]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
kvm: Add a new machine option kvm-type
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 #include "mmu-hash64.h"
36
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
40
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
46
47 #include "hw/pci/pci.h"
48
49 #include "exec/address-spaces.h"
50 #include "hw/usb.h"
51 #include "qemu/config-file.h"
52 #include "qemu/error-report.h"
53
54 #include <libfdt.h>
55
56 /* SLOF memory layout:
57 *
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
60 *
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
62 * and more
63 *
64 * We load our kernel at 4M, leaving space for SLOF initial image
65 */
66 #define FDT_MAX_SIZE 0x40000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
72
73 #define MIN_RMA_SLOF 128UL
74
75 #define TIMEBASE_FREQ 512000000ULL
76
77 #define MAX_CPUS 256
78 #define XICS_IRQS 1024
79
80 #define PHANDLE_XICP 0x00001111
81
82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
83
84 sPAPREnvironment *spapr;
85
86 int spapr_allocate_irq(int hint, bool lsi)
87 {
88 int irq;
89
90 if (hint) {
91 irq = hint;
92 if (hint >= spapr->next_irq) {
93 spapr->next_irq = hint + 1;
94 }
95 /* FIXME: we should probably check for collisions somehow */
96 } else {
97 irq = spapr->next_irq++;
98 }
99
100 /* Configure irq type */
101 if (!xics_get_qirq(spapr->icp, irq)) {
102 return 0;
103 }
104
105 xics_set_irq_type(spapr->icp, irq, lsi);
106
107 return irq;
108 }
109
110 /*
111 * Allocate block of consequtive IRQs, returns a number of the first.
112 * If msi==true, aligns the first IRQ number to num.
113 */
114 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
115 {
116 int first = -1;
117 int i, hint = 0;
118
119 /*
120 * MSIMesage::data is used for storing VIRQ so
121 * it has to be aligned to num to support multiple
122 * MSI vectors. MSI-X is not affected by this.
123 * The hint is used for the first IRQ, the rest should
124 * be allocated continuously.
125 */
126 if (msi) {
127 assert((num == 1) || (num == 2) || (num == 4) ||
128 (num == 8) || (num == 16) || (num == 32));
129 hint = (spapr->next_irq + num - 1) & ~(num - 1);
130 }
131
132 for (i = 0; i < num; ++i) {
133 int irq;
134
135 irq = spapr_allocate_irq(hint, lsi);
136 if (!irq) {
137 return -1;
138 }
139
140 if (0 == i) {
141 first = irq;
142 hint = 0;
143 }
144
145 /* If the above doesn't create a consecutive block then that's
146 * an internal bug */
147 assert(irq == (first + i));
148 }
149
150 return first;
151 }
152
153 static XICSState *try_create_xics(const char *type, int nr_servers,
154 int nr_irqs)
155 {
156 DeviceState *dev;
157
158 dev = qdev_create(NULL, type);
159 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
160 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
161 if (qdev_init(dev) < 0) {
162 return NULL;
163 }
164
165 return XICS_COMMON(dev);
166 }
167
168 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
169 {
170 XICSState *icp = NULL;
171
172 if (kvm_enabled()) {
173 QemuOpts *machine_opts = qemu_get_machine_opts();
174 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
175 "kernel_irqchip", true);
176 bool irqchip_required = qemu_opt_get_bool(machine_opts,
177 "kernel_irqchip", false);
178 if (irqchip_allowed) {
179 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
180 }
181
182 if (irqchip_required && !icp) {
183 perror("Failed to create in-kernel XICS\n");
184 abort();
185 }
186 }
187
188 if (!icp) {
189 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
190 }
191
192 if (!icp) {
193 perror("Failed to create XICS\n");
194 abort();
195 }
196
197 return icp;
198 }
199
200 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
201 {
202 int ret = 0, offset;
203 CPUState *cpu;
204 char cpu_model[32];
205 int smt = kvmppc_smt_threads();
206 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
207
208 CPU_FOREACH(cpu) {
209 DeviceClass *dc = DEVICE_GET_CLASS(cpu);
210 uint32_t associativity[] = {cpu_to_be32(0x5),
211 cpu_to_be32(0x0),
212 cpu_to_be32(0x0),
213 cpu_to_be32(0x0),
214 cpu_to_be32(cpu->numa_node),
215 cpu_to_be32(cpu->cpu_index)};
216
217 if ((cpu->cpu_index % smt) != 0) {
218 continue;
219 }
220
221 snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
222 cpu->cpu_index);
223
224 offset = fdt_path_offset(fdt, cpu_model);
225 if (offset < 0) {
226 return offset;
227 }
228
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
232 if (ret < 0) {
233 return ret;
234 }
235 }
236
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
