]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
numa: move numa global variable numa_info into MachineState
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83
84 #include <libfdt.h>
85
86 /* SLOF memory layout:
87 *
88 * SLOF raw image loaded at 0, copies its romfs right below the flat
89 * device-tree, then position SLOF itself 31M below that
90 *
91 * So we set FW_OVERHEAD to 40MB which should account for all of that
92 * and more
93 *
94 * We load our kernel at 4M, leaving space for SLOF initial image
95 */
96 #define FDT_MAX_SIZE 0x100000
97 #define RTAS_MAX_SIZE 0x10000
98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE 0x400000
100 #define FW_FILE_NAME "slof.bin"
101 #define FW_OVERHEAD 0x2800000
102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
103
104 #define MIN_RMA_SLOF 128UL
105
106 #define PHANDLE_INTC 0x00001111
107
108 /* These two functions implement the VCPU id numbering: one to compute them
109 * all and one to identify thread 0 of a VCORE. Any change to the first one
110 * is likely to have an impact on the second one, so let's keep them close.
111 */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114 MachineState *ms = MACHINE(spapr);
115 unsigned int smp_threads = ms->smp.threads;
116
117 assert(spapr->vsmt);
118 return
119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122 PowerPCCPU *cpu)
123 {
124 assert(spapr->vsmt);
125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
133 */
134 return false;
135 }
136
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
147 },
148 };
149
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
154 }
155
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
160 }
161
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164 MachineState *ms = MACHINE(spapr);
165
166 assert(spapr->vsmt);
167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171 int smt_threads)
172 {
173 int i, ret = 0;
174 uint32_t servers_prop[smt_threads];
175 uint32_t gservers_prop[smt_threads * 2];
176 int index = spapr_get_vcpu_id(cpu);
177
178 if (cpu->compat_pvr) {
179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180 if (ret < 0) {
181 return ret;
182 }
183 }
184
185 /* Build interrupt servers and gservers properties */
186 for (i = 0; i < smt_threads; i++) {
187 servers_prop[i] = cpu_to_be32(index + i);
188 /* Hack, direct the group queues back to cpu 0 */
189 gservers_prop[i*2] = cpu_to_be32(index + i);
190 gservers_prop[i*2 + 1] = 0;
191 }
192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193 servers_prop, sizeof(servers_prop));
194 if (ret < 0) {
195 return ret;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198 gservers_prop, sizeof(gservers_prop));
199
200 return ret;
201 }
202
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205 int index = spapr_get_vcpu_id(cpu);
206 uint32_t associativity[] = {cpu_to_be32(0x5),
207 cpu_to_be32(0x0),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(cpu->node_id),
211 cpu_to_be32(index)};
212
213 /* Advertise NUMA via ibm,associativity */
214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215 sizeof(associativity));
216 }
217
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset,
222 bool legacy_guest)
223 {
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 };
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
258
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
262 }
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
266 }
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
270 }
271 if (!pa_features) {
272 return;
273 }
274
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 /*
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
282 */
283 pa_features[3] |= 0x20;
284 }
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
287 }
288 if (legacy_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293 }
294
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 {
300 MachineState *ms = MACHINE(spapr);
301 int ret = 0, offset, cpus_offset;
302 CPUState *cs;
303 char cpu_model[32];
304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305
306 CPU_FOREACH(cs) {
307 PowerPCCPU *cpu = POWERPC_CPU(cs);
308 DeviceClass *dc = DEVICE_GET_CLASS(cs);
309 int index = spapr_get_vcpu_id(cpu);
310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311
312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313 continue;
314 }
315
316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317
318 cpus_offset = fdt_path_offset(fdt, "/cpus");
319 if (cpus_offset < 0) {
320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321 if (cpus_offset < 0) {
322 return cpus_offset;
323 }
324 }
325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326 if (offset < 0) {
327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328 if (offset < 0) {
329 return offset;
330 }
331 }
332
333 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334 pft_size_prop, sizeof(pft_size_prop));
335 if (ret < 0) {
336 return ret;
337 }
338
339 if (ms->numa_state->num_nodes > 1) {
340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341 if (ret < 0) {
342 return ret;
343 }
344 }
345
346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347 if (ret < 0) {
348 return ret;
349 }
350
351 spapr_populate_pa_features(spapr, cpu, fdt, offset,
352 spapr->cas_legacy_guest_workaround);
353 }
354 return ret;
355 }
356
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359 if (machine->numa_state->num_nodes) {
360 int i;
361 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362 if (machine->numa_state->nodes[i].node_mem) {
363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364 machine->ram_size);
365 }
366 }
367 }
368 return machine->ram_size;
369 }
370
371 static void add_str(GString *s, const gchar *s1)
372 {
373 g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377 hwaddr size)
378 {
379 uint32_t associativity[] = {
380 cpu_to_be32(0x4), /* length */
381 cpu_to_be32(0x0), cpu_to_be32(0x0),
382 cpu_to_be32(0x0), cpu_to_be32(nodeid)
383 };
384 char mem_name[32];
385 uint64_t mem_reg_property[2];
386 int off;
387
388 mem_reg_property[0] = cpu_to_be64(start);
389 mem_reg_property[1] = cpu_to_be64(size);
390
391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392 off = fdt_add_subnode(fdt, 0, mem_name);
393 _FDT(off);
394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396 sizeof(mem_reg_property))));
397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398 sizeof(associativity))));
399 return off;
400 }
401
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404 MachineState *machine = MACHINE(spapr);
405 hwaddr mem_start, node_size;
406 int i, nb_nodes = machine->numa_state->num_nodes;
407 NodeInfo *nodes = machine->numa_state->nodes;
408 NodeInfo ramnode;
409
410 /* No NUMA nodes, assume there is just one node with whole RAM */
411 if (!nb_nodes) {
412 nb_nodes = 1;
413 ramnode.node_mem = machine->ram_size;
414 nodes = &ramnode;
415 }
416
417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418 if (!nodes[i].node_mem) {
419 continue;
420 }
421 if (mem_start >= machine->ram_size) {
422 node_size = 0;
423 } else {
424 node_size = nodes[i].node_mem;
425 if (node_size > machine->ram_size - mem_start) {
426 node_size = machine->ram_size - mem_start;
427 }
428 }
429 if (!mem_start) {
430 /* spapr_machine_init() checks for rma_size <= node0_size
431 * already */
432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433 mem_start += spapr->rma_size;
434 node_size -= spapr->rma_size;
435 }
436 for ( ; node_size; ) {
437 hwaddr sizetmp = pow2floor(node_size);
438
439 /* mem_start != 0 here */
440 if (ctzl(mem_start) < ctzl(sizetmp)) {
441 sizetmp = 1ULL << ctzl(mem_start);
442 }
443
444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445 node_size -= sizetmp;
446 mem_start += sizetmp;
447 }
448 }
449
450 return 0;
451 }
452
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454 SpaprMachineState *spapr)
455 {
456 MachineState *ms = MACHINE(spapr);
457 PowerPCCPU *cpu = POWERPC_CPU(cs);
458 CPUPPCState *env = &cpu->env;
459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460 int index = spapr_get_vcpu_id(cpu);
461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462 0xffffffff, 0xffffffff};
463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464 : SPAPR_TIMEBASE_FREQ;
465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466 uint32_t page_sizes_prop[64];
467 size_t page_sizes_prop_size;
468 unsigned int smp_threads = ms->smp.threads;
469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472 SpaprDrc *drc;
473 int drc_index;
474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475 int i;
476
477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478 if (drc) {
479 drc_index = spapr_drc_index(drc);
480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481 }
482
483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485
486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488 env->dcache_line_size)));
489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490 env->dcache_line_size)));
491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492 env->icache_line_size)));
493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494 env->icache_line_size)));
495
496 if (pcc->l1_dcache_size) {
497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498 pcc->l1_dcache_size)));
499 } else {
500 warn_report("Unknown L1 dcache size for cpu");
501 }
502 if (pcc->l1_icache_size) {
503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504 pcc->l1_icache_size)));
505 } else {
506 warn_report("Unknown L1 icache size for cpu");
507 }
508
509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515
516 if (env->spr_cb[SPR_PURR].oea_read) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518 }
519 if (env->spr_cb[SPR_SPURR].oea_read) {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521 }
522
523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525 segs, sizeof(segs))));
526 }
527
528 /* Advertise VSX (vector extensions) if available
529 * 1 == VMX / Altivec available
530 * 2 == VSX available
531 *
532 * Only CPUs for which we create core types in spapr_cpu_core.c
533 * are possible, and all of those have VMX */
534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536 } else {
537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538 }
539
540 /* Advertise DFP (Decimal Floating Point) if available
541 * 0 / no property == no DFP
542 * 1 == DFP available */
543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545 }
546
547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548 sizeof(page_sizes_prop));
549 if (page_sizes_prop_size) {
550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551 page_sizes_prop, page_sizes_prop_size)));
552 }
553
554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555
556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557 cs->cpu_index / vcpus_per_socket)));
558
559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560 pft_size_prop, sizeof(pft_size_prop))));
561
562 if (ms->numa_state->num_nodes > 1) {
563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564 }
565
566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567
568 if (pcc->radix_page_info) {
569 for (i = 0; i < pcc->radix_page_info->count; i++) {
570 radix_AP_encodings[i] =
571 cpu_to_be32(pcc->radix_page_info->entries[i]);
572 }
573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574 radix_AP_encodings,
575 pcc->radix_page_info->count *
576 sizeof(radix_AP_encodings[0]))));
577 }
578
579 /*
580 * We set this property to let the guest know that it can use the large
581 * decrementer and its width in bits.
582 */
583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585 pcc->lrg_decr_bits)));
586 }
587
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590 CPUState **rev;
591 CPUState *cs;
592 int n_cpus;
593 int cpus_offset;
594 char *nodename;
595 int i;
596
597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598 _FDT(cpus_offset);
599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601
602 /*
603 * We walk the CPUs in reverse order to ensure that CPU DT nodes
604 * created by fdt_add_subnode() end up in the right order in FDT
605 * for the guest kernel the enumerate the CPUs correctly.
606 *
607 * The CPU list cannot be traversed in reverse order, so we need
608 * to do extra work.
609 */
610 n_cpus = 0;
611 rev = NULL;
612 CPU_FOREACH(cs) {
613 rev = g_renew(CPUState *, rev, n_cpus + 1);
614 rev[n_cpus++] = cs;
615 }
616
617 for (i = n_cpus - 1; i >= 0; i--) {
618 CPUState *cs = rev[i];
619 PowerPCCPU *cpu = POWERPC_CPU(cs);
620 int index = spapr_get_vcpu_id(cpu);
621 DeviceClass *dc = DEVICE_GET_CLASS(cs);
622 int offset;
623
624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625 continue;
626 }
627
628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630 g_free(nodename);
631 _FDT(offset);
632 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633 }
634
635 g_free(rev);
636 }
637
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640 int node;
641 int ret;
642
643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644 if (node <= 0) {
645 return -1;
646 }
647 ret = fdt_setprop_string(fdt, node, "device_type",
648 "ibm,platform-facilities");
649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651
652 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653 if (node <= 0) {
654 return -1;
655 }
656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657
658 return ret ? -1 : 0;
659 }
660
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663 MemoryDeviceInfoList *info;
664
665 for (info = list; info; info = info->next) {
666 MemoryDeviceInfo *value = info->value;
667
668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670
671 if (addr >= pcdimm_info->addr &&
672 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673 return pcdimm_info->node;
674 }
675 }
676 }
677
678 return -1;
679 }
680
681 struct sPAPRDrconfCellV2 {
682 uint32_t seq_lmbs;
683 uint64_t base_addr;
684 uint32_t drc_index;
685 uint32_t aa_index;
686 uint32_t flags;
687 } QEMU_PACKED;
688
689 typedef struct DrconfCellQueue {
690 struct sPAPRDrconfCellV2 cell;
691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696 uint32_t drc_index, uint32_t aa_index,
697 uint32_t flags)
698 {
699 DrconfCellQueue *elem;
700
701 elem = g_malloc0(sizeof(*elem));
702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703 elem->cell.base_addr = cpu_to_be64(base_addr);
704 elem->cell.drc_index = cpu_to_be32(drc_index);
705 elem->cell.aa_index = cpu_to_be32(aa_index);
706 elem->cell.flags = cpu_to_be32(flags);
707
708 return elem;
709 }
710
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713 int offset, MemoryDeviceInfoList *dimms)
714 {
715 MachineState *machine = MACHINE(spapr);
716 uint8_t *int_buf, *cur_index;
717 int ret;
718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719 uint64_t addr, cur_addr, size;
720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721 uint64_t mem_end = machine->device_memory->base +
722 memory_region_size(&machine->device_memory->mr);
723 uint32_t node, buf_len, nr_entries = 0;
724 SpaprDrc *drc;
725 DrconfCellQueue *elem, *next;
726 MemoryDeviceInfoList *info;
727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729
730 /* Entry to cover RAM and the gap area */
731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732 SPAPR_LMB_FLAGS_RESERVED |
733 SPAPR_LMB_FLAGS_DRC_INVALID);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
736
737 cur_addr = machine->device_memory->base;
738 for (info = dimms; info; info = info->next) {
739 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740
741 addr = di->addr;
742 size = di->size;
743 node = di->node;
744
745 /* Entry for hot-pluggable area */
746 if (cur_addr < addr) {
747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748 g_assert(drc);
749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750 cur_addr, spapr_drc_index(drc), -1, 0);
751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752 nr_entries++;
753 }
754
755 /* Entry for DIMM */
756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757 g_assert(drc);
758 elem = spapr_get_drconf_cell(size / lmb_size, addr,
759 spapr_drc_index(drc), node,
760 SPAPR_LMB_FLAGS_ASSIGNED);
761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762 nr_entries++;
763 cur_addr = addr + size;
764 }
765
766 /* Entry for remaining hotpluggable area */
767 if (cur_addr < mem_end) {
768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769 g_assert(drc);
770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771 cur_addr, spapr_drc_index(drc), -1, 0);
772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773 nr_entries++;
774 }
775
776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777 int_buf = cur_index = g_malloc0(buf_len);
778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779 cur_index += sizeof(nr_entries);
780
781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783 cur_index += sizeof(elem->cell);
784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785 g_free(elem);
786 }
787
788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789 g_free(int_buf);
790 if (ret < 0) {
791 return -1;
792 }
793 return 0;
794 }
795
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798 int offset, MemoryDeviceInfoList *dimms)
799 {
800 MachineState *machine = MACHINE(spapr);
801 int i, ret;
802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804 uint32_t nr_lmbs = (machine->device_memory->base +
805 memory_region_size(&machine->device_memory->mr)) /
806 lmb_size;
807 uint32_t *int_buf, *cur_index, buf_len;
808
809 /*
810 * Allocate enough buffer size to fit in ibm,dynamic-memory
811 */
812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813 cur_index = int_buf = g_malloc0(buf_len);
814 int_buf[0] = cpu_to_be32(nr_lmbs);
815 cur_index++;
816 for (i = 0; i < nr_lmbs; i++) {
817 uint64_t addr = i * lmb_size;
818 uint32_t *dynamic_memory = cur_index;
819
820 if (i >= device_lmb_start) {
821 SpaprDrc *drc;
822
823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824 g_assert(drc);
825
826 dynamic_memory[0] = cpu_to_be32(addr >> 32);
827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831 if (memory_region_present(get_system_memory(), addr)) {
832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833 } else {
834 dynamic_memory[5] = cpu_to_be32(0);
835 }
836 } else {
837 /*
838 * LMB information for RMA, boot time RAM and gap b/n RAM and
839 * device memory region -- all these are marked as reserved
840 * and as having no valid DRC.
