]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
7febff7ed27dfb03eef3008fc7005810677f997e
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/block-backend.h"
34 #include "sysemu/cpus.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "mmu-hash64.h"
38 #include "qom/cpu.h"
39
40 #include "hw/boards.h"
41 #include "hw/ppc/ppc.h"
42 #include "hw/loader.h"
43
44 #include "hw/ppc/spapr.h"
45 #include "hw/ppc/spapr_vio.h"
46 #include "hw/pci-host/spapr.h"
47 #include "hw/ppc/xics.h"
48 #include "hw/pci/msi.h"
49
50 #include "hw/pci/pci.h"
51 #include "hw/scsi/scsi.h"
52 #include "hw/virtio/virtio-scsi.h"
53
54 #include "exec/address-spaces.h"
55 #include "hw/usb.h"
56 #include "qemu/config-file.h"
57 #include "qemu/error-report.h"
58 #include "trace.h"
59 #include "hw/nmi.h"
60
61 #include "hw/compat.h"
62
63 #include <libfdt.h>
64
65 /* SLOF memory layout:
66 *
67 * SLOF raw image loaded at 0, copies its romfs right below the flat
68 * device-tree, then position SLOF itself 31M below that
69 *
70 * So we set FW_OVERHEAD to 40MB which should account for all of that
71 * and more
72 *
73 * We load our kernel at 4M, leaving space for SLOF initial image
74 */
75 #define FDT_MAX_SIZE 0x40000
76 #define RTAS_MAX_SIZE 0x10000
77 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
78 #define FW_MAX_SIZE 0x400000
79 #define FW_FILE_NAME "slof.bin"
80 #define FW_OVERHEAD 0x2800000
81 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
82
83 #define MIN_RMA_SLOF 128UL
84
85 #define TIMEBASE_FREQ 512000000ULL
86
87 #define MAX_CPUS 255
88
89 #define PHANDLE_XICP 0x00001111
90
91 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
92
93 typedef struct sPAPRMachineState sPAPRMachineState;
94
95 #define TYPE_SPAPR_MACHINE "spapr-machine"
96 #define SPAPR_MACHINE(obj) \
97 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
98
99 /**
100 * sPAPRMachineState:
101 */
102 struct sPAPRMachineState {
103 /*< private >*/
104 MachineState parent_obj;
105
106 /*< public >*/
107 char *kvm_type;
108 };
109
110 sPAPREnvironment *spapr;
111
112 static XICSState *try_create_xics(const char *type, int nr_servers,
113 int nr_irqs, Error **errp)
114 {
115 Error *err = NULL;
116 DeviceState *dev;
117
118 dev = qdev_create(NULL, type);
119 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
120 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
121 object_property_set_bool(OBJECT(dev), true, "realized", &err);
122 if (err) {
123 error_propagate(errp, err);
124 object_unparent(OBJECT(dev));
125 return NULL;
126 }
127 return XICS_COMMON(dev);
128 }
129
130 static XICSState *xics_system_init(MachineState *machine,
131 int nr_servers, int nr_irqs)
132 {
133 XICSState *icp = NULL;
134
135 if (kvm_enabled()) {
136 Error *err = NULL;
137
138 if (machine_kernel_irqchip_allowed(machine)) {
139 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
140 }
141 if (machine_kernel_irqchip_required(machine) && !icp) {
142 error_report("kernel_irqchip requested but unavailable: %s",
143 error_get_pretty(err));
144 }
145 }
146
147 if (!icp) {
148 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
149 }
150
151 return icp;
152 }
153
154 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
155 int smt_threads)
156 {
157 int i, ret = 0;
158 uint32_t servers_prop[smt_threads];
159 uint32_t gservers_prop[smt_threads * 2];
160 int index = ppc_get_vcpu_dt_id(cpu);
161
162 if (cpu->cpu_version) {
163 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
164 if (ret < 0) {
165 return ret;
166 }
167 }
168
169 /* Build interrupt servers and gservers properties */
170 for (i = 0; i < smt_threads; i++) {
171 servers_prop[i] = cpu_to_be32(index + i);
172 /* Hack, direct the group queues back to cpu 0 */
173 gservers_prop[i*2] = cpu_to_be32(index + i);
174 gservers_prop[i*2 + 1] = 0;
175 }
176 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
177 servers_prop, sizeof(servers_prop));
178 if (ret < 0) {
179 return ret;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
182 gservers_prop, sizeof(gservers_prop));
183
184 return ret;
185 }
186
187 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
188 {
189 int ret = 0, offset, cpus_offset;
190 CPUState *cs;
191 char cpu_model[32];
192 int smt = kvmppc_smt_threads();
193 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
194
195 CPU_FOREACH(cs) {
196 PowerPCCPU *cpu = POWERPC_CPU(cs);
197 DeviceClass *dc = DEVICE_GET_CLASS(cs);
198 int index = ppc_get_vcpu_dt_id(cpu);
199 uint32_t associativity[] = {cpu_to_be32(0x5),
200 cpu_to_be32(0x0),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(cs->numa_node),
204 cpu_to_be32(index)};
205
206 if ((index % smt) != 0) {
207 continue;
208 }
209
210 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211
212 cpus_offset = fdt_path_offset(fdt, "/cpus");
213 if (cpus_offset < 0) {
214 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
215 "cpus");
216 if (cpus_offset < 0) {
217 return cpus_offset;
218 }
219 }
220 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221 if (offset < 0) {
222 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
223 if (offset < 0) {
224 return offset;
225 }
226 }
227
228 if (nb_numa_nodes > 1) {
229 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
230 sizeof(associativity));
231 if (ret < 0) {
232 return ret;
233 }
234 }
235
236 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
237 pft_size_prop, sizeof(pft_size_prop));
238 if (ret < 0) {
239 return ret;
240 }
241
242 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243 ppc_get_compat_smt_threads(cpu));
244 if (ret < 0) {
245 return ret;
246 }
247 }
248 return ret;
249 }
250
251
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253 size_t maxsize)
254 {
255 size_t maxcells = maxsize / sizeof(uint32_t);
256 int i, j, count;
257 uint32_t *p = prop;
258
259 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261
262 if (!sps->page_shift) {
263 break;
264 }
265 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266 if (sps->enc[count].page_shift == 0) {
267 break;
268 }
269 }
270 if ((p - prop) >= (maxcells - 3 - count * 2)) {
271 break;
272 }
273 *(p++) = cpu_to_be32(sps->page_shift);
274 *(p++) = cpu_to_be32(sps->slb_enc);
275 *(p++) = cpu_to_be32(count);
276 for (j = 0; j < count; j++) {
277 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279 }
280 }
281
282 return (p - prop) * sizeof(uint32_t);
283 }
284
285 static hwaddr spapr_node0_size(void)
286 {
287 if (nb_numa_nodes) {
288 int i;
289 for (i = 0; i < nb_numa_nodes; ++i) {
290 if (numa_info[i].node_mem) {
291 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
292 }
293 }
294 }
295 return ram_size;
296 }
297
298 #define _FDT(exp) \
299 do { \
300 int ret = (exp); \
301 if (ret < 0) { \
302 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
303 #exp, fdt_strerror(ret)); \
304 exit(1); \
305 } \
306 } while (0)
307
308 static void add_str(GString *s, const gchar *s1)
309 {
310 g_string_append_len(s, s1, strlen(s1) + 1);
311 }
312
313 static void *spapr_create_fdt_skel(hwaddr initrd_base,
314 hwaddr initrd_size,
315 hwaddr kernel_size,
316 bool little_endian,
317 const char *boot_device,
318 const char *kernel_cmdline,
319 uint32_t epow_irq)
320 {
321 void *fdt;
322 CPUState *cs;
323 uint32_t start_prop = cpu_to_be32(initrd_base);