239 if (ret < 0) {
240 return ret;
241 }
242 }
243 return ret;
244 }
245
246
247 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
248 size_t maxsize)
249 {
250 size_t maxcells = maxsize / sizeof(uint32_t);
251 int i, j, count;
252 uint32_t *p = prop;
253
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
256
257 if (!sps->page_shift) {
258 break;
259 }
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
262 break;
263 }
264 }
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
266 break;
267 }
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
274 }
275 }
276
277 return (p - prop) * sizeof(uint32_t);
278 }
279
280 #define _FDT(exp) \
281 do { \
282 int ret = (exp); \
283 if (ret < 0) { \
284 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
285 #exp, fdt_strerror(ret)); \
286 exit(1); \
287 } \
288 } while (0)
289
290
291 static void *spapr_create_fdt_skel(hwaddr initrd_base,
292 hwaddr initrd_size,
293 hwaddr kernel_size,
294 bool little_endian,
295 const char *boot_device,
296 const char *kernel_cmdline,
297 uint32_t epow_irq)
298 {
299 void *fdt;
300 CPUState *cs;
301 uint32_t start_prop = cpu_to_be32(initrd_base);
302 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
303 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
304 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
305 char qemu_hypertas_prop[] = "hcall-memop1";
306 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
307 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
308 int i, smt = kvmppc_smt_threads();
309 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
310
311 fdt = g_malloc0(FDT_MAX_SIZE);
312 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
313
314 if (kernel_size) {
315 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
316 }
317 if (initrd_size) {
318 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
319 }
320 _FDT((fdt_finish_reservemap(fdt)));
321
322 /* Root node */
323 _FDT((fdt_begin_node(fdt, "")));
324 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
325 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
326 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
327
328 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
329 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
330
331 /* /chosen */
332 _FDT((fdt_begin_node(fdt, "chosen")));
333
334 /* Set Form1_affinity */
335 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
336
337 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
338 _FDT((fdt_property(fdt, "linux,initrd-start",
339 &start_prop, sizeof(start_prop))));
340 _FDT((fdt_property(fdt, "linux,initrd-end",
341 &end_prop, sizeof(end_prop))));
342 if (kernel_size) {
343 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
344 cpu_to_be64(kernel_size) };
345
346 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
347 if (little_endian) {
348 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
349 }
350 }
351 if (boot_device) {
352 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
353 }
354 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
355 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
356 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
357
358 _FDT((fdt_end_node(fdt)));
359
360 /* cpus */
361 _FDT((fdt_begin_node(fdt, "cpus")));
362
363 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
364 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
365
366 CPU_FOREACH(cs) {
367 PowerPCCPU *cpu = POWERPC_CPU(cs);
368 CPUPPCState *env = &cpu->env;
369 DeviceClass *dc = DEVICE_GET_CLASS(cs);
370 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
371 int index = cs->cpu_index;
372 uint32_t servers_prop[smp_threads];
373 uint32_t gservers_prop[smp_threads * 2];
374 char *nodename;
375 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
376 0xffffffff, 0xffffffff};
377 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
378 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
379 uint32_t page_sizes_prop[64];
380 size_t page_sizes_prop_size;
381
382 if ((index % smt) != 0) {
383 continue;
384 }
385
386 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
387
388 _FDT((fdt_begin_node(fdt, nodename)));
389
390 g_free(nodename);
391
392 _FDT((fdt_property_cell(fdt, "reg", index)));
393 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
394
395 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
396 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
397 env->dcache_line_size)));
398 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
