]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
roms: Allow passing configure options to the EDK2 build tools
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
59
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_INTC 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 int spapr_max_server_number(SpaprMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 SpaprMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 SpaprDrc *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
514 *
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521 }
522
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 }
529
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
535 }
536
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
541
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
544
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 }
548
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
561
562 /*
563 * We set this property to let the guest know that it can use the large
564 * decrementer and its width in bits.
565 */
566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568 pcc->lrg_decr_bits)));
569 }
570
571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
572 {
573 CPUState **rev;
574 CPUState *cs;
575 int n_cpus;
576 int cpus_offset;
577 char *nodename;
578 int i;
579
580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581 _FDT(cpus_offset);
582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
584
585 /*
586 * We walk the CPUs in reverse order to ensure that CPU DT nodes
587 * created by fdt_add_subnode() end up in the right order in FDT
588 * for the guest kernel the enumerate the CPUs correctly.
589 *
590 * The CPU list cannot be traversed in reverse order, so we need
591 * to do extra work.
592 */
593 n_cpus = 0;
594 rev = NULL;
595 CPU_FOREACH(cs) {
596 rev = g_renew(CPUState *, rev, n_cpus + 1);
597 rev[n_cpus++] = cs;
598 }
599
600 for (i = n_cpus - 1; i >= 0; i--) {
601 CPUState *cs = rev[i];
602 PowerPCCPU *cpu = POWERPC_CPU(cs);
603 int index = spapr_get_vcpu_id(cpu);
604 DeviceClass *dc = DEVICE_GET_CLASS(cs);
605 int offset;
606
607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608 continue;
609 }
610
611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613 g_free(nodename);
614 _FDT(offset);
615 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
616 }
617
618 g_free(rev);
619 }
620
621 static int spapr_rng_populate_dt(void *fdt)
622 {
623 int node;
624 int ret;
625
626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627 if (node <= 0) {
628 return -1;
629 }
630 ret = fdt_setprop_string(fdt, node, "device_type",
631 "ibm,platform-facilities");
632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
634
635 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636 if (node <= 0) {
637 return -1;
638 }
639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
640
641 return ret ? -1 : 0;
642 }
643
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
645 {
646 MemoryDeviceInfoList *info;
647
648 for (info = list; info; info = info->next) {
649 MemoryDeviceInfo *value = info->value;
650
651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
653
654 if (addr >= pcdimm_info->addr &&
655 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656 return pcdimm_info->node;
657 }
658 }
659 }
660
661 return -1;
662 }
663
664 struct sPAPRDrconfCellV2 {
665 uint32_t seq_lmbs;
666 uint64_t base_addr;
667 uint32_t drc_index;
668 uint32_t aa_index;
669 uint32_t flags;
670 } QEMU_PACKED;
671
672 typedef struct DrconfCellQueue {
673 struct sPAPRDrconfCellV2 cell;
674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
676
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679 uint32_t drc_index, uint32_t aa_index,
680 uint32_t flags)
681 {
682 DrconfCellQueue *elem;
683
684 elem = g_malloc0(sizeof(*elem));
685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686 elem->cell.base_addr = cpu_to_be64(base_addr);
687 elem->cell.drc_index = cpu_to_be32(drc_index);
688 elem->cell.aa_index = cpu_to_be32(aa_index);
689 elem->cell.flags = cpu_to_be32(flags);
690
691 return elem;
692 }
693
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
696 int offset, MemoryDeviceInfoList *dimms)
697 {
698 MachineState *machine = MACHINE(spapr);