324 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
325 GString *hypertas = g_string_sized_new(256);
326 GString *qemu_hypertas = g_string_sized_new(256);
327 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
328 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
329 int smt = kvmppc_smt_threads();
330 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
331 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
332 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
333 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
334 char *buf;
335
336 add_str(hypertas, "hcall-pft");
337 add_str(hypertas, "hcall-term");
338 add_str(hypertas, "hcall-dabr");
339 add_str(hypertas, "hcall-interrupt");
340 add_str(hypertas, "hcall-tce");
341 add_str(hypertas, "hcall-vio");
342 add_str(hypertas, "hcall-splpar");
343 add_str(hypertas, "hcall-bulk");
344 add_str(hypertas, "hcall-set-mode");
345 add_str(qemu_hypertas, "hcall-memop1");
346
347 fdt = g_malloc0(FDT_MAX_SIZE);
348 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
349
350 if (kernel_size) {
351 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
352 }
353 if (initrd_size) {
354 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
355 }
356 _FDT((fdt_finish_reservemap(fdt)));
357
358 /* Root node */
359 _FDT((fdt_begin_node(fdt, "")));
360 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
361 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
362 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
363
364 /*
365 * Add info to guest to indentify which host is it being run on
366 * and what is the uuid of the guest
367 */
368 if (kvmppc_get_host_model(&buf)) {
369 _FDT((fdt_property_string(fdt, "host-model", buf)));
370 g_free(buf);
371 }
372 if (kvmppc_get_host_serial(&buf)) {
373 _FDT((fdt_property_string(fdt, "host-serial", buf)));
374 g_free(buf);
375 }
376
377 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
378 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
379 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
380 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
381 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
382 qemu_uuid[14], qemu_uuid[15]);
383
384 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
385 g_free(buf);
386
387 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
388 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
389
390 /* /chosen */
391 _FDT((fdt_begin_node(fdt, "chosen")));
392
393 /* Set Form1_affinity */
394 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
395
396 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
397 _FDT((fdt_property(fdt, "linux,initrd-start",
398 &start_prop, sizeof(start_prop))));
399 _FDT((fdt_property(fdt, "linux,initrd-end",
400 &end_prop, sizeof(end_prop))));
401 if (kernel_size) {
402 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
403 cpu_to_be64(kernel_size) };
404
405 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
406 if (little_endian) {
407 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
408 }
409 }
410 if (boot_device) {
411 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
412 }
413 if (boot_menu) {
414 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
415 }
416 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
417 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419
420 _FDT((fdt_end_node(fdt)));
421
422 /* cpus */
423 _FDT((fdt_begin_node(fdt, "cpus")));
424
425 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
426 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
427
428 CPU_FOREACH(cs) {
429 PowerPCCPU *cpu = POWERPC_CPU(cs);
430 CPUPPCState *env = &cpu->env;
431 DeviceClass *dc = DEVICE_GET_CLASS(cs);
432 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
433 int index = ppc_get_vcpu_dt_id(cpu);
434 char *nodename;
435 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
436 0xffffffff, 0xffffffff};
437 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
438 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
439 uint32_t page_sizes_prop[64];
440 size_t page_sizes_prop_size;
441
442 if ((index % smt) != 0) {
443 continue;
444 }
445
446 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
447
448 _FDT((fdt_begin_node(fdt, nodename)));
449
450 g_free(nodename);
451
452 _FDT((fdt_property_cell(fdt, "reg", index)));
453 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
454
455 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
456 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
457 env->dcache_line_size)));
458 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
459 env->dcache_line_size)));
460 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
461 env->icache_line_size)));
462 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
463 env->icache_line_size)));
464
465 if (pcc->l1_dcache_size) {
466 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
467 } else {
468 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
469 }
470 if (pcc->l1_icache_size) {
471 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
472 } else {
473 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
474 }
475
476 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
477 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
478 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
479 _FDT((fdt_property_string(fdt, "status", "okay")));
480 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
481
482 if (env->spr_cb[SPR_PURR].oea_read) {
483 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
484 }
485
486 if (env->mmu_model & POWERPC_MMU_1TSEG) {
487 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
488 segs, sizeof(segs))));
489 }
490
491 /* Advertise VMX/VSX (vector extensions) if available
492 * 0 / no property == no vector extensions
493 * 1 == VMX / Altivec available
494 * 2 == VSX available */
495 if (env->insns_flags & PPC_ALTIVEC) {
496 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
497
498 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
499 }
500
501 /* Advertise DFP (Decimal Floating Point) if available
502 * 0 / no property == no DFP
503 * 1 == DFP available */
504 if (env->insns_flags2 & PPC2_DFP) {
505 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
506 }
507
508 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
509 sizeof(page_sizes_prop));
510 if (page_sizes_prop_size) {
511 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
512 page_sizes_prop, page_sizes_prop_size)));
513 }
514
515 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
516 cs->cpu_index / cpus_per_socket)));
517
518 _FDT((fdt_end_node(fdt)));
519 }
520
521 _FDT((fdt_end_node(fdt)));
522
523 /* RTAS */
524 _FDT((fdt_begin_node(fdt, "rtas")));
525
526 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
527 add_str(hypertas, "hcall-multi-tce");
528 }
529 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
530 hypertas->len)));
531 g_string_free(hypertas, TRUE);
532 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
533 qemu_hypertas->len)));
534 g_string_free(qemu_hypertas, TRUE);
535
536 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
537 refpoints, sizeof(refpoints))));
538
539 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
540
541 /*
542 * According to PAPR, rtas ibm,os-term does not guarantee a return
543 * back to the guest cpu.