399 env->dcache_line_size)));
400 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
401 env->icache_line_size)));
402 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
403 env->icache_line_size)));
404
405 if (pcc->l1_dcache_size) {
406 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
407 } else {
408 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
409 }
410 if (pcc->l1_icache_size) {
411 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
412 } else {
413 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
414 }
415
416 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
417 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
418 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
419 _FDT((fdt_property_string(fdt, "status", "okay")));
420 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
421
422 /* Build interrupt servers and gservers properties */
423 for (i = 0; i < smp_threads; i++) {
424 servers_prop[i] = cpu_to_be32(index + i);
425 /* Hack, direct the group queues back to cpu 0 */
426 gservers_prop[i*2] = cpu_to_be32(index + i);
427 gservers_prop[i*2 + 1] = 0;
428 }
429 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
430 servers_prop, sizeof(servers_prop))));
431 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
432 gservers_prop, sizeof(gservers_prop))));
433
434 if (env->spr_cb[SPR_PURR].oea_read) {
435 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
436 }
437
438 if (env->mmu_model & POWERPC_MMU_1TSEG) {
439 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
440 segs, sizeof(segs))));
441 }
442
443 /* Advertise VMX/VSX (vector extensions) if available
444 * 0 / no property == no vector extensions
445 * 1 == VMX / Altivec available
446 * 2 == VSX available */
447 if (env->insns_flags & PPC_ALTIVEC) {
448 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
449
450 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
451 }
452
453 /* Advertise DFP (Decimal Floating Point) if available
454 * 0 / no property == no DFP
455 * 1 == DFP available */
456 if (env->insns_flags2 & PPC2_DFP) {
457 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
458 }
459
460 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
461 sizeof(page_sizes_prop));
462 if (page_sizes_prop_size) {
463 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
464 page_sizes_prop, page_sizes_prop_size)));
465 }
466
467 _FDT((fdt_end_node(fdt)));
468 }
469
470 _FDT((fdt_end_node(fdt)));
471
472 /* RTAS */
473 _FDT((fdt_begin_node(fdt, "rtas")));
474
475 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
476 sizeof(hypertas_prop))));
477 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
478 sizeof(qemu_hypertas_prop))));
479
480 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
481 refpoints, sizeof(refpoints))));
482
483 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
484
485 _FDT((fdt_end_node(fdt)));
486
487 /* interrupt controller */
488 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
489
490 _FDT((fdt_property_string(fdt, "device_type",
491 "PowerPC-External-Interrupt-Presentation")));
492 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
493 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
494 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
495 interrupt_server_ranges_prop,
496 sizeof(interrupt_server_ranges_prop))));
497 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
498 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
499 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
500
501 _FDT((fdt_end_node(fdt)));
502
503 /* vdevice */
504 _FDT((fdt_begin_node(fdt, "vdevice")));
505
506 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
507 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
508 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
509 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
510 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
511 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
512
513 _FDT((fdt_end_node(fdt)));
514
515 /* event-sources */
516 spapr_events_fdt_skel(fdt, epow_irq);
517
518 _FDT((fdt_end_node(fdt))); /* close root node */
519 _FDT((fdt_finish(fdt)));
520
521 return fdt;
522 }
523
524 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
525 {
526 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
527 cpu_to_be32(0x0), cpu_to_be32(0x0),
528 cpu_to_be32(0x0)};
529 char mem_name[32];
530 hwaddr node0_size, mem_start, node_size;
531 uint64_t mem_reg_property[2];
532 int i, off;
533
534 /* memory node(s) */
