hash (currently). */
2863
2864 if (kvm_enabled()) {
2865 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2866 kvmppc_enable_logical_ci_hcalls();
2867 kvmppc_enable_set_mode_hcall();
2868
2869 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2870 kvmppc_enable_clear_ref_mod_hcalls();
2871
2872 /* Enable H_PAGE_INIT */
2873 kvmppc_enable_h_page_init();
2874 }
2875
2876 /* map RAM */
2877 memory_region_add_subregion(sysmem, 0, machine->ram);
2878
2879 /* always allocate the device memory information */
2880 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2881
2882 /* initialize hotplug memory address space */
2883 if (machine->ram_size < machine->maxram_size) {
2884 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2885 /*
2886 * Limit the number of hotpluggable memory slots to half the number
2887 * slots that KVM supports, leaving the other half for PCI and other
2888 * devices. However ensure that number of slots doesn't drop below 32.
2889 */
2890 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2891 SPAPR_MAX_RAM_SLOTS;
2892
2893 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2894 max_memslots = SPAPR_MAX_RAM_SLOTS;
2895 }
2896 if (machine->ram_slots > max_memslots) {
2897 error_report("Specified number of memory slots %"
2898 PRIu64" exceeds max supported %d",
2899 machine->ram_slots, max_memslots);
2900 exit(1);
2901 }
2902
2903 machine->device_memory->base = ROUND_UP(machine->ram_size,
2904 SPAPR_DEVICE_MEM_ALIGN);
2905 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2906 "device-memory", device_mem_size);
2907 memory_region_add_subregion(sysmem, machine->device_memory->base,
2908 &machine->device_memory->mr);
2909 }
2910
2911 if (smc->dr_lmb_enabled) {
2912 spapr_create_lmb_dr_connectors(spapr);
2913 }
2914
2915 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2916 /* Create the error string for live migration blocker */
2917 error_setg(&spapr->fwnmi_migration_blocker,
2918 "A machine check is being handled during migration. The handler"
2919 "may run and log hardware error on the destination");
2920 }
2921
2922 if (mc->nvdimm_supported) {
2923 spapr_create_nvdimm_dr_connectors(spapr);
2924 }
2925
2926 /* Set up RTAS event infrastructure */
2927 spapr_events_init(spapr);
2928
2929 /* Set up the RTC RTAS interfaces */
2930 spapr_rtc_create(spapr);
2931
2932 /* Set up VIO bus */
2933 spapr->vio_bus = spapr_vio_bus_init();
2934
2935 for (i = 0; serial_hd(i); i++) {
2936 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2937 }
2938
2939 /* We always have at least the nvram device on VIO */
2940 spapr_create_nvram(spapr);
2941
2942 /*
2943 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2944 * connectors (described in root DT node's "ibm,drc-types" property)
2945 * are pre-initialized here. additional child connectors (such as
2946 * connectors for a PHBs PCI slots) are added as needed during their
2947 * parent's realization.
2948 */
2949 if (smc->dr_phb_enabled) {
2950 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2951 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2952 }
2953 }
2954
2955 /* Set up PCI */
2956 spapr_pci_rtas_init();
2957
2958 phb = spapr_create_default_phb();
2959
2960 for (i = 0; i < nb_nics; i++) {
2961 NICInfo *nd = &nd_table[i];
2962
2963 if (!nd->model) {
2964 nd->model = g_strdup("spapr-vlan");
2965 }
2966
2967 if (g_str_equal(nd->model, "spapr-vlan") ||
2968 g_str_equal(nd->model, "ibmveth")) {
2969 spapr_vlan_create(spapr->vio_bus, nd);
2970 } else {
2971 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2972 }
2973 }
2974
2975 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2976 spapr_vscsi_create(spapr->vio_bus);
2977 }
2978
2979 /* Graphics */
2980 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2981 if (has_vga) {
2982 spapr->want_stdout_path = !machine->enable_graphics;
2983 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2984 } else {
2985 spapr->want_stdout_path = true;
2986 }
2987
2988 if (machine->usb) {
2989 if (smc->use_ohci_by_default) {
2990 pci_create_simple(phb->bus, -1, "pci-ohci");
2991 } else {
2992 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2993 }
2994
2995 if (has_vga) {
2996 USBBus *usb_bus = usb_bus_find(-1);
2997
2998 usb_create_simple(usb_bus, "usb-kbd");
2999 usb_create_simple(usb_bus, "usb-mouse");
3000 }
3001 }
3002
3003 if (kernel_filename) {
3004 uint64_t loaded_addr = 0;
3005
3006 spapr->kernel_size = load_elf(kernel_filename, NULL,
3007 translate_kernel_address, spapr,
3008 NULL, &loaded_addr, NULL, NULL, 1,
3009 PPC_ELF_MACHINE, 0, 0);
3010 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3011 spapr->kernel_size = load_elf(kernel_filename, NULL,
3012 translate_kernel_address, spapr,
3013 NULL, &loaded_addr, NULL, NULL, 0,
3014 PPC_ELF_MACHINE, 0, 0);
3015 spapr->kernel_le = spapr->kernel_size > 0;
3016 }
3017 if (spapr->kernel_size < 0) {
3018 error_report("error loading %s: %s", kernel_filename,
3019 load_elf_strerror(spapr->kernel_size));
3020 exit(1);
3021 }
3022
3023 if (spapr->kernel_addr != loaded_addr) {
3024 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3025 " to 0x%"PRIx64,
3026 spapr->kernel_addr, loaded_addr);
3027 spapr->kernel_addr = loaded_addr;
3028 }
3029
3030 /* load initrd */
3031 if (initrd_filename) {
3032 /* Try to locate the initrd in the gap between the kernel
3033 * and the firmware. Add a bit of space just in case
3034 */
3035 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3036 + 0x1ffff) & ~0xffff;
3037 spapr->initrd_size = load_image_targphys(initrd_filename,
3038 spapr->initrd_base,
3039 load_limit
3040 - spapr->initrd_base);
3041 if (spapr->initrd_size < 0) {
3042 error_report("could not load initial ram disk '%s'",
3043 initrd_filename);
3044 exit(1);
3045 }
3046 }
3047 }
3048
3049 /* FIXME: Should register things through the MachineState's qdev
3050 * interface, this is a legacy from the sPAPREnvironment structure
3051 * which predated MachineState but had a similar function */
3052 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3053 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3054 &savevm_htab_handlers, spapr);
3055
3056 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3057
3058 qemu_register_boot_set(spapr_boot_set, spapr);
3059
3060 /*
3061 * Nothing needs to be done to resume a suspended guest because
3062 * suspending does not change the machine state, so no need for
3063 * a ->wakeup method.
3064 */
3065 qemu_register_wakeup_support();
3066
3067 if (kvm_enabled()) {
3068 /* to stop and start vmclock */
3069 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3070 &spapr->tb);
3071
3072 kvmppc_spapr_enable_inkernel_multitce();
3073 }
3074
3075 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3076 if (spapr->vof) {
3077 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3078 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3079 }
3080
3081 spapr_watchdog_init(spapr);
3082 }
3083
3084 #define DEFAULT_KVM_TYPE "auto"
3085 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3086 {
3087 /*
3088 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3089 * accomodate the 'HV' and 'PV' formats that exists in the
3090 * wild. The 'auto' mode is being introduced already as
3091 * lower-case, thus we don't need to bother checking for
3092 * "AUTO".
3093 */
3094 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3095 return 0;
3096 }
3097
3098 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3099 return 1;
3100 }
3101
3102 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3103 return 2;
3104 }
3105
3106 error_report("Unknown kvm-type specified '%s'", vm_type);
3107 exit(1);
3108 }
3109
3110 /*
3111 * Implementation of an interface to adjust firmware path
3112 * for the bootindex property handling.