544 *
545 * While an additional ibm,extended-os-term property indicates that
546 * rtas call return will always occur. Set this property.
547 */
548 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
549
550 _FDT((fdt_end_node(fdt)));
551
552 /* interrupt controller */
553 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
554
555 _FDT((fdt_property_string(fdt, "device_type",
556 "PowerPC-External-Interrupt-Presentation")));
557 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
558 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
559 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
560 interrupt_server_ranges_prop,
561 sizeof(interrupt_server_ranges_prop))));
562 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
563 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
564 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
565
566 _FDT((fdt_end_node(fdt)));
567
568 /* vdevice */
569 _FDT((fdt_begin_node(fdt, "vdevice")));
570
571 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
572 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
573 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
574 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
575 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
576 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
577
578 _FDT((fdt_end_node(fdt)));
579
580 /* event-sources */
581 spapr_events_fdt_skel(fdt, epow_irq);
582
583 /* /hypervisor node */
584 if (kvm_enabled()) {
585 uint8_t hypercall[16];
586
587 /* indicate KVM hypercall interface */
588 _FDT((fdt_begin_node(fdt, "hypervisor")));
589 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
590 if (kvmppc_has_cap_fixup_hcalls()) {
591 /*
592 * Older KVM versions with older guest kernels were broken with the
593 * magic page, don't allow the guest to map it.
594 */
595 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
596 sizeof(hypercall));
597 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
598 sizeof(hypercall))));
599 }
600 _FDT((fdt_end_node(fdt)));
601 }
602
603 _FDT((fdt_end_node(fdt))); /* close root node */
604 _FDT((fdt_finish(fdt)));
605
606 return fdt;
607 }
608
609 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
610 {
611 void *fdt, *fdt_skel;
612 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
613
614 size -= sizeof(hdr);
615
616 /* Create sceleton */
617 fdt_skel = g_malloc0(size);
618 _FDT((fdt_create(fdt_skel, size)));
619 _FDT((fdt_begin_node(fdt_skel, "")));
620 _FDT((fdt_end_node(fdt_skel)));
621 _FDT((fdt_finish(fdt_skel)));
622 fdt = g_malloc0(size);
623 _FDT((fdt_open_into(fdt_skel, fdt, size)));
624 g_free(fdt_skel);
625
626 /* Fix skeleton up */
627 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
628
629 /* Pack resulting tree */
630 _FDT((fdt_pack(fdt)));
631
632 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
633 trace_spapr_cas_failed(size);
634 return -1;
635 }
636
637 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
638 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
639 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
640 g_free(fdt);
641
642 return 0;
643 }
644
645 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
646 hwaddr size)
647 {
648 uint32_t associativity[] = {
649 cpu_to_be32(0x4), /* length */
650 cpu_to_be32(0x0), cpu_to_be32(0x0),
651 cpu_to_be32(0x0), cpu_to_be32(nodeid)
652 };
653 char mem_name[32];
654 uint64_t mem_reg_property[2];
655 int off;
656
657 mem_reg_property[0] = cpu_to_be64(start);
658 mem_reg_property[1] = cpu_to_be64(size);
659
660 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
661 off = fdt_add_subnode(fdt, 0, mem_name);
662 _FDT(off);
663 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
664 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
665 sizeof(mem_reg_property))));
666 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
667 sizeof(associativity))));
668 }
669
670 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
671 {
672 hwaddr mem_start, node_size;
673 int i, nb_nodes = nb_numa_nodes;
674 NodeInfo *nodes = numa_info;
675 NodeInfo ramnode;
676
677 /* No NUMA nodes, assume there is just one node with whole RAM */
678 if (!nb_numa_nodes) {
679 nb_nodes = 1;
680 ramnode.node_mem = ram_size;
681 nodes = &ramnode;
682 }
683
684 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
685 if (!nodes[i].node_mem) {
686 continue;
687 }
688 if (mem_start >= ram_size) {
689 node_size = 0;
690 } else {
691 node_size = nodes[i].node_mem;
692 if (node_size > ram_size - mem_start) {
693 node_size = ram_size - mem_start;
694 }
695 }
696 if (!mem_start) {
697 /* ppc_spapr_init() checks for rma_size <= node0_size already */
698 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
699 mem_start += spapr->rma_size;
700 node_size -= spapr->rma_size;
701 }
702 for ( ; node_size; ) {
703 hwaddr sizetmp = pow2floor(node_size);
704
705 /* mem_start != 0 here */
706 if (ctzl(mem_start) < ctzl(sizetmp)) {
707 sizetmp = 1ULL << ctzl(mem_start);
708 }
709
710 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
711 node_size -= sizetmp;
712 mem_start += sizetmp;
713 }
714 }
715
716 return 0;
717 }
718
719 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
720 hwaddr fdt_addr,
721 hwaddr rtas_addr,
722 hwaddr rtas_size)
723 {
724 int ret, i;
725 size_t cb = 0;
726 char *bootlist;
727 void *fdt;
728 sPAPRPHBState *phb;
729
730 fdt = g_malloc(FDT_MAX_SIZE);
731
732 /* open out the base tree into a temp buffer for the final tweaks */
733 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
734
735 ret = spapr_populate_memory(spapr, fdt);
736 if (ret < 0) {
737 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
738 exit(1);
739 }
740
741 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
742 if (ret < 0) {
743 fprintf(stderr, "couldn't setup vio devices in fdt\n");
744 exit(1);
745 }
746
747 QLIST_FOREACH(phb, &spapr->phbs, list) {
748 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
749 }
750
751 if (ret < 0) {