841 */
842 dynamic_memory[0] = cpu_to_be32(addr >> 32);
843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844 dynamic_memory[2] = cpu_to_be32(0);
845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846 dynamic_memory[4] = cpu_to_be32(-1);
847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848 SPAPR_LMB_FLAGS_DRC_INVALID);
849 }
850
851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852 }
853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854 g_free(int_buf);
855 if (ret < 0) {
856 return -1;
857 }
858 return 0;
859 }
860
861 /*
862 * Adds ibm,dynamic-reconfiguration-memory node.
863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864 * of this device tree node.
865 */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868 MachineState *machine = MACHINE(spapr);
869 int nb_numa_nodes = machine->numa_state->num_nodes;
870 int ret, i, offset;
871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873 uint32_t *int_buf, *cur_index, buf_len;
874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875 MemoryDeviceInfoList *dimms = NULL;
876
877 /*
878 * Don't create the node if there is no device memory
879 */
880 if (machine->ram_size == machine->maxram_size) {
881 return 0;
882 }
883
884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
885
886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887 sizeof(prop_lmb_size));
888 if (ret < 0) {
889 return ret;
890 }
891
892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893 if (ret < 0) {
894 return ret;
895 }
896
897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898 if (ret < 0) {
899 return ret;
900 }
901
902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903 dimms = qmp_memory_device_list();
904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906 } else {
907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
908 }
909 qapi_free_MemoryDeviceInfoList(dimms);
910
911 if (ret < 0) {
912 return ret;
913 }
914
915 /* ibm,associativity-lookup-arrays */
916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917 cur_index = int_buf = g_malloc0(buf_len);
918 int_buf[0] = cpu_to_be32(nr_nodes);
919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920 cur_index += 2;
921 for (i = 0; i < nr_nodes; i++) {
922 uint32_t associativity[] = {
923 cpu_to_be32(0x0),
924 cpu_to_be32(0x0),
925 cpu_to_be32(0x0),
926 cpu_to_be32(i)
927 };
928 memcpy(cur_index, associativity, sizeof(associativity));
929 cur_index += 4;
930 }
931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932 (cur_index - int_buf) * sizeof(uint32_t));
933 g_free(int_buf);
934
935 return ret;
936 }
937
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939 SpaprOptionVector *ov5_updates)
940 {
941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942 int ret = 0, offset;
943
944 /* Generate ibm,dynamic-reconfiguration-memory node if required */
945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946 g_assert(smc->dr_lmb_enabled);
947 ret = spapr_populate_drconf_memory(spapr, fdt);
948 if (ret) {
949 goto out;
950 }
951 }
952
953 offset = fdt_path_offset(fdt, "/chosen");
954 if (offset < 0) {
955 offset = fdt_add_subnode(fdt, 0, "chosen");
956 if (offset < 0) {
957 return offset;
958 }
959 }
960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961 "ibm,architecture-vec-5");
962
963 out:
964 return ret;
965 }
966
967 static bool spapr_hotplugged_dev_before_cas(void)
968 {
969 Object *drc_container, *obj;
970 ObjectProperty *prop;
971 ObjectPropertyIterator iter;
972
973 drc_container = container_get(object_get_root(), "/dr-connector");
974 object_property_iter_init(&iter, drc_container);
975 while ((prop = object_property_iter_next(&iter))) {
976 if (!strstart(prop->type, "link<", NULL)) {
977 continue;
978 }
979 obj = object_property_get_link(drc_container, prop->name, NULL);
980 if (spapr_drc_needed(obj)) {
981 return true;
982 }
983 }
984 return false;
985 }
986
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988 target_ulong addr, target_ulong size,
989 SpaprOptionVector *ov5_updates)
990 {
991 void *fdt, *fdt_skel;
992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
993
994 if (spapr_hotplugged_dev_before_cas()) {
995 return 1;
996 }
997
998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999 error_report("SLOF provided an unexpected CAS buffer size "
1000 TARGET_FMT_lu " (min: %zu, max: %u)",
1001 size, sizeof(hdr), FW_MAX_SIZE);
1002 exit(EXIT_FAILURE);
1003 }
1004
1005 size -= sizeof(hdr);
1006
1007 /* Create skeleton */
1008 fdt_skel = g_malloc0(size);
1009 _FDT((fdt_create(fdt_skel, size)));
1010 _FDT((fdt_finish_reservemap(fdt_skel)));
1011 _FDT((fdt_begin_node(fdt_skel, "")));
1012 _FDT((fdt_end_node(fdt_skel)));
1013 _FDT((fdt_finish(fdt_skel)));
1014 fdt = g_malloc0(size);
1015 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016 g_free(fdt_skel);
1017
1018 /* Fixup cpu nodes */
1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1020
1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022 return -1;
1023 }
1024
1025 /* Pack resulting tree */
1026 _FDT((fdt_pack(fdt)));
1027
1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029 trace_spapr_cas_failed(size);
1030 return -1;
1031 }
1032
1033 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1034 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1035 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1036 g_free(fdt);
1037
1038 return 0;
1039 }
1040
1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1042 {
1043 MachineState *ms = MACHINE(spapr);
1044 int rtas;
1045 GString *hypertas = g_string_sized_new(256);
1046 GString *qemu_hypertas = g_string_sized_new(256);
1047 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1048 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1049 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1050 uint32_t lrdr_capacity[] = {
1051 cpu_to_be32(max_device_addr >> 32),
1052 cpu_to_be32(max_device_addr & 0xffffffff),
1053 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1054 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1055 };
1056 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1057 uint32_t maxdomains[] = {
1058 cpu_to_be32(4),
1059 maxdomain,
1060 maxdomain,
1061 maxdomain,
1062 cpu_to_be32(spapr->gpu_numa_id),
1063 };
1064
1065 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1066
1067 /* hypertas */
1068 add_str(hypertas, "hcall-pft");
1069 add_str(hypertas, "hcall-term");
1070 add_str(hypertas, "hcall-dabr");
1071 add_str(hypertas, "hcall-interrupt");
1072 add_str(hypertas, "hcall-tce");
1073 add_str(hypertas, "hcall-vio");
1074 add_str(hypertas, "hcall-splpar");
1075 add_str(hypertas, "hcall-join");
1076 add_str(hypertas, "hcall-bulk");
1077 add_str(hypertas, "hcall-set-mode");
1078 add_str(hypertas, "hcall-sprg0");
1079 add_str(hypertas, "hcall-copy");
1080 add_str(hypertas, "hcall-debug");
1081 add_str(hypertas, "hcall-vphn");
1082 add_str(qemu_hypertas, "hcall-memop1");
1083
1084 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1085 add_str(hypertas, "hcall-multi-tce");
1086 }
1087
1088 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1089 add_str(hypertas, "hcall-hpt-resize");
1090 }
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1093 hypertas->str, hypertas->len));
1094 g_string_free(hypertas, TRUE);
1095 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1096 qemu_hypertas->str, qemu_hypertas->len));
1097 g_string_free(qemu_hypertas, TRUE);
1098
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1100 refpoints, sizeof(refpoints)));
1101
1102 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1103 maxdomains, sizeof(maxdomains)));
1104
1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1106 RTAS_ERROR_LOG_MAX));
1107 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1108 RTAS_EVENT_SCAN_RATE));
1109
1110 g_assert(msi_nonbroken);
1111 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1112
1113 /*
1114 * According to PAPR, rtas ibm,os-term does not guarantee a return
1115 * back to the guest cpu.
1116 *
1117 * While an additional ibm,extended-os-term property indicates
1118 * that rtas call return will always occur. Set this property.
1119 */
1120 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1121
1122 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1123 lrdr_capacity, sizeof(lrdr_capacity)));
1124
1125 spapr_dt_rtas_tokens(fdt, rtas);
1126 }
1127
1128 /*
1129 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1130 * and the XIVE features that the guest may request and thus the valid
1131 * values for bytes 23..26 of option vector 5:
1132 */
1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1134 int chosen)
1135 {
1136 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1137
1138 char val[2 * 4] = {
1139 23, spapr->irq->ov5, /* Xive mode. */
1140 24, 0x00, /* Hash/Radix, filled in below. */
1141 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1142 26, 0x40, /* Radix options: GTSE == yes. */
1143 };
1144
1145 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1146 first_ppc_cpu->compat_pvr)) {
1147 /*
1148 * If we're in a pre POWER9 compat mode then the guest should
1149 * do hash and use the legacy interrupt mode
1150 */
1151 val[1] = 0x00; /* XICS */
1152 val[3] = 0x00; /* Hash */
1153 } else if (kvm_enabled()) {
1154 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1155 val[3] = 0x80; /* OV5_MMU_BOTH */
1156 } else if (kvmppc_has_cap_mmu_radix()) {
1157 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1158 } else {
1159 val[3] = 0x00; /* Hash */
1160 }
1161 } else {
1162 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1163 val[3] = 0xC0;
1164 }
1165 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1166 val, sizeof(val)));
1167 }
1168
1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1170 {
1171 MachineState *machine = MACHINE(spapr);
1172 int chosen;
1173 const char *boot_device = machine->boot_order;
1174 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1175 size_t cb = 0;
1176 char *bootlist = get_boot_devices_list(&cb);
1177
1178 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1179
1180 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1182 spapr->initrd_base));
1183 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1184 spapr->initrd_base + spapr->initrd_size));
1185
1186 if (spapr->kernel_size) {
1187 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1188 cpu_to_be64(spapr->kernel_size) };
1189
1190 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1191 &kprop, sizeof(kprop)));
1192 if (spapr->kernel_le) {
1193 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1194 }
1195 }
1196 if (boot_menu) {
1197 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1198 }
1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1202
1203 if (cb && bootlist) {
1204 int i;
1205
1206 for (i = 0; i < cb; i++) {
1207 if (bootlist[i] == '\n') {
1208 bootlist[i] = ' ';
1209 }
1210 }
1211 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1212 }
1213
1214 if (boot_device && strlen(boot_device)) {
1215 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1216 }
1217
1218 if (!spapr->has_graphics && stdout_path) {
1219 /*
1220 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1221 * kernel. New platforms should only use the "stdout-path" property. Set
1222 * the new property and continue using older property to remain
1223 * compatible with the existing firmware.
1224 */
1225 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1226 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1227 }
1228
1229 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1230
1231 g_free(stdout_path);
1232 g_free(bootlist);
1233 }
1234
1235 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1236 {
1237 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1238 * KVM to work under pHyp with some guest co-operation */
1239 int hypervisor;
1240 uint8_t hypercall[16];
1241
1242 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1243 /* indicate KVM hypercall interface */
1244 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1245 if (kvmppc_has_cap_fixup_hcalls()) {
1246 /*
1247 * Older KVM versions with older guest kernels were broken
1248 * with the magic page, don't allow the guest to map it.
1249 */
1250 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1251 sizeof(hypercall))) {
1252 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1253 hypercall, sizeof(hypercall)));
1254 }
1255 }
1256 }
1257
1258 static void *spapr_build_fdt(SpaprMachineState *spapr)
1259 {
1260 MachineState *machine = MACHINE(spapr);
1261 MachineClass *mc = MACHINE_GET_CLASS(machine);
1262 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1263 int ret;
1264 void *fdt;
1265 SpaprPhbState *phb;
1266 char *buf;
1267
1268 fdt = g_malloc0(FDT_MAX_SIZE);
1269 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1270
1271 /* Root node */
1272 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1273 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1274 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1275
1276 /* Guest UUID & Name*/
1277 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279 if (qemu_uuid_set) {
1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1281 }
1282 g_free(buf);
1283
1284 if (qemu_get_vm_name()) {
1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286 qemu_get_vm_name()));
1287 }
1288
1289 /* Host Model & Serial Number */
1290 if (spapr->host_model) {
1291 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1292 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1293 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1294 g_free(buf);
1295 }
1296
1297 if (spapr->host_serial) {
1298 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1299 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1300 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1301 g_free(buf);
1302 }
1303
1304 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1305 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1306
1307 /* /interrupt controller */
1308 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1309 PHANDLE_INTC);
1310
1311 ret = spapr_populate_memory(spapr, fdt);
1312 if (ret < 0) {
1313 error_report("couldn't setup memory nodes in fdt");
1314 exit(1);
1315 }
1316
1317 /* /vdevice */
1318 spapr_dt_vdevice(spapr->vio_bus, fdt);
1319
1320 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1321 ret = spapr_rng_populate_dt(fdt);
1322 if (ret < 0) {
1323 error_report("could not set up rng device in the fdt");
1324 exit(1);
1325 }
1326 }
1327
1328 QLIST_FOREACH(phb, &spapr->phbs, list) {
1329 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1330 if (ret < 0) {
1331 error_report("couldn't setup PCI devices in fdt");
1332 exit(1);
1333 }
1334 }
1335
1336 /* cpus */
1337 spapr_populate_cpus_dt_node(fdt, spapr);
1338
1339 if (smc->dr_lmb_enabled) {
1340 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1341 }
1342
1343 if (mc->has_hotpluggable_cpus) {
1344 int offset = fdt_path_offset(fdt, "/cpus");
1345 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1346 if (ret < 0) {
1347 error_report("Couldn't set up CPU DR device tree properties");
1348 exit(1);
1349 }
1350 }
1351
1352 /* /event-sources */
1353 spapr_dt_events(spapr, fdt);
1354
1355 /* /rtas */
1356 spapr_dt_rtas(spapr, fdt);
1357
1358 /* /chosen */
1359 spapr_dt_chosen(spapr, fdt);
1360
1361 /* /hypervisor */
1362 if (kvm_enabled()) {
1363 spapr_dt_hypervisor(spapr, fdt);
1364 }
1365
1366 /* Build memory reserve map */
1367 if (spapr->kernel_size) {
1368 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1369 }
1370 if (spapr->initrd_size) {
1371 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1372 }
1373
1374 /* ibm,client-architecture-support updates */
1375 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1376 if (ret < 0) {
1377 error_report("couldn't setup CAS properties fdt");
1378 exit(1);
1379 }
1380
1381 if (smc->dr_phb_enabled) {
1382 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1383 if (ret < 0) {
1384 error_report("Couldn't set up PHB DR device tree properties");
1385 exit(1);
1386 }
1387 }
1388
1389 return fdt;
1390 }
1391
1392 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1393 {
1394 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1395 }
1396
1397 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1398 PowerPCCPU *cpu)
1399 {
1400 CPUPPCState *env = &cpu->env;
1401
1402 /* The TCG path should also be holding the BQL at this point */
1403 g_assert(qemu_mutex_iothread_locked());
1404
1405 if (msr_pr) {
1406 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1407 env->gpr[3] = H_PRIVILEGE;
1408 } else {
1409 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1410 }
1411 }
1412
1413 struct LPCRSyncState {
1414 target_ulong value;
1415 target_ulong mask;
1416 };
1417
1418 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1419 {
1420 struct LPCRSyncState *s = arg.host_ptr;
1421 PowerPCCPU *cpu = POWERPC_CPU(cs);
1422 CPUPPCState *env = &cpu->env;
1423 target_ulong lpcr;
1424
1425 cpu_synchronize_state(cs);
1426 lpcr = env->spr[SPR_LPCR];
1427 lpcr &= ~s->mask;
1428 lpcr |= s->value;
1429 ppc_store_lpcr(cpu, lpcr);
1430 }
1431
1432 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1433 {
1434 CPUState *cs;
1435 struct LPCRSyncState s = {
1436 .value = value,
1437 .mask = mask
1438 };
1439 CPU_FOREACH(cs) {
1440 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1441 }
1442 }
1443
1444 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1445 {
1446 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1447
1448 /* Copy PATE1:GR into PATE0:HR */
1449 entry->dw0 = spapr->patb_entry & PATE0_HR;
1450 entry->dw1 = spapr->patb_entry;
1451 }
1452
1453 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1454 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1455 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1456 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1457 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1458
1459 /*
1460 * Get the fd to access the kernel htab, re-opening it if necessary
1461 */
1462 static int get_htab_fd(SpaprMachineState *spapr)
1463 {
1464 Error *local_err = NULL;
1465
1466 if (spapr->htab_fd >= 0) {
1467 return spapr->htab_fd;
1468 }
1469
1470 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1471 if (spapr->htab_fd < 0) {
1472 error_report_err(local_err);
1473 }
1474
1475 return spapr->htab_fd;
1476 }
1477
1478 void close_htab_fd(SpaprMachineState *spapr)
1479 {
1480 if (spapr->htab_fd >= 0) {
1481 close(spapr->htab_fd);
1482 }
1483 spapr->htab_fd = -1;
1484 }
1485
1486 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1487 {
1488 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489
1490 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1491 }
1492
1493 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1494 {
1495 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496
1497 assert(kvm_enabled());
1498
1499 if (!spapr->htab) {
1500 return 0;
1501 }
1502
1503 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1504 }
1505
1506 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1507 hwaddr ptex, int n)
1508 {
1509 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1510 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1511
1512 if (!spapr->htab) {
1513 /*
1514 * HTAB is controlled by KVM. Fetch into temporary buffer
1515 */
1516 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1517 kvmppc_read_hptes(hptes, ptex, n);
1518 return hptes;
1519 }
1520
1521 /*
1522 * HTAB is controlled by QEMU. Just point to the internally
1523 * accessible PTEG.