3113 */
3114 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3115 DeviceState *dev)
3116 {
3117 #define CAST(type, obj, name) \
3118 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3119 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3120 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3121 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3122 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3123
3124 if (d && bus) {
3125 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3126 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3127 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3128
3129 if (spapr) {
3130 /*
3131 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3132 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3133 * 0x8000 | (target << 8) | (bus << 5) | lun
3134 * (see the "Logical unit addressing format" table in SAM5)
3135 */
3136 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3137 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3138 (uint64_t)id << 48);
3139 } else if (virtio) {
3140 /*
3141 * We use SRP luns of the form 01000000 | (target << 8) | lun
3142 * in the top 32 bits of the 64-bit LUN
3143 * Note: the quote above is from SLOF and it is wrong,
3144 * the actual binding is:
3145 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3146 */
3147 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3148 if (d->lun >= 256) {
3149 /* Use the LUN "flat space addressing method" */
3150 id |= 0x4000;
3151 }
3152 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3153 (uint64_t)id << 32);
3154 } else if (usb) {
3155 /*
3156 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3157 * in the top 32 bits of the 64-bit LUN
3158 */
3159 unsigned usb_port = atoi(usb->port->path);
3160 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3161 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3162 (uint64_t)id << 32);
3163 }
3164 }
3165
3166 /*
3167 * SLOF probes the USB devices, and if it recognizes that the device is a
3168 * storage device, it changes its name to "storage" instead of "usb-host",
3169 * and additionally adds a child node for the SCSI LUN, so the correct
3170 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3171 */
3172 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3173 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3174 if (usb_device_is_scsi_storage(usbdev)) {
3175 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3176 }
3177 }
3178
3179 if (phb) {
3180 /* Replace "pci" with "pci@800000020000000" */
3181 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3182 }
3183
3184 if (vsc) {
3185 /* Same logic as virtio above */
3186 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3187 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3188 }
3189
3190 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3191 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3192 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3193 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3194 }
3195
3196 if (pcidev) {
3197 return spapr_pci_fw_dev_name(pcidev);
3198 }
3199
3200 return NULL;
3201 }
3202
3203 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3204 {
3205 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3206
3207 return g_strdup(spapr->kvm_type);
3208 }
3209
3210 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3211 {
3212 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3213
3214 g_free(spapr->kvm_type);
3215 spapr->kvm_type = g_strdup(value);
3216 }
3217
3218 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3219 {
3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221
3222 return spapr->use_hotplug_event_source;
3223 }
3224
3225 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3226 Error **errp)
3227 {
3228 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229
3230 spapr->use_hotplug_event_source = value;
3231 }
3232
3233 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3234 {
3235 return true;
3236 }
3237
3238 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3239 {
3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3241
3242 switch (spapr->resize_hpt) {
3243 case SPAPR_RESIZE_HPT_DEFAULT:
3244 return g_strdup("default");
3245 case SPAPR_RESIZE_HPT_DISABLED:
3246 return g_strdup("disabled");
3247 case SPAPR_RESIZE_HPT_ENABLED:
3248 return g_strdup("enabled");
3249 case SPAPR_RESIZE_HPT_REQUIRED:
3250 return g_strdup("required");
3251 }
3252 g_assert_not_reached();
3253 }
3254
3255 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3256 {
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3258
3259 if (strcmp(value, "default") == 0) {
3260 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3261 } else if (strcmp(value, "disabled") == 0) {
3262 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3263 } else if (strcmp(value, "enabled") == 0) {
3264 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3265 } else if (strcmp(value, "required") == 0) {
3266 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3267 } else {
3268 error_setg(errp, "Bad value for \"resize-hpt\" property");
3269 }
3270 }
3271
3272 static bool spapr_get_vof(Object *obj, Error **errp)
3273 {
3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275
3276 return spapr->vof != NULL;
3277 }
3278
3279 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3280 {
3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282
3283 if (spapr->vof) {
3284 vof_cleanup(spapr->vof);
3285 g_free(spapr->vof);
3286 spapr->vof = NULL;
3287 }
3288 if (!value) {
3289 return;
3290 }
3291 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3292 }
3293
3294 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3295 {
3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297
3298 if (spapr->irq == &spapr_irq_xics_legacy) {
3299 return g_strdup("legacy");
3300 } else if (spapr->irq == &spapr_irq_xics) {
3301 return g_strdup("xics");
3302 } else if (spapr->irq == &spapr_irq_xive) {
3303 return g_strdup("xive");
3304 } else if (spapr->irq == &spapr_irq_dual) {
3305 return g_strdup("dual");
3306 }
3307 g_assert_not_reached();
3308 }
3309
3310 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3311 {
3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313
3314 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3315 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3316 return;
3317 }
3318
3319 /* The legacy IRQ backend can not be set */
3320 if (strcmp(value, "xics") == 0) {
3321 spapr->irq = &spapr_irq_xics;
3322 } else if (strcmp(value, "xive") == 0) {
3323 spapr->irq = &spapr_irq_xive;
3324 } else if (strcmp(value, "dual") == 0) {
3325 spapr->irq = &spapr_irq_dual;
3326 } else {
3327 error_setg(errp, "Bad value for \"ic-mode\" property");
3328 }
3329 }
3330
3331 static char *spapr_get_host_model(Object *obj, Error **errp)
3332 {
3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334
3335 return g_strdup(spapr->host_model);
3336 }
3337
3338 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3339 {
3340 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3341
3342 g_free(spapr->host_model);
3343 spapr->host_model = g_strdup(value);
3344 }
3345
3346 static char *spapr_get_host_serial(Object *obj, Error **errp)
3347 {
3348 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3349
3350 return g_strdup(spapr->host_serial);
3351 }
3352
3353 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3354 {
3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3356
3357 g_free(spapr->host_serial);
3358 spapr->host_serial = g_strdup(value);
3359 }
3360
3361 static void spapr_instance_init(Object *obj)
3362 {
3363 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3364 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3365 MachineState *ms = MACHINE(spapr);
3366 MachineClass *mc = MACHINE_GET_CLASS(ms);
3367
3368 /*
3369 * NVDIMM support went live in 5.1 without considering that, in
3370 * other archs, the user needs to enable NVDIMM support with the
3371 * 'nvdimm' machine option and the default behavior is NVDIMM
3372 * support disabled. It is too late to roll back to the standard
3373 * behavior without breaking 5.1 guests.