752 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
753 exit(1);
754 }
755
756 /* RTAS */
757 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
758 if (ret < 0) {
759 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
760 }
761
762 /* Advertise NUMA via ibm,associativity */
763 ret = spapr_fixup_cpu_dt(fdt, spapr);
764 if (ret < 0) {
765 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
766 }
767
768 bootlist = get_boot_devices_list(&cb, true);
769 if (cb && bootlist) {
770 int offset = fdt_path_offset(fdt, "/chosen");
771 if (offset < 0) {
772 exit(1);
773 }
774 for (i = 0; i < cb; i++) {
775 if (bootlist[i] == '\n') {
776 bootlist[i] = ' ';
777 }
778
779 }
780 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
781 }
782
783 if (!spapr->has_graphics) {
784 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
785 }
786
787 _FDT((fdt_pack(fdt)));
788
789 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
790 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
791 fdt_totalsize(fdt), FDT_MAX_SIZE);
792 exit(1);
793 }
794
795 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
796
797 g_free(bootlist);
798 g_free(fdt);
799 }
800
801 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
802 {
803 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
804 }
805
806 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
807 {
808 CPUPPCState *env = &cpu->env;
809
810 if (msr_pr) {
811 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
812 env->gpr[3] = H_PRIVILEGE;
813 } else {
814 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
815 }
816 }
817
818 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
819 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
820 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
821 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
822 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
823
824 static void spapr_reset_htab(sPAPREnvironment *spapr)
825 {
826 long shift;
827 int index;
828
829 /* allocate hash page table. For now we always make this 16mb,
830 * later we should probably make it scale to the size of guest
831 * RAM */
832
833 shift = kvmppc_reset_htab(spapr->htab_shift);
834
835 if (shift > 0) {
836 /* Kernel handles htab, we don't need to allocate one */
837 spapr->htab_shift = shift;
838 kvmppc_kern_htab = true;
839
840 /* Tell readers to update their file descriptor */
841 if (spapr->htab_fd >= 0) {
842 spapr->htab_fd_stale = true;
843 }
844 } else {
845 if (!spapr->htab) {
846 /* Allocate an htab if we don't yet have one */
847 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
848 }
849
850 /* And clear it */
851 memset(spapr->htab, 0, HTAB_SIZE(spapr));
852
853 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
854 DIRTY_HPTE(HPTE(spapr->htab, index));
855 }
856 }
857
858 /* Update the RMA size if necessary */
859 if (spapr->vrma_adjust) {
860 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
861 spapr->htab_shift);
862 }
863 }
864
865 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
866 {
867 bool matched = false;
868
869 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
870 matched = true;
871 }
872
873 if (!matched) {
874 error_report("Device %s is not supported by this machine yet.",
875 qdev_fw_name(DEVICE(sbdev)));
876 exit(1);
877 }
878
879 return 0;
880 }
881
882 /*
883 * A guest reset will cause spapr->htab_fd to become stale if being used.
884 * Reopen the file descriptor to make sure the whole HTAB is properly read.
885 */
886 static int spapr_check_htab_fd(sPAPREnvironment *spapr)
887 {
888 int rc = 0;
889
890 if (spapr->htab_fd_stale) {
891 close(spapr->htab_fd);
892 spapr->htab_fd = kvmppc_get_htab_fd(false);
893 if (spapr->htab_fd < 0) {
894 error_report("Unable to open fd for reading hash table from KVM: "
895 "%s", strerror(errno));
896 rc = -1;
897 }
898 spapr->htab_fd_stale = false;
899 }
900
901 return rc;
902 }
903
904 static void ppc_spapr_reset(void)
905 {
906 PowerPCCPU *first_ppc_cpu;
907 uint32_t rtas_limit;
908
909 /* Check for unknown sysbus devices */
910 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
911
912 /* Reset the hash table & recalc the RMA */
913 spapr_reset_htab(spapr);
914
915 qemu_devices_reset();
916
917 /*
918 * We place the device tree and RTAS just below either the top of the RMA,
919 * or just below 2GB, whichever is lowere, so that it can be
920 * processed with 32-bit real mode code if necessary
921 */
922 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
923 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
924 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
925
926 /* Load the fdt */
927 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
928 spapr->rtas_size);
929
930 /* Copy RTAS over */
931 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
932 spapr->rtas_size);
933
934 /* Set up the entry state */
935 first_ppc_cpu = POWERPC_CPU(first_cpu);
936 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
937 first_ppc_cpu->env.gpr[5] = 0;
938 first_cpu->halted = 0;
939 first_ppc_cpu->env.nip = spapr->entry_point;
940
941 }
942
943 static void spapr_cpu_reset(void *opaque)
944 {
945 PowerPCCPU *cpu = opaque;
946 CPUState *cs = CPU(cpu);
947 CPUPPCState *env = &cpu->env;
948
949 cpu_reset(cs);
950
951 /* All CPUs start halted. CPU0 is unhalted from the machine level
952 * reset code and the rest are explicitly started up by the guest
953 * using an RTAS call */
954 cs->halted = 1;
955
956 env->spr[SPR_HIOR] = 0;
957
958 env->external_htab = (uint8_t *)spapr->htab;
959 if (kvm_enabled() && !env->external_htab) {
960 /*
961 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
962 * functions do the right thing.
963 */
964 env->external_htab = (void *)1;
965 }
966 env->htab_base = -1;
967 /*
968 * htab_mask is the mask used to normalize hash value to PTEG index.
969 * htab_shift is log2 of hash table size.
970 * We have 8 hpte per group, and each hpte is 16 bytes.
971 * ie have 128 bytes per hpte entry.