1524 */
1525 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1526 }
1527
1528 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1529 const ppc_hash_pte64_t *hptes,
1530 hwaddr ptex, int n)
1531 {
1532 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1533
1534 if (!spapr->htab) {
1535 g_free((void *)hptes);
1536 }
1537
1538 /* Nothing to do for qemu managed HPT */
1539 }
1540
1541 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1542 uint64_t pte0, uint64_t pte1)
1543 {
1544 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1545 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1546
1547 if (!spapr->htab) {
1548 kvmppc_write_hpte(ptex, pte0, pte1);
1549 } else {
1550 if (pte0 & HPTE64_V_VALID) {
1551 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1552 /*
1553 * When setting valid, we write PTE1 first. This ensures
1554 * proper synchronization with the reading code in
1555 * ppc_hash64_pteg_search()
1556 */
1557 smp_wmb();
1558 stq_p(spapr->htab + offset, pte0);
1559 } else {
1560 stq_p(spapr->htab + offset, pte0);
1561 /*
1562 * When clearing it we set PTE0 first. This ensures proper
1563 * synchronization with the reading code in
1564 * ppc_hash64_pteg_search()
1565 */
1566 smp_wmb();
1567 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1568 }
1569 }
1570 }
1571
1572 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1573 uint64_t pte1)
1574 {
1575 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1576 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1577
1578 if (!spapr->htab) {
1579 /* There should always be a hash table when this is called */
1580 error_report("spapr_hpte_set_c called with no hash table !");
1581 return;
1582 }
1583
1584 /* The HW performs a non-atomic byte update */
1585 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1586 }
1587
1588 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1589 uint64_t pte1)
1590 {
1591 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1592 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1593
1594 if (!spapr->htab) {
1595 /* There should always be a hash table when this is called */
1596 error_report("spapr_hpte_set_r called with no hash table !");
1597 return;
1598 }
1599
1600 /* The HW performs a non-atomic byte update */
1601 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1602 }
1603
1604 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1605 {
1606 int shift;
1607
1608 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1609 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1610 * that's much more than is needed for Linux guests */
1611 shift = ctz64(pow2ceil(ramsize)) - 7;
1612 shift = MAX(shift, 18); /* Minimum architected size */
1613 shift = MIN(shift, 46); /* Maximum architected size */
1614 return shift;
1615 }
1616
1617 void spapr_free_hpt(SpaprMachineState *spapr)
1618 {
1619 g_free(spapr->htab);
1620 spapr->htab = NULL;
1621 spapr->htab_shift = 0;
1622 close_htab_fd(spapr);
1623 }
1624
1625 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1626 Error **errp)
1627 {
1628 long rc;
1629
1630 /* Clean up any HPT info from a previous boot */
1631 spapr_free_hpt(spapr);
1632
1633 rc = kvmppc_reset_htab(shift);
1634 if (rc < 0) {
1635 /* kernel-side HPT needed, but couldn't allocate one */
1636 error_setg_errno(errp, errno,
1637 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1638 shift);
1639 /* This is almost certainly fatal, but if the caller really
1640 * wants to carry on with shift == 0, it's welcome to try */
1641 } else if (rc > 0) {
1642 /* kernel-side HPT allocated */
1643 if (rc != shift) {
1644 error_setg(errp,
1645 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1646 shift, rc);
1647 }
1648
1649 spapr->htab_shift = shift;
1650 spapr->htab = NULL;
1651 } else {
1652 /* kernel-side HPT not needed, allocate in userspace instead */
1653 size_t size = 1ULL << shift;
1654 int i;
1655
1656 spapr->htab = qemu_memalign(size, size);
1657 if (!spapr->htab) {
1658 error_setg_errno(errp, errno,
1659 "Could not allocate HPT of order %d", shift);
1660 return;
1661 }
1662
1663 memset(spapr->htab, 0, size);
1664 spapr->htab_shift = shift;
1665
1666 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1667 DIRTY_HPTE(HPTE(spapr->htab, i));
1668 }
1669 }
1670 /* We're setting up a hash table, so that means we're not radix */
1671 spapr->patb_entry = 0;
1672 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1673 }
1674
1675 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1676 {
1677 int hpt_shift;
1678
1679 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1680 || (spapr->cas_reboot
1681 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1682 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1683 } else {
1684 uint64_t current_ram_size;
1685
1686 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1687 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1688 }
1689 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1690
1691 if (spapr->vrma_adjust) {
1692 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1693 spapr->htab_shift);
1694 }
1695 }
1696
1697 static int spapr_reset_drcs(Object *child, void *opaque)
1698 {
1699 SpaprDrc *drc =
1700 (SpaprDrc *) object_dynamic_cast(child,
1701 TYPE_SPAPR_DR_CONNECTOR);
1702
1703 if (drc) {
1704 spapr_drc_reset(drc);
1705 }
1706
1707 return 0;
1708 }
1709
1710 static void spapr_machine_reset(MachineState *machine)
1711 {
1712 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1713 PowerPCCPU *first_ppc_cpu;
1714 uint32_t rtas_limit;
1715 hwaddr rtas_addr, fdt_addr;
1716 void *fdt;
1717 int rc;
1718
1719 spapr_caps_apply(spapr);
1720
1721 first_ppc_cpu = POWERPC_CPU(first_cpu);
1722 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1723 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1724 spapr->max_compat_pvr)) {
1725 /*
1726 * If using KVM with radix mode available, VCPUs can be started
1727 * without a HPT because KVM will start them in radix mode.
1728 * Set the GR bit in PATE so that we know there is no HPT.
1729 */
1730 spapr->patb_entry = PATE1_GR;
1731 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1732 } else {
1733 spapr_setup_hpt_and_vrma(spapr);
1734 }
1735
1736 /*
1737 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1738 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1739 * called from vPHB reset handler so we initialize the counter here.
1740 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1741 * must be equally distant from any other node.
1742 * The final value of spapr->gpu_numa_id is going to be written to
1743 * max-associativity-domains in spapr_build_fdt().
1744 */
1745 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
1746 qemu_devices_reset();
1747
1748 /*
1749 * If this reset wasn't generated by CAS, we should reset our
1750 * negotiated options and start from scratch
1751 */
1752 if (!spapr->cas_reboot) {
1753 spapr_ovec_cleanup(spapr->ov5_cas);
1754 spapr->ov5_cas = spapr_ovec_new();
1755
1756 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1757 }
1758
1759 /*
1760 * This is fixing some of the default configuration of the XIVE
1761 * devices. To be called after the reset of the machine devices.
1762 */
1763 spapr_irq_reset(spapr, &error_fatal);
1764
1765 /*
1766 * There is no CAS under qtest. Simulate one to please the code that
1767 * depends on spapr->ov5_cas. This is especially needed to test device
1768 * unplug, so we do that before resetting the DRCs.
1769 */
1770 if (qtest_enabled()) {
1771 spapr_ovec_cleanup(spapr->ov5_cas);
1772 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1773 }
1774
1775 /* DRC reset may cause a device to be unplugged. This will cause troubles
1776 * if this device is used by another device (eg, a running vhost backend
1777 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1778 * situations, we reset DRCs after all devices have been reset.
1779 */
1780 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1781
1782 spapr_clear_pending_events(spapr);
1783
1784 /*
1785 * We place the device tree and RTAS just below either the top of the RMA,
1786 * or just below 2GB, whichever is lower, so that it can be
1787 * processed with 32-bit real mode code if necessary
1788 */
1789 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1790 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1791 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1792
1793 fdt = spapr_build_fdt(spapr);
1794
1795 spapr_load_rtas(spapr, fdt, rtas_addr);
1796
1797 rc = fdt_pack(fdt);
1798
1799 /* Should only fail if we've built a corrupted tree */
1800 assert(rc == 0);
1801
1802 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1803 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1804 fdt_totalsize(fdt), FDT_MAX_SIZE);
1805 exit(1);
1806 }
1807
1808 /* Load the fdt */
1809 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1810 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1811 g_free(spapr->fdt_blob);
1812 spapr->fdt_size = fdt_totalsize(fdt);
1813 spapr->fdt_initial_size = spapr->fdt_size;
1814 spapr->fdt_blob = fdt;
1815
1816 /* Set up the entry state */
1817 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1818 first_ppc_cpu->env.gpr[5] = 0;
1819
1820 spapr->cas_reboot = false;
1821 }
1822
1823 static void spapr_create_nvram(SpaprMachineState *spapr)
1824 {
1825 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1826 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1827
1828 if (dinfo) {
1829 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1830 &error_fatal);
1831 }
1832
1833 qdev_init_nofail(dev);
1834
1835 spapr->nvram = (struct SpaprNvram *)dev;
1836 }
1837
1838 static void spapr_rtc_create(SpaprMachineState *spapr)
1839 {
1840 object_initialize_child(OBJECT(spapr), "rtc",
1841 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1842 &error_fatal, NULL);
1843 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1844 &error_fatal);
1845 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1846 "date", &error_fatal);
1847 }
1848
1849 /* Returns whether we want to use VGA or not */
1850 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1851 {
1852 switch (vga_interface_type) {
1853 case VGA_NONE:
1854 return false;
1855 case VGA_DEVICE:
1856 return true;
1857 case VGA_STD:
1858 case VGA_VIRTIO:
1859 case VGA_CIRRUS:
1860 return pci_vga_init(pci_bus) != NULL;
1861 default:
1862 error_setg(errp,
1863 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1864 return false;
1865 }
1866 }
1867
1868 static int spapr_pre_load(void *opaque)
1869 {
1870 int rc;
1871
1872 rc = spapr_caps_pre_load(opaque);
1873 if (rc) {
1874 return rc;
1875 }
1876
1877 return 0;
1878 }
1879
1880 static int spapr_post_load(void *opaque, int version_id)
1881 {
1882 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1883 int err = 0;
1884
1885 err = spapr_caps_post_migration(spapr);
1886 if (err) {
1887 return err;
1888 }
1889
1890 /*
1891 * In earlier versions, there was no separate qdev for the PAPR
1892 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1893 * So when migrating from those versions, poke the incoming offset
1894 * value into the RTC device
1895 */
1896 if (version_id < 3) {
1897 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1898 if (err) {
1899 return err;
1900 }
1901 }
1902
1903 if (kvm_enabled() && spapr->patb_entry) {
1904 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1905 bool radix = !!(spapr->patb_entry & PATE1_GR);
1906 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1907
1908 /*
1909 * Update LPCR:HR and UPRT as they may not be set properly in
1910 * the stream
1911 */
1912 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1913 LPCR_HR | LPCR_UPRT);
1914
1915 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1916 if (err) {
1917 error_report("Process table config unsupported by the host");
1918 return -EINVAL;
1919 }
1920 }
1921
1922 err = spapr_irq_post_load(spapr, version_id);
1923 if (err) {
1924 return err;
1925 }
1926
1927 return err;
1928 }
1929
1930 static int spapr_pre_save(void *opaque)
1931 {
1932 int rc;
1933
1934 rc = spapr_caps_pre_save(opaque);
1935 if (rc) {
1936 return rc;
1937 }
1938
1939 return 0;
1940 }
1941
1942 static bool version_before_3(void *opaque, int version_id)
1943 {
1944 return version_id < 3;
1945 }
1946
1947 static bool spapr_pending_events_needed(void *opaque)
1948 {
1949 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1950 return !QTAILQ_EMPTY(&spapr->pending_events);
1951 }
1952
1953 static const VMStateDescription vmstate_spapr_event_entry = {
1954 .name = "spapr_event_log_entry",
1955 .version_id = 1,
1956 .minimum_version_id = 1,
1957 .fields = (VMStateField[]) {
1958 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1959 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1960 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1961 NULL, extended_length),
1962 VMSTATE_END_OF_LIST()
1963 },
1964 };
1965
1966 static const VMStateDescription vmstate_spapr_pending_events = {
1967 .name = "spapr_pending_events",
1968 .version_id = 1,
1969 .minimum_version_id = 1,
1970 .needed = spapr_pending_events_needed,
1971 .fields = (VMStateField[]) {
1972 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1973 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1974 VMSTATE_END_OF_LIST()
1975 },
1976 };
1977
1978 static bool spapr_ov5_cas_needed(void *opaque)
1979 {
1980 SpaprMachineState *spapr = opaque;
1981 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1982 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1983 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1984 bool cas_needed;
1985
1986 /* Prior to the introduction of SpaprOptionVector, we had two option
1987 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1988 * Both of these options encode machine topology into the device-tree
1989 * in such a way that the now-booted OS should still be able to interact
1990 * appropriately with QEMU regardless of what options were actually
1991 * negotiatied on the source side.
1992 *
1993 * As such, we can avoid migrating the CAS-negotiated options if these
1994 * are the only options available on the current machine/platform.
1995 * Since these are the only options available for pseries-2.7 and
1996 * earlier, this allows us to maintain old->new/new->old migration
1997 * compatibility.
1998 *
1999 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2000 * via default pseries-2.8 machines and explicit command-line parameters.
2001 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2002 * of the actual CAS-negotiated values to continue working properly. For
2003 * example, availability of memory unplug depends on knowing whether
2004 * OV5_HP_EVT was negotiated via CAS.
