]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
81e2adaa651a9d98106a8877e2db979a90c23822
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 #include "hw/intc/intc.h"
67
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
72
73 #include <libfdt.h>
74
75 /* SLOF memory layout:
76 *
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
79 *
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
82 *
83 * We load our kernel at 4M, leaving space for SLOF initial image
84 */
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92
93 #define MIN_RMA_SLOF 128UL
94
95 #define PHANDLE_XICP 0x00001111
96
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98
99 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
100 const char *type_icp, int nr_servers,
101 int nr_irqs, Error **errp)
102 {
103 XICSFabric *xi = XICS_FABRIC(spapr);
104 Error *err = NULL, *local_err = NULL;
105 ICSState *ics = NULL;
106 int i;
107
108 ics = ICS_SIMPLE(object_new(type_ics));
109 qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
110 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
111 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
112 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
113 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114 error_propagate(&err, local_err);
115 if (err) {
116 goto error;
117 }
118
119 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120 spapr->nr_servers = nr_servers;
121
122 for (i = 0; i < nr_servers; i++) {
123 ICPState *icp = &spapr->icps[i];
124
125 object_initialize(icp, sizeof(*icp), type_icp);
126 qdev_set_parent_bus(DEVICE(icp), sysbus_get_default());
127 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
128 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
129 object_property_set_bool(OBJECT(icp), true, "realized", &err);
130 if (err) {
131 goto error;
132 }
133 object_unref(OBJECT(icp));
134 }
135
136 spapr->ics = ics;
137 return 0;
138
139 error:
140 error_propagate(errp, err);
141 if (ics) {
142 object_unparent(OBJECT(ics));
143 }
144 return -1;
145 }
146
147 static int xics_system_init(MachineState *machine,
148 int nr_servers, int nr_irqs, Error **errp)
149 {
150 int rc = -1;
151
152 if (kvm_enabled()) {
153 Error *err = NULL;
154
155 if (machine_kernel_irqchip_allowed(machine) &&
156 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
157 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
158 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
159 }
160 if (machine_kernel_irqchip_required(machine) && rc < 0) {
161 error_reportf_err(err,
162 "kernel_irqchip requested but unavailable: ");
163 } else {
164 error_free(err);
165 }
166 }
167
168 if (rc < 0) {
169 xics_spapr_init(SPAPR_MACHINE(machine), errp);
170 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
171 TYPE_ICP, nr_servers, nr_irqs, errp);
172 }
173
174 return rc;
175 }
176
177 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
178 int smt_threads)
179 {
180 int i, ret = 0;
181 uint32_t servers_prop[smt_threads];
182 uint32_t gservers_prop[smt_threads * 2];
183 int index = ppc_get_vcpu_dt_id(cpu);
184
185 if (cpu->compat_pvr) {
186 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
187 if (ret < 0) {
188 return ret;
189 }
190 }
191
192 /* Build interrupt servers and gservers properties */
193 for (i = 0; i < smt_threads; i++) {
194 servers_prop[i] = cpu_to_be32(index + i);
195 /* Hack, direct the group queues back to cpu 0 */
196 gservers_prop[i*2] = cpu_to_be32(index + i);
197 gservers_prop[i*2 + 1] = 0;
198 }
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
200 servers_prop, sizeof(servers_prop));
201 if (ret < 0) {
202 return ret;
203 }
204 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
205 gservers_prop, sizeof(gservers_prop));
206
207 return ret;
208 }
209
210 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
211 {
212 int ret = 0;
213 PowerPCCPU *cpu = POWERPC_CPU(cs);
214 int index = ppc_get_vcpu_dt_id(cpu);
215 uint32_t associativity[] = {cpu_to_be32(0x5),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(0x0),
219 cpu_to_be32(cs->numa_node),
220 cpu_to_be32(index)};
221
222 /* Advertise NUMA via ibm,associativity */
223 if (nb_numa_nodes > 1) {
224 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
225 sizeof(associativity));
226 }
227
228 return ret;
229 }
230
231 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
232 {
233 int ret = 0, offset, cpus_offset;
234 CPUState *cs;
235 char cpu_model[32];
236 int smt = kvmppc_smt_threads();
237 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
238
239 CPU_FOREACH(cs) {
240 PowerPCCPU *cpu = POWERPC_CPU(cs);
241 DeviceClass *dc = DEVICE_GET_CLASS(cs);
242 int index = ppc_get_vcpu_dt_id(cpu);
243 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
244
245 if ((index % smt) != 0) {
246 continue;
247 }
248
249 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
250
251 cpus_offset = fdt_path_offset(fdt, "/cpus");
252 if (cpus_offset < 0) {
253 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
254 "cpus");
255 if (cpus_offset < 0) {
256 return cpus_offset;
257 }
258 }
259 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
260 if (offset < 0) {
261 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
262 if (offset < 0) {
263 return offset;
264 }
265 }
266
267 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
268 pft_size_prop, sizeof(pft_size_prop));
269 if (ret < 0) {
270 return ret;
271 }
272
273 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
274 if (ret < 0) {
275 return ret;
276 }
277
278 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
279 if (ret < 0) {
280 return ret;
281 }
282 }
283 return ret;
284 }
285
286 static hwaddr spapr_node0_size(void)
287 {
288 MachineState *machine = MACHINE(qdev_get_machine());
289
290 if (nb_numa_nodes) {
291 int i;
292 for (i = 0; i < nb_numa_nodes; ++i) {
293 if (numa_info[i].node_mem) {
294 return MIN(pow2floor(numa_info[i].node_mem),
295 machine->ram_size);
296 }
297 }
298 }
299 return machine->ram_size;
300 }
301
302 static void add_str(GString *s, const gchar *s1)
303 {
304 g_string_append_len(s, s1, strlen(s1) + 1);
305 }
306
307 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
308 hwaddr size)
309 {
310 uint32_t associativity[] = {
311 cpu_to_be32(0x4), /* length */
312 cpu_to_be32(0x0), cpu_to_be32(0x0),
313 cpu_to_be32(0x0), cpu_to_be32(nodeid)
314 };
315 char mem_name[32];
316 uint64_t mem_reg_property[2];
317 int off;
318
319 mem_reg_property[0] = cpu_to_be64(start);
320 mem_reg_property[1] = cpu_to_be64(size);
321
322 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
323 off = fdt_add_subnode(fdt, 0, mem_name);
324 _FDT(off);
325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327 sizeof(mem_reg_property))));
328 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
329 sizeof(associativity))));
330 return off;
331 }
332
333 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
334 {
335 MachineState *machine = MACHINE(spapr);
336 hwaddr mem_start, node_size;
337 int i, nb_nodes = nb_numa_nodes;
338 NodeInfo *nodes = numa_info;
339 NodeInfo ramnode;
340
341 /* No NUMA nodes, assume there is just one node with whole RAM */
342 if (!nb_numa_nodes) {
343 nb_nodes = 1;
344 ramnode.node_mem = machine->ram_size;
345 nodes = &ramnode;
346 }
347
348 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
349 if (!nodes[i].node_mem) {
350 continue;
351 }
352 if (mem_start >= machine->ram_size) {
353 node_size = 0;
354 } else {
355 node_size = nodes[i].node_mem;
356 if (node_size > machine->ram_size - mem_start) {
357 node_size = machine->ram_size - mem_start;
358 }
359 }
360 if (!mem_start) {
361 /* ppc_spapr_init() checks for rma_size <= node0_size already */
362 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
363 mem_start += spapr->rma_size;
364 node_size -= spapr->rma_size;
365 }
366 for ( ; node_size; ) {
367 hwaddr sizetmp = pow2floor(node_size);
368
369 /* mem_start != 0 here */
370 if (ctzl(mem_start) < ctzl(sizetmp)) {
371 sizetmp = 1ULL << ctzl(mem_start);
372 }
373
374 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
375 node_size -= sizetmp;
376 mem_start += sizetmp;
377 }
378 }
379
380 return 0;
381 }
382
383 /* Populate the "ibm,pa-features" property */
384 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
385 {
386 uint8_t pa_features_206[] = { 6, 0,
387 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
388 uint8_t pa_features_207[] = { 24, 0,
389 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
390 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
391 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
392 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
393 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
394 uint8_t pa_features_300[] = { 64, 0,
395 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
396 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
397 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
398 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
403 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
404 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
405 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
406
407 uint8_t *pa_features;
408 size_t pa_size;
409
410 switch (env->mmu_model) {
411 case POWERPC_MMU_2_06:
412 case POWERPC_MMU_2_06a:
413 pa_features = pa_features_206;
414 pa_size = sizeof(pa_features_206);
415 break;
416 case POWERPC_MMU_2_07:
417 case POWERPC_MMU_2_07a:
418 pa_features = pa_features_207;
419 pa_size = sizeof(pa_features_207);
420 break;
421 case POWERPC_MMU_3_00:
422 pa_features = pa_features_300;
423 pa_size = sizeof(pa_features_300);
424 break;
425 default:
426 return;
427 }
428
429 if (env->ci_large_pages) {
430 /*
431 * Note: we keep CI large pages off by default because a 64K capable
432 * guest provisioned with large pages might otherwise try to map a qemu
433 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
434 * even if that qemu runs on a 4k host.
435 * We dd this bit back here if we are confident this is not an issue
436 */
437 pa_features[3] |= 0x20;
438 }
439 if (kvmppc_has_cap_htm() && pa_size > 24) {
440 pa_features[24] |= 0x80; /* Transactional memory support */
441 }
442
443 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
444 }
445
446 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
447 sPAPRMachineState *spapr)
448 {
449 PowerPCCPU *cpu = POWERPC_CPU(cs);
450 CPUPPCState *env = &cpu->env;
451 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
452 int index = ppc_get_vcpu_dt_id(cpu);
453 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
454 0xffffffff, 0xffffffff};
455 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
456 : SPAPR_TIMEBASE_FREQ;
457 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
458 uint32_t page_sizes_prop[64];
459 size_t page_sizes_prop_size;
460 uint32_t vcpus_per_socket = smp_threads * smp_cores;
461 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
462 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
463 sPAPRDRConnector *drc;
464 sPAPRDRConnectorClass *drck;
465 int drc_index;
466
467 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
468 if (drc) {
469 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
470 drc_index = drck->get_index(drc);
471 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
472 }
473
474 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
475 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
476
477 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
478 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
479 env->dcache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
481 env->dcache_line_size)));
482 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
483 env->icache_line_size)));
484 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
485 env->icache_line_size)));
486
487 if (pcc->l1_dcache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
489 pcc->l1_dcache_size)));
490 } else {
491 error_report("Warning: Unknown L1 dcache size for cpu");
492 }
493 if (pcc->l1_icache_size) {
494 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
495 pcc->l1_icache_size)));
496 } else {
497 error_report("Warning: Unknown L1 icache size for cpu");
498 }
499
500 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
501 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
502 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
503 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
504 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
505 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
506
507 if (env->spr_cb[SPR_PURR].oea_read) {
508 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
509 }
510
511 if (env->mmu_model & POWERPC_MMU_1TSEG) {
512 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
513 segs, sizeof(segs))));
514 }
515
516 /* Advertise VMX/VSX (vector extensions) if available
517 * 0 / no property == no vector extensions
518 * 1 == VMX / Altivec available
519 * 2 == VSX available */
520 if (env->insns_flags & PPC_ALTIVEC) {
521 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
522
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
524 }
525
526 /* Advertise DFP (Decimal Floating Point) if available
527 * 0 / no property == no DFP
528 * 1 == DFP available */
529 if (env->insns_flags2 & PPC2_DFP) {
530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
531 }
532
533 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
534 sizeof(page_sizes_prop));
535 if (page_sizes_prop_size) {
536 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
537 page_sizes_prop, page_sizes_prop_size)));
538 }
539
540 spapr_populate_pa_features(env, fdt, offset);
541
542 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
543 cs->cpu_index / vcpus_per_socket)));
544
545 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
546 pft_size_prop, sizeof(pft_size_prop))));
547
548 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
549
550 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 }
552
553 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
554 {
555 CPUState *cs;
556 int cpus_offset;
557 char *nodename;
558 int smt = kvmppc_smt_threads();
559
560 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
561 _FDT(cpus_offset);
562 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
563 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
564
565 /*
566 * We walk the CPUs in reverse order to ensure that CPU DT nodes
567 * created by fdt_add_subnode() end up in the right order in FDT
568 * for the guest kernel the enumerate the CPUs correctly.