972 */
973 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
974 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
975 (spapr->htab_shift - 18);
976 }
977
978 static void spapr_create_nvram(sPAPREnvironment *spapr)
979 {
980 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
981 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
982
983 if (dinfo) {
984 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
985 }
986
987 qdev_init_nofail(dev);
988
989 spapr->nvram = (struct sPAPRNVRAM *)dev;
990 }
991
992 static void spapr_rtc_create(sPAPREnvironment *spapr)
993 {
994 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
995
996 qdev_init_nofail(dev);
997 spapr->rtc = dev;
998
999 object_property_add_alias(qdev_get_machine(), "rtc-time",
1000 OBJECT(spapr->rtc), "date", NULL);
1001 }
1002
1003 /* Returns whether we want to use VGA or not */
1004 static int spapr_vga_init(PCIBus *pci_bus)
1005 {
1006 switch (vga_interface_type) {
1007 case VGA_NONE:
1008 return false;
1009 case VGA_DEVICE:
1010 return true;
1011 case VGA_STD:
1012 return pci_vga_init(pci_bus) != NULL;
1013 default:
1014 fprintf(stderr, "This vga model is not supported,"
1015 "currently it only supports -vga std\n");
1016 exit(0);
1017 }
1018 }
1019
1020 static int spapr_post_load(void *opaque, int version_id)
1021 {
1022 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
1023 int err = 0;
1024
1025 /* In earlier versions, there was no seperate qdev for the PAPR
1026 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1027 * So when migrating from those versions, poke the incoming offset
1028 * value into the RTC device */
1029 if (version_id < 3) {
1030 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1031 }
1032
1033 return err;
1034 }
1035
1036 static bool version_before_3(void *opaque, int version_id)
1037 {
1038 return version_id < 3;
1039 }
1040
1041 static const VMStateDescription vmstate_spapr = {
1042 .name = "spapr",
1043 .version_id = 3,
1044 .minimum_version_id = 1,
1045 .post_load = spapr_post_load,
1046 .fields = (VMStateField[]) {
1047 /* used to be @next_irq */
1048 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1049
1050 /* RTC offset */
1051 VMSTATE_UINT64_TEST(rtc_offset, sPAPREnvironment, version_before_3),
1052
1053 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
1054 VMSTATE_END_OF_LIST()
1055 },
1056 };
1057
1058 static int htab_save_setup(QEMUFile *f, void *opaque)
1059 {
1060 sPAPREnvironment *spapr = opaque;
1061
1062 /* "Iteration" header */
1063 qemu_put_be32(f, spapr->htab_shift);
1064
1065 if (spapr->htab) {
1066 spapr->htab_save_index = 0;
1067 spapr->htab_first_pass = true;
1068 } else {
1069 assert(kvm_enabled());
1070
1071 spapr->htab_fd = kvmppc_get_htab_fd(false);
1072 spapr->htab_fd_stale = false;
1073 if (spapr->htab_fd < 0) {
1074 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1075 strerror(errno));
1076 return -1;
1077 }
1078 }
1079
1080
1081 return 0;
1082 }
1083
1084 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
1085 int64_t max_ns)
1086 {
1087 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1088 int index = spapr->htab_save_index;
1089 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1090
1091 assert(spapr->htab_first_pass);
1092
1093 do {
1094 int chunkstart;
1095
1096 /* Consume invalid HPTEs */
1097 while ((index < htabslots)
1098 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1099 index++;
1100 CLEAN_HPTE(HPTE(spapr->htab, index));
1101 }
1102
1103 /* Consume valid HPTEs */
1104 chunkstart = index;
1105 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1106 && HPTE_VALID(HPTE(spapr->htab, index))) {
1107 index++;
1108 CLEAN_HPTE(HPTE(spapr->htab, index));
1109 }
1110
1111 if (index > chunkstart) {
1112 int n_valid = index - chunkstart;
1113
1114 qemu_put_be32(f, chunkstart);
1115 qemu_put_be16(f, n_valid);
1116 qemu_put_be16(f, 0);
1117 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1118 HASH_PTE_SIZE_64 * n_valid);
1119
1120 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1121 break;
1122 }
1123 }
1124 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1125
1126 if (index >= htabslots) {
1127 assert(index == htabslots);
1128 index = 0;
1129 spapr->htab_first_pass = false;
1130 }
1131 spapr->htab_save_index = index;
1132 }
1133
1134 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1135 int64_t max_ns)
1136 {
1137 bool final = max_ns < 0;
1138 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1139 int examined = 0, sent = 0;
1140 int index = spapr->htab_save_index;
1141 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1142
1143 assert(!spapr->htab_first_pass);
1144
1145 do {
1146 int chunkstart, invalidstart;
1147
1148 /* Consume non-dirty HPTEs */
1149 while ((index < htabslots)
1150 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1151 index++;
1152 examined++;
1153 }
1154
1155 chunkstart = index;
1156 /* Consume valid dirty HPTEs */
1157 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1158 && HPTE_DIRTY(HPTE(spapr->htab, index))
1159 && HPTE_VALID(HPTE(spapr->htab, index))) {
1160 CLEAN_HPTE(HPTE(spapr->htab, index));
1161 index++;
1162 examined++;
1163 }
1164
1165 invalidstart = index;
1166 /* Consume invalid dirty HPTEs */
1167 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1168 && HPTE_DIRTY(HPTE(spapr->htab, index))
1169 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1170 CLEAN_HPTE(HPTE(spapr->htab, index));
1171 index++;
1172 examined++;
1173 }
1174
1175 if (index > chunkstart) {
1176 int n_valid = invalidstart - chunkstart;
1177 int n_invalid = index - invalidstart;
1178
1179 qemu_put_be32(f, chunkstart);
1180 qemu_put_be16(f, n_valid);
1181 qemu_put_be16(f, n_invalid);
1182 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1183 HASH_PTE_SIZE_64 * n_valid);
1184 sent += index - chunkstart;
1185
1186 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1187 break;
1188 }