535 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
536 node0_size = node_mem[0];
537 } else {
538 node0_size = ram_size;
539 }
540
541 /* RMA */
542 mem_reg_property[0] = 0;
543 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
544 off = fdt_add_subnode(fdt, 0, "memory@0");
545 _FDT(off);
546 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
547 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
548 sizeof(mem_reg_property))));
549 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
550 sizeof(associativity))));
551
552 /* RAM: Node 0 */
553 if (node0_size > spapr->rma_size) {
554 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
555 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
556
557 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
558 off = fdt_add_subnode(fdt, 0, mem_name);
559 _FDT(off);
560 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
561 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
562 sizeof(mem_reg_property))));
563 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
564 sizeof(associativity))));
565 }
566
567 /* RAM: Node 1 and beyond */
568 mem_start = node0_size;
569 for (i = 1; i < nb_numa_nodes; i++) {
570 mem_reg_property[0] = cpu_to_be64(mem_start);
571 if (mem_start >= ram_size) {
572 node_size = 0;
573 } else {
574 node_size = node_mem[i];
575 if (node_size > ram_size - mem_start) {
576 node_size = ram_size - mem_start;
577 }
578 }
579 mem_reg_property[1] = cpu_to_be64(node_size);
580 associativity[3] = associativity[4] = cpu_to_be32(i);
581 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
582 off = fdt_add_subnode(fdt, 0, mem_name);
583 _FDT(off);
584 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
585 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
586 sizeof(mem_reg_property))));
587 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
588 sizeof(associativity))));
589 mem_start += node_size;
590 }
591
592 return 0;
593 }
594
595 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
596 hwaddr fdt_addr,
597 hwaddr rtas_addr,
598 hwaddr rtas_size)
599 {
600 int ret;
601 void *fdt;
602 sPAPRPHBState *phb;
603
604 fdt = g_malloc(FDT_MAX_SIZE);
605
606 /* open out the base tree into a temp buffer for the final tweaks */
607 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
608
609 ret = spapr_populate_memory(spapr, fdt);
610 if (ret < 0) {
611 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
612 exit(1);
613 }
614
615 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
616 if (ret < 0) {
617 fprintf(stderr, "couldn't setup vio devices in fdt\n");
618 exit(1);
619 }
620
621 QLIST_FOREACH(phb, &spapr->phbs, list) {
622 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
623 }
624
625 if (ret < 0) {
626 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
627 exit(1);
628 }
629
630 /* RTAS */
631 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
632 if (ret < 0) {
633 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
634 }
635
636 /* Advertise NUMA via ibm,associativity */
637 ret = spapr_fixup_cpu_dt(fdt, spapr);
638 if (ret < 0) {
639 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
640 }
641
642 if (!spapr->has_graphics) {
643 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
644 }
645
646 _FDT((fdt_pack(fdt)));
647
648 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
649 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
650 fdt_totalsize(fdt), FDT_MAX_SIZE);
651 exit(1);
652 }
653
654 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
655
656 g_free(fdt);
657 }
658
659 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
660 {
661 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
662 }
663
664 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
665 {
666 CPUPPCState *env = &cpu->env;
667
668 if (msr_pr) {
669 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
670 env->gpr[3] = H_PRIVILEGE;
671 } else {
672 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
673 }
674 }
675
676 static void spapr_reset_htab(sPAPREnvironment *spapr)
677 {
678 long shift;
679
680 /* allocate hash page table. For now we always make this 16mb,
681 * later we should probably make it scale to the size of guest
682 * RAM */
683
684 shift = kvmppc_reset_htab(spapr->htab_shift);
685
686 if (shift > 0) {
687 /* Kernel handles htab, we don't need to allocate one */
688 spapr->htab_shift = shift;
689 } else {
690 if (!spapr->htab) {
691 /* Allocate an htab if we don't yet have one */
692 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