569 */
570 CPU_FOREACH_REVERSE(cs) {
571 PowerPCCPU *cpu = POWERPC_CPU(cs);
572 int index = ppc_get_vcpu_dt_id(cpu);
573 DeviceClass *dc = DEVICE_GET_CLASS(cs);
574 int offset;
575
576 if ((index % smt) != 0) {
577 continue;
578 }
579
580 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
581 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
582 g_free(nodename);
583 _FDT(offset);
584 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
585 }
586
587 }
588
589 /*
590 * Adds ibm,dynamic-reconfiguration-memory node.
591 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
592 * of this device tree node.
593 */
594 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
595 {
596 MachineState *machine = MACHINE(spapr);
597 int ret, i, offset;
598 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
599 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
600 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
601 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
602 memory_region_size(&spapr->hotplug_memory.mr)) /
603 lmb_size;
604 uint32_t *int_buf, *cur_index, buf_len;
605 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
606
607 /*
608 * Don't create the node if there is no hotpluggable memory
609 */
610 if (machine->ram_size == machine->maxram_size) {
611 return 0;
612 }
613
614 /*
615 * Allocate enough buffer size to fit in ibm,dynamic-memory
616 * or ibm,associativity-lookup-arrays
617 */
618 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
619 * sizeof(uint32_t);
620 cur_index = int_buf = g_malloc0(buf_len);
621
622 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
623
624 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
625 sizeof(prop_lmb_size));
626 if (ret < 0) {
627 goto out;
628 }
629
630 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
631 if (ret < 0) {
632 goto out;
633 }
634
635 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
636 if (ret < 0) {
637 goto out;
638 }
639
640 /* ibm,dynamic-memory */
641 int_buf[0] = cpu_to_be32(nr_lmbs);
642 cur_index++;
643 for (i = 0; i < nr_lmbs; i++) {
644 uint64_t addr = i * lmb_size;
645 uint32_t *dynamic_memory = cur_index;
646
647 if (i >= hotplug_lmb_start) {
648 sPAPRDRConnector *drc;
649 sPAPRDRConnectorClass *drck;
650
651 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
652 g_assert(drc);
653 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
654
655 dynamic_memory[0] = cpu_to_be32(addr >> 32);
656 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
657 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
658 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
659 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
660 if (memory_region_present(get_system_memory(), addr)) {
661 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
662 } else {
663 dynamic_memory[5] = cpu_to_be32(0);
664 }
665 } else {
666 /*
667 * LMB information for RMA, boot time RAM and gap b/n RAM and
668 * hotplug memory region -- all these are marked as reserved
669 * and as having no valid DRC.
670 */
671 dynamic_memory[0] = cpu_to_be32(addr >> 32);
672 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
673 dynamic_memory[2] = cpu_to_be32(0);
674 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
675 dynamic_memory[4] = cpu_to_be32(-1);
676 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
677 SPAPR_LMB_FLAGS_DRC_INVALID);
678 }
679
680 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
681 }
682 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
683 if (ret < 0) {
684 goto out;
685 }
686
687 /* ibm,associativity-lookup-arrays */
688 cur_index = int_buf;
689 int_buf[0] = cpu_to_be32(nr_nodes);
690 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
691 cur_index += 2;
692 for (i = 0; i < nr_nodes; i++) {
693 uint32_t associativity[] = {
694 cpu_to_be32(0x0),
695 cpu_to_be32(0x0),
696 cpu_to_be32(0x0),
697 cpu_to_be32(i)
698 };
699 memcpy(cur_index, associativity, sizeof(associativity));
700 cur_index += 4;
701 }
702 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
703 (cur_index - int_buf) * sizeof(uint32_t));
704 out:
705 g_free(int_buf);
706 return ret;
707 }
708
709 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
710 sPAPROptionVector *ov5_updates)
711 {
712 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
713 int ret = 0, offset;
714
715 /* Generate ibm,dynamic-reconfiguration-memory node if required */
716 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
717 g_assert(smc->dr_lmb_enabled);
718 ret = spapr_populate_drconf_memory(spapr, fdt);
719 if (ret) {
720 goto out;
721 }
722 }
723
724 offset = fdt_path_offset(fdt, "/chosen");
725 if (offset < 0) {
726 offset = fdt_add_subnode(fdt, 0, "chosen");
727 if (offset < 0) {
728 return offset;
729 }
730 }
731 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
732 "ibm,architecture-vec-5");
733
734 out:
735 return ret;
736 }
737
738 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
739 target_ulong addr, target_ulong size,
740 sPAPROptionVector *ov5_updates)
741 {
742 void *fdt, *fdt_skel;
743 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
744
745 size -= sizeof(hdr);
746
747 /* Create sceleton */
748 fdt_skel = g_malloc0(size);
749 _FDT((fdt_create(fdt_skel, size)));
750 _FDT((fdt_begin_node(fdt_skel, "")));
751 _FDT((fdt_end_node(fdt_skel)));
752 _FDT((fdt_finish(fdt_skel)));
753 fdt = g_malloc0(size);
754 _FDT((fdt_open_into(fdt_skel, fdt, size)));
755 g_free(fdt_skel);
756
757 /* Fixup cpu nodes */
758 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
759
760 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
761 return -1;
762 }
763
764 /* Pack resulting tree */
765 _FDT((fdt_pack(fdt)));
766
767 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
768 trace_spapr_cas_failed(size);
769 return -1;
770 }
771
772 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
773 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
774 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
775 g_free(fdt);
776
777 return 0;
778 }
779
780 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
781 {
782 int rtas;
783 GString *hypertas = g_string_sized_new(256);
784 GString *qemu_hypertas = g_string_sized_new(256);
785 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
786 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
787 memory_region_size(&spapr->hotplug_memory.mr);
788 uint32_t lrdr_capacity[] = {
789 cpu_to_be32(max_hotplug_addr >> 32),
790 cpu_to_be32(max_hotplug_addr & 0xffffffff),
791 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
792 cpu_to_be32(max_cpus / smp_threads),
793 };
794
795 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
796
797 /* hypertas */
798 add_str(hypertas, "hcall-pft");
799 add_str(hypertas, "hcall-term");
800 add_str(hypertas, "hcall-dabr");
801 add_str(hypertas, "hcall-interrupt");
802 add_str(hypertas, "hcall-tce");
803 add_str(hypertas, "hcall-vio");
804 add_str(hypertas, "hcall-splpar");
805 add_str(hypertas, "hcall-bulk");
806 add_str(hypertas, "hcall-set-mode");
807 add_str(hypertas, "hcall-sprg0");
808 add_str(hypertas, "hcall-copy");
809 add_str(hypertas, "hcall-debug");
810 add_str(qemu_hypertas, "hcall-memop1");
811
812 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
813 add_str(hypertas, "hcall-multi-tce");
814 }
815 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
816 hypertas->str, hypertas->len));
817 g_string_free(hypertas, TRUE);
818 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
819 qemu_hypertas->str, qemu_hypertas->len));
820 g_string_free(qemu_hypertas, TRUE);
821
822 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
823 refpoints, sizeof(refpoints)));
824
825 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
826 RTAS_ERROR_LOG_MAX));
827 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
828 RTAS_EVENT_SCAN_RATE));
829
830 if (msi_nonbroken) {
831 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
832 }
833
834 /*
835 * According to PAPR, rtas ibm,os-term does not guarantee a return
836 * back to the guest cpu.
837 *
838 * While an additional ibm,extended-os-term property indicates
839 * that rtas call return will always occur. Set this property.
840 */
841 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
842
843 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
844 lrdr_capacity, sizeof(lrdr_capacity)));
845
846 spapr_dt_rtas_tokens(fdt, rtas);
847 }
848
849 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
850 {
851 MachineState *machine = MACHINE(spapr);
852 int chosen;
853 const char *boot_device = machine->boot_order;
854 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
855 size_t cb = 0;
856 char *bootlist = get_boot_devices_list(&cb, true);
857
858 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
859
860 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
861 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
862 spapr->initrd_base));
863 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
864 spapr->initrd_base + spapr->initrd_size));
865
866 if (spapr->kernel_size) {
867 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
868 cpu_to_be64(spapr->kernel_size) };
869
870 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
871 &kprop, sizeof(kprop)));
872 if (spapr->kernel_le) {
873 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
874 }
875 }
876 if (boot_menu) {
877 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
878 }
879 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
880 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
881 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
882
883 if (cb && bootlist) {
884 int i;
885
886 for (i = 0; i < cb; i++) {
887 if (bootlist[i] == '\n') {
888 bootlist[i] = ' ';
889 }
890 }
891 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
892 }
893
894 if (boot_device && strlen(boot_device)) {
895 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
896 }
897
898 if (!spapr->has_graphics && stdout_path) {
899 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
900 }
901
902 g_free(stdout_path);
903 g_free(bootlist);
904 }
905
906 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
907 {
908 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
909 * KVM to work under pHyp with some guest co-operation */
910 int hypervisor;
911 uint8_t hypercall[16];
912
913 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
914 /* indicate KVM hypercall interface */
915 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
916 if (kvmppc_has_cap_fixup_hcalls()) {
917 /*
918 * Older KVM versions with older guest kernels were broken
919 * with the magic page, don't allow the guest to map it.