2005 *
2006 * Thus, for any cases where the set of available CAS-negotiatable
2007 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2008 * include the CAS-negotiated options in the migration stream, unless
2009 * if they affect boot time behaviour only.
2010 */
2011 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2012 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2013 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2014
2015 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2016 * the mask itself since in the future it's possible "legacy" bits may be
2017 * removed via machine options, which could generate a false positive
2018 * that breaks migration.
2019 */
2020 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2021 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2022
2023 spapr_ovec_cleanup(ov5_mask);
2024 spapr_ovec_cleanup(ov5_legacy);
2025 spapr_ovec_cleanup(ov5_removed);
2026
2027 return cas_needed;
2028 }
2029
2030 static const VMStateDescription vmstate_spapr_ov5_cas = {
2031 .name = "spapr_option_vector_ov5_cas",
2032 .version_id = 1,
2033 .minimum_version_id = 1,
2034 .needed = spapr_ov5_cas_needed,
2035 .fields = (VMStateField[]) {
2036 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2037 vmstate_spapr_ovec, SpaprOptionVector),
2038 VMSTATE_END_OF_LIST()
2039 },
2040 };
2041
2042 static bool spapr_patb_entry_needed(void *opaque)
2043 {
2044 SpaprMachineState *spapr = opaque;
2045
2046 return !!spapr->patb_entry;
2047 }
2048
2049 static const VMStateDescription vmstate_spapr_patb_entry = {
2050 .name = "spapr_patb_entry",
2051 .version_id = 1,
2052 .minimum_version_id = 1,
2053 .needed = spapr_patb_entry_needed,
2054 .fields = (VMStateField[]) {
2055 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2056 VMSTATE_END_OF_LIST()
2057 },
2058 };
2059
2060 static bool spapr_irq_map_needed(void *opaque)
2061 {
2062 SpaprMachineState *spapr = opaque;
2063
2064 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2065 }
2066
2067 static const VMStateDescription vmstate_spapr_irq_map = {
2068 .name = "spapr_irq_map",
2069 .version_id = 1,
2070 .minimum_version_id = 1,
2071 .needed = spapr_irq_map_needed,
2072 .fields = (VMStateField[]) {
2073 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2074 VMSTATE_END_OF_LIST()
2075 },
2076 };
2077
2078 static bool spapr_dtb_needed(void *opaque)
2079 {
2080 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2081
2082 return smc->update_dt_enabled;
2083 }
2084
2085 static int spapr_dtb_pre_load(void *opaque)
2086 {
2087 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2088
2089 g_free(spapr->fdt_blob);
2090 spapr->fdt_blob = NULL;
2091 spapr->fdt_size = 0;
2092
2093 return 0;
2094 }
2095
2096 static const VMStateDescription vmstate_spapr_dtb = {
2097 .name = "spapr_dtb",
2098 .version_id = 1,
2099 .minimum_version_id = 1,
2100 .needed = spapr_dtb_needed,
2101 .pre_load = spapr_dtb_pre_load,
2102 .fields = (VMStateField[]) {
2103 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2104 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2105 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2106 fdt_size),
2107 VMSTATE_END_OF_LIST()
2108 },
2109 };
2110
2111 static const VMStateDescription vmstate_spapr = {
2112 .name = "spapr",
2113 .version_id = 3,
2114 .minimum_version_id = 1,
2115 .pre_load = spapr_pre_load,
2116 .post_load = spapr_post_load,
2117 .pre_save = spapr_pre_save,
2118 .fields = (VMStateField[]) {
2119 /* used to be @next_irq */
2120 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2121
2122 /* RTC offset */
2123 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2124
2125 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2126 VMSTATE_END_OF_LIST()
2127 },
2128 .subsections = (const VMStateDescription*[]) {
2129 &vmstate_spapr_ov5_cas,
2130 &vmstate_spapr_patb_entry,
2131 &vmstate_spapr_pending_events,
2132 &vmstate_spapr_cap_htm,
2133 &vmstate_spapr_cap_vsx,
2134 &vmstate_spapr_cap_dfp,
2135 &vmstate_spapr_cap_cfpc,
2136 &vmstate_spapr_cap_sbbc,
2137 &vmstate_spapr_cap_ibs,
2138 &vmstate_spapr_cap_hpt_maxpagesize,
2139 &vmstate_spapr_irq_map,
2140 &vmstate_spapr_cap_nested_kvm_hv,
2141 &vmstate_spapr_dtb,
2142 &vmstate_spapr_cap_large_decr,
2143 &vmstate_spapr_cap_ccf_assist,
2144 NULL
2145 }
2146 };
2147
2148 static int htab_save_setup(QEMUFile *f, void *opaque)
2149 {
2150 SpaprMachineState *spapr = opaque;
2151
2152 /* "Iteration" header */
2153 if (!spapr->htab_shift) {
2154 qemu_put_be32(f, -1);
2155 } else {
2156 qemu_put_be32(f, spapr->htab_shift);
2157 }
2158
2159 if (spapr->htab) {
2160 spapr->htab_save_index = 0;
2161 spapr->htab_first_pass = true;
2162 } else {
2163 if (spapr->htab_shift) {
2164 assert(kvm_enabled());
2165 }
2166 }
2167
2168
2169 return 0;
2170 }
2171
2172 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2173 int chunkstart, int n_valid, int n_invalid)
2174 {
2175 qemu_put_be32(f, chunkstart);
2176 qemu_put_be16(f, n_valid);
2177 qemu_put_be16(f, n_invalid);
2178 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2179 HASH_PTE_SIZE_64 * n_valid);
2180 }
2181
2182 static void htab_save_end_marker(QEMUFile *f)
2183 {
2184 qemu_put_be32(f, 0);
2185 qemu_put_be16(f, 0);
2186 qemu_put_be16(f, 0);
2187 }
2188
2189 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2190 int64_t max_ns)
2191 {
2192 bool has_timeout = max_ns != -1;
2193 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2194 int index = spapr->htab_save_index;
2195 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2196
2197 assert(spapr->htab_first_pass);
2198
2199 do {
2200 int chunkstart;
2201
2202 /* Consume invalid HPTEs */
2203 while ((index < htabslots)
2204 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2205 CLEAN_HPTE(HPTE(spapr->htab, index));
2206 index++;
2207 }
2208
2209 /* Consume valid HPTEs */
2210 chunkstart = index;
2211 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2212 && HPTE_VALID(HPTE(spapr->htab, index))) {
2213 CLEAN_HPTE(HPTE(spapr->htab, index));
2214 index++;
2215 }
2216
2217 if (index > chunkstart) {
2218 int n_valid = index - chunkstart;
2219
2220 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2221
2222 if (has_timeout &&
2223 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2224 break;
2225 }
2226 }
2227 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2228
2229 if (index >= htabslots) {
2230 assert(index == htabslots);
2231 index = 0;
2232 spapr->htab_first_pass = false;
2233 }
2234 spapr->htab_save_index = index;
2235 }
2236
2237 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2238 int64_t max_ns)
2239 {
2240 bool final = max_ns < 0;
2241 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2242 int examined = 0, sent = 0;
2243 int index = spapr->htab_save_index;
2244 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2245
2246 assert(!spapr->htab_first_pass);
2247
2248 do {
2249 int chunkstart, invalidstart;
2250
2251 /* Consume non-dirty HPTEs */
2252 while ((index < htabslots)
2253 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2254 index++;
2255 examined++;
2256 }
2257
2258 chunkstart = index;
2259 /* Consume valid dirty HPTEs */
2260 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2261 && HPTE_DIRTY(HPTE(spapr->htab, index))
2262 && HPTE_VALID(HPTE(spapr->htab, index))) {
2263 CLEAN_HPTE(HPTE(spapr->htab, index));
2264 index++;
2265 examined++;
2266 }
2267
2268 invalidstart = index;
2269 /* Consume invalid dirty HPTEs */
2270 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2271 && HPTE_DIRTY(HPTE(spapr->htab, index))
2272 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2273 CLEAN_HPTE(HPTE(spapr->htab, index));
2274 index++;
2275 examined++;
2276 }
2277
2278 if (index > chunkstart) {
2279 int n_valid = invalidstart - chunkstart;
2280 int n_invalid = index - invalidstart;
2281
2282 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2283 sent += index - chunkstart;
2284
2285 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2286 break;
2287 }
2288 }
2289
2290 if (examined >= htabslots) {
2291 break;
2292 }
2293
2294 if (index >= htabslots) {
2295 assert(index == htabslots);
2296 index = 0;
2297 }
2298 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2299
2300 if (index >= htabslots) {
2301 assert(index == htabslots);
2302 index = 0;
2303 }
2304
2305 spapr->htab_save_index = index;
2306
2307 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2308 }
2309
2310 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2311 #define MAX_KVM_BUF_SIZE 2048
2312
2313 static int htab_save_iterate(QEMUFile *f, void *opaque)
2314 {
2315 SpaprMachineState *spapr = opaque;
2316 int fd;
2317 int rc = 0;
2318
2319 /* Iteration header */
2320 if (!spapr->htab_shift) {
2321 qemu_put_be32(f, -1);
2322 return 1;
2323 } else {
2324 qemu_put_be32(f, 0);
2325 }
2326
2327 if (!spapr->htab) {
2328 assert(kvm_enabled());
2329
2330 fd = get_htab_fd(spapr);
2331 if (fd < 0) {
2332 return fd;
2333 }
2334
2335 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2336 if (rc < 0) {
2337 return rc;
2338 }
2339 } else if (spapr->htab_first_pass) {
2340 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2341 } else {
2342 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2343 }
2344
2345 htab_save_end_marker(f);
2346
2347 return rc;
2348 }
2349
2350 static int htab_save_complete(QEMUFile *f, void *opaque)
2351 {
2352 SpaprMachineState *spapr = opaque;
2353 int fd;
2354
2355 /* Iteration header */
2356 if (!spapr->htab_shift) {
2357 qemu_put_be32(f, -1);
2358 return 0;
2359 } else {
2360 qemu_put_be32(f, 0);
2361 }
2362
2363 if (!spapr->htab) {
2364 int rc;
2365
2366 assert(kvm_enabled());
2367
2368 fd = get_htab_fd(spapr);
2369 if (fd < 0) {
2370 return fd;
2371 }
2372
2373 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2374 if (rc < 0) {
2375 return rc;
2376 }
2377 } else {
2378 if (spapr->htab_first_pass) {
2379 htab_save_first_pass(f, spapr, -1);
2380 }
2381 htab_save_later_pass(f, spapr, -1);
2382 }
2383
2384 /* End marker */
2385 htab_save_end_marker(f);
2386
2387 return 0;
2388 }
2389
2390 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2391 {
2392 SpaprMachineState *spapr = opaque;
2393 uint32_t section_hdr;
2394 int fd = -1;
2395 Error *local_err = NULL;
2396
2397 if (version_id < 1 || version_id > 1) {
2398 error_report("htab_load() bad version");
2399 return -EINVAL;
2400 }
2401
2402 section_hdr = qemu_get_be32(f);
2403
2404 if (section_hdr == -1) {
2405 spapr_free_hpt(spapr);
2406 return 0;
2407 }
2408
2409 if (section_hdr) {
2410 /* First section gives the htab size */
2411 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2412 if (local_err) {
2413 error_report_err(local_err);
2414 return -EINVAL;
2415 }
2416 return 0;
2417 }
2418
2419 if (!spapr->htab) {
2420 assert(kvm_enabled());
2421
2422 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2423 if (fd < 0) {
2424 error_report_err(local_err);
2425 return fd;
2426 }
2427 }
2428
2429 while (true) {
2430 uint32_t index;
2431 uint16_t n_valid, n_invalid;
2432
2433 index = qemu_get_be32(f);
2434 n_valid = qemu_get_be16(f);
2435 n_invalid = qemu_get_be16(f);
2436
2437 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2438 /* End of Stream */
2439 break;
2440 }
2441
2442 if ((index + n_valid + n_invalid) >
2443 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2444 /* Bad index in stream */
2445 error_report(
2446 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2447 index, n_valid, n_invalid, spapr->htab_shift);
2448 return -EINVAL;
2449 }
2450
2451 if (spapr->htab) {
2452 if (n_valid) {
2453 qemu_get_buffer(f, HPTE(spapr->htab, index),
2454 HASH_PTE_SIZE_64 * n_valid);
2455 }
2456 if (n_invalid) {
2457 memset(HPTE(spapr->htab, index + n_valid), 0,
2458 HASH_PTE_SIZE_64 * n_invalid);
2459 }
2460 } else {
2461 int rc;
2462
2463 assert(fd >= 0);
2464
2465 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2466 if (rc < 0) {
2467 return rc;
2468 }
2469 }
2470 }
2471
2472 if (!spapr->htab) {
2473 assert(fd >= 0);
2474 close(fd);
2475 }
2476
2477 return 0;
2478 }
2479
2480 static void htab_save_cleanup(void *opaque)
2481 {
2482 SpaprMachineState *spapr = opaque;
2483
2484 close_htab_fd(spapr);
2485 }
2486
2487 static SaveVMHandlers savevm_htab_handlers = {
2488 .save_setup = htab_save_setup,
2489 .save_live_iterate = htab_save_iterate,
2490 .save_live_complete_precopy = htab_save_complete,
2491 .save_cleanup = htab_save_cleanup,
2492 .load_state = htab_load,
2493 };
2494
2495 static void spapr_boot_set(void *opaque, const char *boot_device,
2496 Error **errp)
2497 {
2498 MachineState *machine = MACHINE(opaque);
2499 machine->boot_order = g_strdup(boot_device);
2500 }
2501
2502 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2503 {
2504 MachineState *machine = MACHINE(spapr);
2505 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2506 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2507 int i;
2508
2509 for (i = 0; i < nr_lmbs; i++) {
2510 uint64_t addr;
2511
2512 addr = i * lmb_size + machine->device_memory->base;
2513 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2514 addr / lmb_size);
2515 }
2516 }
2517
2518 /*
2519 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2520 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2521 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2522 */
2523 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2524 {
2525 int i;
2526
2527 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2528 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2529 " is not aligned to %" PRIu64 " MiB",
2530 machine->ram_size,
2531 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2532 return;
2533 }
2534
2535 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2536 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2537 " is not aligned to %" PRIu64 " MiB",
2538 machine->ram_size,
2539 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2540 return;
2541 }
2542
2543 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2544 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2545 error_setg(errp,
2546 "Node %d memory size 0x%" PRIx64
2547 " is not aligned to %" PRIu64 " MiB",
2548 i, machine->numa_state->nodes[i].node_mem,
2549 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2550 return;
2551 }
2552 }
2553 }
2554
2555 /* find cpu slot in machine->possible_cpus by core_id */
2556 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2557 {
2558 int index = id / ms->smp.threads;
2559
2560 if (index >= ms->possible_cpus->len) {
2561 return NULL;
2562 }
2563 if (idx) {
2564 *idx = index;
2565 }
2566 return &ms->possible_cpus->cpus[index];
2567 }
2568
2569 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2570 {
2571 MachineState *ms = MACHINE(spapr);
2572 Error *local_err = NULL;
2573 bool vsmt_user = !!spapr->vsmt;
2574 int kvm_smt = kvmppc_smt_threads();
2575 int ret;
2576 unsigned int smp_threads = ms->smp.threads;
2577
2578 if (!kvm_enabled() && (smp_threads > 1)) {
2579 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2580 "on a pseries machine");
2581 goto out;
2582 }
2583 if (!is_power_of_2(smp_threads)) {
2584 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2585 "machine because it must be a power of 2", smp_threads);
2586 goto out;
2587 }
2588
2589 /* Detemine the VSMT mode to use: */
2590 if (vsmt_user) {
2591 if (spapr->vsmt < smp_threads) {
2592 error_setg(&local_err, "Cannot support VSMT mode %d"
2593 " because it must be >= threads/core (%d)",
2594 spapr->vsmt, smp_threads);
2595 goto out;
2596 }
2597 /* In this case, spapr->vsmt has been set by the command line */
2598 } else {
2599 /*
2600 * Default VSMT value is tricky, because we need it to be as
2601 * consistent as possible (for migration), but this requires
2602 * changing it for at least some existing cases. We pick 8 as
2603 * the value that we'd get with KVM on POWER8, the
2604 * overwhelmingly common case in production systems.