693 }
694
695 /* And clear it */
696 memset(spapr->htab, 0, HTAB_SIZE(spapr));
697 }
698
699 /* Update the RMA size if necessary */
700 if (spapr->vrma_adjust) {
701 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
702 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
703 }
704 }
705
706 static void ppc_spapr_reset(void)
707 {
708 PowerPCCPU *first_ppc_cpu;
709
710 /* Reset the hash table & recalc the RMA */
711 spapr_reset_htab(spapr);
712
713 qemu_devices_reset();
714
715 /* Load the fdt */
716 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
717 spapr->rtas_size);
718
719 /* Set up the entry state */
720 first_ppc_cpu = POWERPC_CPU(first_cpu);
721 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
722 first_ppc_cpu->env.gpr[5] = 0;
723 first_cpu->halted = 0;
724 first_ppc_cpu->env.nip = spapr->entry_point;
725
726 }
727
728 static void spapr_cpu_reset(void *opaque)
729 {
730 PowerPCCPU *cpu = opaque;
731 CPUState *cs = CPU(cpu);
732 CPUPPCState *env = &cpu->env;
733
734 cpu_reset(cs);
735
736 /* All CPUs start halted. CPU0 is unhalted from the machine level
737 * reset code and the rest are explicitly started up by the guest
738 * using an RTAS call */
739 cs->halted = 1;
740
741 env->spr[SPR_HIOR] = 0;
742
743 env->external_htab = (uint8_t *)spapr->htab;
744 env->htab_base = -1;
745 env->htab_mask = HTAB_SIZE(spapr) - 1;
746 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
747 (spapr->htab_shift - 18);
748 }
749
750 static void spapr_create_nvram(sPAPREnvironment *spapr)
751 {
752 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
753 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
754
755 if (dinfo) {
756 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
757 }
758
759 qdev_init_nofail(dev);
760
761 spapr->nvram = (struct sPAPRNVRAM *)dev;
762 }
763
764 /* Returns whether we want to use VGA or not */
765 static int spapr_vga_init(PCIBus *pci_bus)
766 {
767 switch (vga_interface_type) {
768 case VGA_NONE:
769 case VGA_STD:
770 return pci_vga_init(pci_bus) != NULL;
771 default:
772 fprintf(stderr, "This vga model is not supported,"
773 "currently it only supports -vga std\n");
774 exit(0);
775 break;
776 }
777 }
778
779 static const VMStateDescription vmstate_spapr = {
780 .name = "spapr",
781 .version_id = 1,
782 .minimum_version_id = 1,
783 .minimum_version_id_old = 1,
784 .fields = (VMStateField []) {
785 VMSTATE_UINT32(next_irq, sPAPREnvironment),
786
787 /* RTC offset */
788 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
789
790 VMSTATE_END_OF_LIST()
791 },
792 };
793
794 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
795 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
796 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
797 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
798
799 static int htab_save_setup(QEMUFile *f, void *opaque)
800 {
801 sPAPREnvironment *spapr = opaque;
802
803 /* "Iteration" header */
804 qemu_put_be32(f, spapr->htab_shift);
805
806 if (spapr->htab) {
807 spapr->htab_save_index = 0;
808 spapr->htab_first_pass = true;
809 } else {
810 assert(kvm_enabled());
811
812 spapr->htab_fd = kvmppc_get_htab_fd(false);
813 if (spapr->htab_fd < 0) {
814 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
815 strerror(errno));
816 return -1;
817 }
818 }
819
820
821 return 0;
822 }
823
824 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
825 int64_t max_ns)
826 {
827 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
828 int index = spapr->htab_save_index;
829 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
830
831 assert(spapr->htab_first_pass);
832
833 do {
834 int chunkstart;
835
836 /* Consume invalid HPTEs */
837 while ((index < htabslots)
838 && !HPTE_VALID(HPTE(spapr->htab, index))) {
839 index++;
840 CLEAN_HPTE(HPTE(spapr->htab, index));
841 }
842
843 /* Consume valid HPTEs */
844 chunkstart = index;
845 while ((index < htabslots)
846 && HPTE_VALID(HPTE(spapr->htab, index))) {
847 index++;
848 CLEAN_HPTE(HPTE(spapr->htab, index));
849 }
850
851 if (index > chunkstart) {
852 int n_valid = index - chunkstart;
853
854 qemu_put_be32(f, chunkstart);
855 qemu_put_be16(f, n_valid);
856 qemu_put_be16(f, 0);
857 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
858 HASH_PTE_SIZE_64 * n_valid);
859
860 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
861 break;
862 }
863 }
864 } while ((index < htabslots) && !qemu_file_rate_limit(f));
865
866 if (index >= htabslots) {
867 assert(index == htabslots);
868 index = 0;