3374 */
3375 if (mc->nvdimm_supported) {
3376 ms->nvdimms_state->is_enabled = true;
3377 }
3378
3379 spapr->htab_fd = -1;
3380 spapr->use_hotplug_event_source = true;
3381 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3382 object_property_add_str(obj, "kvm-type",
3383 spapr_get_kvm_type, spapr_set_kvm_type);
3384 object_property_set_description(obj, "kvm-type",
3385 "Specifies the KVM virtualization mode (auto,"
3386 " hv, pr). Defaults to 'auto'. This mode will use"
3387 " any available KVM module loaded in the host,"
3388 " where kvm_hv takes precedence if both kvm_hv and"
3389 " kvm_pr are loaded.");
3390 object_property_add_bool(obj, "modern-hotplug-events",
3391 spapr_get_modern_hotplug_events,
3392 spapr_set_modern_hotplug_events);
3393 object_property_set_description(obj, "modern-hotplug-events",
3394 "Use dedicated hotplug event mechanism in"
3395 " place of standard EPOW events when possible"
3396 " (required for memory hot-unplug support)");
3397 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3398 "Maximum permitted CPU compatibility mode");
3399
3400 object_property_add_str(obj, "resize-hpt",
3401 spapr_get_resize_hpt, spapr_set_resize_hpt);
3402 object_property_set_description(obj, "resize-hpt",
3403 "Resizing of the Hash Page Table (enabled, disabled, required)");
3404 object_property_add_uint32_ptr(obj, "vsmt",
3405 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3406 object_property_set_description(obj, "vsmt",
3407 "Virtual SMT: KVM behaves as if this were"
3408 " the host's SMT mode");
3409
3410 object_property_add_bool(obj, "vfio-no-msix-emulation",
3411 spapr_get_msix_emulation, NULL);
3412
3413 object_property_add_uint64_ptr(obj, "kernel-addr",
3414 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3415 object_property_set_description(obj, "kernel-addr",
3416 stringify(KERNEL_LOAD_ADDR)
3417 " for -kernel is the default");
3418 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3419
3420 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3421 object_property_set_description(obj, "x-vof",
3422 "Enable Virtual Open Firmware (experimental)");
3423
3424 /* The machine class defines the default interrupt controller mode */
3425 spapr->irq = smc->irq;
3426 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3427 spapr_set_ic_mode);
3428 object_property_set_description(obj, "ic-mode",
3429 "Specifies the interrupt controller mode (xics, xive, dual)");
3430
3431 object_property_add_str(obj, "host-model",
3432 spapr_get_host_model, spapr_set_host_model);
3433 object_property_set_description(obj, "host-model",
3434 "Host model to advertise in guest device tree");
3435 object_property_add_str(obj, "host-serial",
3436 spapr_get_host_serial, spapr_set_host_serial);
3437 object_property_set_description(obj, "host-serial",
3438 "Host serial number to advertise in guest device tree");
3439 }
3440
3441 static void spapr_machine_finalizefn(Object *obj)
3442 {
3443 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3444
3445 g_free(spapr->kvm_type);
3446 }
3447
3448 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3449 {
3450 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3451 PowerPCCPU *cpu = POWERPC_CPU(cs);
3452 CPUPPCState *env = &cpu->env;
3453
3454 cpu_synchronize_state(cs);
3455 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3456 if (spapr->fwnmi_system_reset_addr != -1) {
3457 uint64_t rtas_addr, addr;
3458
3459 /* get rtas addr from fdt */
3460 rtas_addr = spapr_get_rtas_addr();
3461 if (!rtas_addr) {
3462 qemu_system_guest_panicked(NULL);
3463 return;
3464 }
3465
3466 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3467 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3468 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3469 env->gpr[3] = addr;
3470 }
3471 ppc_cpu_do_system_reset(cs);
3472 if (spapr->fwnmi_system_reset_addr != -1) {
3473 env->nip = spapr->fwnmi_system_reset_addr;
3474 }
3475 }
3476
3477 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3478 {
3479 CPUState *cs;
3480
3481 CPU_FOREACH(cs) {
3482 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3483 }
3484 }
3485
3486 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3487 void *fdt, int *fdt_start_offset, Error **errp)
3488 {
3489 uint64_t addr;
3490 uint32_t node;
3491
3492 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3493 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3494 &error_abort);
3495 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3496 SPAPR_MEMORY_BLOCK_SIZE);
3497 return 0;
3498 }
3499
3500 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3501 bool dedicated_hp_event_source)
3502 {
3503 SpaprDrc *drc;
3504 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3505 int i;
3506 uint64_t addr = addr_start;
3507 bool hotplugged = spapr_drc_hotplugged(dev);
3508
3509 for (i = 0; i < nr_lmbs; i++) {
3510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3511 addr / SPAPR_MEMORY_BLOCK_SIZE);
3512 g_assert(drc);
3513
3514 /*
3515 * memory_device_get_free_addr() provided a range of free addresses
3516 * that doesn't overlap with any existing mapping at pre-plug. The
3517 * corresponding LMB DRCs are thus assumed to be all attachable.
3518 */
3519 spapr_drc_attach(drc, dev);
3520 if (!hotplugged) {
3521 spapr_drc_reset(drc);
3522 }
3523 addr += SPAPR_MEMORY_BLOCK_SIZE;
3524 }
3525 /* send hotplug notification to the
3526 * guest only in case of hotplugged memory
3527 */
3528 if (hotplugged) {
3529 if (dedicated_hp_event_source) {
3530 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3531 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3532 g_assert(drc);
3533 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3534 nr_lmbs,
3535 spapr_drc_index(drc));
3536 } else {
3537 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3538 nr_lmbs);
3539 }
3540 }
3541 }
3542
3543 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3544 {
3545 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3546 PCDIMMDevice *dimm = PC_DIMM(dev);
3547 uint64_t size, addr;
3548 int64_t slot;
3549 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3550
3551 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3552
3553 pc_dimm_plug(dimm, MACHINE(ms));
3554
3555 if (!is_nvdimm) {
3556 addr = object_property_get_uint(OBJECT(dimm),
3557 PC_DIMM_ADDR_PROP, &error_abort);
3558 spapr_add_lmbs(dev, addr, size,
3559 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3560 } else {
3561 slot = object_property_get_int(OBJECT(dimm),
3562 PC_DIMM_SLOT_PROP, &error_abort);
3563 /* We should have valid slot number at this point */
3564 g_assert(slot >= 0);
3565 spapr_add_nvdimm(dev, slot);
3566 }
3567 }
3568
3569 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3570 Error **errp)
3571 {
3572 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3573 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3574 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3575 PCDIMMDevice *dimm = PC_DIMM(dev);
3576 Error *local_err = NULL;
3577 uint64_t size;
3578 Object *memdev;
3579 hwaddr pagesize;
3580
3581 if (!smc->dr_lmb_enabled) {
3582 error_setg(errp, "Memory hotplug not supported for this machine");
3583 return;
3584 }
3585
3586 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3587 if (local_err) {
3588 error_propagate(errp, local_err);
3589 return;
3590 }
3591
3592 if (is_nvdimm) {
3593 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3594 return;
3595 }
3596 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3597 error_setg(errp, "Hotplugged memory size must be a multiple of "
3598 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3599 return;
3600 }
3601
3602 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3603 &error_abort);
3604 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3605 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3606 return;
3607 }
3608
3609 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3610 }
3611
3612 struct SpaprDimmState {
3613 PCDIMMDevice *dimm;
3614 uint32_t nr_lmbs;
3615 QTAILQ_ENTRY(SpaprDimmState) next;
3616 };
3617
3618 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3619 PCDIMMDevice *dimm)
3620 {
3621 SpaprDimmState *dimm_state = NULL;
3622
3623 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3624 if (dimm_state->dimm == dimm) {
3625 break;
3626 }
3627 }
3628 return dimm_state;
3629 }
3630
3631 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3632 uint32_t nr_lmbs,
3633 PCDIMMDevice *dimm)
3634 {
3635 SpaprDimmState *ds = NULL;
3636
3637 /*
3638 * If this request is for a DIMM whose removal had failed earlier
3639 * (due to guest's refusal to remove the LMBs), we would have this
3640 * dimm already in the pending_dimm_unplugs list. In that
3641 * case don't add again.
3642 */
3643 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3644 if (!ds) {
3645 ds = g_new0(SpaprDimmState, 1);
3646 ds->nr_lmbs = nr_lmbs;
3647 ds->dimm = dimm;
3648 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3649 }
3650 return ds;
3651 }
3652
3653 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3654 SpaprDimmState *dimm_state)
3655 {
3656 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3657 g_free(dimm_state);
3658 }
3659
3660 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3661 PCDIMMDevice *dimm)
3662 {
3663 SpaprDrc *drc;
3664 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3665 &error_abort);
3666 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3667 uint32_t avail_lmbs = 0;
3668 uint64_t addr_start, addr;
3669 int i;
3670
3671 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3672 &error_abort);
3673
3674 addr = addr_start;
3675 for (i = 0; i < nr_lmbs; i++) {
3676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3677 addr / SPAPR_MEMORY_BLOCK_SIZE);
3678 g_assert(drc);
3679 if (drc->dev) {
3680 avail_lmbs++;
3681 }
3682 addr += SPAPR_MEMORY_BLOCK_SIZE;
3683 }
3684
3685 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3686 }
3687
3688 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3689 {
3690 SpaprDimmState *ds;
3691 PCDIMMDevice *dimm;
3692 SpaprDrc *drc;
3693 uint32_t nr_lmbs;
3694 uint64_t size, addr_start, addr;
3695 g_autofree char *qapi_error = NULL;
3696 int i;
3697
3698 if (!dev) {
3699 return;
3700 }
3701
3702 dimm = PC_DIMM(dev);
3703 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3704
3705 /*
3706 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3707 * unplug state, but one of its DRC is marked as unplug_requested.
3708 * This is bad and weird enough to g_assert() out.