699 uint8_t *int_buf, *cur_index;
700 int ret;
701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702 uint64_t addr, cur_addr, size;
703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704 uint64_t mem_end = machine->device_memory->base +
705 memory_region_size(&machine->device_memory->mr);
706 uint32_t node, buf_len, nr_entries = 0;
707 SpaprDrc *drc;
708 DrconfCellQueue *elem, *next;
709 MemoryDeviceInfoList *info;
710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
712
713 /* Entry to cover RAM and the gap area */
714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715 SPAPR_LMB_FLAGS_RESERVED |
716 SPAPR_LMB_FLAGS_DRC_INVALID);
717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718 nr_entries++;
719
720 cur_addr = machine->device_memory->base;
721 for (info = dimms; info; info = info->next) {
722 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
723
724 addr = di->addr;
725 size = di->size;
726 node = di->node;
727
728 /* Entry for hot-pluggable area */
729 if (cur_addr < addr) {
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733 cur_addr, spapr_drc_index(drc), -1, 0);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
736 }
737
738 /* Entry for DIMM */
739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740 g_assert(drc);
741 elem = spapr_get_drconf_cell(size / lmb_size, addr,
742 spapr_drc_index(drc), node,
743 SPAPR_LMB_FLAGS_ASSIGNED);
744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745 nr_entries++;
746 cur_addr = addr + size;
747 }
748
749 /* Entry for remaining hotpluggable area */
750 if (cur_addr < mem_end) {
751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752 g_assert(drc);
753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754 cur_addr, spapr_drc_index(drc), -1, 0);
755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756 nr_entries++;
757 }
758
759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760 int_buf = cur_index = g_malloc0(buf_len);
761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762 cur_index += sizeof(nr_entries);
763
764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766 cur_index += sizeof(elem->cell);
767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768 g_free(elem);
769 }
770
771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772 g_free(int_buf);
773 if (ret < 0) {
774 return -1;
775 }
776 return 0;
777 }
778
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
781 int offset, MemoryDeviceInfoList *dimms)
782 {
783 MachineState *machine = MACHINE(spapr);
784 int i, ret;
785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787 uint32_t nr_lmbs = (machine->device_memory->base +
788 memory_region_size(&machine->device_memory->mr)) /
789 lmb_size;
790 uint32_t *int_buf, *cur_index, buf_len;
791
792 /*
793 * Allocate enough buffer size to fit in ibm,dynamic-memory
794 */
795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796 cur_index = int_buf = g_malloc0(buf_len);
797 int_buf[0] = cpu_to_be32(nr_lmbs);
798 cur_index++;
799 for (i = 0; i < nr_lmbs; i++) {
800 uint64_t addr = i * lmb_size;
801 uint32_t *dynamic_memory = cur_index;
802
803 if (i >= device_lmb_start) {
804 SpaprDrc *drc;
805
806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807 g_assert(drc);
808
809 dynamic_memory[0] = cpu_to_be32(addr >> 32);
810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814 if (memory_region_present(get_system_memory(), addr)) {
815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816 } else {
817 dynamic_memory[5] = cpu_to_be32(0);
818 }
819 } else {
820 /*
821 * LMB information for RMA, boot time RAM and gap b/n RAM and
822 * device memory region -- all these are marked as reserved
823 * and as having no valid DRC.
824 */
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(0);
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(-1);
830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831 SPAPR_LMB_FLAGS_DRC_INVALID);
832 }
833
834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
835 }
836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837 g_free(int_buf);
838 if (ret < 0) {
839 return -1;
840 }
841 return 0;
842 }
843
844 /*
845 * Adds ibm,dynamic-reconfiguration-memory node.
846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847 * of this device tree node.