920 */
921 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
922 sizeof(hypercall))) {
923 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
924 hypercall, sizeof(hypercall)));
925 }
926 }
927 }
928
929 static void *spapr_build_fdt(sPAPRMachineState *spapr,
930 hwaddr rtas_addr,
931 hwaddr rtas_size)
932 {
933 MachineState *machine = MACHINE(qdev_get_machine());
934 MachineClass *mc = MACHINE_GET_CLASS(machine);
935 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
936 int ret;
937 void *fdt;
938 sPAPRPHBState *phb;
939 char *buf;
940
941 fdt = g_malloc0(FDT_MAX_SIZE);
942 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
943
944 /* Root node */
945 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
946 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
947 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
948
949 /*
950 * Add info to guest to indentify which host is it being run on
951 * and what is the uuid of the guest
952 */
953 if (kvmppc_get_host_model(&buf)) {
954 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
955 g_free(buf);
956 }
957 if (kvmppc_get_host_serial(&buf)) {
958 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
959 g_free(buf);
960 }
961
962 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
963
964 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
965 if (qemu_uuid_set) {
966 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
967 }
968 g_free(buf);
969
970 if (qemu_get_vm_name()) {
971 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
972 qemu_get_vm_name()));
973 }
974
975 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
976 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
977
978 /* /interrupt controller */
979 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
980
981 ret = spapr_populate_memory(spapr, fdt);
982 if (ret < 0) {
983 error_report("couldn't setup memory nodes in fdt");
984 exit(1);
985 }
986
987 /* /vdevice */
988 spapr_dt_vdevice(spapr->vio_bus, fdt);
989
990 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
991 ret = spapr_rng_populate_dt(fdt);
992 if (ret < 0) {
993 error_report("could not set up rng device in the fdt");
994 exit(1);
995 }
996 }
997
998 QLIST_FOREACH(phb, &spapr->phbs, list) {
999 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1000 if (ret < 0) {
1001 error_report("couldn't setup PCI devices in fdt");
1002 exit(1);
1003 }
1004 }
1005
1006 /* cpus */
1007 spapr_populate_cpus_dt_node(fdt, spapr);
1008
1009 if (smc->dr_lmb_enabled) {
1010 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1011 }
1012
1013 if (mc->has_hotpluggable_cpus) {
1014 int offset = fdt_path_offset(fdt, "/cpus");
1015 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1016 SPAPR_DR_CONNECTOR_TYPE_CPU);
1017 if (ret < 0) {
1018 error_report("Couldn't set up CPU DR device tree properties");
1019 exit(1);
1020 }
1021 }
1022
1023 /* /event-sources */
1024 spapr_dt_events(spapr, fdt);
1025
1026 /* /rtas */
1027 spapr_dt_rtas(spapr, fdt);
1028
1029 /* /chosen */
1030 spapr_dt_chosen(spapr, fdt);
1031
1032 /* /hypervisor */
1033 if (kvm_enabled()) {
1034 spapr_dt_hypervisor(spapr, fdt);
1035 }
1036
1037 /* Build memory reserve map */
1038 if (spapr->kernel_size) {
1039 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1040 }
1041 if (spapr->initrd_size) {
1042 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1043 }
1044
1045 /* ibm,client-architecture-support updates */
1046 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1047 if (ret < 0) {
1048 error_report("couldn't setup CAS properties fdt");
1049 exit(1);
1050 }
1051
1052 return fdt;
1053 }
1054
1055 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1056 {
1057 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1058 }
1059
1060 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1061 PowerPCCPU *cpu)
1062 {
1063 CPUPPCState *env = &cpu->env;
1064
1065 /* The TCG path should also be holding the BQL at this point */
1066 g_assert(qemu_mutex_iothread_locked());
1067
1068 if (msr_pr) {
1069 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1070 env->gpr[3] = H_PRIVILEGE;
1071 } else {
1072 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1073 }
1074 }
1075
1076 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1077 {
1078 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1079
1080 return spapr->patb_entry;
1081 }
1082
1083 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1084 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1085 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1086 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1087 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1088
1089 /*
1090 * Get the fd to access the kernel htab, re-opening it if necessary
1091 */
1092 static int get_htab_fd(sPAPRMachineState *spapr)
1093 {
1094 if (spapr->htab_fd >= 0) {
1095 return spapr->htab_fd;
1096 }
1097
1098 spapr->htab_fd = kvmppc_get_htab_fd(false);
1099 if (spapr->htab_fd < 0) {
1100 error_report("Unable to open fd for reading hash table from KVM: %s",
1101 strerror(errno));
1102 }
1103
1104 return spapr->htab_fd;
1105 }
1106
1107 static void close_htab_fd(sPAPRMachineState *spapr)
1108 {
1109 if (spapr->htab_fd >= 0) {
1110 close(spapr->htab_fd);
1111 }
1112 spapr->htab_fd = -1;
1113 }
1114
1115 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1116 {
1117 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1118
1119 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1120 }
1121
1122 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1123 hwaddr ptex, int n)
1124 {
1125 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1126 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1127
1128 if (!spapr->htab) {
1129 /*
1130 * HTAB is controlled by KVM. Fetch into temporary buffer
1131 */
1132 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1133 kvmppc_read_hptes(hptes, ptex, n);
1134 return hptes;
1135 }
1136
1137 /*
1138 * HTAB is controlled by QEMU. Just point to the internally
1139 * accessible PTEG.
1140 */
1141 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1142 }
1143
1144 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1145 const ppc_hash_pte64_t *hptes,
1146 hwaddr ptex, int n)
1147 {
1148 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1149
1150 if (!spapr->htab) {
1151 g_free((void *)hptes);
1152 }
1153
1154 /* Nothing to do for qemu managed HPT */
1155 }
1156
1157 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1158 uint64_t pte0, uint64_t pte1)
1159 {
1160 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1161 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1162
1163 if (!spapr->htab) {
1164 kvmppc_write_hpte(ptex, pte0, pte1);
1165 } else {
1166 stq_p(spapr->htab + offset, pte0);
1167 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1168 }
1169 }
1170
1171 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1172 {
1173 int shift;
1174
1175 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1176 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1177 * that's much more than is needed for Linux guests */
1178 shift = ctz64(pow2ceil(ramsize)) - 7;
1179 shift = MAX(shift, 18); /* Minimum architected size */
1180 shift = MIN(shift, 46); /* Maximum architected size */
1181 return shift;
1182 }
1183
1184 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1185 Error **errp)
1186 {
1187 long rc;
1188
1189 /* Clean up any HPT info from a previous boot */
1190 g_free(spapr->htab);
1191 spapr->htab = NULL;
1192 spapr->htab_shift = 0;
1193 close_htab_fd(spapr);
1194
1195 rc = kvmppc_reset_htab(shift);
1196 if (rc < 0) {
1197 /* kernel-side HPT needed, but couldn't allocate one */
1198 error_setg_errno(errp, errno,
1199 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1200 shift);
1201 /* This is almost certainly fatal, but if the caller really
1202 * wants to carry on with shift == 0, it's welcome to try */
1203 } else if (rc > 0) {
1204 /* kernel-side HPT allocated */
1205 if (rc != shift) {
1206 error_setg(errp,
1207 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1208 shift, rc);
1209 }
1210
1211 spapr->htab_shift = shift;
1212 spapr->htab = NULL;
1213 } else {
1214 /* kernel-side HPT not needed, allocate in userspace instead */
1215 size_t size = 1ULL << shift;
1216 int i;
1217
1218 spapr->htab = qemu_memalign(size, size);
1219 if (!spapr->htab) {
1220 error_setg_errno(errp, errno,
1221 "Could not allocate HPT of order %d", shift);
1222 return;
1223 }
1224
1225 memset(spapr->htab, 0, size);
1226 spapr->htab_shift = shift;
1227
1228 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1229 DIRTY_HPTE(HPTE(spapr->htab, i));
1230 }
1231 }
1232 }
1233
1234 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1235 {
1236 bool matched = false;
1237
1238 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1239 matched = true;
1240 }
1241
1242 if (!matched) {
1243 error_report("Device %s is not supported by this machine yet.",
1244 qdev_fw_name(DEVICE(sbdev)));
1245 exit(1);
1246 }
1247 }
1248
1249 static void ppc_spapr_reset(void)
1250 {
1251 MachineState *machine = MACHINE(qdev_get_machine());
1252 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1253 PowerPCCPU *first_ppc_cpu;
1254 uint32_t rtas_limit;
1255 hwaddr rtas_addr, fdt_addr;
1256 void *fdt;
1257 int rc;
1258
1259 /* Check for unknown sysbus devices */
1260 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1261
1262 spapr->patb_entry = 0;
1263
1264 /* Allocate and/or reset the hash page table */
1265 spapr_reallocate_hpt(spapr,
1266 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1267 &error_fatal);
1268
1269 /* Update the RMA size if necessary */
1270 if (spapr->vrma_adjust) {
1271 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1272 spapr->htab_shift);
1273 }
1274
1275 qemu_devices_reset();
1276
1277 /*
1278 * We place the device tree and RTAS just below either the top of the RMA,
1279 * or just below 2GB, whichever is lowere, so that it can be
1280 * processed with 32-bit real mode code if necessary
1281 */
1282 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1283 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1284 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1285
1286 /* if this reset wasn't generated by CAS, we should reset our
1287 * negotiated options and start from scratch */
1288 if (!spapr->cas_reboot) {
1289 spapr_ovec_cleanup(spapr->ov5_cas);
1290 spapr->ov5_cas = spapr_ovec_new();
1291 }
1292
1293 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1294
1295 spapr_load_rtas(spapr, fdt, rtas_addr);
1296
1297 rc = fdt_pack(fdt);
1298
1299 /* Should only fail if we've built a corrupted tree */
1300 assert(rc == 0);
1301
1302 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1303 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1304 fdt_totalsize(fdt), FDT_MAX_SIZE);
1305 exit(1);
1306 }
1307
1308 /* Load the fdt */
1309 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1310 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1311 g_free(fdt);
1312
1313 /* Set up the entry state */
1314 first_ppc_cpu = POWERPC_CPU(first_cpu);
1315 first_ppc_cpu->env.gpr[3] = fdt_addr;
1316 first_ppc_cpu->env.gpr[5] = 0;
1317 first_cpu->halted = 0;
1318 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1319
1320 spapr->cas_reboot = false;
1321 }
1322
1323 static void spapr_create_nvram(sPAPRMachineState *spapr)
1324 {
1325 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1326 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1327
1328 if (dinfo) {
1329 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1330 &error_fatal);
1331 }
1332
1333 qdev_init_nofail(dev);
1334
1335 spapr->nvram = (struct sPAPRNVRAM *)dev;
1336 }
1337
1338 static void spapr_rtc_create(sPAPRMachineState *spapr)
1339 {
1340 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1341
1342 qdev_init_nofail(dev);
1343 spapr->rtc = dev;
1344
1345 object_property_add_alias(qdev_get_machine(), "rtc-time",
1346 OBJECT(spapr->rtc), "date", NULL);
1347 }
1348
1349 /* Returns whether we want to use VGA or not */
1350 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1351 {
1352 switch (vga_interface_type) {
1353 case VGA_NONE:
1354 return false;
1355 case VGA_DEVICE:
1356 return true;
1357 case VGA_STD:
1358 case VGA_VIRTIO:
1359 return pci_vga_init(pci_bus) != NULL;
1360 default:
1361 error_setg(errp,
1362 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1363 return false;
1364 }
1365 }
1366
1367 static int spapr_post_load(void *opaque, int version_id)
1368 {
1369 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1370 int err = 0;
1371
1372 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1373 int i;
1374 for (i = 0; i < spapr->nr_servers; i++) {
1375 icp_resend(&spapr->icps[i]);
1376 }
1377 }
1378
1379 /* In earlier versions, there was no separate qdev for the PAPR
1380 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1381 * So when migrating from those versions, poke the incoming offset
1382 * value into the RTC device */
1383 if (version_id < 3) {
1384 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1385 }
1386
1387 return err;
1388 }
1389
1390 static bool version_before_3(void *opaque, int version_id)
1391 {
1392 return version_id < 3;
1393 }
1394
1395 static bool spapr_ov5_cas_needed(void *opaque)
1396 {
1397 sPAPRMachineState *spapr = opaque;
1398 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1399 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1400 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1401 bool cas_needed;
1402
1403 /* Prior to the introduction of sPAPROptionVector, we had two option
1404 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1405 * Both of these options encode machine topology into the device-tree
1406 * in such a way that the now-booted OS should still be able to interact
1407 * appropriately with QEMU regardless of what options were actually
1408 * negotiatied on the source side.