3709 */
3710 g_assert(ds);
3711
3712 spapr_pending_dimm_unplugs_remove(spapr, ds);
3713
3714 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3715 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3716
3717 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3718 &error_abort);
3719
3720 addr = addr_start;
3721 for (i = 0; i < nr_lmbs; i++) {
3722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3723 addr / SPAPR_MEMORY_BLOCK_SIZE);
3724 g_assert(drc);
3725
3726 drc->unplug_requested = false;
3727 addr += SPAPR_MEMORY_BLOCK_SIZE;
3728 }
3729
3730 /*
3731 * Tell QAPI that something happened and the memory
3732 * hotunplug wasn't successful. Keep sending
3733 * MEM_UNPLUG_ERROR even while sending
3734 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3735 * MEM_UNPLUG_ERROR is due.
3736 */
3737 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3738 "for device %s", dev->id);
3739
3740 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3741
3742 qapi_event_send_device_unplug_guest_error(dev->id,
3743 dev->canonical_path);
3744 }
3745
3746 /* Callback to be called during DRC release. */
3747 void spapr_lmb_release(DeviceState *dev)
3748 {
3749 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3750 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3751 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3752
3753 /* This information will get lost if a migration occurs
3754 * during the unplug process. In this case recover it. */
3755 if (ds == NULL) {
3756 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3757 g_assert(ds);
3758 /* The DRC being examined by the caller at least must be counted */
3759 g_assert(ds->nr_lmbs);
3760 }
3761
3762 if (--ds->nr_lmbs) {
3763 return;
3764 }
3765
3766 /*
3767 * Now that all the LMBs have been removed by the guest, call the
3768 * unplug handler chain. This can never fail.
3769 */
3770 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3771 object_unparent(OBJECT(dev));
3772 }
3773
3774 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3775 {
3776 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3777 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3778
3779 /* We really shouldn't get this far without anything to unplug */
3780 g_assert(ds);
3781
3782 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3783 qdev_unrealize(dev);
3784 spapr_pending_dimm_unplugs_remove(spapr, ds);
3785 }
3786
3787 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3788 DeviceState *dev, Error **errp)
3789 {
3790 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3791 PCDIMMDevice *dimm = PC_DIMM(dev);
3792 uint32_t nr_lmbs;
3793 uint64_t size, addr_start, addr;
3794 int i;
3795 SpaprDrc *drc;
3796
3797 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3798 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3799 return;
3800 }
3801
3802 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3803 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3804
3805 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3806 &error_abort);
3807
3808 /*
3809 * An existing pending dimm state for this DIMM means that there is an
3810 * unplug operation in progress, waiting for the spapr_lmb_release
3811 * callback to complete the job (BQL can't cover that far). In this case,
3812 * bail out to avoid detaching DRCs that were already released.
3813 */
3814 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3815 error_setg(errp, "Memory unplug already in progress for device %s",
3816 dev->id);
3817 return;
3818 }
3819
3820 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3821
3822 addr = addr_start;
3823 for (i = 0; i < nr_lmbs; i++) {
3824 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3825 addr / SPAPR_MEMORY_BLOCK_SIZE);
3826 g_assert(drc);
3827
3828 spapr_drc_unplug_request(drc);
3829 addr += SPAPR_MEMORY_BLOCK_SIZE;
3830 }
3831
3832 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3833 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3834 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3835 nr_lmbs, spapr_drc_index(drc));
3836 }
3837
3838 /* Callback to be called during DRC release. */
3839 void spapr_core_release(DeviceState *dev)
3840 {
3841 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3842
3843 /* Call the unplug handler chain. This can never fail. */
3844 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3845 object_unparent(OBJECT(dev));
3846 }
3847
3848 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3849 {
3850 MachineState *ms = MACHINE(hotplug_dev);
3851 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3852 CPUCore *cc = CPU_CORE(dev);
3853 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3854
3855 if (smc->pre_2_10_has_unused_icps) {
3856 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3857 int i;
3858
3859 for (i = 0; i < cc->nr_threads; i++) {
3860 CPUState *cs = CPU(sc->threads[i]);
3861
3862 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3863 }
3864 }
3865
3866 assert(core_slot);
3867 core_slot->cpu = NULL;
3868 qdev_unrealize(dev);
3869 }
3870
3871 static
3872 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3873 Error **errp)
3874 {
3875 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3876 int index;
3877 SpaprDrc *drc;
3878 CPUCore *cc = CPU_CORE(dev);
3879
3880 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3881 error_setg(errp, "Unable to find CPU core with core-id: %d",
3882 cc->core_id);
3883 return;
3884 }
3885 if (index == 0) {
3886 error_setg(errp, "Boot CPU core may not be unplugged");
3887 return;
3888 }
3889
3890 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3891 spapr_vcpu_id(spapr, cc->core_id));
3892 g_assert(drc);
3893
3894 if (!spapr_drc_unplug_requested(drc)) {
3895 spapr_drc_unplug_request(drc);
3896 }
3897
3898 /*
3899 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3900 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3901 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3902 * attempt (e.g. the kernel will refuse to remove the last online
3903 * CPU), we will never attempt it again because unplug_requested
3904 * will still be 'true' in that case.
3905 */
3906 spapr_hotplug_req_remove_by_index(drc);
3907 }
3908
3909 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3910 void *fdt, int *fdt_start_offset, Error **errp)
3911 {
3912 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3913 CPUState *cs = CPU(core->threads[0]);
3914 PowerPCCPU *cpu = POWERPC_CPU(cs);
3915 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3916 int id = spapr_get_vcpu_id(cpu);
3917 g_autofree char *nodename = NULL;
3918 int offset;
3919
3920 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3921 offset = fdt_add_subnode(fdt, 0, nodename);
3922
3923 spapr_dt_cpu(cs, fdt, offset, spapr);
3924
3925 /*
3926 * spapr_dt_cpu() does not fill the 'name' property in the
3927 * CPU node. The function is called during boot process, before
3928 * and after CAS, and overwriting the 'name' property written
3929 * by SLOF is not allowed.
3930 *
3931 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3932 * CPUs more compatible with the coldplugged ones, which have
3933 * the 'name' property. Linux Kernel also relies on this
3934 * property to identify CPU nodes.
3935 */
3936 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3937
3938 *fdt_start_offset = offset;
3939 return 0;
3940 }
3941
3942 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3943 {
3944 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3945 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3946 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3947 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3948 CPUCore *cc = CPU_CORE(dev);
3949 CPUState *cs;
3950 SpaprDrc *drc;
3951 CPUArchId *core_slot;
3952 int index;
3953 bool hotplugged = spapr_drc_hotplugged(dev);
3954 int i;
3955
3956 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3957 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3958
3959 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3960 spapr_vcpu_id(spapr, cc->core_id));
3961
3962 g_assert(drc || !mc->has_hotpluggable_cpus);
3963
3964 if (drc) {
3965 /*
3966 * spapr_core_pre_plug() already buys us this is a brand new
3967 * core being plugged into a free slot. Nothing should already
3968 * be attached to the corresponding DRC.
3969 */
3970 spapr_drc_attach(drc, dev);
3971
3972 if (hotplugged) {
3973 /*
3974 * Send hotplug notification interrupt to the guest only
3975 * in case of hotplugged CPUs.
3976 */
3977 spapr_hotplug_req_add_by_index(drc);
3978 } else {
3979 spapr_drc_reset(drc);
3980 }
3981 }
3982
3983 core_slot->cpu = OBJECT(dev);
3984
3985 /*
3986 * Set compatibility mode to match the boot CPU, which was either set
3987 * by the machine reset code or by CAS. This really shouldn't fail at
3988 * this point.