848 */
849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
850 {
851 MachineState *machine = MACHINE(spapr);
852 int ret, i, offset;
853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855 uint32_t *int_buf, *cur_index, buf_len;
856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857 MemoryDeviceInfoList *dimms = NULL;
858
859 /*
860 * Don't create the node if there is no device memory
861 */
862 if (machine->ram_size == machine->maxram_size) {
863 return 0;
864 }
865
866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
867
868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869 sizeof(prop_lmb_size));
870 if (ret < 0) {
871 return ret;
872 }
873
874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875 if (ret < 0) {
876 return ret;
877 }
878
879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880 if (ret < 0) {
881 return ret;
882 }
883
884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885 dimms = qmp_memory_device_list();
886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888 } else {
889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
890 }
891 qapi_free_MemoryDeviceInfoList(dimms);
892
893 if (ret < 0) {
894 return ret;
895 }
896
897 /* ibm,associativity-lookup-arrays */
898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899 cur_index = int_buf = g_malloc0(buf_len);
900 int_buf[0] = cpu_to_be32(nr_nodes);
901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902 cur_index += 2;
903 for (i = 0; i < nr_nodes; i++) {
904 uint32_t associativity[] = {
905 cpu_to_be32(0x0),
906 cpu_to_be32(0x0),
907 cpu_to_be32(0x0),
908 cpu_to_be32(i)
909 };
910 memcpy(cur_index, associativity, sizeof(associativity));
911 cur_index += 4;
912 }
913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914 (cur_index - int_buf) * sizeof(uint32_t));
915 g_free(int_buf);
916
917 return ret;
918 }
919
920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
921 SpaprOptionVector *ov5_updates)
922 {
923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924 int ret = 0, offset;
925
926 /* Generate ibm,dynamic-reconfiguration-memory node if required */
927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928 g_assert(smc->dr_lmb_enabled);
929 ret = spapr_populate_drconf_memory(spapr, fdt);
930 if (ret) {
931 goto out;
932 }
933 }
934
935 offset = fdt_path_offset(fdt, "/chosen");
936 if (offset < 0) {
937 offset = fdt_add_subnode(fdt, 0, "chosen");
938 if (offset < 0) {
939 return offset;
940 }
941 }
942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943 "ibm,architecture-vec-5");
944
945 out:
946 return ret;
947 }
948
949 static bool spapr_hotplugged_dev_before_cas(void)
950 {
951 Object *drc_container, *obj;
952 ObjectProperty *prop;
953 ObjectPropertyIterator iter;
954
955 drc_container = container_get(object_get_root(), "/dr-connector");
956 object_property_iter_init(&iter, drc_container);
957 while ((prop = object_property_iter_next(&iter))) {
958 if (!strstart(prop->type, "link<", NULL)) {
959 continue;
960 }
961 obj = object_property_get_link(drc_container, prop->name, NULL);
962 if (spapr_drc_needed(obj)) {
963 return true;
964 }
965 }
966 return false;
967 }
968
969 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
970 target_ulong addr, target_ulong size,
971 SpaprOptionVector *ov5_updates)
972 {
973 void *fdt, *fdt_skel;
974 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
975
976 if (spapr_hotplugged_dev_before_cas()) {
977 return 1;
978 }
979
980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981 error_report("SLOF provided an unexpected CAS buffer size "
982 TARGET_FMT_lu " (min: %zu, max: %u)",
983 size, sizeof(hdr), FW_MAX_SIZE);
984 exit(EXIT_FAILURE);
985 }
986
987 size -= sizeof(hdr);
988
989 /* Create skeleton */
990 fdt_skel = g_malloc0(size);
991 _FDT((fdt_create(fdt_skel, size)));
992 _FDT((fdt_finish_reservemap(fdt_skel)));
993 _FDT((fdt_begin_node(fdt_skel, "")));
994 _FDT((fdt_end_node(fdt_skel)));
995 _FDT((fdt_finish(fdt_skel)));
996 fdt = g_malloc0(size);
997 _FDT((fdt_open_into(fdt_skel, fdt, size)));
998 g_free(fdt_skel);
999
1000 /* Fixup cpu nodes */
1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1002
1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004 return -1;
1005 }
1006
1007 /* Pack resulting tree */
1008 _FDT((fdt_pack(fdt)));
1009
1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011 trace_spapr_cas_failed(size);
1012 return -1;
1013 }
1014
1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018 g_free(fdt);
1019
1020 return 0;
1021 }
1022
1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1024 {
1025 int rtas;
1026 GString *hypertas = g_string_sized_new(256);
1027 GString *qemu_hypertas = g_string_sized_new(256);
1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031 uint32_t lrdr_capacity[] = {
1032 cpu_to_be32(max_device_addr >> 32),
1033 cpu_to_be32(max_device_addr & 0xffffffff),
1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035 cpu_to_be32(max_cpus / smp_threads),
1036 };
1037 uint32_t maxdomains[] = {
1038 cpu_to_be32(4),
1039 cpu_to_be32(0),
1040 cpu_to_be32(0),
1041 cpu_to_be32(0),
1042 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1043 };