1409 *
1410 * As such, we can avoid migrating the CAS-negotiated options if these
1411 * are the only options available on the current machine/platform.
1412 * Since these are the only options available for pseries-2.7 and
1413 * earlier, this allows us to maintain old->new/new->old migration
1414 * compatibility.
1415 *
1416 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1417 * via default pseries-2.8 machines and explicit command-line parameters.
1418 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1419 * of the actual CAS-negotiated values to continue working properly. For
1420 * example, availability of memory unplug depends on knowing whether
1421 * OV5_HP_EVT was negotiated via CAS.
1422 *
1423 * Thus, for any cases where the set of available CAS-negotiatable
1424 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1425 * include the CAS-negotiated options in the migration stream.
1426 */
1427 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1428 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1429
1430 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1431 * the mask itself since in the future it's possible "legacy" bits may be
1432 * removed via machine options, which could generate a false positive
1433 * that breaks migration.
1434 */
1435 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1436 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1437
1438 spapr_ovec_cleanup(ov5_mask);
1439 spapr_ovec_cleanup(ov5_legacy);
1440 spapr_ovec_cleanup(ov5_removed);
1441
1442 return cas_needed;
1443 }
1444
1445 static const VMStateDescription vmstate_spapr_ov5_cas = {
1446 .name = "spapr_option_vector_ov5_cas",
1447 .version_id = 1,
1448 .minimum_version_id = 1,
1449 .needed = spapr_ov5_cas_needed,
1450 .fields = (VMStateField[]) {
1451 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1452 vmstate_spapr_ovec, sPAPROptionVector),
1453 VMSTATE_END_OF_LIST()
1454 },
1455 };
1456
1457 static bool spapr_patb_entry_needed(void *opaque)
1458 {
1459 sPAPRMachineState *spapr = opaque;
1460
1461 return !!spapr->patb_entry;
1462 }
1463
1464 static const VMStateDescription vmstate_spapr_patb_entry = {
1465 .name = "spapr_patb_entry",
1466 .version_id = 1,
1467 .minimum_version_id = 1,
1468 .needed = spapr_patb_entry_needed,
1469 .fields = (VMStateField[]) {
1470 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1471 VMSTATE_END_OF_LIST()
1472 },
1473 };
1474
1475 static const VMStateDescription vmstate_spapr = {
1476 .name = "spapr",
1477 .version_id = 3,
1478 .minimum_version_id = 1,
1479 .post_load = spapr_post_load,
1480 .fields = (VMStateField[]) {
1481 /* used to be @next_irq */
1482 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1483
1484 /* RTC offset */
1485 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1486
1487 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1488 VMSTATE_END_OF_LIST()
1489 },
1490 .subsections = (const VMStateDescription*[]) {
1491 &vmstate_spapr_ov5_cas,
1492 &vmstate_spapr_patb_entry,
1493 NULL
1494 }
1495 };
1496
1497 static int htab_save_setup(QEMUFile *f, void *opaque)
1498 {
1499 sPAPRMachineState *spapr = opaque;
1500
1501 /* "Iteration" header */
1502 qemu_put_be32(f, spapr->htab_shift);
1503
1504 if (spapr->htab) {
1505 spapr->htab_save_index = 0;
1506 spapr->htab_first_pass = true;
1507 } else {
1508 assert(kvm_enabled());
1509 }
1510
1511
1512 return 0;
1513 }
1514
1515 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1516 int64_t max_ns)
1517 {
1518 bool has_timeout = max_ns != -1;
1519 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1520 int index = spapr->htab_save_index;
1521 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1522
1523 assert(spapr->htab_first_pass);
1524
1525 do {
1526 int chunkstart;
1527
1528 /* Consume invalid HPTEs */
1529 while ((index < htabslots)
1530 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1531 index++;
1532 CLEAN_HPTE(HPTE(spapr->htab, index));
1533 }
1534
1535 /* Consume valid HPTEs */
1536 chunkstart = index;
1537 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1538 && HPTE_VALID(HPTE(spapr->htab, index))) {
1539 index++;
1540 CLEAN_HPTE(HPTE(spapr->htab, index));
1541 }
1542
1543 if (index > chunkstart) {
1544 int n_valid = index - chunkstart;
1545
1546 qemu_put_be32(f, chunkstart);
1547 qemu_put_be16(f, n_valid);
1548 qemu_put_be16(f, 0);
1549 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1550 HASH_PTE_SIZE_64 * n_valid);
1551
1552 if (has_timeout &&
1553 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1554 break;
1555 }
1556 }
1557 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1558
1559 if (index >= htabslots) {
1560 assert(index == htabslots);
1561 index = 0;
1562 spapr->htab_first_pass = false;
1563 }
1564 spapr->htab_save_index = index;
1565 }
1566
1567 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1568 int64_t max_ns)
1569 {
1570 bool final = max_ns < 0;
1571 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1572 int examined = 0, sent = 0;
1573 int index = spapr->htab_save_index;
1574 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1575
1576 assert(!spapr->htab_first_pass);
1577
1578 do {
1579 int chunkstart, invalidstart;
1580
1581 /* Consume non-dirty HPTEs */
1582 while ((index < htabslots)
1583 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1584 index++;
1585 examined++;
1586 }
1587
1588 chunkstart = index;
1589 /* Consume valid dirty HPTEs */
1590 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1591 && HPTE_DIRTY(HPTE(spapr->htab, index))
1592 && HPTE_VALID(HPTE(spapr->htab, index))) {
1593 CLEAN_HPTE(HPTE(spapr->htab, index));
1594 index++;
1595 examined++;
1596 }
1597
1598 invalidstart = index;
1599 /* Consume invalid dirty HPTEs */
1600 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1601 && HPTE_DIRTY(HPTE(spapr->htab, index))
1602 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1603 CLEAN_HPTE(HPTE(spapr->htab, index));
1604 index++;
1605 examined++;
1606 }
1607
1608 if (index > chunkstart) {
1609 int n_valid = invalidstart - chunkstart;
1610 int n_invalid = index - invalidstart;
1611
1612 qemu_put_be32(f, chunkstart);
1613 qemu_put_be16(f, n_valid);
1614 qemu_put_be16(f, n_invalid);
1615 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1616 HASH_PTE_SIZE_64 * n_valid);
1617 sent += index - chunkstart;
1618
1619 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1620 break;
1621 }
1622 }
1623
1624 if (examined >= htabslots) {
1625 break;
1626 }
1627
1628 if (index >= htabslots) {
1629 assert(index == htabslots);
1630 index = 0;
1631 }
1632 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1633
1634 if (index >= htabslots) {
1635 assert(index == htabslots);
1636 index = 0;
1637 }
1638
1639 spapr->htab_save_index = index;
1640
1641 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1642 }
1643
1644 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1645 #define MAX_KVM_BUF_SIZE 2048
1646
1647 static int htab_save_iterate(QEMUFile *f, void *opaque)
1648 {
1649 sPAPRMachineState *spapr = opaque;
1650 int fd;
1651 int rc = 0;
1652
1653 /* Iteration header */
1654 qemu_put_be32(f, 0);
1655
1656 if (!spapr->htab) {
1657 assert(kvm_enabled());
1658
1659 fd = get_htab_fd(spapr);
1660 if (fd < 0) {
1661 return fd;
1662 }
1663
1664 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1665 if (rc < 0) {
1666 return rc;
1667 }
1668 } else if (spapr->htab_first_pass) {
1669 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1670 } else {
1671 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1672 }
1673
1674 /* End marker */
1675 qemu_put_be32(f, 0);
1676 qemu_put_be16(f, 0);
1677 qemu_put_be16(f, 0);
1678
1679 return rc;
1680 }
1681
1682 static int htab_save_complete(QEMUFile *f, void *opaque)
1683 {
1684 sPAPRMachineState *spapr = opaque;
1685 int fd;
1686
1687 /* Iteration header */
1688 qemu_put_be32(f, 0);
1689
1690 if (!spapr->htab) {
1691 int rc;
1692
1693 assert(kvm_enabled());
1694
1695 fd = get_htab_fd(spapr);
1696 if (fd < 0) {
1697 return fd;
1698 }
1699
1700 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1701 if (rc < 0) {
1702 return rc;
1703 }
1704 } else {
1705 if (spapr->htab_first_pass) {
1706 htab_save_first_pass(f, spapr, -1);
1707 }
1708 htab_save_later_pass(f, spapr, -1);
1709 }
1710
1711 /* End marker */
1712 qemu_put_be32(f, 0);
1713 qemu_put_be16(f, 0);
1714 qemu_put_be16(f, 0);
1715
1716 return 0;
1717 }
1718
1719 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1720 {
1721 sPAPRMachineState *spapr = opaque;
1722 uint32_t section_hdr;
1723 int fd = -1;
1724
1725 if (version_id < 1 || version_id > 1) {
1726 error_report("htab_load() bad version");
1727 return -EINVAL;
1728 }
1729
1730 section_hdr = qemu_get_be32(f);
1731
1732 if (section_hdr) {
1733 Error *local_err = NULL;
1734
1735 /* First section gives the htab size */
1736 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1737 if (local_err) {
1738 error_report_err(local_err);
1739 return -EINVAL;
1740 }
1741 return 0;
1742 }
1743
1744 if (!spapr->htab) {
1745 assert(kvm_enabled());
1746
1747 fd = kvmppc_get_htab_fd(true);
1748 if (fd < 0) {
1749 error_report("Unable to open fd to restore KVM hash table: %s",
1750 strerror(errno));
1751 }
1752 }
1753
1754 while (true) {
1755 uint32_t index;
1756 uint16_t n_valid, n_invalid;
1757
1758 index = qemu_get_be32(f);
1759 n_valid = qemu_get_be16(f);
1760 n_invalid = qemu_get_be16(f);
1761
1762 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1763 /* End of Stream */
1764 break;
1765 }
1766
1767 if ((index + n_valid + n_invalid) >
1768 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1769 /* Bad index in stream */
1770 error_report(
1771 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1772 index, n_valid, n_invalid, spapr->htab_shift);
1773 return -EINVAL;
1774 }
1775
1776 if (spapr->htab) {
1777 if (n_valid) {
1778 qemu_get_buffer(f, HPTE(spapr->htab, index),
1779 HASH_PTE_SIZE_64 * n_valid);
1780 }
1781 if (n_invalid) {
1782 memset(HPTE(spapr->htab, index + n_valid), 0,
1783 HASH_PTE_SIZE_64 * n_invalid);
1784 }
1785 } else {
1786 int rc;
1787
1788 assert(fd >= 0);
1789
1790 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1791 if (rc < 0) {
1792 return rc;
1793 }
1794 }
1795 }
1796
1797 if (!spapr->htab) {
1798 assert(fd >= 0);
1799 close(fd);
1800 }
1801
1802 return 0;
1803 }
1804
1805 static void htab_cleanup(void *opaque)
1806 {
1807 sPAPRMachineState *spapr = opaque;
1808
1809 close_htab_fd(spapr);
1810 }
1811
1812 static SaveVMHandlers savevm_htab_handlers = {
1813 .save_live_setup = htab_save_setup,
1814 .save_live_iterate = htab_save_iterate,
1815 .save_live_complete_precopy = htab_save_complete,
1816 .cleanup = htab_cleanup,
1817 .load_state = htab_load,
1818 };
1819
1820 static void spapr_boot_set(void *opaque, const char *boot_device,
1821 Error **errp)
1822 {
1823 MachineState *machine = MACHINE(qdev_get_machine());
1824 machine->boot_order = g_strdup(boot_device);
1825 }
1826
1827 /*
1828 * Reset routine for LMB DR devices.