1189 }
1190
1191 if (examined >= htabslots) {
1192 break;
1193 }
1194
1195 if (index >= htabslots) {
1196 assert(index == htabslots);
1197 index = 0;
1198 }
1199 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1200
1201 if (index >= htabslots) {
1202 assert(index == htabslots);
1203 index = 0;
1204 }
1205
1206 spapr->htab_save_index = index;
1207
1208 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1209 }
1210
1211 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1212 #define MAX_KVM_BUF_SIZE 2048
1213
1214 static int htab_save_iterate(QEMUFile *f, void *opaque)
1215 {
1216 sPAPREnvironment *spapr = opaque;
1217 int rc = 0;
1218
1219 /* Iteration header */
1220 qemu_put_be32(f, 0);
1221
1222 if (!spapr->htab) {
1223 assert(kvm_enabled());
1224
1225 rc = spapr_check_htab_fd(spapr);
1226 if (rc < 0) {
1227 return rc;
1228 }
1229
1230 rc = kvmppc_save_htab(f, spapr->htab_fd,
1231 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1232 if (rc < 0) {
1233 return rc;
1234 }
1235 } else if (spapr->htab_first_pass) {
1236 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1237 } else {
1238 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1239 }
1240
1241 /* End marker */
1242 qemu_put_be32(f, 0);
1243 qemu_put_be16(f, 0);
1244 qemu_put_be16(f, 0);
1245
1246 return rc;
1247 }
1248
1249 static int htab_save_complete(QEMUFile *f, void *opaque)
1250 {
1251 sPAPREnvironment *spapr = opaque;
1252
1253 /* Iteration header */
1254 qemu_put_be32(f, 0);
1255
1256 if (!spapr->htab) {
1257 int rc;
1258
1259 assert(kvm_enabled());
1260
1261 rc = spapr_check_htab_fd(spapr);
1262 if (rc < 0) {
1263 return rc;
1264 }
1265
1266 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1267 if (rc < 0) {
1268 return rc;
1269 }
1270 close(spapr->htab_fd);
1271 spapr->htab_fd = -1;
1272 } else {
1273 htab_save_later_pass(f, spapr, -1);
1274 }
1275
1276 /* End marker */
1277 qemu_put_be32(f, 0);
1278 qemu_put_be16(f, 0);
1279 qemu_put_be16(f, 0);
1280
1281 return 0;
1282 }
1283
1284 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1285 {
1286 sPAPREnvironment *spapr = opaque;
1287 uint32_t section_hdr;
1288 int fd = -1;
1289
1290 if (version_id < 1 || version_id > 1) {
1291 fprintf(stderr, "htab_load() bad version\n");
1292 return -EINVAL;
1293 }
1294
1295 section_hdr = qemu_get_be32(f);
1296
1297 if (section_hdr) {
1298 /* First section, just the hash shift */
1299 if (spapr->htab_shift != section_hdr) {
1300 return -EINVAL;
1301 }
1302 return 0;
1303 }
1304
1305 if (!spapr->htab) {
1306 assert(kvm_enabled());
1307
1308 fd = kvmppc_get_htab_fd(true);
1309 if (fd < 0) {
1310 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1311 strerror(errno));
1312 }
1313 }
1314
1315 while (true) {
1316 uint32_t index;
1317 uint16_t n_valid, n_invalid;
1318
1319 index = qemu_get_be32(f);
1320 n_valid = qemu_get_be16(f);
1321 n_invalid = qemu_get_be16(f);
1322
1323 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1324 /* End of Stream */
1325 break;
1326 }
1327
1328 if ((index + n_valid + n_invalid) >
1329 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1330 /* Bad index in stream */
1331 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1332 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1333 spapr->htab_shift);
1334 return -EINVAL;
1335 }
1336
1337 if (spapr->htab) {
1338 if (n_valid) {
1339 qemu_get_buffer(f, HPTE(spapr->htab, index),
1340 HASH_PTE_SIZE_64 * n_valid);
1341 }
1342 if (n_invalid) {
1343 memset(HPTE(spapr->htab, index + n_valid), 0,
1344 HASH_PTE_SIZE_64 * n_invalid);
1345 }
1346 } else {
1347 int rc;
1348
1349 assert(fd >= 0);
1350
1351 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1352 if (rc < 0) {
1353 return rc;
1354 }
1355 }
1356 }
1357
1358 if (!spapr->htab) {
1359 assert(fd >= 0);
1360 close(fd);
1361 }
1362
1363 return 0;
1364 }
1365
1366 static SaveVMHandlers savevm_htab_handlers = {
1367 .save_live_setup = htab_save_setup,
1368 .save_live_iterate = htab_save_iterate,
1369 .save_live_complete = htab_save_complete,
1370 .load_state = htab_load,
1371 };
1372
1373 /* pSeries LPAR / sPAPR hardware init */
1374 static void ppc_spapr_init(MachineState *machine)
1375 {
1376 ram_addr_t ram_size = machine->ram_size;
1377 const char *cpu_model = machine->cpu_model;
1378 const char *kernel_filename = machine->kernel_filename;
1379 const char *kernel_cmdline = machine->kernel_cmdline;
1380 const char *initrd_filename = machine->initrd_filename;
1381 const char *boot_device = machine->boot_order;
1382 PowerPCCPU *cpu;
1383 CPUPPCState *env;
1384 PCIHostState *phb;
1385 int i;
1386 MemoryRegion *sysmem = get_system_memory();
1387 MemoryRegion *ram = g_new(MemoryRegion, 1);
1388 MemoryRegion *rma_region;
1389 void *rma = NULL;
1390 hwaddr rma_alloc_size;
1391 hwaddr node0_size = spapr_node0_size();
1392 uint32_t initrd_base = 0;
1393 long kernel_size = 0, initrd_size = 0;
1394 long load_limit, fw_size;
1395 bool kernel_le = false;
1396 char *filename;
1397
1398 msi_supported = true;
1399
1400 spapr = g_malloc0(sizeof(*spapr));
1401 QLIST_INIT(&spapr->phbs);
1402
1403 cpu_ppc_hypercall = emulate_spapr_hypercall;
1404
1405 /* Allocate RMA if necessary */
1406 rma_alloc_size = kvmppc_alloc_rma(&rma);
1407
1408 if (rma_alloc_size == -1) {
1409 hw_error("qemu: Unable to create RMA\n");
1410 exit(1);
1411 }
1412
1413 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1414 spapr->rma_size = rma_alloc_size;
1415 } else {
1416 spapr->rma_size = node0_size;
1417
1418 /* With KVM, we don't actually know whether KVM supports an
1419 * unbounded RMA (PR KVM) or is limited by the hash table size
1420 * (HV KVM using VRMA), so we always assume the latter
1421 *
1422 * In that case, we also limit the initial allocations for RTAS
1423 * etc... to 256M since we have no way to know what the VRMA size
1424 * is going to be as it depends on the size of the hash table
1425 * isn't determined yet.