1044
1045 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1046
1047 /* hypertas */
1048 add_str(hypertas, "hcall-pft");
1049 add_str(hypertas, "hcall-term");
1050 add_str(hypertas, "hcall-dabr");
1051 add_str(hypertas, "hcall-interrupt");
1052 add_str(hypertas, "hcall-tce");
1053 add_str(hypertas, "hcall-vio");
1054 add_str(hypertas, "hcall-splpar");
1055 add_str(hypertas, "hcall-bulk");
1056 add_str(hypertas, "hcall-set-mode");
1057 add_str(hypertas, "hcall-sprg0");
1058 add_str(hypertas, "hcall-copy");
1059 add_str(hypertas, "hcall-debug");
1060 add_str(hypertas, "hcall-vphn");
1061 add_str(qemu_hypertas, "hcall-memop1");
1062
1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1064 add_str(hypertas, "hcall-multi-tce");
1065 }
1066
1067 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1068 add_str(hypertas, "hcall-hpt-resize");
1069 }
1070
1071 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1072 hypertas->str, hypertas->len));
1073 g_string_free(hypertas, TRUE);
1074 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1075 qemu_hypertas->str, qemu_hypertas->len));
1076 g_string_free(qemu_hypertas, TRUE);
1077
1078 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1079 refpoints, sizeof(refpoints)));
1080
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1082 maxdomains, sizeof(maxdomains)));
1083
1084 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1085 RTAS_ERROR_LOG_MAX));
1086 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1087 RTAS_EVENT_SCAN_RATE));
1088
1089 g_assert(msi_nonbroken);
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1091
1092 /*
1093 * According to PAPR, rtas ibm,os-term does not guarantee a return
1094 * back to the guest cpu.
1095 *
1096 * While an additional ibm,extended-os-term property indicates
1097 * that rtas call return will always occur. Set this property.
1098 */
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1100
1101 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1102 lrdr_capacity, sizeof(lrdr_capacity)));
1103
1104 spapr_dt_rtas_tokens(fdt, rtas);
1105 }
1106
1107 /*
1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1109 * and the XIVE features that the guest may request and thus the valid
1110 * values for bytes 23..26 of option vector 5:
1111 */
1112 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1113 int chosen)
1114 {
1115 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1116
1117 char val[2 * 4] = {
1118 23, spapr->irq->ov5, /* Xive mode. */
1119 24, 0x00, /* Hash/Radix, filled in below. */
1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1121 26, 0x40, /* Radix options: GTSE == yes. */
1122 };
1123
1124 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1125 first_ppc_cpu->compat_pvr)) {
1126 /*
1127 * If we're in a pre POWER9 compat mode then the guest should
1128 * do hash and use the legacy interrupt mode
1129 */
1130 val[1] = 0x00; /* XICS */
1131 val[3] = 0x00; /* Hash */
1132 } else if (kvm_enabled()) {
1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1134 val[3] = 0x80; /* OV5_MMU_BOTH */
1135 } else if (kvmppc_has_cap_mmu_radix()) {
1136 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1137 } else {
1138 val[3] = 0x00; /* Hash */
1139 }
1140 } else {
1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1142 val[3] = 0xC0;
1143 }
1144 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1145 val, sizeof(val)));
1146 }
1147
1148 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1149 {
1150 MachineState *machine = MACHINE(spapr);
1151 int chosen;
1152 const char *boot_device = machine->boot_order;
1153 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1154 size_t cb = 0;
1155 char *bootlist = get_boot_devices_list(&cb);
1156
1157 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1158
1159 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1160 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1161 spapr->initrd_base));
1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1163 spapr->initrd_base + spapr->initrd_size));
1164
1165 if (spapr->kernel_size) {
1166 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1167 cpu_to_be64(spapr->kernel_size) };
1168
1169 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1170 &kprop, sizeof(kprop)));
1171 if (spapr->kernel_le) {
1172 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1173 }
1174 }
1175 if (boot_menu) {
1176 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1177 }
1178 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1181
1182 if (cb && bootlist) {
1183 int i;
1184
1185 for (i = 0; i < cb; i++) {
1186 if (bootlist[i] == '\n') {
1187 bootlist[i] = ' ';
1188 }
1189 }
1190 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1191 }
1192
1193 if (boot_device && strlen(boot_device)) {
1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1195 }
1196
1197 if (!spapr->has_graphics && stdout_path) {
1198 /*
1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1200 * kernel. New platforms should only use the "stdout-path" property. Set
1201 * the new property and continue using older property to remain
1202 * compatible with the existing firmware.