1829 *
1830 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1831 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1832 * when it walks all its children devices. LMB devices reset occurs
1833 * as part of spapr_ppc_reset().
1834 */
1835 static void spapr_drc_reset(void *opaque)
1836 {
1837 sPAPRDRConnector *drc = opaque;
1838 DeviceState *d = DEVICE(drc);
1839
1840 if (d) {
1841 device_reset(d);
1842 }
1843 }
1844
1845 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1846 {
1847 MachineState *machine = MACHINE(spapr);
1848 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1849 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1850 int i;
1851
1852 for (i = 0; i < nr_lmbs; i++) {
1853 sPAPRDRConnector *drc;
1854 uint64_t addr;
1855
1856 addr = i * lmb_size + spapr->hotplug_memory.base;
1857 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1858 addr/lmb_size);
1859 qemu_register_reset(spapr_drc_reset, drc);
1860 }
1861 }
1862
1863 /*
1864 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1865 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1866 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1867 */
1868 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1869 {
1870 int i;
1871
1872 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1873 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1874 " is not aligned to %llu MiB",
1875 machine->ram_size,
1876 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1877 return;
1878 }
1879
1880 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1881 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1882 " is not aligned to %llu MiB",
1883 machine->ram_size,
1884 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1885 return;
1886 }
1887
1888 for (i = 0; i < nb_numa_nodes; i++) {
1889 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1890 error_setg(errp,
1891 "Node %d memory size 0x%" PRIx64
1892 " is not aligned to %llu MiB",
1893 i, numa_info[i].node_mem,
1894 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1895 return;
1896 }
1897 }
1898 }
1899
1900 /* find cpu slot in machine->possible_cpus by core_id */
1901 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1902 {
1903 int index = id / smp_threads;
1904
1905 if (index >= ms->possible_cpus->len) {
1906 return NULL;
1907 }
1908 if (idx) {
1909 *idx = index;
1910 }
1911 return &ms->possible_cpus->cpus[index];
1912 }
1913
1914 static void spapr_init_cpus(sPAPRMachineState *spapr)
1915 {
1916 MachineState *machine = MACHINE(spapr);
1917 MachineClass *mc = MACHINE_GET_CLASS(machine);
1918 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1919 int smt = kvmppc_smt_threads();
1920 const CPUArchIdList *possible_cpus;
1921 int boot_cores_nr = smp_cpus / smp_threads;
1922 int i;
1923
1924 if (!type) {
1925 error_report("Unable to find sPAPR CPU Core definition");
1926 exit(1);
1927 }
1928
1929 possible_cpus = mc->possible_cpu_arch_ids(machine);
1930 if (mc->has_hotpluggable_cpus) {
1931 if (smp_cpus % smp_threads) {
1932 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1933 smp_cpus, smp_threads);
1934 exit(1);
1935 }
1936 if (max_cpus % smp_threads) {
1937 error_report("max_cpus (%u) must be multiple of threads (%u)",
1938 max_cpus, smp_threads);
1939 exit(1);
1940 }
1941 } else {
1942 if (max_cpus != smp_cpus) {
1943 error_report("This machine version does not support CPU hotplug");
1944 exit(1);
1945 }
1946 boot_cores_nr = possible_cpus->len;
1947 }
1948
1949 for (i = 0; i < possible_cpus->len; i++) {
1950 int core_id = i * smp_threads;
1951
1952 if (mc->has_hotpluggable_cpus) {
1953 sPAPRDRConnector *drc =
1954 spapr_dr_connector_new(OBJECT(spapr),
1955 SPAPR_DR_CONNECTOR_TYPE_CPU,
1956 (core_id / smp_threads) * smt);
1957
1958 qemu_register_reset(spapr_drc_reset, drc);
1959 }
1960
1961 if (i < boot_cores_nr) {
1962 Object *core = object_new(type);
1963 int nr_threads = smp_threads;
1964
1965 /* Handle the partially filled core for older machine types */
1966 if ((i + 1) * smp_threads >= smp_cpus) {
1967 nr_threads = smp_cpus - i * smp_threads;
1968 }
1969
1970 object_property_set_int(core, nr_threads, "nr-threads",
1971 &error_fatal);
1972 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1973 &error_fatal);
1974 object_property_set_bool(core, true, "realized", &error_fatal);
1975 }
1976 }
1977 g_free(type);
1978 }
1979
1980 /* pSeries LPAR / sPAPR hardware init */
1981 static void ppc_spapr_init(MachineState *machine)
1982 {
1983 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1984 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1985 const char *kernel_filename = machine->kernel_filename;
1986 const char *initrd_filename = machine->initrd_filename;
1987 PCIHostState *phb;
1988 int i;
1989 MemoryRegion *sysmem = get_system_memory();
1990 MemoryRegion *ram = g_new(MemoryRegion, 1);
1991 MemoryRegion *rma_region;
1992 void *rma = NULL;
1993 hwaddr rma_alloc_size;
1994 hwaddr node0_size = spapr_node0_size();
1995 long load_limit, fw_size;
1996 char *filename;
1997 int smt = kvmppc_smt_threads();
1998
1999 msi_nonbroken = true;
2000
2001 QLIST_INIT(&spapr->phbs);
2002
2003 /* Allocate RMA if necessary */
2004 rma_alloc_size = kvmppc_alloc_rma(&rma);
2005
2006 if (rma_alloc_size == -1) {
2007 error_report("Unable to create RMA");
2008 exit(1);
2009 }
2010
2011 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2012 spapr->rma_size = rma_alloc_size;
2013 } else {
2014 spapr->rma_size = node0_size;
2015
2016 /* With KVM, we don't actually know whether KVM supports an
2017 * unbounded RMA (PR KVM) or is limited by the hash table size
2018 * (HV KVM using VRMA), so we always assume the latter
2019 *
2020 * In that case, we also limit the initial allocations for RTAS
2021 * etc... to 256M since we have no way to know what the VRMA size
2022 * is going to be as it depends on the size of the hash table
2023 * isn't determined yet.
2024 */
2025 if (kvm_enabled()) {
2026 spapr->vrma_adjust = 1;
2027 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2028 }
2029
2030 /* Actually we don't support unbounded RMA anymore since we
2031 * added proper emulation of HV mode. The max we can get is
2032 * 16G which also happens to be what we configure for PAPR
2033 * mode so make sure we don't do anything bigger than that
2034 */
2035 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2036 }
2037
2038 if (spapr->rma_size > node0_size) {
2039 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2040 spapr->rma_size);
2041 exit(1);
2042 }
2043
2044 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2045 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2046
2047 /* Set up Interrupt Controller before we create the VCPUs */
2048 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2049 XICS_IRQS_SPAPR, &error_fatal);
2050
2051 /* Set up containers for ibm,client-set-architecture negotiated options */
2052 spapr->ov5 = spapr_ovec_new();
2053 spapr->ov5_cas = spapr_ovec_new();
2054
2055 if (smc->dr_lmb_enabled) {
2056 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2057 spapr_validate_node_memory(machine, &error_fatal);
2058 }
2059
2060 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2061
2062 /* advertise support for dedicated HP event source to guests */
2063 if (spapr->use_hotplug_event_source) {
2064 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2065 }
2066
2067 /* init CPUs */
2068 if (machine->cpu_model == NULL) {
2069 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2070 }
2071
2072 ppc_cpu_parse_features(machine->cpu_model);
2073
2074 spapr_init_cpus(spapr);
2075
2076 if (kvm_enabled()) {
2077 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2078 kvmppc_enable_logical_ci_hcalls();
2079 kvmppc_enable_set_mode_hcall();
2080
2081 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2082 kvmppc_enable_clear_ref_mod_hcalls();
2083 }
2084
2085 /* allocate RAM */
2086 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2087 machine->ram_size);
2088 memory_region_add_subregion(sysmem, 0, ram);
2089
2090 if (rma_alloc_size && rma) {
2091 rma_region = g_new(MemoryRegion, 1);
2092 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2093 rma_alloc_size, rma);
2094 vmstate_register_ram_global(rma_region);
2095 memory_region_add_subregion(sysmem, 0, rma_region);
2096 }
2097
2098 /* initialize hotplug memory address space */
2099 if (machine->ram_size < machine->maxram_size) {
2100 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2101 /*
2102 * Limit the number of hotpluggable memory slots to half the number
2103 * slots that KVM supports, leaving the other half for PCI and other
2104 * devices. However ensure that number of slots doesn't drop below 32.