3989 */
3990 if (hotplugged) {
3991 for (i = 0; i < cc->nr_threads; i++) {
3992 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3993 &error_abort);
3994 }
3995 }
3996
3997 if (smc->pre_2_10_has_unused_icps) {
3998 for (i = 0; i < cc->nr_threads; i++) {
3999 cs = CPU(core->threads[i]);
4000 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4001 }
4002 }
4003 }
4004
4005 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4006 Error **errp)
4007 {
4008 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4009 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4010 CPUCore *cc = CPU_CORE(dev);
4011 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4012 const char *type = object_get_typename(OBJECT(dev));
4013 CPUArchId *core_slot;
4014 int index;
4015 unsigned int smp_threads = machine->smp.threads;
4016
4017 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4018 error_setg(errp, "CPU hotplug not supported for this machine");
4019 return;
4020 }
4021
4022 if (strcmp(base_core_type, type)) {
4023 error_setg(errp, "CPU core type should be %s", base_core_type);
4024 return;
4025 }
4026
4027 if (cc->core_id % smp_threads) {
4028 error_setg(errp, "invalid core id %d", cc->core_id);
4029 return;
4030 }
4031
4032 /*
4033 * In general we should have homogeneous threads-per-core, but old
4034 * (pre hotplug support) machine types allow the last core to have
4035 * reduced threads as a compatibility hack for when we allowed
4036 * total vcpus not a multiple of threads-per-core.
4037 */
4038 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4039 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4040 smp_threads);
4041 return;
4042 }
4043
4044 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4045 if (!core_slot) {
4046 error_setg(errp, "core id %d out of range", cc->core_id);
4047 return;
4048 }
4049
4050 if (core_slot->cpu) {
4051 error_setg(errp, "core %d already populated", cc->core_id);
4052 return;
4053 }
4054
4055 numa_cpu_pre_plug(core_slot, dev, errp);
4056 }
4057
4058 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4059 void *fdt, int *fdt_start_offset, Error **errp)
4060 {
4061 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4062 int intc_phandle;
4063
4064 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4065 if (intc_phandle <= 0) {
4066 return -1;
4067 }
4068
4069 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4070 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4071 return -1;
4072 }
4073
4074 /* generally SLOF creates these, for hotplug it's up to QEMU */
4075 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4076
4077 return 0;
4078 }
4079
4080 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4081 Error **errp)
4082 {
4083 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4084 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4085 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4086 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4087 SpaprDrc *drc;
4088
4089 if (dev->hotplugged && !smc->dr_phb_enabled) {
4090 error_setg(errp, "PHB hotplug not supported for this machine");
4091 return false;
4092 }
4093
4094 if (sphb->index == (uint32_t)-1) {
4095 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4096 return false;
4097 }
4098
4099 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4100 if (drc && drc->dev) {
4101 error_setg(errp, "PHB %d already attached", sphb->index);
4102 return false;
4103 }
4104
4105 /*
4106 * This will check that sphb->index doesn't exceed the maximum number of
4107 * PHBs for the current machine type.
4108 */
4109 return
4110 smc->phb_placement(spapr, sphb->index,
4111 &sphb->buid, &sphb->io_win_addr,
4112 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4113 windows_supported, sphb->dma_liobn,
4114 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4115 errp);
4116 }
4117
4118 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4119 {
4120 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4121 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4122 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4123 SpaprDrc *drc;
4124 bool hotplugged = spapr_drc_hotplugged(dev);
4125
4126 if (!smc->dr_phb_enabled) {
4127 return;
4128 }
4129
4130 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4131 /* hotplug hooks should check it's enabled before getting this far */
4132 assert(drc);
4133
4134 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4135 spapr_drc_attach(drc, dev);
4136
4137 if (hotplugged) {
4138 spapr_hotplug_req_add_by_index(drc);
4139 } else {
4140 spapr_drc_reset(drc);
4141 }
4142 }
4143
4144 void spapr_phb_release(DeviceState *dev)
4145 {
4146 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4147
4148 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4149 object_unparent(OBJECT(dev));
4150 }
4151
4152 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4153 {
4154 qdev_unrealize(dev);
4155 }
4156
4157 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4158 DeviceState *dev, Error **errp)
4159 {
4160 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4161 SpaprDrc *drc;
4162
4163 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4164 assert(drc);
4165
4166 if (!spapr_drc_unplug_requested(drc)) {
4167 spapr_drc_unplug_request(drc);
4168 spapr_hotplug_req_remove_by_index(drc);
4169 } else {
4170 error_setg(errp,
4171 "PCI Host Bridge unplug already in progress for device %s",
4172 dev->id);
4173 }
4174 }
4175
4176 static
4177 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4178 Error **errp)
4179 {
4180 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4181
4182 if (spapr->tpm_proxy != NULL) {
4183 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4184 return false;
4185 }
4186
4187 return true;
4188 }
4189
4190 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4191 {
4192 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4193 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4194
4195 /* Already checked in spapr_tpm_proxy_pre_plug() */
4196 g_assert(spapr->tpm_proxy == NULL);
4197
4198 spapr->tpm_proxy = tpm_proxy;
4199 }
4200
4201 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4202 {
4203 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4204
4205 qdev_unrealize(dev);
4206 object_unparent(OBJECT(dev));
4207 spapr->tpm_proxy = NULL;
4208 }
4209
4210 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4211 DeviceState *dev, Error **errp)
4212 {
4213 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4214 spapr_memory_plug(hotplug_dev, dev);
4215 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4216 spapr_core_plug(hotplug_dev, dev);
4217 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4218 spapr_phb_plug(hotplug_dev, dev);
4219 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4220 spapr_tpm_proxy_plug(hotplug_dev, dev);
4221 }
4222 }
4223
4224 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4225 DeviceState *dev, Error **errp)
4226 {
4227 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4228 spapr_memory_unplug(hotplug_dev, dev);
4229 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4230 spapr_core_unplug(hotplug_dev, dev);
4231 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4232 spapr_phb_unplug(hotplug_dev, dev);
4233 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4234 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4235 }
4236 }
4237
4238 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4239 {
4240 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4241 /*
4242 * CAS will process all pending unplug requests.
4243 *
4244 * HACK: a guest could theoretically have cleared all bits in OV5,
4245 * but none of the guests we care for do.
4246 */
4247 spapr_ovec_empty(spapr->ov5_cas);
4248 }
4249
4250 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4251 DeviceState *dev, Error **errp)
4252 {
4253 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4254 MachineClass *mc = MACHINE_GET_CLASS(sms);
4255 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4256
4257 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4258 if (spapr_memory_hot_unplug_supported(sms)) {
4259 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4260 } else {
4261 error_setg(errp, "Memory hot unplug not supported for this guest");
4262 }
4263 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4264 if (!mc->has_hotpluggable_cpus) {
4265 error_setg(errp, "CPU hot unplug not supported on this machine");
4266 return;
4267 }
4268 spapr_core_unplug_request(hotplug_dev, dev, errp);
4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4270 if (!smc->dr_phb_enabled) {
4271 error_setg(errp, "PHB hot unplug not supported on this machine");
4272 return;
4273 }
4274 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4276 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4277 }
4278 }
4279
4280 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4281 DeviceState *dev, Error **errp)
4282 {
4283 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4284 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4285 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4286 spapr_core_pre_plug(hotplug_dev, dev, errp);
4287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4288 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4290 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4291 }
4292 }
4293
4294 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4295 DeviceState *dev)
4296 {
4297 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4298 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4299 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4300 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4301 return HOTPLUG_HANDLER(machine);
4302 }
4303 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4304 PCIDevice *pcidev = PCI_DEVICE(dev);
4305 PCIBus *root = pci_device_root_bus(pcidev);
4306 SpaprPhbState *phb =
4307 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4308 TYPE_SPAPR_PCI_HOST_BRIDGE);
4309
4310 if (phb) {
4311 return HOTPLUG_HANDLER(phb);
4312 }
4313 }
4314 return NULL;
4315 }
4316
4317 static CpuInstanceProperties
4318 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4319 {
4320 CPUArchId *core_slot;
4321 MachineClass *mc = MACHINE_GET_CLASS(machine);
4322
4323 /* make sure possible_cpu are intialized */
4324 mc->possible_cpu_arch_ids(machine);
4325 /* get CPU core slot containing thread that matches cpu_index */
4326 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4327 assert(core_slot);
4328 return core_slot->props;
4329 }
4330
4331 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4332 {
4333 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4334 }
4335
4336 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4337 {
4338 int i;
4339 unsigned int smp_threads = machine->smp.threads;
4340 unsigned int smp_cpus = machine->smp.cpus;
4341 const char *core_type;
4342 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4343 MachineClass *mc = MACHINE_GET_CLASS(machine);
4344
4345 if (!mc->has_hotpluggable_cpus) {
4346 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4347 }
4348 if (machine->possible_cpus) {
4349 assert(machine->possible_cpus->len == spapr_max_cores);
4350 return machine->possible_cpus;
4351 }
4352
4353 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4354 if (!core_type) {
4355 error_report("Unable to find sPAPR CPU Core definition");
4356 exit(1);
4357 }
4358
4359 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4360 sizeof(CPUArchId) * spapr_max_cores);
4361 machine->possible_cpus->len = spapr_max_cores;
4362 for (i = 0; i < machine->possible_cpus->len; i++) {
4363 int core_id = i * smp_threads;
4364
4365 machine->possible_cpus->cpus[i].type = core_type;
4366 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4367 machine->possible_cpus->cpus[i].arch_id = core_id;
4368 machine->possible_cpus->cpus[i].props.has_core_id = true;
4369 machine->possible_cpus->cpus[i].props.core_id = core_id;
4370 }
4371 return machine->possible_cpus;
4372 }
4373
4374 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4375 uint64_t *buid, hwaddr *pio,
4376 hwaddr *mmio32, hwaddr *mmio64,
4377 unsigned n_dma, uint32_t *liobns,
4378 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4379 {
4380 /*
4381 * New-style PHB window placement.