1203 */
1204 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1205 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1206 }
1207
1208 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1209
1210 g_free(stdout_path);
1211 g_free(bootlist);
1212 }
1213
1214 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1215 {
1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1217 * KVM to work under pHyp with some guest co-operation */
1218 int hypervisor;
1219 uint8_t hypercall[16];
1220
1221 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1222 /* indicate KVM hypercall interface */
1223 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1224 if (kvmppc_has_cap_fixup_hcalls()) {
1225 /*
1226 * Older KVM versions with older guest kernels were broken
1227 * with the magic page, don't allow the guest to map it.
1228 */
1229 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1230 sizeof(hypercall))) {
1231 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1232 hypercall, sizeof(hypercall)));
1233 }
1234 }
1235 }
1236
1237 static void *spapr_build_fdt(SpaprMachineState *spapr)
1238 {
1239 MachineState *machine = MACHINE(spapr);
1240 MachineClass *mc = MACHINE_GET_CLASS(machine);
1241 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1242 int ret;
1243 void *fdt;
1244 SpaprPhbState *phb;
1245 char *buf;
1246
1247 fdt = g_malloc0(FDT_MAX_SIZE);
1248 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1249
1250 /* Root node */
1251 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1252 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1253 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1254
1255 /* Guest UUID & Name*/
1256 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1257 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1258 if (qemu_uuid_set) {
1259 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1260 }
1261 g_free(buf);
1262
1263 if (qemu_get_vm_name()) {
1264 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1265 qemu_get_vm_name()));
1266 }
1267
1268 /* Host Model & Serial Number */
1269 if (spapr->host_model) {
1270 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1271 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1272 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1273 g_free(buf);
1274 }
1275
1276 if (spapr->host_serial) {
1277 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1278 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1279 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1280 g_free(buf);
1281 }
1282
1283 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1284 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1285
1286 /* /interrupt controller */
1287 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1288 PHANDLE_INTC);
1289
1290 ret = spapr_populate_memory(spapr, fdt);
1291 if (ret < 0) {
1292 error_report("couldn't setup memory nodes in fdt");
1293 exit(1);
1294 }
1295
1296 /* /vdevice */
1297 spapr_dt_vdevice(spapr->vio_bus, fdt);
1298
1299 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1300 ret = spapr_rng_populate_dt(fdt);
1301 if (ret < 0) {
1302 error_report("could not set up rng device in the fdt");
1303 exit(1);
1304 }
1305 }
1306
1307 QLIST_FOREACH(phb, &spapr->phbs, list) {
1308 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1309 spapr->irq->nr_msis, NULL);
1310 if (ret < 0) {
1311 error_report("couldn't setup PCI devices in fdt");
1312 exit(1);
1313 }
1314 }
1315
1316 /* cpus */
1317 spapr_populate_cpus_dt_node(fdt, spapr);
1318
1319 if (smc->dr_lmb_enabled) {
1320 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1321 }
1322
1323 if (mc->has_hotpluggable_cpus) {
1324 int offset = fdt_path_offset(fdt, "/cpus");
1325 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1326 SPAPR_DR_CONNECTOR_TYPE_CPU);
1327 if (ret < 0) {
1328 error_report("Couldn't set up CPU DR device tree properties");
1329 exit(1);
1330 }
1331 }
1332
1333 /* /event-sources */
1334 spapr_dt_events(spapr, fdt);
1335
1336 /* /rtas */
1337 spapr_dt_rtas(spapr, fdt);
1338
1339 /* /chosen */
1340 spapr_dt_chosen(spapr, fdt);
1341
1342 /* /hypervisor */
1343 if (kvm_enabled()) {
1344 spapr_dt_hypervisor(spapr, fdt);