2105 */
2106 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2107 SPAPR_MAX_RAM_SLOTS;
2108
2109 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2110 max_memslots = SPAPR_MAX_RAM_SLOTS;
2111 }
2112 if (machine->ram_slots > max_memslots) {
2113 error_report("Specified number of memory slots %"
2114 PRIu64" exceeds max supported %d",
2115 machine->ram_slots, max_memslots);
2116 exit(1);
2117 }
2118
2119 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2120 SPAPR_HOTPLUG_MEM_ALIGN);
2121 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2122 "hotplug-memory", hotplug_mem_size);
2123 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2124 &spapr->hotplug_memory.mr);
2125 }
2126
2127 if (smc->dr_lmb_enabled) {
2128 spapr_create_lmb_dr_connectors(spapr);
2129 }
2130
2131 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2132 if (!filename) {
2133 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2134 exit(1);
2135 }
2136 spapr->rtas_size = get_image_size(filename);
2137 if (spapr->rtas_size < 0) {
2138 error_report("Could not get size of LPAR rtas '%s'", filename);
2139 exit(1);
2140 }
2141 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2142 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2143 error_report("Could not load LPAR rtas '%s'", filename);
2144 exit(1);
2145 }
2146 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2147 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2148 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2149 exit(1);
2150 }
2151 g_free(filename);
2152
2153 /* Set up RTAS event infrastructure */
2154 spapr_events_init(spapr);
2155
2156 /* Set up the RTC RTAS interfaces */
2157 spapr_rtc_create(spapr);
2158
2159 /* Set up VIO bus */
2160 spapr->vio_bus = spapr_vio_bus_init();
2161
2162 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2163 if (serial_hds[i]) {
2164 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2165 }
2166 }
2167
2168 /* We always have at least the nvram device on VIO */
2169 spapr_create_nvram(spapr);
2170
2171 /* Set up PCI */
2172 spapr_pci_rtas_init();
2173
2174 phb = spapr_create_phb(spapr, 0);
2175
2176 for (i = 0; i < nb_nics; i++) {
2177 NICInfo *nd = &nd_table[i];
2178
2179 if (!nd->model) {
2180 nd->model = g_strdup("ibmveth");
2181 }
2182
2183 if (strcmp(nd->model, "ibmveth") == 0) {
2184 spapr_vlan_create(spapr->vio_bus, nd);
2185 } else {
2186 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2187 }
2188 }
2189
2190 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2191 spapr_vscsi_create(spapr->vio_bus);
2192 }
2193
2194 /* Graphics */
2195 if (spapr_vga_init(phb->bus, &error_fatal)) {
2196 spapr->has_graphics = true;
2197 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2198 }
2199
2200 if (machine->usb) {
2201 if (smc->use_ohci_by_default) {
2202 pci_create_simple(phb->bus, -1, "pci-ohci");
2203 } else {
2204 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2205 }
2206
2207 if (spapr->has_graphics) {
2208 USBBus *usb_bus = usb_bus_find(-1);
2209
2210 usb_create_simple(usb_bus, "usb-kbd");
2211 usb_create_simple(usb_bus, "usb-mouse");
2212 }
2213 }
2214
2215 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2216 error_report(
2217 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2218 MIN_RMA_SLOF);
2219 exit(1);
2220 }
2221
2222 if (kernel_filename) {
2223 uint64_t lowaddr = 0;
2224
2225 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2226 NULL, NULL, &lowaddr, NULL, 1,
2227 PPC_ELF_MACHINE, 0, 0);
2228 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2229 spapr->kernel_size = load_elf(kernel_filename,
2230 translate_kernel_address, NULL, NULL,
2231 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2232 0, 0);
2233 spapr->kernel_le = spapr->kernel_size > 0;
2234 }
2235 if (spapr->kernel_size < 0) {
2236 error_report("error loading %s: %s", kernel_filename,
2237 load_elf_strerror(spapr->kernel_size));
2238 exit(1);
2239 }
2240
2241 /* load initrd */
2242 if (initrd_filename) {
2243 /* Try to locate the initrd in the gap between the kernel
2244 * and the firmware. Add a bit of space just in case
2245 */
2246 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2247 + 0x1ffff) & ~0xffff;
2248 spapr->initrd_size = load_image_targphys(initrd_filename,
2249 spapr->initrd_base,
2250 load_limit
2251 - spapr->initrd_base);
2252 if (spapr->initrd_size < 0) {
2253 error_report("could not load initial ram disk '%s'",
2254 initrd_filename);
2255 exit(1);
2256 }
2257 }
2258 }
2259
2260 if (bios_name == NULL) {
2261 bios_name = FW_FILE_NAME;
2262 }
2263 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2264 if (!filename) {
2265 error_report("Could not find LPAR firmware '%s'", bios_name);
2266 exit(1);
2267 }
2268 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2269 if (fw_size <= 0) {
2270 error_report("Could not load LPAR firmware '%s'", filename);
2271 exit(1);
2272 }
2273 g_free(filename);
2274
2275 /* FIXME: Should register things through the MachineState's qdev
2276 * interface, this is a legacy from the sPAPREnvironment structure
2277 * which predated MachineState but had a similar function */
2278 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2279 register_savevm_live(NULL, "spapr/htab", -1, 1,
2280 &savevm_htab_handlers, spapr);
2281
2282 /* used by RTAS */
2283 QTAILQ_INIT(&spapr->ccs_list);
2284 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2285
2286 qemu_register_boot_set(spapr_boot_set, spapr);
2287
2288 /* to stop and start vmclock */
2289 if (kvm_enabled()) {
2290 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2291 &spapr->tb);
2292 }
2293 }
2294
2295 static int spapr_kvm_type(const char *vm_type)
2296 {
2297 if (!vm_type) {
2298 return 0;
2299 }
2300
2301 if (!strcmp(vm_type, "HV")) {
2302 return 1;
2303 }
2304
2305 if (!strcmp(vm_type, "PR")) {
2306 return 2;
2307 }
2308
2309 error_report("Unknown kvm-type specified '%s'", vm_type);
2310 exit(1);
2311 }
2312
2313 /*
2314 * Implementation of an interface to adjust firmware path
2315 * for the bootindex property handling.
2316 */
2317 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2318 DeviceState *dev)
2319 {
2320 #define CAST(type, obj, name) \
2321 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2322 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2323 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2324
2325 if (d) {
2326 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2327 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2328 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2329
2330 if (spapr) {
2331 /*
2332 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2333 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2334 * in the top 16 bits of the 64-bit LUN
2335 */
2336 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2337 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2338 (uint64_t)id << 48);
2339 } else if (virtio) {
2340 /*
2341 * We use SRP luns of the form 01000000 | (target << 8) | lun
2342 * in the top 32 bits of the 64-bit LUN
2343 * Note: the quote above is from SLOF and it is wrong,
2344 * the actual binding is:
2345 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2346 */
2347 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2348 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2349 (uint64_t)id << 32);
2350 } else if (usb) {
2351 /*
2352 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2353 * in the top 32 bits of the 64-bit LUN
2354 */
2355 unsigned usb_port = atoi(usb->port->path);
2356 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2357 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2358 (uint64_t)id << 32);
2359 }
2360 }
2361
2362 /*
2363 * SLOF probes the USB devices, and if it recognizes that the device is a
2364 * storage device, it changes its name to "storage" instead of "usb-host",
2365 * and additionally adds a child node for the SCSI LUN, so the correct
2366 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2367 */
2368 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2369 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2370 if (usb_host_dev_is_scsi_storage(usbdev)) {
2371 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2372 }
2373 }
2374
2375 if (phb) {
2376 /* Replace "pci" with "pci@800000020000000" */
2377 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2378 }
2379
2380 return NULL;
2381 }
2382
2383 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2384 {
2385 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2386
2387 return g_strdup(spapr->kvm_type);
2388 }
2389
2390 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2391 {
2392 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2393
2394 g_free(spapr->kvm_type);
2395 spapr->kvm_type = g_strdup(value);
2396 }
2397
2398 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2399 {
2400 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2401
2402 return spapr->use_hotplug_event_source;
2403 }
2404
2405 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2406 Error **errp)
2407 {
2408 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2409
2410 spapr->use_hotplug_event_source = value;
2411 }
2412
2413 static void spapr_machine_initfn(Object *obj)
2414 {
2415 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2416
2417 spapr->htab_fd = -1;
2418 spapr->use_hotplug_event_source = true;
2419 object_property_add_str(obj, "kvm-type",
2420 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2421 object_property_set_description(obj, "kvm-type",
2422 "Specifies the KVM virtualization mode (HV, PR)",
2423 NULL);
2424 object_property_add_bool(obj, "modern-hotplug-events",
2425 spapr_get_modern_hotplug_events,
2426 spapr_set_modern_hotplug_events,
2427 NULL);
2428 object_property_set_description(obj, "modern-hotplug-events",
2429 "Use dedicated hotplug event mechanism in"
2430 " place of standard EPOW events when possible"
2431 " (required for memory hot-unplug support)",
2432 NULL);
2433 }
2434
2435 static void spapr_machine_finalizefn(Object *obj)
2436 {
2437 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2438
2439 g_free(spapr->kvm_type);
2440 }
2441
2442 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2443 {
2444 cpu_synchronize_state(cs);
2445 ppc_cpu_do_system_reset(cs);
2446 }
2447
2448 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2449 {
2450 CPUState *cs;
2451
2452 CPU_FOREACH(cs) {
2453 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2454 }
2455 }
2456
2457 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2458 uint32_t node, bool dedicated_hp_event_source,
2459 Error **errp)
2460 {
2461 sPAPRDRConnector *drc;
2462 sPAPRDRConnectorClass *drck;
2463 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2464 int i, fdt_offset, fdt_size;
2465 void *fdt;
2466 uint64_t addr = addr_start;
2467
2468 for (i = 0; i < nr_lmbs; i++) {
2469 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2470 addr/SPAPR_MEMORY_BLOCK_SIZE);
2471 g_assert(drc);
2472
2473 fdt = create_device_tree(&fdt_size);
2474 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2475 SPAPR_MEMORY_BLOCK_SIZE);
2476
2477 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2478 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2479 addr += SPAPR_MEMORY_BLOCK_SIZE;
2480 if (!dev->hotplugged) {
2481 /* guests expect coldplugged LMBs to be pre-allocated */
2482 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2483 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2484 }
2485 }
2486 /* send hotplug notification to the
2487 * guest only in case of hotplugged memory
2488 */
2489 if (dev->hotplugged) {
2490 if (dedicated_hp_event_source) {
2491 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2492 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2493 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2494 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2495 nr_lmbs,
2496 drck->get_index(drc));
2497 } else {
2498 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2499 nr_lmbs);
2500 }
2501 }
2502 }
2503
2504 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2505 uint32_t node, Error **errp)
2506 {
2507 Error *local_err = NULL;
2508 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2509 PCDIMMDevice *dimm = PC_DIMM(dev);
2510 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2511 MemoryRegion *mr = ddc->get_memory_region(dimm);
2512 uint64_t align = memory_region_get_alignment(mr);
2513 uint64_t size = memory_region_size(mr);
2514 uint64_t addr;
2515 char *mem_dev;
2516
2517 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2518 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2519 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2520 goto out;
2521 }
2522
2523 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2524 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2525 error_setg(&local_err, "Memory backend has bad page size. "
2526 "Use 'memory-backend-file' with correct mem-path.");
2527 goto out;
2528 }
2529
2530 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2531 if (local_err) {
2532 goto out;
2533 }
2534
2535 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2536 if (local_err) {
2537 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2538 goto out;
2539 }
2540
2541 spapr_add_lmbs(dev, addr, size, node,
2542 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2543 &error_abort);
2544
2545 out:
2546 error_propagate(errp, local_err);
2547 }
2548
2549 typedef struct sPAPRDIMMState {
2550 uint32_t nr_lmbs;
2551 } sPAPRDIMMState;
2552
2553 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2554 {
2555 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2556 HotplugHandler *hotplug_ctrl;
2557
2558 if (--ds->nr_lmbs) {
2559 return;
2560 }
2561
2562 g_free(ds);
2563
2564 /*
2565 * Now that all the LMBs have been removed by the guest, call the
2566 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2567 */
2568 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2569 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2570 }
2571
2572 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2573 Error **errp)
2574 {
2575 sPAPRDRConnector *drc;
2576 sPAPRDRConnectorClass *drck;
2577 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2578 int i;
2579 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2580 uint64_t addr = addr_start;
2581
2582 ds->nr_lmbs = nr_lmbs;
2583 for (i = 0; i < nr_lmbs; i++) {
2584 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2585 addr / SPAPR_MEMORY_BLOCK_SIZE);
2586 g_assert(drc);
2587
2588 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2589 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2590 addr += SPAPR_MEMORY_BLOCK_SIZE;
2591 }
2592
2593 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2594 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2595 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2596 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2597 nr_lmbs,
2598 drck->get_index(drc));
2599 }
2600
2601 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2602 Error **errp)
2603 {
2604 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2605 PCDIMMDevice *dimm = PC_DIMM(dev);
2606 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2607 MemoryRegion *mr = ddc->get_memory_region(dimm);
2608
2609 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2610 object_unparent(OBJECT(dev));
2611 }
2612
2613 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2614 DeviceState *dev, Error **errp)
2615 {
2616 Error *local_err = NULL;
2617 PCDIMMDevice *dimm = PC_DIMM(dev);
2618 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2619 MemoryRegion *mr = ddc->get_memory_region(dimm);
2620 uint64_t size = memory_region_size(mr);
2621 uint64_t addr;
2622
2623 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2624 if (local_err) {
2625 goto out;
2626 }
2627
2628 spapr_del_lmbs(dev, addr, size, &error_abort);
2629 out:
2630 error_propagate(errp, local_err);
2631 }
2632
2633 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2634 sPAPRMachineState *spapr)
2635 {
2636 PowerPCCPU *cpu = POWERPC_CPU(cs);
2637 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2638 int id = ppc_get_vcpu_dt_id(cpu);
2639 void *fdt;
2640 int offset, fdt_size;
2641 char *nodename;
2642
2643 fdt = create_device_tree(&fdt_size);
2644 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2645 offset = fdt_add_subnode(fdt, 0, nodename);
2646
2647 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2648 g_free(nodename);
2649
2650 *fdt_offset = offset;
2651 return fdt;
2652 }
2653
2654 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2655 Error **errp)
2656 {
2657 MachineState *ms = MACHINE(qdev_get_machine());
2658 CPUCore *cc = CPU_CORE(dev);
2659 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2660
2661 core_slot->cpu = NULL;
2662 object_unparent(OBJECT(dev));
2663 }
2664
2665 static void spapr_core_release(DeviceState *dev, void *opaque)
2666 {
2667 HotplugHandler *hotplug_ctrl;
2668
2669 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2670 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2671 }
2672
2673 static
2674 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2675 Error **errp)
2676 {
2677 int index;
2678 sPAPRDRConnector *drc;
2679 sPAPRDRConnectorClass *drck;
2680 Error *local_err = NULL;
2681 CPUCore *cc = CPU_CORE(dev);
2682 int smt = kvmppc_smt_threads();
2683
2684 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2685 error_setg(errp, "Unable to find CPU core with core-id: %d",
2686 cc->core_id);
2687 return;
2688 }
2689 if (index == 0) {
2690 error_setg(errp, "Boot CPU core may not be unplugged");
2691 return;
2692 }
2693
2694 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2695 g_assert(drc);
2696
2697 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2698 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2699 if (local_err) {
2700 error_propagate(errp, local_err);
2701 return;
2702 }
2703
2704 spapr_hotplug_req_remove_by_index(drc);
2705 }
2706
2707 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2708 Error **errp)
2709 {
2710 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2711 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2712 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2713 CPUCore *cc = CPU_CORE(dev);
2714 CPUState *cs = CPU(core->threads);
2715 sPAPRDRConnector *drc;
2716 Error *local_err = NULL;
2717 void *fdt = NULL;
2718 int fdt_offset = 0;
2719 int smt = kvmppc_smt_threads();
2720 CPUArchId *core_slot;
2721 int index;
2722
2723 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2724 if (!core_slot) {
2725 error_setg(errp, "Unable to find CPU core with core-id: %d",
2726 cc->core_id);
2727 return;
2728 }
2729 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2730
2731 g_assert(drc || !mc->has_hotpluggable_cpus);
2732
2733 /*
2734 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2735 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2736 */
2737 if (dev->hotplugged) {
2738 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2739 }
2740
2741 if (drc) {
2742 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2743 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2744 if (local_err) {
2745 g_free(fdt);
2746 error_propagate(errp, local_err);
2747 return;
2748 }
2749 }
2750
2751 if (dev->hotplugged) {
2752 /*
2753 * Send hotplug notification interrupt to the guest only in case
2754 * of hotplugged CPUs.