869 spapr->htab_first_pass = false;
870 }
871 spapr->htab_save_index = index;
872 }
873
874 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
875 int64_t max_ns)
876 {
877 bool final = max_ns < 0;
878 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
879 int examined = 0, sent = 0;
880 int index = spapr->htab_save_index;
881 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
882
883 assert(!spapr->htab_first_pass);
884
885 do {
886 int chunkstart, invalidstart;
887
888 /* Consume non-dirty HPTEs */
889 while ((index < htabslots)
890 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
891 index++;
892 examined++;
893 }
894
895 chunkstart = index;
896 /* Consume valid dirty HPTEs */
897 while ((index < htabslots)
898 && HPTE_DIRTY(HPTE(spapr->htab, index))
899 && HPTE_VALID(HPTE(spapr->htab, index))) {
900 CLEAN_HPTE(HPTE(spapr->htab, index));
901 index++;
902 examined++;
903 }
904
905 invalidstart = index;
906 /* Consume invalid dirty HPTEs */
907 while ((index < htabslots)
908 && HPTE_DIRTY(HPTE(spapr->htab, index))
909 && !HPTE_VALID(HPTE(spapr->htab, index))) {
910 CLEAN_HPTE(HPTE(spapr->htab, index));
911 index++;
912 examined++;
913 }
914
915 if (index > chunkstart) {
916 int n_valid = invalidstart - chunkstart;
917 int n_invalid = index - invalidstart;
918
919 qemu_put_be32(f, chunkstart);
920 qemu_put_be16(f, n_valid);
921 qemu_put_be16(f, n_invalid);
922 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
923 HASH_PTE_SIZE_64 * n_valid);
924 sent += index - chunkstart;
925
926 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
927 break;
928 }
929 }
930
931 if (examined >= htabslots) {
932 break;
933 }
934
935 if (index >= htabslots) {
936 assert(index == htabslots);
937 index = 0;
938 }
939 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
940
941 if (index >= htabslots) {
942 assert(index == htabslots);
943 index = 0;
944 }
945
946 spapr->htab_save_index = index;
947
948 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
949 }
950
951 #define MAX_ITERATION_NS 5000000 /* 5 ms */
952 #define MAX_KVM_BUF_SIZE 2048
953
954 static int htab_save_iterate(QEMUFile *f, void *opaque)
955 {
956 sPAPREnvironment *spapr = opaque;
957 int rc = 0;
958
959 /* Iteration header */
960 qemu_put_be32(f, 0);
961
962 if (!spapr->htab) {
963 assert(kvm_enabled());
964
965 rc = kvmppc_save_htab(f, spapr->htab_fd,
966 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
967 if (rc < 0) {
968 return rc;
969 }
970 } else if (spapr->htab_first_pass) {
971 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
972 } else {
973 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
974 }
975
976 /* End marker */
977 qemu_put_be32(f, 0);
978 qemu_put_be16(f, 0);
979 qemu_put_be16(f, 0);
980
981 return rc;
982 }
983
984 static int htab_save_complete(QEMUFile *f, void *opaque)
985 {
986 sPAPREnvironment *spapr = opaque;
987
988 /* Iteration header */
989 qemu_put_be32(f, 0);
990
991 if (!spapr->htab) {
992 int rc;
993
994 assert(kvm_enabled());
995
996 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
997 if (rc < 0) {
998 return rc;
999 }
1000 close(spapr->htab_fd);
1001 spapr->htab_fd = -1;
1002 } else {
1003 htab_save_later_pass(f, spapr, -1);
1004 }
1005
1006 /* End marker */
1007 qemu_put_be32(f, 0);
1008 qemu_put_be16(f, 0);
1009 qemu_put_be16(f, 0);
1010
1011 return 0;
1012 }
1013
1014 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1015 {
1016 sPAPREnvironment *spapr = opaque;
1017 uint32_t section_hdr;
1018 int fd = -1;
1019
1020 if (version_id < 1 || version_id > 1) {
1021 fprintf(stderr, "htab_load() bad version\n");
1022 return -EINVAL;
1023 }
1024
1025 section_hdr = qemu_get_be32(f);
1026
1027 if (section_hdr) {
1028 /* First section, just the hash shift */
1029 if (spapr->htab_shift != section_hdr) {
1030 return -EINVAL;
1031 }
1032 return 0;
1033 }
1034
1035 if (!spapr->htab) {
1036 assert(kvm_enabled());
1037
1038 fd = kvmppc_get_htab_fd(true);
1039 if (fd < 0) {
1040 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1041 strerror(errno));
1042 }
1043 }
1044
1045 while (true) {
1046 uint32_t index;
1047 uint16_t n_valid, n_invalid;
1048
1049 index = qemu_get_be32(f);
1050 n_valid = qemu_get_be16(f);
1051 n_invalid = qemu_get_be16(f);
1052
1053 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1054 /* End of Stream */
1055 break;
1056 }
1057
1058 if ((index + n_valid + n_invalid) >
1059 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1060 /* Bad index in stream */