4382 *
4383 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4384 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4385 * windows.
4386 *
4387 * Some guest kernels can't work with MMIO windows above 1<<46
4388 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4389 *
4390 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4391 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4392 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4393 * 1TiB 64-bit MMIO windows for each PHB.
4394 */
4395 const uint64_t base_buid = 0x800000020000000ULL;
4396 int i;
4397
4398 /* Sanity check natural alignments */
4399 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4400 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4401 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4402 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4403 /* Sanity check bounds */
4404 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4405 SPAPR_PCI_MEM32_WIN_SIZE);
4406 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4407 SPAPR_PCI_MEM64_WIN_SIZE);
4408
4409 if (index >= SPAPR_MAX_PHBS) {
4410 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4411 SPAPR_MAX_PHBS - 1);
4412 return false;
4413 }
4414
4415 *buid = base_buid + index;
4416 for (i = 0; i < n_dma; ++i) {
4417 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4418 }
4419
4420 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4421 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4422 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4423
4424 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4425 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4426 return true;
4427 }
4428
4429 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4430 {
4431 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4432
4433 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4434 }
4435
4436 static void spapr_ics_resend(XICSFabric *dev)
4437 {
4438 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4439
4440 ics_resend(spapr->ics);
4441 }
4442
4443 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4444 {
4445 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4446
4447 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4448 }
4449
4450 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4451 Monitor *mon)
4452 {
4453 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4454
4455 spapr_irq_print_info(spapr, mon);
4456 monitor_printf(mon, "irqchip: %s\n",
4457 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4458 }
4459
4460 /*
4461 * This is a XIVE only operation
4462 */
4463 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4464 uint8_t nvt_blk, uint32_t nvt_idx,
4465 bool cam_ignore, uint8_t priority,
4466 uint32_t logic_serv, XiveTCTXMatch *match)
4467 {
4468 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4469 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4470 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4471 int count;
4472
4473 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4474 priority, logic_serv, match);
4475 if (count < 0) {
4476 return count;
4477 }
4478
4479 /*
4480 * When we implement the save and restore of the thread interrupt
4481 * contexts in the enter/exit CPU handlers of the machine and the
4482 * escalations in QEMU, we should be able to handle non dispatched
4483 * vCPUs.
4484 *
4485 * Until this is done, the sPAPR machine should find at least one
4486 * matching context always.
4487 */
4488 if (count == 0) {
4489 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4490 nvt_blk, nvt_idx);
4491 }
4492
4493 return count;
4494 }
4495
4496 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4497 {
4498 return cpu->vcpu_id;
4499 }
4500
4501 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4502 {
4503 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4504 MachineState *ms = MACHINE(spapr);
4505 int vcpu_id;
4506
4507 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4508
4509 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4510 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4511 error_append_hint(errp, "Adjust the number of cpus to %d "
4512 "or try to raise the number of threads per core\n",
4513 vcpu_id * ms->smp.threads / spapr->vsmt);
4514 return false;
4515 }
4516
4517 cpu->vcpu_id = vcpu_id;
4518 return true;
4519 }
4520
4521 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4522 {
4523 CPUState *cs;
4524
4525 CPU_FOREACH(cs) {
4526 PowerPCCPU *cpu = POWERPC_CPU(cs);
4527
4528 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4529 return cpu;
4530 }
4531 }
4532
4533 return NULL;
4534 }
4535
4536 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4537 {
4538 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4539
4540 return spapr_cpu->in_nested;
4541 }
4542
4543 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4544 {
4545 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4546
4547 /* These are only called by TCG, KVM maintains dispatch state */
4548
4549 spapr_cpu->prod = false;
4550 if (spapr_cpu->vpa_addr) {
4551 CPUState *cs = CPU(cpu);
4552 uint32_t dispatch;
4553
4554 dispatch = ldl_be_phys(cs->as,
4555 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4556 dispatch++;
4557 if ((dispatch & 1) != 0) {
4558 qemu_log_mask(LOG_GUEST_ERROR,
4559 "VPA: incorrect dispatch counter value for "
4560 "dispatched partition %u, correcting.\n", dispatch);
4561 dispatch++;
4562 }
4563 stl_be_phys(cs->as,
4564 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4565 }
4566 }
4567
4568 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4569 {
4570 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4571
4572 if (spapr_cpu->vpa_addr) {
4573 CPUState *cs = CPU(cpu);
4574 uint32_t dispatch;
4575
4576 dispatch = ldl_be_phys(cs->as,
4577 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4578 dispatch++;
4579 if ((dispatch & 1) != 1) {
4580 qemu_log_mask(LOG_GUEST_ERROR,
4581 "VPA: incorrect dispatch counter value for "
4582 "preempted partition %u, correcting.\n", dispatch);
4583 dispatch++;
4584 }
4585 stl_be_phys(cs->as,
4586 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4587 }
4588 }
4589
4590 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4591 {
4592 MachineClass *mc = MACHINE_CLASS(oc);
4593 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4594 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4595 NMIClass *nc = NMI_CLASS(oc);
4596 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4597 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4598 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4599 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4600 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4601 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4602
4603 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4604 mc->ignore_boot_device_suffixes = true;
4605
4606 /*
4607 * We set up the default / latest behaviour here. The class_init
4608 * functions for the specific versioned machine types can override
4609 * these details for backwards compatibility
4610 */
4611 mc->init = spapr_machine_init;
4612 mc->reset = spapr_machine_reset;
4613 mc->block_default_type = IF_SCSI;
4614
4615 /*
4616 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4617 * should be limited by the host capability instead of hardcoded.
4618 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4619 * guests are welcome to have as many CPUs as the host are capable
4620 * of emulate.