2755 */
2756 spapr_hotplug_req_add_by_index(drc);
2757 } else {
2758 /*
2759 * Set the right DRC states for cold plugged CPU.
2760 */
2761 if (drc) {
2762 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2763 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2764 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2765 }
2766 }
2767 core_slot->cpu = OBJECT(dev);
2768 }
2769
2770 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2771 Error **errp)
2772 {
2773 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2774 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2775 Error *local_err = NULL;
2776 CPUCore *cc = CPU_CORE(dev);
2777 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2778 const char *type = object_get_typename(OBJECT(dev));
2779 CPUArchId *core_slot;
2780 int index;
2781
2782 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2783 error_setg(&local_err, "CPU hotplug not supported for this machine");
2784 goto out;
2785 }
2786
2787 if (strcmp(base_core_type, type)) {
2788 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2789 goto out;
2790 }
2791
2792 if (cc->core_id % smp_threads) {
2793 error_setg(&local_err, "invalid core id %d", cc->core_id);
2794 goto out;
2795 }
2796
2797 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2798 if (!core_slot) {
2799 error_setg(&local_err, "core id %d out of range", cc->core_id);
2800 goto out;
2801 }
2802
2803 if (core_slot->cpu) {
2804 error_setg(&local_err, "core %d already populated", cc->core_id);
2805 goto out;
2806 }
2807
2808 out:
2809 g_free(base_core_type);
2810 error_propagate(errp, local_err);
2811 }
2812
2813 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2814 DeviceState *dev, Error **errp)
2815 {
2816 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2817
2818 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2819 int node;
2820
2821 if (!smc->dr_lmb_enabled) {
2822 error_setg(errp, "Memory hotplug not supported for this machine");
2823 return;
2824 }
2825 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2826 if (*errp) {
2827 return;
2828 }
2829 if (node < 0 || node >= MAX_NODES) {
2830 error_setg(errp, "Invaild node %d", node);
2831 return;
2832 }
2833
2834 /*
2835 * Currently PowerPC kernel doesn't allow hot-adding memory to
2836 * memory-less node, but instead will silently add the memory
2837 * to the first node that has some memory. This causes two
2838 * unexpected behaviours for the user.
2839 *
2840 * - Memory gets hotplugged to a different node than what the user
2841 * specified.
2842 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2843 * to memory-less node, a reboot will set things accordingly
2844 * and the previously hotplugged memory now ends in the right node.
2845 * This appears as if some memory moved from one node to another.
2846 *
2847 * So until kernel starts supporting memory hotplug to memory-less
2848 * nodes, just prevent such attempts upfront in QEMU.
2849 */
2850 if (nb_numa_nodes && !numa_info[node].node_mem) {
2851 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2852 node);
2853 return;
2854 }
2855
2856 spapr_memory_plug(hotplug_dev, dev, node, errp);
2857 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2858 spapr_core_plug(hotplug_dev, dev, errp);
2859 }
2860 }
2861
2862 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2863 DeviceState *dev, Error **errp)
2864 {
2865 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2866 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2867
2868 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2869 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2870 spapr_memory_unplug(hotplug_dev, dev, errp);
2871 } else {
2872 error_setg(errp, "Memory hot unplug not supported for this guest");
2873 }
2874 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2875 if (!mc->has_hotpluggable_cpus) {
2876 error_setg(errp, "CPU hot unplug not supported on this machine");
2877 return;
2878 }
2879 spapr_core_unplug(hotplug_dev, dev, errp);
2880 }
2881 }
2882
2883 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2884 DeviceState *dev, Error **errp)
2885 {
2886 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2887 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2888
2889 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2890 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2891 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2892 } else {
2893 /* NOTE: this means there is a window after guest reset, prior to
2894 * CAS negotiation, where unplug requests will fail due to the
2895 * capability not being detected yet. This is a bit different than
2896 * the case with PCI unplug, where the events will be queued and
2897 * eventually handled by the guest after boot
2898 */
2899 error_setg(errp, "Memory hot unplug not supported for this guest");
2900 }
2901 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2902 if (!mc->has_hotpluggable_cpus) {
2903 error_setg(errp, "CPU hot unplug not supported on this machine");
2904 return;
2905 }
2906 spapr_core_unplug_request(hotplug_dev, dev, errp);
2907 }
2908 }
2909
2910 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2911 DeviceState *dev, Error **errp)
2912 {
2913 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2914 spapr_core_pre_plug(hotplug_dev, dev, errp);
2915 }
2916 }
2917
2918 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2919 DeviceState *dev)
2920 {
2921 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2922 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2923 return HOTPLUG_HANDLER(machine);
2924 }
2925 return NULL;
2926 }
2927
2928 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2929 {
2930 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2931 * socket means much for the paravirtualized PAPR platform) */
2932 return cpu_index / smp_threads / smp_cores;
2933 }
2934
2935 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2936 {
2937 int i;
2938 int spapr_max_cores = max_cpus / smp_threads;
2939 MachineClass *mc = MACHINE_GET_CLASS(machine);
2940
2941 if (!mc->has_hotpluggable_cpus) {
2942 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2943 }
2944 if (machine->possible_cpus) {
2945 assert(machine->possible_cpus->len == spapr_max_cores);
2946 return machine->possible_cpus;
2947 }
2948
2949 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2950 sizeof(CPUArchId) * spapr_max_cores);
2951 machine->possible_cpus->len = spapr_max_cores;
2952 for (i = 0; i < machine->possible_cpus->len; i++) {
2953 int core_id = i * smp_threads;
2954
2955 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2956 machine->possible_cpus->cpus[i].arch_id = core_id;
2957 machine->possible_cpus->cpus[i].props.has_core_id = true;
2958 machine->possible_cpus->cpus[i].props.core_id = core_id;
2959 /* TODO: add 'has_node/node' here to describe
2960 to which node core belongs */
2961 }
2962 return machine->possible_cpus;
2963 }
2964
2965 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2966 uint64_t *buid, hwaddr *pio,
2967 hwaddr *mmio32, hwaddr *mmio64,
2968 unsigned n_dma, uint32_t *liobns, Error **errp)
2969 {
2970 /*
2971 * New-style PHB window placement.
2972 *
2973 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2974 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2975 * windows.
2976 *
2977 * Some guest kernels can't work with MMIO windows above 1<<46
2978 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2979 *
2980 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2981 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2982 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2983 * 1TiB 64-bit MMIO windows for each PHB.