2605 */
2606 spapr->vsmt = MAX(8, smp_threads);
2607 }
2608
2609 /* KVM: If necessary, set the SMT mode: */
2610 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2611 ret = kvmppc_set_smt_threads(spapr->vsmt);
2612 if (ret) {
2613 /* Looks like KVM isn't able to change VSMT mode */
2614 error_setg(&local_err,
2615 "Failed to set KVM's VSMT mode to %d (errno %d)",
2616 spapr->vsmt, ret);
2617 /* We can live with that if the default one is big enough
2618 * for the number of threads, and a submultiple of the one
2619 * we want. In this case we'll waste some vcpu ids, but
2620 * behaviour will be correct */
2621 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2622 warn_report_err(local_err);
2623 local_err = NULL;
2624 goto out;
2625 } else {
2626 if (!vsmt_user) {
2627 error_append_hint(&local_err,
2628 "On PPC, a VM with %d threads/core"
2629 " on a host with %d threads/core"
2630 " requires the use of VSMT mode %d.\n",
2631 smp_threads, kvm_smt, spapr->vsmt);
2632 }
2633 kvmppc_hint_smt_possible(&local_err);
2634 goto out;
2635 }
2636 }
2637 }
2638 /* else TCG: nothing to do currently */
2639 out:
2640 error_propagate(errp, local_err);
2641 }
2642
2643 static void spapr_init_cpus(SpaprMachineState *spapr)
2644 {
2645 MachineState *machine = MACHINE(spapr);
2646 MachineClass *mc = MACHINE_GET_CLASS(machine);
2647 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2648 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2649 const CPUArchIdList *possible_cpus;
2650 unsigned int smp_cpus = machine->smp.cpus;
2651 unsigned int smp_threads = machine->smp.threads;
2652 unsigned int max_cpus = machine->smp.max_cpus;
2653 int boot_cores_nr = smp_cpus / smp_threads;
2654 int i;
2655
2656 possible_cpus = mc->possible_cpu_arch_ids(machine);
2657 if (mc->has_hotpluggable_cpus) {
2658 if (smp_cpus % smp_threads) {
2659 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2660 smp_cpus, smp_threads);
2661 exit(1);
2662 }
2663 if (max_cpus % smp_threads) {
2664 error_report("max_cpus (%u) must be multiple of threads (%u)",
2665 max_cpus, smp_threads);
2666 exit(1);
2667 }
2668 } else {
2669 if (max_cpus != smp_cpus) {
2670 error_report("This machine version does not support CPU hotplug");
2671 exit(1);
2672 }
2673 boot_cores_nr = possible_cpus->len;
2674 }
2675
2676 if (smc->pre_2_10_has_unused_icps) {
2677 int i;
2678
2679 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2680 /* Dummy entries get deregistered when real ICPState objects
2681 * are registered during CPU core hotplug.
2682 */
2683 pre_2_10_vmstate_register_dummy_icp(i);
2684 }
2685 }
2686
2687 for (i = 0; i < possible_cpus->len; i++) {
2688 int core_id = i * smp_threads;
2689
2690 if (mc->has_hotpluggable_cpus) {
2691 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2692 spapr_vcpu_id(spapr, core_id));
2693 }
2694
2695 if (i < boot_cores_nr) {
2696 Object *core = object_new(type);
2697 int nr_threads = smp_threads;
2698
2699 /* Handle the partially filled core for older machine types */
2700 if ((i + 1) * smp_threads >= smp_cpus) {
2701 nr_threads = smp_cpus - i * smp_threads;
2702 }
2703
2704 object_property_set_int(core, nr_threads, "nr-threads",
2705 &error_fatal);
2706 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2707 &error_fatal);
2708 object_property_set_bool(core, true, "realized", &error_fatal);
2709
2710 object_unref(core);
2711 }
2712 }
2713 }
2714
2715 static PCIHostState *spapr_create_default_phb(void)
2716 {
2717 DeviceState *dev;
2718
2719 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2720 qdev_prop_set_uint32(dev, "index", 0);
2721 qdev_init_nofail(dev);
2722
2723 return PCI_HOST_BRIDGE(dev);
2724 }
2725
2726 /* pSeries LPAR / sPAPR hardware init */
2727 static void spapr_machine_init(MachineState *machine)
2728 {
2729 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2730 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2731 const char *kernel_filename = machine->kernel_filename;
2732 const char *initrd_filename = machine->initrd_filename;
2733 PCIHostState *phb;
2734 int i;
2735 MemoryRegion *sysmem = get_system_memory();
2736 MemoryRegion *ram = g_new(MemoryRegion, 1);
2737 hwaddr node0_size = spapr_node0_size(machine);
2738 long load_limit, fw_size;
2739 char *filename;
2740 Error *resize_hpt_err = NULL;
2741
2742 msi_nonbroken = true;
2743
2744 QLIST_INIT(&spapr->phbs);
2745 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2746
2747 /* Determine capabilities to run with */
2748 spapr_caps_init(spapr);
2749
2750 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2751 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2752 /*
2753 * If the user explicitly requested a mode we should either
2754 * supply it, or fail completely (which we do below). But if
2755 * it's not set explicitly, we reset our mode to something
2756 * that works
2757 */
2758 if (resize_hpt_err) {
2759 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2760 error_free(resize_hpt_err);
2761 resize_hpt_err = NULL;
2762 } else {
2763 spapr->resize_hpt = smc->resize_hpt_default;
2764 }
2765 }
2766
2767 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2768
2769 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2770 /*
2771 * User requested HPT resize, but this host can't supply it. Bail out
2772 */
2773 error_report_err(resize_hpt_err);
2774 exit(1);
2775 }
2776
2777 spapr->rma_size = node0_size;
2778
2779 /* With KVM, we don't actually know whether KVM supports an
2780 * unbounded RMA (PR KVM) or is limited by the hash table size
2781 * (HV KVM using VRMA), so we always assume the latter
2782 *
2783 * In that case, we also limit the initial allocations for RTAS
2784 * etc... to 256M since we have no way to know what the VRMA size
2785 * is going to be as it depends on the size of the hash table
2786 * which isn't determined yet.
2787 */
2788 if (kvm_enabled()) {
2789 spapr->vrma_adjust = 1;
2790 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2791 }
2792
2793 /* Actually we don't support unbounded RMA anymore since we added
2794 * proper emulation of HV mode. The max we can get is 16G which
2795 * also happens to be what we configure for PAPR mode so make sure
2796 * we don't do anything bigger than that
2797 */
2798 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2799
2800 if (spapr->rma_size > node0_size) {
2801 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2802 spapr->rma_size);
2803 exit(1);
2804 }
2805
2806 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2807 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2808
2809 /*
2810 * VSMT must be set in order to be able to compute VCPU ids, ie to
2811 * call spapr_max_server_number() or spapr_vcpu_id().
2812 */
2813 spapr_set_vsmt_mode(spapr, &error_fatal);
2814
2815 /* Set up Interrupt Controller before we create the VCPUs */
2816 spapr_irq_init(spapr, &error_fatal);
2817
2818 /* Set up containers for ibm,client-architecture-support negotiated options
2819 */
2820 spapr->ov5 = spapr_ovec_new();
2821 spapr->ov5_cas = spapr_ovec_new();
2822
2823 if (smc->dr_lmb_enabled) {
2824 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2825 spapr_validate_node_memory(machine, &error_fatal);
2826 }
2827
2828 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2829
2830 /* advertise support for dedicated HP event source to guests */
2831 if (spapr->use_hotplug_event_source) {
2832 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2833 }
2834
2835 /* advertise support for HPT resizing */
2836 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2837 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2838 }
2839
2840 /* advertise support for ibm,dyamic-memory-v2 */
2841 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2842
2843 /* advertise XIVE on POWER9 machines */
2844 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2845 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2846 }
2847
2848 /* init CPUs */
2849 spapr_init_cpus(spapr);
2850
2851 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2852 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2853 spapr->max_compat_pvr)) {
2854 /* KVM and TCG always allow GTSE with radix... */
2855 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2856 }
2857 /* ... but not with hash (currently). */
2858
2859 if (kvm_enabled()) {
2860 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2861 kvmppc_enable_logical_ci_hcalls();
2862 kvmppc_enable_set_mode_hcall();
2863
2864 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2865 kvmppc_enable_clear_ref_mod_hcalls();
2866
2867 /* Enable H_PAGE_INIT */
2868 kvmppc_enable_h_page_init();
2869 }
2870
2871 /* allocate RAM */
2872 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2873 machine->ram_size);
2874 memory_region_add_subregion(sysmem, 0, ram);
2875
2876 /* always allocate the device memory information */
2877 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2878
2879 /* initialize hotplug memory address space */
2880 if (machine->ram_size < machine->maxram_size) {
2881 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2882 /*
2883 * Limit the number of hotpluggable memory slots to half the number
2884 * slots that KVM supports, leaving the other half for PCI and other
2885 * devices. However ensure that number of slots doesn't drop below 32.
2886 */
2887 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2888 SPAPR_MAX_RAM_SLOTS;
2889
2890 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2891 max_memslots = SPAPR_MAX_RAM_SLOTS;
2892 }
2893 if (machine->ram_slots > max_memslots) {
2894 error_report("Specified number of memory slots %"
2895 PRIu64" exceeds max supported %d",
2896 machine->ram_slots, max_memslots);
2897 exit(1);
2898 }
2899
2900 machine->device_memory->base = ROUND_UP(machine->ram_size,
2901 SPAPR_DEVICE_MEM_ALIGN);
2902 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2903 "device-memory", device_mem_size);
2904 memory_region_add_subregion(sysmem, machine->device_memory->base,
2905 &machine->device_memory->mr);
2906 }
2907
2908 if (smc->dr_lmb_enabled) {
2909 spapr_create_lmb_dr_connectors(spapr);
2910 }
2911
2912 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2913 if (!filename) {
2914 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2915 exit(1);
2916 }
2917 spapr->rtas_size = get_image_size(filename);
2918 if (spapr->rtas_size < 0) {
2919 error_report("Could not get size of LPAR rtas '%s'", filename);
2920 exit(1);
2921 }
2922 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2923 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2924 error_report("Could not load LPAR rtas '%s'", filename);
2925 exit(1);
2926 }
2927 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2928 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2929 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2930 exit(1);
2931 }
2932 g_free(filename);
2933
2934 /* Set up RTAS event infrastructure */
2935 spapr_events_init(spapr);
2936
2937 /* Set up the RTC RTAS interfaces */
2938 spapr_rtc_create(spapr);
2939
2940 /* Set up VIO bus */
2941 spapr->vio_bus = spapr_vio_bus_init();
2942
2943 for (i = 0; i < serial_max_hds(); i++) {
2944 if (serial_hd(i)) {
2945 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2946 }
2947 }
2948
2949 /* We always have at least the nvram device on VIO */
2950 spapr_create_nvram(spapr);
2951
2952 /*
2953 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2954 * connectors (described in root DT node's "ibm,drc-types" property)
2955 * are pre-initialized here. additional child connectors (such as
2956 * connectors for a PHBs PCI slots) are added as needed during their
2957 * parent's realization.
2958 */
2959 if (smc->dr_phb_enabled) {
2960 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2961 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2962 }
2963 }
2964
2965 /* Set up PCI */
2966 spapr_pci_rtas_init();
2967
2968 phb = spapr_create_default_phb();
2969
2970 for (i = 0; i < nb_nics; i++) {
2971 NICInfo *nd = &nd_table[i];
2972
2973 if (!nd->model) {
2974 nd->model = g_strdup("spapr-vlan");
2975 }
2976
2977 if (g_str_equal(nd->model, "spapr-vlan") ||
2978 g_str_equal(nd->model, "ibmveth")) {
2979 spapr_vlan_create(spapr->vio_bus, nd);
2980 } else {
2981 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2982 }
2983 }
2984
2985 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2986 spapr_vscsi_create(spapr->vio_bus);
2987 }
2988
2989 /* Graphics */
2990 if (spapr_vga_init(phb->bus, &error_fatal)) {
2991 spapr->has_graphics = true;
2992 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2993 }
2994
2995 if (machine->usb) {
2996 if (smc->use_ohci_by_default) {
2997 pci_create_simple(phb->bus, -1, "pci-ohci");
2998 } else {
2999 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3000 }
3001
3002 if (spapr->has_graphics) {
3003 USBBus *usb_bus = usb_bus_find(-1);
3004
3005 usb_create_simple(usb_bus, "usb-kbd");
3006 usb_create_simple(usb_bus, "usb-mouse");
3007 }
3008 }
3009
3010 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3011 error_report(
3012 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3013 MIN_RMA_SLOF);
3014 exit(1);
3015 }
3016
3017 if (kernel_filename) {
3018 uint64_t lowaddr = 0;
3019
3020 spapr->kernel_size = load_elf(kernel_filename, NULL,
3021 translate_kernel_address, NULL,
3022 NULL, &lowaddr, NULL, 1,
3023 PPC_ELF_MACHINE, 0, 0);
3024 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3025 spapr->kernel_size = load_elf(kernel_filename, NULL,
3026 translate_kernel_address, NULL, NULL,
3027 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3028 0, 0);
3029 spapr->kernel_le = spapr->kernel_size > 0;
3030 }
3031 if (spapr->kernel_size < 0) {
3032 error_report("error loading %s: %s", kernel_filename,
3033 load_elf_strerror(spapr->kernel_size));
3034 exit(1);
3035 }
3036
3037 /* load initrd */
3038 if (initrd_filename) {
3039 /* Try to locate the initrd in the gap between the kernel
3040 * and the firmware. Add a bit of space just in case
3041 */
3042 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3043 + 0x1ffff) & ~0xffff;
3044 spapr->initrd_size = load_image_targphys(initrd_filename,
3045 spapr->initrd_base,
3046 load_limit
3047 - spapr->initrd_base);
3048 if (spapr->initrd_size < 0) {
3049 error_report("could not load initial ram disk '%s'",
3050 initrd_filename);
3051 exit(1);
3052 }
3053 }
3054 }
3055
3056 if (bios_name == NULL) {
3057 bios_name = FW_FILE_NAME;
3058 }
3059 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3060 if (!filename) {
3061 error_report("Could not find LPAR firmware '%s'", bios_name);
3062 exit(1);
3063 }
3064 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3065 if (fw_size <= 0) {
3066 error_report("Could not load LPAR firmware '%s'", filename);
3067 exit(1);
3068 }
3069 g_free(filename);
3070
3071 /* FIXME: Should register things through the MachineState's qdev
3072 * interface, this is a legacy from the sPAPREnvironment structure
3073 * which predated MachineState but had a similar function */
3074 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3075 register_savevm_live(NULL, "spapr/htab", -1, 1,
3076 &savevm_htab_handlers, spapr);
3077
3078 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3079 &error_fatal);
3080
3081 qemu_register_boot_set(spapr_boot_set, spapr);
3082
3083 /*
3084 * Nothing needs to be done to resume a suspended guest because
3085 * suspending does not change the machine state, so no need for
3086 * a ->wakeup method.