1345 }
1346
1347 /* Build memory reserve map */
1348 if (spapr->kernel_size) {
1349 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1350 }
1351 if (spapr->initrd_size) {
1352 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1353 }
1354
1355 /* ibm,client-architecture-support updates */
1356 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1357 if (ret < 0) {
1358 error_report("couldn't setup CAS properties fdt");
1359 exit(1);
1360 }
1361
1362 if (smc->dr_phb_enabled) {
1363 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1364 if (ret < 0) {
1365 error_report("Couldn't set up PHB DR device tree properties");
1366 exit(1);
1367 }
1368 }
1369
1370 return fdt;
1371 }
1372
1373 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1374 {
1375 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1376 }
1377
1378 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1379 PowerPCCPU *cpu)
1380 {
1381 CPUPPCState *env = &cpu->env;
1382
1383 /* The TCG path should also be holding the BQL at this point */
1384 g_assert(qemu_mutex_iothread_locked());
1385
1386 if (msr_pr) {
1387 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1388 env->gpr[3] = H_PRIVILEGE;
1389 } else {
1390 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1391 }
1392 }
1393
1394 struct LPCRSyncState {
1395 target_ulong value;
1396 target_ulong mask;
1397 };
1398
1399 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1400 {
1401 struct LPCRSyncState *s = arg.host_ptr;
1402 PowerPCCPU *cpu = POWERPC_CPU(cs);
1403 CPUPPCState *env = &cpu->env;
1404 target_ulong lpcr;
1405
1406 cpu_synchronize_state(cs);
1407 lpcr = env->spr[SPR_LPCR];
1408 lpcr &= ~s->mask;
1409 lpcr |= s->value;
1410 ppc_store_lpcr(cpu, lpcr);
1411 }
1412
1413 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1414 {
1415 CPUState *cs;
1416 struct LPCRSyncState s = {
1417 .value = value,
1418 .mask = mask
1419 };
1420 CPU_FOREACH(cs) {
1421 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1422 }
1423 }
1424
1425 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1426 {
1427 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1428
1429 /* Copy PATE1:GR into PATE0:HR */
1430 entry->dw0 = spapr->patb_entry & PATE0_HR;
1431 entry->dw1 = spapr->patb_entry;
1432 }
1433
1434 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1435 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1436 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1437 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1438 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1439
1440 /*
1441 * Get the fd to access the kernel htab, re-opening it if necessary
1442 */
1443 static int get_htab_fd(SpaprMachineState *spapr)
1444 {
1445 Error *local_err = NULL;
1446
1447 if (spapr->htab_fd >= 0) {
1448 return spapr->htab_fd;
1449 }
1450
1451 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1452 if (spapr->htab_fd < 0) {
1453 error_report_err(local_err);
1454 }
1455
1456 return spapr->htab_fd;
1457 }
1458
1459 void close_htab_fd(SpaprMachineState *spapr)
1460 {
1461 if (spapr->htab_fd >= 0) {
1462 close(spapr->htab_fd);
1463 }
1464 spapr->htab_fd = -1;
1465 }
1466
1467 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1468 {
1469 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1470
1471 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1472 }
1473
1474 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1475 {
1476 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1477
1478 assert(kvm_enabled());
1479
1480 if (!spapr->htab) {
1481 return 0;
1482 }
1483
1484 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1485 }
1486
1487 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1488 hwaddr ptex, int n)
1489 {
1490 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1491 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1492
1493 if (!spapr->htab) {
1494 /*
1495 * HTAB is controlled by KVM. Fetch into temporary buffer
1496 */
1497 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1498 kvmppc_read_hptes(hptes, ptex, n);
1499 return hptes;
1500 }
1501
1502 /*
1503 * HTAB is controlled by QEMU. Just point to the internally
1504 * accessible PTEG.