4621 */
4622 mc->max_cpus = INT32_MAX;
4623
4624 mc->no_parallel = 1;
4625 mc->default_boot_order = "";
4626 mc->default_ram_size = 512 * MiB;
4627 mc->default_ram_id = "ppc_spapr.ram";
4628 mc->default_display = "std";
4629 mc->kvm_type = spapr_kvm_type;
4630 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4631 mc->pci_allow_0_address = true;
4632 assert(!mc->get_hotplug_handler);
4633 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4634 hc->pre_plug = spapr_machine_device_pre_plug;
4635 hc->plug = spapr_machine_device_plug;
4636 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4637 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4638 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4639 hc->unplug_request = spapr_machine_device_unplug_request;
4640 hc->unplug = spapr_machine_device_unplug;
4641
4642 smc->dr_lmb_enabled = true;
4643 smc->update_dt_enabled = true;
4644 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4645 mc->has_hotpluggable_cpus = true;
4646 mc->nvdimm_supported = true;
4647 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4648 fwc->get_dev_path = spapr_get_fw_dev_path;
4649 nc->nmi_monitor_handler = spapr_nmi;
4650 smc->phb_placement = spapr_phb_placement;
4651 vhc->cpu_in_nested = spapr_cpu_in_nested;
4652 vhc->deliver_hv_excp = spapr_exit_nested;
4653 vhc->hypercall = emulate_spapr_hypercall;
4654 vhc->hpt_mask = spapr_hpt_mask;
4655 vhc->map_hptes = spapr_map_hptes;
4656 vhc->unmap_hptes = spapr_unmap_hptes;
4657 vhc->hpte_set_c = spapr_hpte_set_c;
4658 vhc->hpte_set_r = spapr_hpte_set_r;
4659 vhc->get_pate = spapr_get_pate;
4660 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4661 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4662 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4663 xic->ics_get = spapr_ics_get;
4664 xic->ics_resend = spapr_ics_resend;
4665 xic->icp_get = spapr_icp_get;
4666 ispc->print_info = spapr_pic_print_info;
4667 /* Force NUMA node memory size to be a multiple of
4668 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4669 * in which LMBs are represented and hot-added
4670 */
4671 mc->numa_mem_align_shift = 28;
4672 mc->auto_enable_numa = true;
4673
4674 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4675 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4676 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4677 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4678 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4679 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4680 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4681 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4682 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4683 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4684 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4685 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4686
4687 /*
4688 * This cap specifies whether the AIL 3 mode for
4689 * H_SET_RESOURCE is supported. The default is modified
4690 * by default_caps_with_cpu().
4691 */
4692 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4693 spapr_caps_add_properties(smc);
4694 smc->irq = &spapr_irq_dual;
4695 smc->dr_phb_enabled = true;
4696 smc->linux_pci_probe = true;
4697 smc->smp_threads_vsmt = true;
4698 smc->nr_xirqs = SPAPR_NR_XIRQS;
4699 xfc->match_nvt = spapr_match_nvt;
4700 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4701 vmc->quiesce = spapr_vof_quiesce;
4702 vmc->setprop = spapr_vof_setprop;
4703 }
4704
4705 static const TypeInfo spapr_machine_info = {
4706 .name = TYPE_SPAPR_MACHINE,
4707 .parent = TYPE_MACHINE,
4708 .abstract = true,
4709 .instance_size = sizeof(SpaprMachineState),
4710 .instance_init = spapr_instance_init,
4711 .instance_finalize = spapr_machine_finalizefn,
4712 .class_size = sizeof(SpaprMachineClass),
4713 .class_init = spapr_machine_class_init,
4714 .interfaces = (InterfaceInfo[]) {
4715 { TYPE_FW_PATH_PROVIDER },
4716 { TYPE_NMI },
4717 { TYPE_HOTPLUG_HANDLER },
4718 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4719 { TYPE_XICS_FABRIC },
4720 { TYPE_INTERRUPT_STATS_PROVIDER },
4721 { TYPE_XIVE_FABRIC },
4722 { TYPE_VOF_MACHINE_IF },
4723 { }
4724 },
4725 };
4726
4727 static void spapr_machine_latest_class_options(MachineClass *mc)
4728 {
4729 mc->alias = "pseries";
4730 mc->is_default = true;
4731 }
4732
4733 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4734 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4735 void *data) \
4736 { \
4737 MachineClass *mc = MACHINE_CLASS(oc); \
4738 spapr_machine_##suffix##_class_options(mc); \
4739 if (latest) { \
4740 spapr_machine_latest_class_options(mc); \
4741 } \
4742 } \
4743 static const TypeInfo spapr_machine_##suffix##_info = { \
4744 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4745 .parent = TYPE_SPAPR_MACHINE, \
4746 .class_init = spapr_machine_##suffix##_class_init, \
4747 }; \
4748 static void spapr_machine_register_##suffix(void) \
4749 { \
4750 type_register(&spapr_machine_##suffix##_info); \
4751 } \
4752 type_init(spapr_machine_register_##suffix)
4753
4754 /*
4755 * pseries-8.1
4756 */
4757 static void spapr_machine_8_1_class_options(MachineClass *mc)
4758 {
4759 /* Defaults for the latest behaviour inherited from the base class */
4760 }
4761
4762 DEFINE_SPAPR_MACHINE(8_1, "8.1", true);
4763
4764 /*
4765 * pseries-8.0
4766 */
4767 static void spapr_machine_8_0_class_options(MachineClass *mc)
4768 {
4769 spapr_machine_8_1_class_options(mc);
4770 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4771 }
4772
4773 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4774
4775 /*
4776 * pseries-7.2
4777 */
4778 static void spapr_machine_7_2_class_options(MachineClass *mc)
4779 {
4780 spapr_machine_8_0_class_options(mc);
4781 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4782 }
4783
4784 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4785
4786 /*
4787 * pseries-7.1
4788 */
4789 static void spapr_machine_7_1_class_options(MachineClass *mc)
4790 {
4791 spapr_machine_7_2_class_options(mc);
4792 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4793 }
4794
4795 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4796
4797 /*
4798 * pseries-7.0
4799 */
4800 static void spapr_machine_7_0_class_options(MachineClass *mc)
4801 {
4802 spapr_machine_7_1_class_options(mc);
4803 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4804 }
4805
4806 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4807
4808 /*
4809 * pseries-6.2
4810 */
4811 static void spapr_machine_6_2_class_options(MachineClass *mc)
4812 {
4813 spapr_machine_7_0_class_options(mc);
4814 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4815 }
4816
4817 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4818
4819 /*
4820 * pseries-6.1
4821 */
4822 static void spapr_machine_6_1_class_options(MachineClass *mc)
4823 {
4824 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4825
4826 spapr_machine_6_2_class_options(mc);
4827 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4828 smc->pre_6_2_numa_affinity = true;
4829 mc->smp_props.prefer_sockets = true;
4830 }
4831
4832 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4833
4834 /*
4835 * pseries-6.0
4836 */
4837 static void spapr_machine_6_0_class_options(MachineClass *mc)
4838 {
4839 spapr_machine_6_1_class_options(mc);
4840 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4841 }
4842
4843 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4844
4845 /*
4846 * pseries-5.2
4847 */
4848 static void spapr_machine_5_2_class_options(MachineClass *mc)
4849 {
4850 spapr_machine_6_0_class_options(mc);
4851 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4852 }
4853
4854 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4855
4856 /*
4857 * pseries-5.1
4858 */
4859 static void spapr_machine_5_1_class_options(MachineClass *mc)
4860 {
4861 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4862
4863 spapr_machine_5_2_class_options(mc);
4864 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4865 smc->pre_5_2_numa_associativity = true;
4866 }
4867
4868 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4869
4870 /*
4871 * pseries-5.0
4872 */
4873 static void spapr_machine_5_0_class_options(MachineClass *mc)
4874 {
4875 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4876 static GlobalProperty compat[] = {
4877 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4878 };
4879
4880 spapr_machine_5_1_class_options(mc);
4881 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4882 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4883 mc->numa_mem_supported = true;
4884 smc->pre_5_1_assoc_refpoints = true;
4885 }
4886
4887 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4888
4889 /*
4890 * pseries-4.2
4891 */
4892 static void spapr_machine_4_2_class_options(MachineClass *mc)
4893 {
4894 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4895
4896 spapr_machine_5_0_class_options(mc);
4897 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4898 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4899 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4900 smc->rma_limit = 16 * GiB;
4901 mc->nvdimm_supported = false;
4902 }
4903
4904 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4905
4906 /*
4907 * pseries-4.1
4908 */
4909 static void spapr_machine_4_1_class_options(MachineClass *mc)
4910 {
4911 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4912 static GlobalProperty compat[] = {
4913 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4914 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4915 };
4916
4917 spapr_machine_4_2_class_options(mc);
4918 smc->linux_pci_probe = false;
4919 smc->smp_threads_vsmt = false;
4920 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4921 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4922 }
4923
4924 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4925
4926 /*
4927 * pseries-4.0
4928 */
4929 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4930 uint64_t *buid, hwaddr *pio,
4931 hwaddr *mmio32, hwaddr *mmio64,
4932 unsigned n_dma, uint32_t *liobns,
4933 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4934 {
4935 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4936 liobns, nv2gpa, nv2atsd, errp)) {
4937 return false;
4938 }
4939
4940 *nv2gpa = 0;