1426 */
1427 if (kvm_enabled()) {
1428 spapr->vrma_adjust = 1;
1429 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1430 }
1431 }
1432
1433 if (spapr->rma_size > node0_size) {
1434 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1435 spapr->rma_size);
1436 exit(1);
1437 }
1438
1439 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1440 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1441
1442 /* We aim for a hash table of size 1/128 the size of RAM. The
1443 * normal rule of thumb is 1/64 the size of RAM, but that's much
1444 * more than needed for the Linux guests we support. */
1445 spapr->htab_shift = 18; /* Minimum architected size */
1446 while (spapr->htab_shift <= 46) {
1447 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1448 break;
1449 }
1450 spapr->htab_shift++;
1451 }
1452
1453 /* Set up Interrupt Controller before we create the VCPUs */
1454 spapr->icp = xics_system_init(machine,
1455 smp_cpus * kvmppc_smt_threads() / smp_threads,
1456 XICS_IRQS);
1457
1458 /* init CPUs */
1459 if (cpu_model == NULL) {
1460 cpu_model = kvm_enabled() ? "host" : "POWER7";
1461 }
1462 for (i = 0; i < smp_cpus; i++) {
1463 cpu = cpu_ppc_init(cpu_model);
1464 if (cpu == NULL) {
1465 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1466 exit(1);
1467 }
1468 env = &cpu->env;
1469
1470 /* Set time-base frequency to 512 MHz */
1471 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1472
1473 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1474 * MSR[IP] should never be set.
1475 */
1476 env->msr_mask &= ~(1 << 6);
1477
1478 /* Tell KVM that we're in PAPR mode */
1479 if (kvm_enabled()) {
1480 kvmppc_set_papr(cpu);
1481 }
1482
1483 if (cpu->max_compat) {
1484 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1485 exit(1);
1486 }
1487 }
1488
1489 xics_cpu_setup(spapr->icp, cpu);
1490
1491 qemu_register_reset(spapr_cpu_reset, cpu);
1492 }
1493
1494 /* allocate RAM */
1495 spapr->ram_limit = ram_size;
1496 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1497 spapr->ram_limit);
1498 memory_region_add_subregion(sysmem, 0, ram);
1499
1500 if (rma_alloc_size && rma) {
1501 rma_region = g_new(MemoryRegion, 1);
1502 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1503 rma_alloc_size, rma);
1504 vmstate_register_ram_global(rma_region);
1505 memory_region_add_subregion(sysmem, 0, rma_region);
1506 }
1507
1508 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1509 if (!filename) {
1510 hw_error("Could not find LPAR rtas '%s'\n", "spapr-rtas.bin");
1511 exit(1);
1512 }
1513 spapr->rtas_size = get_image_size(filename);
1514 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1515 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1516 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1517 exit(1);
1518 }
1519 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1520 hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1521 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1522 exit(1);
1523 }
1524 g_free(filename);
1525
1526 /* Set up EPOW events infrastructure */
1527 spapr_events_init(spapr);
1528
1529 /* Set up the RTC RTAS interfaces */
1530 spapr_rtc_create(spapr);
1531
1532 /* Set up VIO bus */
1533 spapr->vio_bus = spapr_vio_bus_init();
1534
1535 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1536 if (serial_hds[i]) {
1537 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1538 }
1539 }
1540
1541 /* We always have at least the nvram device on VIO */
1542 spapr_create_nvram(spapr);
1543
1544 /* Set up PCI */
1545 spapr_pci_rtas_init();
1546
1547 phb = spapr_create_phb(spapr, 0);
1548
1549 for (i = 0; i < nb_nics; i++) {
1550 NICInfo *nd = &nd_table[i];
1551
1552 if (!nd->model) {
1553 nd->model = g_strdup("ibmveth");
1554 }
1555
1556 if (strcmp(nd->model, "ibmveth") == 0) {
1557 spapr_vlan_create(spapr->vio_bus, nd);
1558 } else {
1559 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1560 }
1561 }
1562
1563 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1564 spapr_vscsi_create(spapr->vio_bus);
1565 }
1566
1567 /* Graphics */
1568 if (spapr_vga_init(phb->bus)) {
1569 spapr->has_graphics = true;
1570 machine->usb |= defaults_enabled();
1571 }
1572
1573 if (machine->usb) {
1574 pci_create_simple(phb->bus, -1, "pci-ohci");
1575
1576 if (spapr->has_graphics) {
1577 USBBus *usb_bus = usb_bus_find(-1);
1578
1579 usb_create_simple(usb_bus, "usb-kbd");
1580 usb_create_simple(usb_bus, "usb-mouse");
1581 }
1582 }
1583
1584 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1585 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1586 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1587 exit(1);
1588 }
1589
1590 if (kernel_filename) {
1591 uint64_t lowaddr = 0;
1592
1593 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1594 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1595 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1596 kernel_size = load_elf(kernel_filename,
1597 translate_kernel_address, NULL,
1598 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1599 kernel_le = kernel_size > 0;
1600 }
1601 if (kernel_size < 0) {
1602 fprintf(stderr, "qemu: error loading %s: %s\n",
1603 kernel_filename, load_elf_strerror(kernel_size));
1604 exit(1);
1605 }
1606
1607 /* load initrd */
1608 if (initrd_filename) {
1609 /* Try to locate the initrd in the gap between the kernel
1610 * and the firmware. Add a bit of space just in case
1611 */
1612 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1613 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1614 load_limit - initrd_base);
1615 if (initrd_size < 0) {
1616 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1617 initrd_filename);
1618 exit(1);
1619 }
1620 } else {
1621 initrd_base = 0;
1622 initrd_size = 0;
1623 }
1624 }
1625
1626 if (bios_name == NULL) {
1627 bios_name = FW_FILE_NAME;
1628 }
1629 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1630 if (!filename) {
1631 hw_error("Could not find LPAR rtas '%s'\n", bios_name);
1632 exit(1);
1633 }
1634 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1635 if (fw_size < 0) {
1636 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1637 exit(1);
1638 }
1639 g_free(filename);
1640
1641 spapr->entry_point = 0x100;
1642
1643 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1644 register_savevm_live(NULL, "spapr/htab", -1, 1,
1645 &savevm_htab_handlers, spapr);
1646
1647 /* Prepare the device tree */
1648 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1649 kernel_size, kernel_le,
1650 boot_device, kernel_cmdline,
1651 spapr->epow_irq);
1652 assert(spapr->fdt_skel != NULL);
1653 }
1654
1655 static int spapr_kvm_type(const char *vm_type)
1656 {
1657 if (!vm_type) {
1658 return 0;
1659 }
1660
1661 if (!strcmp(vm_type, "HV")) {
1662 return 1;
1663 }
1664
1665 if (!strcmp(vm_type, "PR")) {
1666 return 2;
1667 }
1668
1669 error_report("Unknown kvm-type specified '%s'", vm_type);
1670 exit(1);
1671 }
1672
1673 /*
1674 * Implementation of an interface to adjust firmware path
1675 * for the bootindex property handling.