3087 */
3088 qemu_register_wakeup_support();
3089
3090 if (kvm_enabled()) {
3091 /* to stop and start vmclock */
3092 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3093 &spapr->tb);
3094
3095 kvmppc_spapr_enable_inkernel_multitce();
3096 }
3097 }
3098
3099 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3100 {
3101 if (!vm_type) {
3102 return 0;
3103 }
3104
3105 if (!strcmp(vm_type, "HV")) {
3106 return 1;
3107 }
3108
3109 if (!strcmp(vm_type, "PR")) {
3110 return 2;
3111 }
3112
3113 error_report("Unknown kvm-type specified '%s'", vm_type);
3114 exit(1);
3115 }
3116
3117 /*
3118 * Implementation of an interface to adjust firmware path
3119 * for the bootindex property handling.
3120 */
3121 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3122 DeviceState *dev)
3123 {
3124 #define CAST(type, obj, name) \
3125 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3126 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3127 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3128 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3129
3130 if (d) {
3131 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3132 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3133 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3134
3135 if (spapr) {
3136 /*
3137 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3138 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3139 * 0x8000 | (target << 8) | (bus << 5) | lun
3140 * (see the "Logical unit addressing format" table in SAM5)
3141 */
3142 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3143 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3144 (uint64_t)id << 48);
3145 } else if (virtio) {
3146 /*
3147 * We use SRP luns of the form 01000000 | (target << 8) | lun
3148 * in the top 32 bits of the 64-bit LUN
3149 * Note: the quote above is from SLOF and it is wrong,
3150 * the actual binding is:
3151 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3152 */
3153 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3154 if (d->lun >= 256) {
3155 /* Use the LUN "flat space addressing method" */
3156 id |= 0x4000;
3157 }
3158 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3159 (uint64_t)id << 32);
3160 } else if (usb) {
3161 /*
3162 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3163 * in the top 32 bits of the 64-bit LUN
3164 */
3165 unsigned usb_port = atoi(usb->port->path);
3166 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3167 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3168 (uint64_t)id << 32);
3169 }
3170 }
3171
3172 /*
3173 * SLOF probes the USB devices, and if it recognizes that the device is a
3174 * storage device, it changes its name to "storage" instead of "usb-host",
3175 * and additionally adds a child node for the SCSI LUN, so the correct
3176 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3177 */
3178 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3179 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3180 if (usb_host_dev_is_scsi_storage(usbdev)) {
3181 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3182 }
3183 }
3184
3185 if (phb) {
3186 /* Replace "pci" with "pci@800000020000000" */
3187 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3188 }
3189
3190 if (vsc) {
3191 /* Same logic as virtio above */
3192 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3193 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3194 }
3195
3196 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3197 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3198 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3199 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3200 }
3201
3202 return NULL;
3203 }
3204
3205 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3206 {
3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3208
3209 return g_strdup(spapr->kvm_type);
3210 }
3211
3212 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3213 {
3214 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215
3216 g_free(spapr->kvm_type);
3217 spapr->kvm_type = g_strdup(value);
3218 }
3219
3220 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3221 {
3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223
3224 return spapr->use_hotplug_event_source;
3225 }
3226
3227 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3228 Error **errp)
3229 {
3230 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231
3232 spapr->use_hotplug_event_source = value;
3233 }
3234
3235 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3236 {
3237 return true;
3238 }
3239
3240 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3241 {
3242 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243
3244 switch (spapr->resize_hpt) {
3245 case SPAPR_RESIZE_HPT_DEFAULT:
3246 return g_strdup("default");
3247 case SPAPR_RESIZE_HPT_DISABLED:
3248 return g_strdup("disabled");
3249 case SPAPR_RESIZE_HPT_ENABLED:
3250 return g_strdup("enabled");
3251 case SPAPR_RESIZE_HPT_REQUIRED:
3252 return g_strdup("required");
3253 }
3254 g_assert_not_reached();
3255 }
3256
3257 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3258 {
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260
3261 if (strcmp(value, "default") == 0) {
3262 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3263 } else if (strcmp(value, "disabled") == 0) {
3264 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3265 } else if (strcmp(value, "enabled") == 0) {
3266 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3267 } else if (strcmp(value, "required") == 0) {
3268 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3269 } else {
3270 error_setg(errp, "Bad value for \"resize-hpt\" property");
3271 }
3272 }
3273
3274 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3275 void *opaque, Error **errp)
3276 {
3277 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3278 }
3279
3280 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3281 void *opaque, Error **errp)
3282 {
3283 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3284 }
3285
3286 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3287 {
3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289
3290 if (spapr->irq == &spapr_irq_xics_legacy) {
3291 return g_strdup("legacy");
3292 } else if (spapr->irq == &spapr_irq_xics) {
3293 return g_strdup("xics");
3294 } else if (spapr->irq == &spapr_irq_xive) {
3295 return g_strdup("xive");
3296 } else if (spapr->irq == &spapr_irq_dual) {
3297 return g_strdup("dual");
3298 }
3299 g_assert_not_reached();
3300 }
3301
3302 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3303 {
3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305
3306 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3307 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3308 return;
3309 }
3310
3311 /* The legacy IRQ backend can not be set */
3312 if (strcmp(value, "xics") == 0) {
3313 spapr->irq = &spapr_irq_xics;
3314 } else if (strcmp(value, "xive") == 0) {
3315 spapr->irq = &spapr_irq_xive;
3316 } else if (strcmp(value, "dual") == 0) {
3317 spapr->irq = &spapr_irq_dual;
3318 } else {
3319 error_setg(errp, "Bad value for \"ic-mode\" property");
3320 }
3321 }
3322
3323 static char *spapr_get_host_model(Object *obj, Error **errp)
3324 {
3325 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3326
3327 return g_strdup(spapr->host_model);
3328 }
3329
3330 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3331 {
3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333
3334 g_free(spapr->host_model);
3335 spapr->host_model = g_strdup(value);
3336 }
3337
3338 static char *spapr_get_host_serial(Object *obj, Error **errp)
3339 {
3340 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3341
3342 return g_strdup(spapr->host_serial);
3343 }
3344
3345 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3346 {
3347 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3348
3349 g_free(spapr->host_serial);
3350 spapr->host_serial = g_strdup(value);
3351 }
3352
3353 static void spapr_instance_init(Object *obj)
3354 {
3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3356 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3357
3358 spapr->htab_fd = -1;
3359 spapr->use_hotplug_event_source = true;
3360 object_property_add_str(obj, "kvm-type",
3361 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3362 object_property_set_description(obj, "kvm-type",
3363 "Specifies the KVM virtualization mode (HV, PR)",
3364 NULL);
3365 object_property_add_bool(obj, "modern-hotplug-events",
3366 spapr_get_modern_hotplug_events,
3367 spapr_set_modern_hotplug_events,
3368 NULL);
3369 object_property_set_description(obj, "modern-hotplug-events",
3370 "Use dedicated hotplug event mechanism in"
3371 " place of standard EPOW events when possible"
3372 " (required for memory hot-unplug support)",
3373 NULL);
3374 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3375 "Maximum permitted CPU compatibility mode",
3376 &error_fatal);
3377
3378 object_property_add_str(obj, "resize-hpt",
3379 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3380 object_property_set_description(obj, "resize-hpt",
3381 "Resizing of the Hash Page Table (enabled, disabled, required)",
3382 NULL);
3383 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3384 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3385 object_property_set_description(obj, "vsmt",
3386 "Virtual SMT: KVM behaves as if this were"
3387 " the host's SMT mode", &error_abort);
3388 object_property_add_bool(obj, "vfio-no-msix-emulation",
3389 spapr_get_msix_emulation, NULL, NULL);
3390
3391 /* The machine class defines the default interrupt controller mode */
3392 spapr->irq = smc->irq;
3393 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3394 spapr_set_ic_mode, NULL);
3395 object_property_set_description(obj, "ic-mode",
3396 "Specifies the interrupt controller mode (xics, xive, dual)",
3397 NULL);
3398
3399 object_property_add_str(obj, "host-model",
3400 spapr_get_host_model, spapr_set_host_model,
3401 &error_abort);
3402 object_property_set_description(obj, "host-model",
3403 "Host model to advertise in guest device tree", &error_abort);
3404 object_property_add_str(obj, "host-serial",
3405 spapr_get_host_serial, spapr_set_host_serial,
3406 &error_abort);
3407 object_property_set_description(obj, "host-serial",
3408 "Host serial number to advertise in guest device tree", &error_abort);
3409 }
3410
3411 static void spapr_machine_finalizefn(Object *obj)
3412 {
3413 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3414
3415 g_free(spapr->kvm_type);
3416 }
3417
3418 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3419 {
3420 cpu_synchronize_state(cs);
3421 ppc_cpu_do_system_reset(cs);
3422 }
3423
3424 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3425 {
3426 CPUState *cs;
3427
3428 CPU_FOREACH(cs) {
3429 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3430 }
3431 }
3432
3433 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3434 void *fdt, int *fdt_start_offset, Error **errp)
3435 {
3436 uint64_t addr;
3437 uint32_t node;
3438
3439 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3440 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3441 &error_abort);
3442 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3443 SPAPR_MEMORY_BLOCK_SIZE);
3444 return 0;
3445 }
3446
3447 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3448 bool dedicated_hp_event_source, Error **errp)
3449 {
3450 SpaprDrc *drc;
3451 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3452 int i;
3453 uint64_t addr = addr_start;
3454 bool hotplugged = spapr_drc_hotplugged(dev);
3455 Error *local_err = NULL;
3456
3457 for (i = 0; i < nr_lmbs; i++) {
3458 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3459 addr / SPAPR_MEMORY_BLOCK_SIZE);
3460 g_assert(drc);
3461
3462 spapr_drc_attach(drc, dev, &local_err);
3463 if (local_err) {
3464 while (addr > addr_start) {
3465 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3466 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3467 addr / SPAPR_MEMORY_BLOCK_SIZE);
3468 spapr_drc_detach(drc);
3469 }
3470 error_propagate(errp, local_err);
3471 return;
3472 }
3473 if (!hotplugged) {
3474 spapr_drc_reset(drc);
3475 }
3476 addr += SPAPR_MEMORY_BLOCK_SIZE;
3477 }
3478 /* send hotplug notification to the
3479 * guest only in case of hotplugged memory
3480 */
3481 if (hotplugged) {
3482 if (dedicated_hp_event_source) {
3483 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3484 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3485 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3486 nr_lmbs,
3487 spapr_drc_index(drc));
3488 } else {
3489 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3490 nr_lmbs);
3491 }
3492 }
3493 }
3494
3495 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3496 Error **errp)
3497 {
3498 Error *local_err = NULL;
3499 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3500 PCDIMMDevice *dimm = PC_DIMM(dev);
3501 uint64_t size, addr;
3502
3503 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3504
3505 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3506 if (local_err) {
3507 goto out;
3508 }
3509
3510 addr = object_property_get_uint(OBJECT(dimm),
3511 PC_DIMM_ADDR_PROP, &local_err);
3512 if (local_err) {
3513 goto out_unplug;
3514 }
3515
3516 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3517 &local_err);
3518 if (local_err) {
3519 goto out_unplug;
3520 }
3521
3522 return;
3523
3524 out_unplug:
3525 pc_dimm_unplug(dimm, MACHINE(ms));
3526 out:
3527 error_propagate(errp, local_err);
3528 }
3529
3530 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3531 Error **errp)
3532 {
3533 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3534 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3535 PCDIMMDevice *dimm = PC_DIMM(dev);
3536 Error *local_err = NULL;
3537 uint64_t size;
3538 Object *memdev;
3539 hwaddr pagesize;
3540
3541 if (!smc->dr_lmb_enabled) {
3542 error_setg(errp, "Memory hotplug not supported for this machine");
3543 return;
3544 }
3545
3546 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3547 if (local_err) {
3548 error_propagate(errp, local_err);
3549 return;
3550 }
3551
3552 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3553 error_setg(errp, "Hotplugged memory size must be a multiple of "
3554 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3555 return;
3556 }
3557
3558 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3559 &error_abort);
3560 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3561 spapr_check_pagesize(spapr, pagesize, &local_err);
3562 if (local_err) {
3563 error_propagate(errp, local_err);
3564 return;
3565 }
3566
3567 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3568 }
3569
3570 struct SpaprDimmState {
3571 PCDIMMDevice *dimm;
3572 uint32_t nr_lmbs;
3573 QTAILQ_ENTRY(SpaprDimmState) next;
3574 };
3575
3576 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3577 PCDIMMDevice *dimm)
3578 {
3579 SpaprDimmState *dimm_state = NULL;
3580
3581 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3582 if (dimm_state->dimm == dimm) {
3583 break;
3584 }
3585 }
3586 return dimm_state;
3587 }
3588
3589 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3590 uint32_t nr_lmbs,
3591 PCDIMMDevice *dimm)
3592 {
3593 SpaprDimmState *ds = NULL;
3594
3595 /*
3596 * If this request is for a DIMM whose removal had failed earlier
3597 * (due to guest's refusal to remove the LMBs), we would have this
3598 * dimm already in the pending_dimm_unplugs list. In that
3599 * case don't add again.
3600 */
3601 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3602 if (!ds) {
3603 ds = g_malloc0(sizeof(SpaprDimmState));
3604 ds->nr_lmbs = nr_lmbs;
3605 ds->dimm = dimm;
3606 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3607 }
3608 return ds;
3609 }
3610
3611 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3612 SpaprDimmState *dimm_state)
3613 {
3614 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3615 g_free(dimm_state);
3616 }
3617
3618 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3619 PCDIMMDevice *dimm)
3620 {
3621 SpaprDrc *drc;
3622 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3623 &error_abort);
3624 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3625 uint32_t avail_lmbs = 0;
3626 uint64_t addr_start, addr;
3627 int i;
3628
3629 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3630 &error_abort);
3631
3632 addr = addr_start;
3633 for (i = 0; i < nr_lmbs; i++) {
3634 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3635 addr / SPAPR_MEMORY_BLOCK_SIZE);
3636 g_assert(drc);
3637 if (drc->dev) {
3638 avail_lmbs++;
3639 }
3640 addr += SPAPR_MEMORY_BLOCK_SIZE;
3641 }
3642
3643 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3644 }
3645
3646 /* Callback to be called during DRC release. */
3647 void spapr_lmb_release(DeviceState *dev)
3648 {
3649 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3650 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3651 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3652
3653 /* This information will get lost if a migration occurs
3654 * during the unplug process. In this case recover it. */
3655 if (ds == NULL) {
3656 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3657 g_assert(ds);
3658 /* The DRC being examined by the caller at least must be counted */
3659 g_assert(ds->nr_lmbs);
3660 }
3661
3662 if (--ds->nr_lmbs) {
3663 return;
3664 }
3665
3666 /*
3667 * Now that all the LMBs have been removed by the guest, call the
3668 * unplug handler chain. This can never fail.