2984 */
2985 const uint64_t base_buid = 0x800000020000000ULL;
2986 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2987 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2988 int i;
2989
2990 /* Sanity check natural alignments */
2991 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2992 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2993 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2994 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2995 /* Sanity check bounds */
2996 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2997 SPAPR_PCI_MEM32_WIN_SIZE);
2998 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2999 SPAPR_PCI_MEM64_WIN_SIZE);
3000
3001 if (index >= SPAPR_MAX_PHBS) {
3002 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3003 SPAPR_MAX_PHBS - 1);
3004 return;
3005 }
3006
3007 *buid = base_buid + index;
3008 for (i = 0; i < n_dma; ++i) {
3009 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3010 }
3011
3012 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3013 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3014 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3015 }
3016
3017 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3018 {
3019 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3020
3021 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3022 }
3023
3024 static void spapr_ics_resend(XICSFabric *dev)
3025 {
3026 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3027
3028 ics_resend(spapr->ics);
3029 }
3030
3031 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3032 {
3033 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3034
3035 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
3036 }
3037
3038 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3039 Monitor *mon)
3040 {
3041 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3042 int i;
3043
3044 for (i = 0; i < spapr->nr_servers; i++) {
3045 icp_pic_print_info(&spapr->icps[i], mon);
3046 }
3047
3048 ics_pic_print_info(spapr->ics, mon);
3049 }
3050
3051 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3052 {
3053 MachineClass *mc = MACHINE_CLASS(oc);
3054 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3055 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3056 NMIClass *nc = NMI_CLASS(oc);
3057 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3058 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3059 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3060 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3061
3062 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3063
3064 /*
3065 * We set up the default / latest behaviour here. The class_init
3066 * functions for the specific versioned machine types can override
3067 * these details for backwards compatibility
3068 */
3069 mc->init = ppc_spapr_init;
3070 mc->reset = ppc_spapr_reset;
3071 mc->block_default_type = IF_SCSI;
3072 mc->max_cpus = 1024;
3073 mc->no_parallel = 1;
3074 mc->default_boot_order = "";
3075 mc->default_ram_size = 512 * M_BYTE;
3076 mc->kvm_type = spapr_kvm_type;
3077 mc->has_dynamic_sysbus = true;
3078 mc->pci_allow_0_address = true;
3079 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3080 hc->pre_plug = spapr_machine_device_pre_plug;
3081 hc->plug = spapr_machine_device_plug;
3082 hc->unplug = spapr_machine_device_unplug;
3083 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3084 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3085 hc->unplug_request = spapr_machine_device_unplug_request;
3086
3087 smc->dr_lmb_enabled = true;
3088 smc->tcg_default_cpu = "POWER8";
3089 mc->has_hotpluggable_cpus = true;
3090 fwc->get_dev_path = spapr_get_fw_dev_path;
3091 nc->nmi_monitor_handler = spapr_nmi;
3092 smc->phb_placement = spapr_phb_placement;
3093 vhc->hypercall = emulate_spapr_hypercall;
3094 vhc->hpt_mask = spapr_hpt_mask;
3095 vhc->map_hptes = spapr_map_hptes;
3096 vhc->unmap_hptes = spapr_unmap_hptes;
3097 vhc->store_hpte = spapr_store_hpte;
3098 vhc->get_patbe = spapr_get_patbe;
3099 xic->ics_get = spapr_ics_get;
3100 xic->ics_resend = spapr_ics_resend;
3101 xic->icp_get = spapr_icp_get;
3102 ispc->print_info = spapr_pic_print_info;
3103 }
3104
3105 static const TypeInfo spapr_machine_info = {
3106 .name = TYPE_SPAPR_MACHINE,
3107 .parent = TYPE_MACHINE,
3108 .abstract = true,
3109 .instance_size = sizeof(sPAPRMachineState),
3110 .instance_init = spapr_machine_initfn,
3111 .instance_finalize = spapr_machine_finalizefn,
3112 .class_size = sizeof(sPAPRMachineClass),
3113 .class_init = spapr_machine_class_init,
3114 .interfaces = (InterfaceInfo[]) {
3115 { TYPE_FW_PATH_PROVIDER },
3116 { TYPE_NMI },
3117 { TYPE_HOTPLUG_HANDLER },
3118 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3119 { TYPE_XICS_FABRIC },
3120 { TYPE_INTERRUPT_STATS_PROVIDER },
3121 { }
3122 },
3123 };
3124
3125 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3126 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3127 void *data) \
3128 { \
3129 MachineClass *mc = MACHINE_CLASS(oc); \
3130 spapr_machine_##suffix##_class_options(mc); \
3131 if (latest) { \
3132 mc->alias = "pseries"; \
3133 mc->is_default = 1; \
3134 } \
3135 } \
3136 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3137 { \
3138 MachineState *machine = MACHINE(obj); \
3139 spapr_machine_##suffix##_instance_options(machine); \
3140 } \
3141 static const TypeInfo spapr_machine_##suffix##_info = { \
3142 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3143 .parent = TYPE_SPAPR_MACHINE, \
3144 .class_init = spapr_machine_##suffix##_class_init, \
3145 .instance_init = spapr_machine_##suffix##_instance_init, \
3146 }; \
3147 static void spapr_machine_register_##suffix(void) \
3148 { \
3149 type_register(&spapr_machine_##suffix##_info); \
3150 } \
3151 type_init(spapr_machine_register_##suffix)
3152
3153 /*
3154 * pseries-2.9
3155 */
3156 static void spapr_machine_2_9_instance_options(MachineState *machine)
3157 {
3158 }
3159
3160 static void spapr_machine_2_9_class_options(MachineClass *mc)
3161 {
3162 /* Defaults for the latest behaviour inherited from the base class */
3163 }
3164
3165 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3166
3167 /*
3168 * pseries-2.8
3169 */
3170 #define SPAPR_COMPAT_2_8 \
3171 HW_COMPAT_2_8
3172
3173 static void spapr_machine_2_8_instance_options(MachineState *machine)
3174 {
3175 spapr_machine_2_9_instance_options(machine);
3176 }
3177
3178 static void spapr_machine_2_8_class_options(MachineClass *mc)
3179 {
3180 spapr_machine_2_9_class_options(mc);
3181 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3182 }
3183
3184 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3185
3186 /*
3187 * pseries-2.7
3188 */
3189 #define SPAPR_COMPAT_2_7 \
3190 HW_COMPAT_2_7 \
3191 { \
3192 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3193 .property = "mem_win_size", \
3194 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3195 }, \
3196 { \
3197 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3198 .property = "mem64_win_size", \
3199 .value = "0", \
3200 }, \
3201 { \
3202 .driver = TYPE_POWERPC_CPU, \
3203 .property = "pre-2.8-migration", \
3204 .value = "on", \
3205 }, \
3206 { \
3207 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3208 .property = "pre-2.8-migration", \
3209 .value = "on", \
3210 },
3211
3212 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3213 uint64_t *buid, hwaddr *pio,
3214 hwaddr *mmio32, hwaddr *mmio64,
3215 unsigned n_dma, uint32_t *liobns, Error **errp)
3216 {
3217 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3218 const uint64_t base_buid = 0x800000020000000ULL;
3219 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3220 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3221 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3222 const uint32_t max_index = 255;
3223 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3224
3225 uint64_t ram_top = MACHINE(spapr)->ram_size;
3226 hwaddr phb0_base, phb_base;
3227 int i;
3228
3229 /* Do we have hotpluggable memory? */
3230 if (MACHINE(spapr)->maxram_size > ram_top) {
3231 /* Can't just use maxram_size, because there may be an
3232 * alignment gap between normal and hotpluggable memory
3233 * regions */
3234 ram_top = spapr->hotplug_memory.base +
3235 memory_region_size(&spapr->hotplug_memory.mr);
3236 }
3237
3238 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3239
3240 if (index > max_index) {
3241 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3242 max_index);
3243 return;
3244 }
3245
3246 *buid = base_buid + index;
3247 for (i = 0; i < n_dma; ++i) {
3248 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3249 }
3250
3251 phb_base = phb0_base + index * phb_spacing;
3252 *pio = phb_base + pio_offset;
3253 *mmio32 = phb_base + mmio_offset;
3254 /*
3255 * We don't set the 64-bit MMIO window, relying on the PHB's
3256 * fallback behaviour of automatically splitting a large "32-bit"
3257 * window into contiguous 32-bit and 64-bit windows
3258 */
3259 }
3260
3261 static void spapr_machine_2_7_instance_options(MachineState *machine)
3262 {
3263 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3264
3265 spapr_machine_2_8_instance_options(machine);
3266 spapr->use_hotplug_event_source = false;
3267 }
3268
3269 static void spapr_machine_2_7_class_options(MachineClass *mc)
3270 {
3271 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3272
3273 spapr_machine_2_8_class_options(mc);
3274 smc->tcg_default_cpu = "POWER7";
3275 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3276 smc->phb_placement = phb_placement_2_7;
3277 }
3278
3279 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3280
3281 /*
3282 * pseries-2.6
3283 */
3284 #define SPAPR_COMPAT_2_6 \
3285 HW_COMPAT_2_6 \
3286 { \
3287 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3288 .property = "ddw",\
3289 .value = stringify(off),\
3290 },
3291
3292 static void spapr_machine_2_6_instance_options(MachineState *machine)
3293 {
3294 spapr_machine_2_7_instance_options(machine);
3295 }
3296
3297 static void spapr_machine_2_6_class_options(MachineClass *mc)
3298 {
3299 spapr_machine_2_7_class_options(mc);
3300 mc->has_hotpluggable_cpus = false;
3301 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3302 }
3303
3304 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3305
3306 /*
3307 * pseries-2.5
3308 */
3309 #define SPAPR_COMPAT_2_5 \
3310 HW_COMPAT_2_5 \
3311 { \
3312 .driver = "spapr-vlan", \
3313 .property = "use-rx-buffer-pools", \
3314 .value = "off", \
3315 },
3316
3317 static void spapr_machine_2_5_instance_options(MachineState *machine)
3318 {
3319 spapr_machine_2_6_instance_options(machine);
3320 }
3321
3322 static void spapr_machine_2_5_class_options(MachineClass *mc)
3323 {
3324 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3325
3326 spapr_machine_2_6_class_options(mc);
3327 smc->use_ohci_by_default = true;
3328 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3329 }
3330
3331 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3332
3333 /*
3334 * pseries-2.4
3335 */
3336 #define SPAPR_COMPAT_2_4 \
3337 HW_COMPAT_2_4
3338
3339 static void spapr_machine_2_4_instance_options(MachineState *machine)
3340 {
3341 spapr_machine_2_5_instance_options(machine);
3342 }
3343
3344 static void spapr_machine_2_4_class_options(MachineClass *mc)
3345 {
3346 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3347
3348 spapr_machine_2_5_class_options(mc);
3349 smc->dr_lmb_enabled = false;
3350 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3351 }
3352
3353 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3354
3355 /*
3356 * pseries-2.3
3357 */
3358 #define SPAPR_COMPAT_2_3 \
3359 HW_COMPAT_2_3 \
3360 {\
3361 .driver = "spapr-pci-host-bridge",\
3362 .property = "dynamic-reconfiguration",\
3363 .value = "off",\
3364 },
3365
3366 static void spapr_machine_2_3_instance_options(MachineState *machine)
3367 {
3368 spapr_machine_2_4_instance_options(machine);
3369 savevm_skip_section_footers();
3370 global_state_set_optional();
3371 savevm_skip_configuration();
3372 }
3373
3374 static void spapr_machine_2_3_class_options(MachineClass *mc)
3375 {
3376 spapr_machine_2_4_class_options(mc);
3377 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3378 }
3379 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3380
3381 /*
3382 * pseries-2.2
3383 */
3384
3385 #define SPAPR_COMPAT_2_2 \
3386 HW_COMPAT_2_2 \
3387 {\
3388 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3389 .property = "mem_win_size",\
3390 .value = "0x20000000",\
3391 },
3392
3393 static void spapr_machine_2_2_instance_options(MachineState *machine)
3394 {
3395 spapr_machine_2_3_instance_options(machine);
3396 machine->suppress_vmdesc = true;
3397 }
3398
3399 static void spapr_machine_2_2_class_options(MachineClass *mc)
3400 {
3401 spapr_machine_2_3_class_options(mc);
3402 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3403 }
3404 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3405
3406 /*
3407 * pseries-2.1
3408 */
3409 #define SPAPR_COMPAT_2_1 \
3410 HW_COMPAT_2_1
3411
3412 static void spapr_machine_2_1_instance_options(MachineState *machine)
3413 {
3414 spapr_machine_2_2_instance_options(machine);
3415 }
3416
3417 static void spapr_machine_2_1_class_options(MachineClass *mc)
3418 {
3419 spapr_machine_2_2_class_options(mc);
3420 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3421 }
3422 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3423
3424 static void spapr_machine_register_types(void)
3425 {
3426 type_register_static(&spapr_machine_info);
3427 }
3428
3429 type_init(spapr_machine_register_types)