4941 *nv2atsd = 0;
4942 return true;
4943 }
4944 static void spapr_machine_4_0_class_options(MachineClass *mc)
4945 {
4946 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4947
4948 spapr_machine_4_1_class_options(mc);
4949 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4950 smc->phb_placement = phb_placement_4_0;
4951 smc->irq = &spapr_irq_xics;
4952 smc->pre_4_1_migration = true;
4953 }
4954
4955 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4956
4957 /*
4958 * pseries-3.1
4959 */
4960 static void spapr_machine_3_1_class_options(MachineClass *mc)
4961 {
4962 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4963
4964 spapr_machine_4_0_class_options(mc);
4965 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4966
4967 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4968 smc->update_dt_enabled = false;
4969 smc->dr_phb_enabled = false;
4970 smc->broken_host_serial_model = true;
4971 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4972 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4973 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4974 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4975 }
4976
4977 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4978
4979 /*
4980 * pseries-3.0
4981 */
4982
4983 static void spapr_machine_3_0_class_options(MachineClass *mc)
4984 {
4985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4986
4987 spapr_machine_3_1_class_options(mc);
4988 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4989
4990 smc->legacy_irq_allocation = true;
4991 smc->nr_xirqs = 0x400;
4992 smc->irq = &spapr_irq_xics_legacy;
4993 }
4994
4995 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4996
4997 /*
4998 * pseries-2.12
4999 */
5000 static void spapr_machine_2_12_class_options(MachineClass *mc)
5001 {
5002 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5003 static GlobalProperty compat[] = {
5004 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5005 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5006 };
5007
5008 spapr_machine_3_0_class_options(mc);
5009 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5010 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5011
5012 /* We depend on kvm_enabled() to choose a default value for the
5013 * hpt-max-page-size capability. Of course we can't do it here
5014 * because this is too early and the HW accelerator isn't initialzed
5015 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5016 */
5017 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5018 }
5019
5020 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5021
5022 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5023 {
5024 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5025
5026 spapr_machine_2_12_class_options(mc);
5027 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5028 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5029 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5030 }
5031
5032 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5033
5034 /*
5035 * pseries-2.11
5036 */
5037
5038 static void spapr_machine_2_11_class_options(MachineClass *mc)
5039 {
5040 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5041
5042 spapr_machine_2_12_class_options(mc);
5043 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5044 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5045 }
5046
5047 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5048
5049 /*
5050 * pseries-2.10
5051 */
5052
5053 static void spapr_machine_2_10_class_options(MachineClass *mc)
5054 {
5055 spapr_machine_2_11_class_options(mc);
5056 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5057 }
5058
5059 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5060
5061 /*
5062 * pseries-2.9
5063 */
5064
5065 static void spapr_machine_2_9_class_options(MachineClass *mc)
5066 {
5067 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5068 static GlobalProperty compat[] = {
5069 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5070 };
5071
5072 spapr_machine_2_10_class_options(mc);
5073 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5074 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5075 smc->pre_2_10_has_unused_icps = true;
5076 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5077 }
5078
5079 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5080
5081 /*
5082 * pseries-2.8
5083 */
5084
5085 static void spapr_machine_2_8_class_options(MachineClass *mc)
5086 {
5087 static GlobalProperty compat[] = {
5088 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5089 };
5090
5091 spapr_machine_2_9_class_options(mc);
5092 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5093 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5094 mc->numa_mem_align_shift = 23;
5095 }
5096
5097 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5098
5099 /*
5100 * pseries-2.7
5101 */
5102
5103 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5104 uint64_t *buid, hwaddr *pio,
5105 hwaddr *mmio32, hwaddr *mmio64,
5106 unsigned n_dma, uint32_t *liobns,
5107 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5108 {
5109 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5110 const uint64_t base_buid = 0x800000020000000ULL;
5111 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5112 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5113 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5114 const uint32_t max_index = 255;
5115 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5116
5117 uint64_t ram_top = MACHINE(spapr)->ram_size;
5118 hwaddr phb0_base, phb_base;
5119 int i;
5120
5121 /* Do we have device memory? */
5122 if (MACHINE(spapr)->maxram_size > ram_top) {
5123 /* Can't just use maxram_size, because there may be an
5124 * alignment gap between normal and device memory regions
5125 */
5126 ram_top = MACHINE(spapr)->device_memory->base +
5127 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5128 }
5129
5130 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5131
5132 if (index > max_index) {
5133 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5134 max_index);
5135 return false;
5136 }
5137
5138 *buid = base_buid + index;
5139 for (i = 0; i < n_dma; ++i) {
5140 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5141 }
5142
5143 phb_base = phb0_base + index * phb_spacing;
5144 *pio = phb_base + pio_offset;
5145 *mmio32 = phb_base + mmio_offset;
5146 /*
5147 * We don't set the 64-bit MMIO window, relying on the PHB's
5148 * fallback behaviour of automatically splitting a large "32-bit"
5149 * window into contiguous 32-bit and 64-bit windows
5150 */
5151
5152 *nv2gpa = 0;
5153 *nv2atsd = 0;
5154 return true;
5155 }
5156
5157 static void spapr_machine_2_7_class_options(MachineClass *mc)
5158 {
5159 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5160 static GlobalProperty compat[] = {
5161 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5162 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5163 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5164 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5165 };
5166
5167 spapr_machine_2_8_class_options(mc);
5168 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5169 mc->default_machine_opts = "modern-hotplug-events=off";
5170 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5171 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5172 smc->phb_placement = phb_placement_2_7;
5173 }
5174
5175 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5176
5177 /*
5178 * pseries-2.6
5179 */
5180
5181 static void spapr_machine_2_6_class_options(MachineClass *mc)
5182 {
5183 static GlobalProperty compat[] = {
5184 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5185 };
5186
5187 spapr_machine_2_7_class_options(mc);
5188 mc->has_hotpluggable_cpus = false;
5189 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5190 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5191 }
5192
5193 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5194
5195 /*
5196 * pseries-2.5
5197 */
5198
5199 static void spapr_machine_2_5_class_options(MachineClass *mc)
5200 {
5201 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5202 static GlobalProperty compat[] = {
5203 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5204 };
5205
5206 spapr_machine_2_6_class_options(mc);
5207 smc->use_ohci_by_default = true;
5208 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5209 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5210 }
5211
5212 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5213
5214 /*
5215 * pseries-2.4
5216 */
5217
5218 static void spapr_machine_2_4_class_options(MachineClass *mc)
5219 {
5220 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5221
5222 spapr_machine_2_5_class_options(mc);
5223 smc->dr_lmb_enabled = false;
5224 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5225 }
5226
5227 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5228
5229 /*
5230 * pseries-2.3
5231 */
5232
5233 static void spapr_machine_2_3_class_options(MachineClass *mc)
5234 {
5235 static GlobalProperty compat[] = {
5236 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5237 };
5238 spapr_machine_2_4_class_options(mc);
5239 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5240 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5241 }
5242 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5243
5244 /*
5245 * pseries-2.2
5246 */
5247
5248 static void spapr_machine_2_2_class_options(MachineClass *mc)
5249 {
5250 static GlobalProperty compat[] = {
5251 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5252 };
5253
5254 spapr_machine_2_3_class_options(mc);
5255 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5256 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5257 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5258 }
5259 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5260
5261 /*
5262 * pseries-2.1
5263 */
5264
5265 static void spapr_machine_2_1_class_options(MachineClass *mc)
5266 {
5267 spapr_machine_2_2_class_options(mc);
5268 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5269 }
5270 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5271
5272 static void spapr_machine_register_types(void)
5273 {
5274 type_register_static(&spapr_machine_info);
5275 }
5276
5277 type_init(spapr_machine_register_types)