1061 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1062 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1063 spapr->htab_shift);
1064 return -EINVAL;
1065 }
1066
1067 if (spapr->htab) {
1068 if (n_valid) {
1069 qemu_get_buffer(f, HPTE(spapr->htab, index),
1070 HASH_PTE_SIZE_64 * n_valid);
1071 }
1072 if (n_invalid) {
1073 memset(HPTE(spapr->htab, index + n_valid), 0,
1074 HASH_PTE_SIZE_64 * n_invalid);
1075 }
1076 } else {
1077 int rc;
1078
1079 assert(fd >= 0);
1080
1081 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1082 if (rc < 0) {
1083 return rc;
1084 }
1085 }
1086 }
1087
1088 if (!spapr->htab) {
1089 assert(fd >= 0);
1090 close(fd);
1091 }
1092
1093 return 0;
1094 }
1095
1096 static SaveVMHandlers savevm_htab_handlers = {
1097 .save_live_setup = htab_save_setup,
1098 .save_live_iterate = htab_save_iterate,
1099 .save_live_complete = htab_save_complete,
1100 .load_state = htab_load,
1101 };
1102
1103 /* pSeries LPAR / sPAPR hardware init */
1104 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1105 {
1106 ram_addr_t ram_size = args->ram_size;
1107 const char *cpu_model = args->cpu_model;
1108 const char *kernel_filename = args->kernel_filename;
1109 const char *kernel_cmdline = args->kernel_cmdline;
1110 const char *initrd_filename = args->initrd_filename;
1111 const char *boot_device = args->boot_order;
1112 PowerPCCPU *cpu;
1113 CPUPPCState *env;
1114 PCIHostState *phb;
1115 int i;
1116 MemoryRegion *sysmem = get_system_memory();
1117 MemoryRegion *ram = g_new(MemoryRegion, 1);
1118 hwaddr rma_alloc_size;
1119 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1120 uint32_t initrd_base = 0;
1121 long kernel_size = 0, initrd_size = 0;
1122 long load_limit, rtas_limit, fw_size;
1123 bool kernel_le = false;
1124 char *filename;
1125
1126 msi_supported = true;
1127
1128 spapr = g_malloc0(sizeof(*spapr));
1129 QLIST_INIT(&spapr->phbs);
1130
1131 cpu_ppc_hypercall = emulate_spapr_hypercall;
1132
1133 /* Allocate RMA if necessary */
1134 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1135
1136 if (rma_alloc_size == -1) {
1137 hw_error("qemu: Unable to create RMA\n");
1138 exit(1);
1139 }
1140
1141 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1142 spapr->rma_size = rma_alloc_size;
1143 } else {
1144 spapr->rma_size = node0_size;
1145
1146 /* With KVM, we don't actually know whether KVM supports an
1147 * unbounded RMA (PR KVM) or is limited by the hash table size
1148 * (HV KVM using VRMA), so we always assume the latter
1149 *
1150 * In that case, we also limit the initial allocations for RTAS
1151 * etc... to 256M since we have no way to know what the VRMA size
1152 * is going to be as it depends on the size of the hash table
1153 * isn't determined yet.
1154 */
1155 if (kvm_enabled()) {
1156 spapr->vrma_adjust = 1;
1157 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1158 }
1159 }
1160
1161 if (spapr->rma_size > node0_size) {
1162 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1163 spapr->rma_size);
1164 exit(1);
1165 }
1166
1167 /* We place the device tree and RTAS just below either the top of the RMA,
1168 * or just below 2GB, whichever is lowere, so that it can be
1169 * processed with 32-bit real mode code if necessary */
1170 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1171 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1172 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1173 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1174
1175 /* We aim for a hash table of size 1/128 the size of RAM. The
1176 * normal rule of thumb is 1/64 the size of RAM, but that's much
1177 * more than needed for the Linux guests we support. */
1178 spapr->htab_shift = 18; /* Minimum architected size */
1179 while (spapr->htab_shift <= 46) {
1180 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1181 break;
1182 }
1183 spapr->htab_shift++;
1184 }
1185
1186 /* Set up Interrupt Controller before we create the VCPUs */
1187 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1188 XICS_IRQS);
1189 spapr->next_irq = XICS_IRQ_BASE;
1190
1191 /* init CPUs */
1192 if (cpu_model == NULL) {
1193 cpu_model = kvm_enabled() ? "host" : "POWER7";
1194 }
1195 for (i = 0; i < smp_cpus; i++) {
1196 cpu = cpu_ppc_init(cpu_model);
1197 if (cpu == NULL) {
1198 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1199 exit(1);
1200 }
1201 env = &cpu->env;
1202
1203 /* Set time-base frequency to 512 MHz */
1204 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1205
1206 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1207 * MSR[IP] should never be set.