3669 */
3670 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3671 object_unparent(OBJECT(dev));
3672 }
3673
3674 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3675 {
3676 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3677 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3678
3679 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3680 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3681 spapr_pending_dimm_unplugs_remove(spapr, ds);
3682 }
3683
3684 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3685 DeviceState *dev, Error **errp)
3686 {
3687 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3688 Error *local_err = NULL;
3689 PCDIMMDevice *dimm = PC_DIMM(dev);
3690 uint32_t nr_lmbs;
3691 uint64_t size, addr_start, addr;
3692 int i;
3693 SpaprDrc *drc;
3694
3695 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3696 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3697
3698 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3699 &local_err);
3700 if (local_err) {
3701 goto out;
3702 }
3703
3704 /*
3705 * An existing pending dimm state for this DIMM means that there is an
3706 * unplug operation in progress, waiting for the spapr_lmb_release
3707 * callback to complete the job (BQL can't cover that far). In this case,
3708 * bail out to avoid detaching DRCs that were already released.
3709 */
3710 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3711 error_setg(&local_err,
3712 "Memory unplug already in progress for device %s",
3713 dev->id);
3714 goto out;
3715 }
3716
3717 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3718
3719 addr = addr_start;
3720 for (i = 0; i < nr_lmbs; i++) {
3721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3722 addr / SPAPR_MEMORY_BLOCK_SIZE);
3723 g_assert(drc);
3724
3725 spapr_drc_detach(drc);
3726 addr += SPAPR_MEMORY_BLOCK_SIZE;
3727 }
3728
3729 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3730 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3731 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3732 nr_lmbs, spapr_drc_index(drc));
3733 out:
3734 error_propagate(errp, local_err);
3735 }
3736
3737 /* Callback to be called during DRC release. */
3738 void spapr_core_release(DeviceState *dev)
3739 {
3740 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3741
3742 /* Call the unplug handler chain. This can never fail. */
3743 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3744 object_unparent(OBJECT(dev));
3745 }
3746
3747 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3748 {
3749 MachineState *ms = MACHINE(hotplug_dev);
3750 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3751 CPUCore *cc = CPU_CORE(dev);
3752 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3753
3754 if (smc->pre_2_10_has_unused_icps) {
3755 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3756 int i;
3757
3758 for (i = 0; i < cc->nr_threads; i++) {
3759 CPUState *cs = CPU(sc->threads[i]);
3760
3761 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3762 }
3763 }
3764
3765 assert(core_slot);
3766 core_slot->cpu = NULL;
3767 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3768 }
3769
3770 static
3771 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3772 Error **errp)
3773 {
3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775 int index;
3776 SpaprDrc *drc;
3777 CPUCore *cc = CPU_CORE(dev);
3778
3779 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3780 error_setg(errp, "Unable to find CPU core with core-id: %d",
3781 cc->core_id);
3782 return;
3783 }
3784 if (index == 0) {
3785 error_setg(errp, "Boot CPU core may not be unplugged");
3786 return;
3787 }
3788
3789 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790 spapr_vcpu_id(spapr, cc->core_id));
3791 g_assert(drc);
3792
3793 spapr_drc_detach(drc);
3794
3795 spapr_hotplug_req_remove_by_index(drc);
3796 }
3797
3798 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3799 void *fdt, int *fdt_start_offset, Error **errp)
3800 {
3801 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3802 CPUState *cs = CPU(core->threads[0]);
3803 PowerPCCPU *cpu = POWERPC_CPU(cs);
3804 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3805 int id = spapr_get_vcpu_id(cpu);
3806 char *nodename;
3807 int offset;
3808
3809 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3810 offset = fdt_add_subnode(fdt, 0, nodename);
3811 g_free(nodename);
3812
3813 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3814
3815 *fdt_start_offset = offset;
3816 return 0;
3817 }
3818
3819 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3820 Error **errp)
3821 {
3822 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3823 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3824 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3825 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3826 CPUCore *cc = CPU_CORE(dev);
3827 CPUState *cs;
3828 SpaprDrc *drc;
3829 Error *local_err = NULL;
3830 CPUArchId *core_slot;
3831 int index;
3832 bool hotplugged = spapr_drc_hotplugged(dev);
3833
3834 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3835 if (!core_slot) {
3836 error_setg(errp, "Unable to find CPU core with core-id: %d",
3837 cc->core_id);
3838 return;
3839 }
3840 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3841 spapr_vcpu_id(spapr, cc->core_id));
3842
3843 g_assert(drc || !mc->has_hotpluggable_cpus);
3844
3845 if (drc) {
3846 spapr_drc_attach(drc, dev, &local_err);
3847 if (local_err) {
3848 error_propagate(errp, local_err);
3849 return;
3850 }
3851
3852 if (hotplugged) {
3853 /*
3854 * Send hotplug notification interrupt to the guest only
3855 * in case of hotplugged CPUs.
3856 */
3857 spapr_hotplug_req_add_by_index(drc);
3858 } else {
3859 spapr_drc_reset(drc);
3860 }
3861 }
3862
3863 core_slot->cpu = OBJECT(dev);
3864
3865 if (smc->pre_2_10_has_unused_icps) {
3866 int i;
3867
3868 for (i = 0; i < cc->nr_threads; i++) {
3869 cs = CPU(core->threads[i]);
3870 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3871 }
3872 }
3873 }
3874
3875 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3876 Error **errp)
3877 {
3878 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3879 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3880 Error *local_err = NULL;
3881 CPUCore *cc = CPU_CORE(dev);
3882 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3883 const char *type = object_get_typename(OBJECT(dev));
3884 CPUArchId *core_slot;
3885 int index;
3886 unsigned int smp_threads = machine->smp.threads;
3887
3888 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3889 error_setg(&local_err, "CPU hotplug not supported for this machine");
3890 goto out;
3891 }
3892
3893 if (strcmp(base_core_type, type)) {
3894 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3895 goto out;
3896 }
3897
3898 if (cc->core_id % smp_threads) {
3899 error_setg(&local_err, "invalid core id %d", cc->core_id);
3900 goto out;
3901 }
3902
3903 /*
3904 * In general we should have homogeneous threads-per-core, but old
3905 * (pre hotplug support) machine types allow the last core to have
3906 * reduced threads as a compatibility hack for when we allowed
3907 * total vcpus not a multiple of threads-per-core.
3908 */
3909 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3910 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3911 cc->nr_threads, smp_threads);
3912 goto out;
3913 }
3914
3915 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3916 if (!core_slot) {
3917 error_setg(&local_err, "core id %d out of range", cc->core_id);
3918 goto out;
3919 }
3920
3921 if (core_slot->cpu) {
3922 error_setg(&local_err, "core %d already populated", cc->core_id);
3923 goto out;
3924 }
3925
3926 numa_cpu_pre_plug(core_slot, dev, &local_err);
3927
3928 out:
3929 error_propagate(errp, local_err);
3930 }
3931
3932 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3933 void *fdt, int *fdt_start_offset, Error **errp)
3934 {
3935 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3936 int intc_phandle;
3937
3938 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3939 if (intc_phandle <= 0) {
3940 return -1;
3941 }
3942
3943 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3944 fdt_start_offset)) {
3945 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3946 return -1;
3947 }
3948
3949 /* generally SLOF creates these, for hotplug it's up to QEMU */
3950 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3951
3952 return 0;
3953 }
3954
3955 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3956 Error **errp)
3957 {
3958 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3959 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3960 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3961 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3962
3963 if (dev->hotplugged && !smc->dr_phb_enabled) {
3964 error_setg(errp, "PHB hotplug not supported for this machine");
3965 return;
3966 }
3967
3968 if (sphb->index == (uint32_t)-1) {
3969 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3970 return;
3971 }
3972
3973 /*
3974 * This will check that sphb->index doesn't exceed the maximum number of
3975 * PHBs for the current machine type.
3976 */
3977 smc->phb_placement(spapr, sphb->index,
3978 &sphb->buid, &sphb->io_win_addr,
3979 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3980 windows_supported, sphb->dma_liobn,
3981 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3982 errp);
3983 }
3984
3985 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3986 Error **errp)
3987 {
3988 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3989 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3990 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991 SpaprDrc *drc;
3992 bool hotplugged = spapr_drc_hotplugged(dev);
3993 Error *local_err = NULL;
3994
3995 if (!smc->dr_phb_enabled) {
3996 return;
3997 }
3998
3999 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4000 /* hotplug hooks should check it's enabled before getting this far */
4001 assert(drc);
4002
4003 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4004 if (local_err) {
4005 error_propagate(errp, local_err);
4006 return;
4007 }
4008
4009 if (hotplugged) {
4010 spapr_hotplug_req_add_by_index(drc);
4011 } else {
4012 spapr_drc_reset(drc);
4013 }
4014 }
4015
4016 void spapr_phb_release(DeviceState *dev)
4017 {
4018 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4019
4020 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4021 object_unparent(OBJECT(dev));
4022 }
4023
4024 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4025 {
4026 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4027 }
4028
4029 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4030 DeviceState *dev, Error **errp)
4031 {
4032 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4033 SpaprDrc *drc;
4034
4035 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4036 assert(drc);
4037
4038 if (!spapr_drc_unplug_requested(drc)) {
4039 spapr_drc_detach(drc);
4040 spapr_hotplug_req_remove_by_index(drc);
4041 }
4042 }
4043
4044 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4045 Error **errp)
4046 {
4047 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4048 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4049
4050 if (spapr->tpm_proxy != NULL) {
4051 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4052 return;
4053 }
4054
4055 spapr->tpm_proxy = tpm_proxy;
4056 }
4057
4058 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4059 {
4060 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4061
4062 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4063 object_unparent(OBJECT(dev));
4064 spapr->tpm_proxy = NULL;
4065 }
4066
4067 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4068 DeviceState *dev, Error **errp)
4069 {
4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4071 spapr_memory_plug(hotplug_dev, dev, errp);
4072 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4073 spapr_core_plug(hotplug_dev, dev, errp);
4074 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4075 spapr_phb_plug(hotplug_dev, dev, errp);
4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4077 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4078 }
4079 }
4080
4081 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4082 DeviceState *dev, Error **errp)
4083 {
4084 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4085 spapr_memory_unplug(hotplug_dev, dev);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4087 spapr_core_unplug(hotplug_dev, dev);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089 spapr_phb_unplug(hotplug_dev, dev);
4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4091 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4092 }
4093 }
4094
4095 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4096 DeviceState *dev, Error **errp)
4097 {
4098 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4099 MachineClass *mc = MACHINE_GET_CLASS(sms);
4100 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4101
4102 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4103 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4104 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4105 } else {
4106 /* NOTE: this means there is a window after guest reset, prior to
4107 * CAS negotiation, where unplug requests will fail due to the
4108 * capability not being detected yet. This is a bit different than
4109 * the case with PCI unplug, where the events will be queued and
4110 * eventually handled by the guest after boot
4111 */
4112 error_setg(errp, "Memory hot unplug not supported for this guest");
4113 }
4114 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4115 if (!mc->has_hotpluggable_cpus) {
4116 error_setg(errp, "CPU hot unplug not supported on this machine");
4117 return;
4118 }
4119 spapr_core_unplug_request(hotplug_dev, dev, errp);
4120 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4121 if (!smc->dr_phb_enabled) {
4122 error_setg(errp, "PHB hot unplug not supported on this machine");
4123 return;
4124 }
4125 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4126 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4127 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4128 }
4129 }
4130
4131 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4132 DeviceState *dev, Error **errp)
4133 {
4134 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4135 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4136 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4137 spapr_core_pre_plug(hotplug_dev, dev, errp);
4138 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4139 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4140 }
4141 }
4142
4143 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4144 DeviceState *dev)
4145 {
4146 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4147 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4148 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4149 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4150 return HOTPLUG_HANDLER(machine);
4151 }
4152 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4153 PCIDevice *pcidev = PCI_DEVICE(dev);
4154 PCIBus *root = pci_device_root_bus(pcidev);
4155 SpaprPhbState *phb =
4156 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4157 TYPE_SPAPR_PCI_HOST_BRIDGE);
4158
4159 if (phb) {
4160 return HOTPLUG_HANDLER(phb);
4161 }
4162 }
4163 return NULL;
4164 }
4165
4166 static CpuInstanceProperties
4167 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4168 {
4169 CPUArchId *core_slot;
4170 MachineClass *mc = MACHINE_GET_CLASS(machine);
4171
4172 /* make sure possible_cpu are intialized */
4173 mc->possible_cpu_arch_ids(machine);
4174 /* get CPU core slot containing thread that matches cpu_index */
4175 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4176 assert(core_slot);
4177 return core_slot->props;
4178 }
4179
4180 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4181 {
4182 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4183 }
4184
4185 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4186 {
4187 int i;
4188 unsigned int smp_threads = machine->smp.threads;
4189 unsigned int smp_cpus = machine->smp.cpus;
4190 const char *core_type;
4191 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4192 MachineClass *mc = MACHINE_GET_CLASS(machine);
4193
4194 if (!mc->has_hotpluggable_cpus) {
4195 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4196 }
4197 if (machine->possible_cpus) {
4198 assert(machine->possible_cpus->len == spapr_max_cores);
4199 return machine->possible_cpus;
4200 }
4201
4202 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4203 if (!core_type) {
4204 error_report("Unable to find sPAPR CPU Core definition");
4205 exit(1);
4206 }
4207
4208 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4209 sizeof(CPUArchId) * spapr_max_cores);
4210 machine->possible_cpus->len = spapr_max_cores;
4211 for (i = 0; i < machine->possible_cpus->len; i++) {
4212 int core_id = i * smp_threads;
4213
4214 machine->possible_cpus->cpus[i].type = core_type;
4215 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4216 machine->possible_cpus->cpus[i].arch_id = core_id;
4217 machine->possible_cpus->cpus[i].props.has_core_id = true;
4218 machine->possible_cpus->cpus[i].props.core_id = core_id;
4219 }
4220 return machine->possible_cpus;
4221 }
4222
4223 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4224 uint64_t *buid, hwaddr *pio,
4225 hwaddr *mmio32, hwaddr *mmio64,
4226 unsigned n_dma, uint32_t *liobns,
4227 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4228 {
4229 /*
4230 * New-style PHB window placement.
4231 *
4232 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4233 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4234 * windows.
4235 *
4236 * Some guest kernels can't work with MMIO windows above 1<<46
4237 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4238 *
4239 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4240 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4241 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4242 * 1TiB 64-bit MMIO windows for each PHB.