1676 */
1677 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1678 DeviceState *dev)
1679 {
1680 #define CAST(type, obj, name) \
1681 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1682 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1683 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1684
1685 if (d) {
1686 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1687 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1688 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1689
1690 if (spapr) {
1691 /*
1692 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1693 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1694 * in the top 16 bits of the 64-bit LUN
1695 */
1696 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1697 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1698 (uint64_t)id << 48);
1699 } else if (virtio) {
1700 /*
1701 * We use SRP luns of the form 01000000 | (target << 8) | lun
1702 * in the top 32 bits of the 64-bit LUN
1703 * Note: the quote above is from SLOF and it is wrong,
1704 * the actual binding is:
1705 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1706 */
1707 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1708 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1709 (uint64_t)id << 32);
1710 } else if (usb) {
1711 /*
1712 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1713 * in the top 32 bits of the 64-bit LUN
1714 */
1715 unsigned usb_port = atoi(usb->port->path);
1716 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1717 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1718 (uint64_t)id << 32);
1719 }
1720 }
1721
1722 if (phb) {
1723 /* Replace "pci" with "pci@800000020000000" */
1724 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1725 }
1726
1727 return NULL;
1728 }
1729
1730 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1731 {
1732 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1733
1734 return g_strdup(sm->kvm_type);
1735 }
1736
1737 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1738 {
1739 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1740
1741 g_free(sm->kvm_type);
1742 sm->kvm_type = g_strdup(value);
1743 }
1744
1745 static void spapr_machine_initfn(Object *obj)
1746 {
1747 object_property_add_str(obj, "kvm-type",
1748 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1749 object_property_set_description(obj, "kvm-type",
1750 "Specifies the KVM virtualization mode (HV, PR)",
1751 NULL);
1752 }
1753
1754 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1755 {
1756 CPUState *cs = arg;
1757
1758 cpu_synchronize_state(cs);
1759 ppc_cpu_do_system_reset(cs);
1760 }
1761
1762 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1763 {
1764 CPUState *cs;
1765
1766 CPU_FOREACH(cs) {
1767 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1768 }
1769 }
1770
1771 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1772 {
1773 MachineClass *mc = MACHINE_CLASS(oc);
1774 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1775 NMIClass *nc = NMI_CLASS(oc);
1776
1777 mc->init = ppc_spapr_init;
1778 mc->reset = ppc_spapr_reset;
1779 mc->block_default_type = IF_SCSI;
1780 mc->max_cpus = MAX_CPUS;
1781 mc->no_parallel = 1;
1782 mc->default_boot_order = NULL;
1783 mc->kvm_type = spapr_kvm_type;
1784 mc->has_dynamic_sysbus = true;
1785
1786 fwc->get_dev_path = spapr_get_fw_dev_path;
1787 nc->nmi_monitor_handler = spapr_nmi;
1788 }
1789
1790 static const TypeInfo spapr_machine_info = {
1791 .name = TYPE_SPAPR_MACHINE,
1792 .parent = TYPE_MACHINE,
1793 .abstract = true,
1794 .instance_size = sizeof(sPAPRMachineState),
1795 .instance_init = spapr_machine_initfn,
1796 .class_init = spapr_machine_class_init,
1797 .interfaces = (InterfaceInfo[]) {
1798 { TYPE_FW_PATH_PROVIDER },
1799 { TYPE_NMI },
1800 { }
1801 },
1802 };
1803
1804 #define SPAPR_COMPAT_2_2 \
1805 {\
1806 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
1807 .property = "mem_win_size",\
1808 .value = "0x20000000",\
1809 }
1810
1811 #define SPAPR_COMPAT_2_1 \
1812 SPAPR_COMPAT_2_2
1813
1814 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1815 {
1816 MachineClass *mc = MACHINE_CLASS(oc);
1817 static GlobalProperty compat_props[] = {
1818 HW_COMPAT_2_1,
1819 SPAPR_COMPAT_2_1,
1820 { /* end of list */ }
1821 };
1822
1823 mc->name = "pseries-2.1";
1824 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1825 mc->compat_props = compat_props;
1826 }
1827
1828 static const TypeInfo spapr_machine_2_1_info = {
1829 .name = TYPE_SPAPR_MACHINE "2.1",
1830 .parent = TYPE_SPAPR_MACHINE,
1831 .class_init = spapr_machine_2_1_class_init,
1832 };
1833
1834 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
1835 {
1836 static GlobalProperty compat_props[] = {
1837 SPAPR_COMPAT_2_2,
1838 { /* end of list */ }
1839 };
1840 MachineClass *mc = MACHINE_CLASS(oc);
1841
1842 mc->name = "pseries-2.2";
1843 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1844 mc->compat_props = compat_props;
1845 }
1846
1847 static const TypeInfo spapr_machine_2_2_info = {
1848 .name = TYPE_SPAPR_MACHINE "2.2",
1849 .parent = TYPE_SPAPR_MACHINE,
1850 .class_init = spapr_machine_2_2_class_init,
1851 };
1852
1853 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
1854 {
1855 MachineClass *mc = MACHINE_CLASS(oc);
1856
1857 mc->name = "pseries-2.3";
1858 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1859 mc->alias = "pseries";
1860 mc->is_default = 1;
1861 }
1862
1863 static const TypeInfo spapr_machine_2_3_info = {
1864 .name = TYPE_SPAPR_MACHINE "2.3",
1865 .parent = TYPE_SPAPR_MACHINE,
1866 .class_init = spapr_machine_2_3_class_init,
1867 };
1868
1869 static void spapr_machine_register_types(void)
1870 {
1871 type_register_static(&spapr_machine_info);
1872 type_register_static(&spapr_machine_2_1_info);
1873 type_register_static(&spapr_machine_2_2_info);
1874 type_register_static(&spapr_machine_2_3_info);
1875 }
1876
1877 type_init(spapr_machine_register_types)