1505 */
1506 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1507 }
1508
1509 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1510 const ppc_hash_pte64_t *hptes,
1511 hwaddr ptex, int n)
1512 {
1513 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1514
1515 if (!spapr->htab) {
1516 g_free((void *)hptes);
1517 }
1518
1519 /* Nothing to do for qemu managed HPT */
1520 }
1521
1522 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1523 uint64_t pte0, uint64_t pte1)
1524 {
1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1527
1528 if (!spapr->htab) {
1529 kvmppc_write_hpte(ptex, pte0, pte1);
1530 } else {
1531 if (pte0 & HPTE64_V_VALID) {
1532 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1533 /*
1534 * When setting valid, we write PTE1 first. This ensures
1535 * proper synchronization with the reading code in
1536 * ppc_hash64_pteg_search()
1537 */
1538 smp_wmb();
1539 stq_p(spapr->htab + offset, pte0);
1540 } else {
1541 stq_p(spapr->htab + offset, pte0);
1542 /*
1543 * When clearing it we set PTE0 first. This ensures proper
1544 * synchronization with the reading code in
1545 * ppc_hash64_pteg_search()
1546 */
1547 smp_wmb();
1548 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1549 }
1550 }
1551 }
1552
1553 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1554 {
1555 int shift;
1556
1557 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1558 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1559 * that's much more than is needed for Linux guests */
1560 shift = ctz64(pow2ceil(ramsize)) - 7;
1561 shift = MAX(shift, 18); /* Minimum architected size */
1562 shift = MIN(shift, 46); /* Maximum architected size */
1563 return shift;
1564 }
1565
1566 void spapr_free_hpt(SpaprMachineState *spapr)
1567 {
1568 g_free(spapr->htab);
1569 spapr->htab = NULL;
1570 spapr->htab_shift = 0;
1571 close_htab_fd(spapr);
1572 }
1573
1574 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1575 Error **errp)
1576 {
1577 long rc;
1578
1579 /* Clean up any HPT info from a previous boot */
1580 spapr_free_hpt(spapr);
1581
1582 rc = kvmppc_reset_htab(shift);
1583 if (rc < 0) {
1584 /* kernel-side HPT needed, but couldn't allocate one */
1585 error_setg_errno(errp, errno,
1586 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1587 shift);
1588 /* This is almost certainly fatal, but if the caller really
1589 * wants to carry on with shift == 0, it's welcome to try */
1590 } else if (rc > 0) {
1591 /* kernel-side HPT allocated */
1592 if (rc != shift) {
1593 error_setg(errp,
1594 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1595 shift, rc);
1596 }
1597
1598 spapr->htab_shift = shift;
1599 spapr->htab = NULL;
1600 } else {
1601 /* kernel-side HPT not needed, allocate in userspace instead */
1602 size_t size = 1ULL << shift;
1603 int i;
1604
1605 spapr->htab = qemu_memalign(size, size);
1606 if (!spapr->htab) {
1607 error_setg_errno(errp, errno,
1608 "Could not allocate HPT of order %d", shift);
1609 return;
1610 }
1611
1612 memset(spapr->htab, 0, size);
1613 spapr->htab_shift = shift;
1614
1615 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1616 DIRTY_HPTE(HPTE(spapr->htab, i));
1617 }
1618 }
1619 /* We're setting up a hash table, so that means we're not radix */
1620 spapr->patb_entry = 0;
1621 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1622 }
1623
1624 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1625 {
1626 int hpt_shift;
1627
1628 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1629 || (spapr->cas_reboot
1630 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1631 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1632 } else {
1633 uint64_t current_ram_size;
1634
1635 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1636 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1637 }