4243 */
4244 const uint64_t base_buid = 0x800000020000000ULL;
4245 int i;
4246
4247 /* Sanity check natural alignments */
4248 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4249 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4250 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4251 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4252 /* Sanity check bounds */
4253 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4254 SPAPR_PCI_MEM32_WIN_SIZE);
4255 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4256 SPAPR_PCI_MEM64_WIN_SIZE);
4257
4258 if (index >= SPAPR_MAX_PHBS) {
4259 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4260 SPAPR_MAX_PHBS - 1);
4261 return;
4262 }
4263
4264 *buid = base_buid + index;
4265 for (i = 0; i < n_dma; ++i) {
4266 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4267 }
4268
4269 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4270 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4271 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4272
4273 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4274 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4275 }
4276
4277 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4278 {
4279 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4280
4281 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4282 }
4283
4284 static void spapr_ics_resend(XICSFabric *dev)
4285 {
4286 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4287
4288 ics_resend(spapr->ics);
4289 }
4290
4291 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4292 {
4293 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4294
4295 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4296 }
4297
4298 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4299 Monitor *mon)
4300 {
4301 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4302
4303 spapr->irq->print_info(spapr, mon);
4304 }
4305
4306 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4307 {
4308 return cpu->vcpu_id;
4309 }
4310
4311 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4312 {
4313 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4314 MachineState *ms = MACHINE(spapr);
4315 int vcpu_id;
4316
4317 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4318
4319 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4320 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4321 error_append_hint(errp, "Adjust the number of cpus to %d "
4322 "or try to raise the number of threads per core\n",
4323 vcpu_id * ms->smp.threads / spapr->vsmt);
4324 return;
4325 }
4326
4327 cpu->vcpu_id = vcpu_id;
4328 }
4329
4330 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4331 {
4332 CPUState *cs;
4333
4334 CPU_FOREACH(cs) {
4335 PowerPCCPU *cpu = POWERPC_CPU(cs);
4336
4337 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4338 return cpu;
4339 }
4340 }
4341
4342 return NULL;
4343 }
4344
4345 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4346 {
4347 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4348
4349 /* These are only called by TCG, KVM maintains dispatch state */
4350
4351 spapr_cpu->prod = false;
4352 if (spapr_cpu->vpa_addr) {
4353 CPUState *cs = CPU(cpu);
4354 uint32_t dispatch;
4355
4356 dispatch = ldl_be_phys(cs->as,
4357 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4358 dispatch++;
4359 if ((dispatch & 1) != 0) {
4360 qemu_log_mask(LOG_GUEST_ERROR,
4361 "VPA: incorrect dispatch counter value for "
4362 "dispatched partition %u, correcting.\n", dispatch);
4363 dispatch++;
4364 }
4365 stl_be_phys(cs->as,
4366 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4367 }
4368 }
4369
4370 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4371 {
4372 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4373
4374 if (spapr_cpu->vpa_addr) {
4375 CPUState *cs = CPU(cpu);
4376 uint32_t dispatch;
4377
4378 dispatch = ldl_be_phys(cs->as,
4379 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4380 dispatch++;
4381 if ((dispatch & 1) != 1) {
4382 qemu_log_mask(LOG_GUEST_ERROR,
4383 "VPA: incorrect dispatch counter value for "
4384 "preempted partition %u, correcting.\n", dispatch);
4385 dispatch++;
4386 }
4387 stl_be_phys(cs->as,
4388 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4389 }
4390 }
4391
4392 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4393 {
4394 MachineClass *mc = MACHINE_CLASS(oc);
4395 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4396 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4397 NMIClass *nc = NMI_CLASS(oc);
4398 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4399 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4400 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4401 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4402
4403 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4404 mc->ignore_boot_device_suffixes = true;
4405
4406 /*
4407 * We set up the default / latest behaviour here. The class_init
4408 * functions for the specific versioned machine types can override
4409 * these details for backwards compatibility
4410 */
4411 mc->init = spapr_machine_init;
4412 mc->reset = spapr_machine_reset;
4413 mc->block_default_type = IF_SCSI;
4414 mc->max_cpus = 1024;
4415 mc->no_parallel = 1;
4416 mc->default_boot_order = "";
4417 mc->default_ram_size = 512 * MiB;
4418 mc->default_display = "std";
4419 mc->kvm_type = spapr_kvm_type;
4420 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4421 mc->pci_allow_0_address = true;
4422 assert(!mc->get_hotplug_handler);
4423 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4424 hc->pre_plug = spapr_machine_device_pre_plug;
4425 hc->plug = spapr_machine_device_plug;
4426 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4427 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4428 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4429 hc->unplug_request = spapr_machine_device_unplug_request;
4430 hc->unplug = spapr_machine_device_unplug;
4431
4432 smc->dr_lmb_enabled = true;
4433 smc->update_dt_enabled = true;
4434 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4435 mc->has_hotpluggable_cpus = true;
4436 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4437 fwc->get_dev_path = spapr_get_fw_dev_path;
4438 nc->nmi_monitor_handler = spapr_nmi;
4439 smc->phb_placement = spapr_phb_placement;
4440 vhc->hypercall = emulate_spapr_hypercall;
4441 vhc->hpt_mask = spapr_hpt_mask;
4442 vhc->map_hptes = spapr_map_hptes;
4443 vhc->unmap_hptes = spapr_unmap_hptes;
4444 vhc->hpte_set_c = spapr_hpte_set_c;
4445 vhc->hpte_set_r = spapr_hpte_set_r;
4446 vhc->get_pate = spapr_get_pate;
4447 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4448 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4449 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4450 xic->ics_get = spapr_ics_get;
4451 xic->ics_resend = spapr_ics_resend;
4452 xic->icp_get = spapr_icp_get;
4453 ispc->print_info = spapr_pic_print_info;
4454 /* Force NUMA node memory size to be a multiple of
4455 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4456 * in which LMBs are represented and hot-added
4457 */
4458 mc->numa_mem_align_shift = 28;
4459 mc->numa_mem_supported = true;
4460
4461 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4462 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4463 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4464 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4465 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4466 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4467 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4468 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4469 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4470 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4471 spapr_caps_add_properties(smc, &error_abort);
4472 smc->irq = &spapr_irq_dual;
4473 smc->dr_phb_enabled = true;
4474 }
4475
4476 static const TypeInfo spapr_machine_info = {
4477 .name = TYPE_SPAPR_MACHINE,
4478 .parent = TYPE_MACHINE,
4479 .abstract = true,
4480 .instance_size = sizeof(SpaprMachineState),
4481 .instance_init = spapr_instance_init,
4482 .instance_finalize = spapr_machine_finalizefn,
4483 .class_size = sizeof(SpaprMachineClass),
4484 .class_init = spapr_machine_class_init,
4485 .interfaces = (InterfaceInfo[]) {
4486 { TYPE_FW_PATH_PROVIDER },
4487 { TYPE_NMI },
4488 { TYPE_HOTPLUG_HANDLER },
4489 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4490 { TYPE_XICS_FABRIC },
4491 { TYPE_INTERRUPT_STATS_PROVIDER },
4492 { }
4493 },
4494 };
4495
4496 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4497 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4498 void *data) \
4499 { \
4500 MachineClass *mc = MACHINE_CLASS(oc); \
4501 spapr_machine_##suffix##_class_options(mc); \
4502 if (latest) { \
4503 mc->alias = "pseries"; \
4504 mc->is_default = 1; \
4505 } \
4506 } \
4507 static const TypeInfo spapr_machine_##suffix##_info = { \
4508 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4509 .parent = TYPE_SPAPR_MACHINE, \
4510 .class_init = spapr_machine_##suffix##_class_init, \
4511 }; \
4512 static void spapr_machine_register_##suffix(void) \
4513 { \
4514 type_register(&spapr_machine_##suffix##_info); \
4515 } \
4516 type_init(spapr_machine_register_##suffix)
4517
4518 /*
4519 * pseries-4.2
4520 */
4521 static void spapr_machine_4_2_class_options(MachineClass *mc)
4522 {
4523 /* Defaults for the latest behaviour inherited from the base class */
4524 }
4525
4526 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4527
4528 /*
4529 * pseries-4.1
4530 */
4531 static void spapr_machine_4_1_class_options(MachineClass *mc)
4532 {
4533 static GlobalProperty compat[] = {
4534 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4535 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4536 };
4537
4538 spapr_machine_4_2_class_options(mc);
4539 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4540 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4541 }
4542
4543 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4544
4545 /*
4546 * pseries-4.0
4547 */
4548 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4549 uint64_t *buid, hwaddr *pio,
4550 hwaddr *mmio32, hwaddr *mmio64,
4551 unsigned n_dma, uint32_t *liobns,
4552 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4553 {
4554 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4555 nv2gpa, nv2atsd, errp);
4556 *nv2gpa = 0;
4557 *nv2atsd = 0;
4558 }
4559
4560 static void spapr_machine_4_0_class_options(MachineClass *mc)
4561 {
4562 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4563
4564 spapr_machine_4_1_class_options(mc);
4565 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4566 smc->phb_placement = phb_placement_4_0;
4567 smc->irq = &spapr_irq_xics;
4568 smc->pre_4_1_migration = true;
4569 }
4570
4571 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4572
4573 /*
4574 * pseries-3.1
4575 */
4576 static void spapr_machine_3_1_class_options(MachineClass *mc)
4577 {
4578 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4579
4580 spapr_machine_4_0_class_options(mc);
4581 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4582
4583 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4584 smc->update_dt_enabled = false;
4585 smc->dr_phb_enabled = false;
4586 smc->broken_host_serial_model = true;
4587 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4588 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4589 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4590 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4591 }
4592
4593 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4594
4595 /*
4596 * pseries-3.0
4597 */
4598
4599 static void spapr_machine_3_0_class_options(MachineClass *mc)
4600 {
4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4602
4603 spapr_machine_3_1_class_options(mc);
4604 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4605
4606 smc->legacy_irq_allocation = true;
4607 smc->irq = &spapr_irq_xics_legacy;
4608 }
4609
4610 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4611
4612 /*
4613 * pseries-2.12
4614 */
4615 static void spapr_machine_2_12_class_options(MachineClass *mc)
4616 {
4617 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618 static GlobalProperty compat[] = {
4619 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4620 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4621 };
4622
4623 spapr_machine_3_0_class_options(mc);
4624 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4625 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4626
4627 /* We depend on kvm_enabled() to choose a default value for the
4628 * hpt-max-page-size capability. Of course we can't do it here
4629 * because this is too early and the HW accelerator isn't initialzed
4630 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4631 */
4632 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4633 }
4634
4635 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4636
4637 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4638 {
4639 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4640
4641 spapr_machine_2_12_class_options(mc);
4642 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4643 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4644 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4645 }
4646
4647 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4648
4649 /*
4650 * pseries-2.11
4651 */
4652
4653 static void spapr_machine_2_11_class_options(MachineClass *mc)
4654 {
4655 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4656
4657 spapr_machine_2_12_class_options(mc);
4658 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4659 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4660 }
4661
4662 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4663
4664 /*
4665 * pseries-2.10
4666 */
4667
4668 static void spapr_machine_2_10_class_options(MachineClass *mc)
4669 {
4670 spapr_machine_2_11_class_options(mc);
4671 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4672 }
4673
4674 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4675
4676 /*
4677 * pseries-2.9
4678 */
4679
4680 static void spapr_machine_2_9_class_options(MachineClass *mc)
4681 {
4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683 static GlobalProperty compat[] = {
4684 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4685 };
4686
4687 spapr_machine_2_10_class_options(mc);
4688 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4689 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4690 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4691 smc->pre_2_10_has_unused_icps = true;
4692 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4693 }
4694
4695 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4696
4697 /*
4698 * pseries-2.8
4699 */
4700
4701 static void spapr_machine_2_8_class_options(MachineClass *mc)
4702 {
4703 static GlobalProperty compat[] = {
4704 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4705 };
4706
4707 spapr_machine_2_9_class_options(mc);
4708 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4709 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4710 mc->numa_mem_align_shift = 23;
4711 }
4712
4713 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4714
4715 /*
4716 * pseries-2.7
4717 */
4718
4719 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4720 uint64_t *buid, hwaddr *pio,
4721 hwaddr *mmio32, hwaddr *mmio64,
4722 unsigned n_dma, uint32_t *liobns,
4723 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4724 {
4725 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4726 const uint64_t base_buid = 0x800000020000000ULL;
4727 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4728 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4729 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4730 const uint32_t max_index = 255;
4731 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4732
4733 uint64_t ram_top = MACHINE(spapr)->ram_size;
4734 hwaddr phb0_base, phb_base;
4735 int i;
4736
4737 /* Do we have device memory? */
4738 if (MACHINE(spapr)->maxram_size > ram_top) {
4739 /* Can't just use maxram_size, because there may be an
4740 * alignment gap between normal and device memory regions
4741 */
4742 ram_top = MACHINE(spapr)->device_memory->base +
4743 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4744 }
4745
4746 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4747
4748 if (index > max_index) {
4749 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4750 max_index);
4751 return;
4752 }
4753
4754 *buid = base_buid + index;
4755 for (i = 0; i < n_dma; ++i) {
4756 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4757 }
4758
4759 phb_base = phb0_base + index * phb_spacing;
4760 *pio = phb_base + pio_offset;
4761 *mmio32 = phb_base + mmio_offset;
4762 /*
4763 * We don't set the 64-bit MMIO window, relying on the PHB's
4764 * fallback behaviour of automatically splitting a large "32-bit"
4765 * window into contiguous 32-bit and 64-bit windows
4766 */
4767
4768 *nv2gpa = 0;
4769 *nv2atsd = 0;
4770 }
4771
4772 static void spapr_machine_2_7_class_options(MachineClass *mc)
4773 {
4774 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4775 static GlobalProperty compat[] = {
4776 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4777 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4778 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4779 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4780 };
4781
4782 spapr_machine_2_8_class_options(mc);
4783 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4784 mc->default_machine_opts = "modern-hotplug-events=off";
4785 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4786 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4787 smc->phb_placement = phb_placement_2_7;
4788 }
4789
4790 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4791
4792 /*
4793 * pseries-2.6
4794 */
4795
4796 static void spapr_machine_2_6_class_options(MachineClass *mc)
4797 {
4798 static GlobalProperty compat[] = {
4799 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4800 };
4801
4802 spapr_machine_2_7_class_options(mc);
4803 mc->has_hotpluggable_cpus = false;
4804 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4805 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4806 }
4807
4808 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4809
4810 /*
4811 * pseries-2.5
4812 */
4813
4814 static void spapr_machine_2_5_class_options(MachineClass *mc)
4815 {
4816 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4817 static GlobalProperty compat[] = {
4818 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4819 };
4820
4821 spapr_machine_2_6_class_options(mc);
4822 smc->use_ohci_by_default = true;
4823 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4824 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4825 }
4826
4827 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4828
4829 /*
4830 * pseries-2.4
4831 */
4832
4833 static void spapr_machine_2_4_class_options(MachineClass *mc)
4834 {
4835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4836
4837 spapr_machine_2_5_class_options(mc);
4838 smc->dr_lmb_enabled = false;
4839 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4840 }
4841
4842 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4843
4844 /*
4845 * pseries-2.3
4846 */
4847
4848 static void spapr_machine_2_3_class_options(MachineClass *mc)
4849 {
4850 static GlobalProperty compat[] = {
4851 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4852 };
4853 spapr_machine_2_4_class_options(mc);
4854 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4855 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4856 }
4857 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4858
4859 /*
4860 * pseries-2.2
4861 */
4862
4863 static void spapr_machine_2_2_class_options(MachineClass *mc)
4864 {
4865 static GlobalProperty compat[] = {
4866 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4867 };
4868
4869 spapr_machine_2_3_class_options(mc);
4870 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4871 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4872 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4873 }
4874 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4875
4876 /*
4877 * pseries-2.1
4878 */
4879
4880 static void spapr_machine_2_1_class_options(MachineClass *mc)
4881 {
4882 spapr_machine_2_2_class_options(mc);
4883 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4884 }
4885 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4886
4887 static void spapr_machine_register_types(void)
4888 {
4889 type_register_static(&spapr_machine_info);
4890 }
4891
4892 type_init(spapr_machine_register_types)