1208 */
1209 env->msr_mask &= ~(1 << 6);
1210
1211 /* Tell KVM that we're in PAPR mode */
1212 if (kvm_enabled()) {
1213 kvmppc_set_papr(cpu);
1214 }
1215
1216 xics_cpu_setup(spapr->icp, cpu);
1217
1218 qemu_register_reset(spapr_cpu_reset, cpu);
1219 }
1220
1221 /* allocate RAM */
1222 spapr->ram_limit = ram_size;
1223 if (spapr->ram_limit > rma_alloc_size) {
1224 ram_addr_t nonrma_base = rma_alloc_size;
1225 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1226
1227 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1228 vmstate_register_ram_global(ram);
1229 memory_region_add_subregion(sysmem, nonrma_base, ram);
1230 }
1231
1232 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1233 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1234 rtas_limit - spapr->rtas_addr);
1235 if (spapr->rtas_size < 0) {
1236 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1237 exit(1);
1238 }
1239 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1240 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1241 spapr->rtas_size, RTAS_MAX_SIZE);
1242 exit(1);
1243 }
1244 g_free(filename);
1245
1246 /* Set up EPOW events infrastructure */
1247 spapr_events_init(spapr);
1248
1249 /* Set up VIO bus */
1250 spapr->vio_bus = spapr_vio_bus_init();
1251
1252 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1253 if (serial_hds[i]) {
1254 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1255 }
1256 }
1257
1258 /* We always have at least the nvram device on VIO */
1259 spapr_create_nvram(spapr);
1260
1261 /* Set up PCI */
1262 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1263 spapr_pci_rtas_init();
1264
1265 phb = spapr_create_phb(spapr, 0);
1266
1267 for (i = 0; i < nb_nics; i++) {
1268 NICInfo *nd = &nd_table[i];
1269
1270 if (!nd->model) {
1271 nd->model = g_strdup("ibmveth");
1272 }
1273
1274 if (strcmp(nd->model, "ibmveth") == 0) {
1275 spapr_vlan_create(spapr->vio_bus, nd);
1276 } else {
1277 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1278 }
1279 }
1280
1281 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1282 spapr_vscsi_create(spapr->vio_bus);
1283 }
1284
1285 /* Graphics */
1286 if (spapr_vga_init(phb->bus)) {
1287 spapr->has_graphics = true;
1288 }
1289
1290 if (usb_enabled(spapr->has_graphics)) {
1291 pci_create_simple(phb->bus, -1, "pci-ohci");
1292 if (spapr->has_graphics) {
1293 usbdevice_create("keyboard");
1294 usbdevice_create("mouse");
1295 }
1296 }
1297
1298 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1299 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1300 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1301 exit(1);
1302 }
1303
1304 if (kernel_filename) {
1305 uint64_t lowaddr = 0;
1306
1307 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1308 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1309 if (kernel_size < 0) {
1310 kernel_size = load_elf(kernel_filename,
1311 translate_kernel_address, NULL,
1312 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1313 kernel_le = kernel_size > 0;
1314 }
1315 if (kernel_size < 0) {
1316 kernel_size = load_image_targphys(kernel_filename,
1317 KERNEL_LOAD_ADDR,
1318 load_limit - KERNEL_LOAD_ADDR);
1319 }
1320 if (kernel_size < 0) {
1321 fprintf(stderr, "qemu: could not load kernel '%s'\n",
1322 kernel_filename);
1323 exit(1);
1324 }
1325
1326 /* load initrd */
1327 if (initrd_filename) {
1328 /* Try to locate the initrd in the gap between the kernel
1329 * and the firmware. Add a bit of space just in case
1330 */
1331 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1332 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1333 load_limit - initrd_base);
1334 if (initrd_size < 0) {
1335 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1336 initrd_filename);
1337 exit(1);
1338 }
1339 } else {
1340 initrd_base = 0;
1341 initrd_size = 0;
1342 }
1343 }
1344
1345 if (bios_name == NULL) {
1346 bios_name = FW_FILE_NAME;
1347 }
1348 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1349 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1350 if (fw_size < 0) {
1351 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1352 exit(1);
1353 }
1354 g_free(filename);
1355
1356 spapr->entry_point = 0x100;
1357
1358 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1359 register_savevm_live(NULL, "spapr/htab", -1, 1,
1360 &savevm_htab_handlers, spapr);
1361
1362 /* Prepare the device tree */
1363 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1364 kernel_size, kernel_le,
1365 boot_device, kernel_cmdline,
1366 spapr->epow_irq);
1367 assert(spapr->fdt_skel != NULL);
1368 }
1369
1370 static int spapr_kvm_type(const char *vm_type)
1371 {
1372 if (!vm_type) {
1373 return 0;
1374 }
1375
1376 if (!strcmp(vm_type, "HV")) {
1377 return 1;
1378 }
1379
1380 if (!strcmp(vm_type, "PR")) {
1381 return 2;
1382 }
1383
1384 error_report("Unknown kvm-type specified '%s'", vm_type);
1385 exit(1);
1386 }
1387
1388 static QEMUMachine spapr_machine = {
1389 .name = "pseries",
1390 .desc = "pSeries Logical Partition (PAPR compliant)",
1391 .is_default = 1,
1392 .init = ppc_spapr_init,
1393 .reset = ppc_spapr_reset,
1394 .block_default_type = IF_SCSI,
1395 .max_cpus = MAX_CPUS,
1396 .no_parallel = 1,
1397 .default_boot_order = NULL,
1398 .kvm_type = spapr_kvm_type,
1399 };
1400
1401 static void spapr_machine_init(void)
1402 {
1403 qemu_register_machine(&spapr_machine);
1404 }
1405
1406 machine_init(spapr_machine_init);