1638 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1639
1640 if (spapr->vrma_adjust) {
1641 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1642 spapr->htab_shift);
1643 }
1644 }
1645
1646 static int spapr_reset_drcs(Object *child, void *opaque)
1647 {
1648 SpaprDrc *drc =
1649 (SpaprDrc *) object_dynamic_cast(child,
1650 TYPE_SPAPR_DR_CONNECTOR);
1651
1652 if (drc) {
1653 spapr_drc_reset(drc);
1654 }
1655
1656 return 0;
1657 }
1658
1659 static void spapr_machine_reset(void)
1660 {
1661 MachineState *machine = MACHINE(qdev_get_machine());
1662 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1663 PowerPCCPU *first_ppc_cpu;
1664 uint32_t rtas_limit;
1665 hwaddr rtas_addr, fdt_addr;
1666 void *fdt;
1667 int rc;
1668
1669 spapr_caps_apply(spapr);
1670
1671 first_ppc_cpu = POWERPC_CPU(first_cpu);
1672 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1673 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1674 spapr->max_compat_pvr)) {
1675 /*
1676 * If using KVM with radix mode available, VCPUs can be started
1677 * without a HPT because KVM will start them in radix mode.
1678 * Set the GR bit in PATE so that we know there is no HPT.
1679 */
1680 spapr->patb_entry = PATE1_GR;
1681 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1682 } else {
1683 spapr_setup_hpt_and_vrma(spapr);
1684 }
1685
1686 /*
1687 * If this reset wasn't generated by CAS, we should reset our
1688 * negotiated options and start from scratch
1689 */
1690 if (!spapr->cas_reboot) {
1691 spapr_ovec_cleanup(spapr->ov5_cas);
1692 spapr->ov5_cas = spapr_ovec_new();
1693
1694 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1695 }
1696
1697 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1698 spapr_irq_msi_reset(spapr);
1699 }
1700
1701 qemu_devices_reset();
1702
1703 /*
1704 * This is fixing some of the default configuration of the XIVE
1705 * devices. To be called after the reset of the machine devices.
1706 */
1707 spapr_irq_reset(spapr, &error_fatal);
1708
1709 /*
1710 * There is no CAS under qtest. Simulate one to please the code that
1711 * depends on spapr->ov5_cas. This is especially needed to test device
1712 * unplug, so we do that before resetting the DRCs.
1713 */
1714 if (qtest_enabled()) {
1715 spapr_ovec_cleanup(spapr->ov5_cas);
1716 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1717 }
1718
1719 /* DRC reset may cause a device to be unplugged. This will cause troubles
1720 * if this device is used by another device (eg, a running vhost backend
1721 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1722 * situations, we reset DRCs after all devices have been reset.
1723 */
1724 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1725
1726 spapr_clear_pending_events(spapr);
1727
1728 /*
1729 * We place the device tree and RTAS just below either the top of the RMA,
1730 * or just below 2GB, whichever is lower, so that it can be
1731 * processed with 32-bit real mode code if necessary
1732 */
1733 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1734 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1735 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1736
1737 fdt = spapr_build_fdt(spapr);
1738
1739 spapr_load_rtas(spapr, fdt, rtas_addr);
1740
1741 rc = fdt_pack(fdt);
1742
1743 /* Should only fail if we've built a corrupted tree */
1744 assert(rc == 0);
1745
1746 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1747 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1748 fdt_totalsize(fdt), FDT_MAX_SIZE);
1749 exit(1);
1750 }
1751
1752 /* Load the fdt */
1753 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1754 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1755 g_free(spapr->fdt_blob);
1756 spapr->fdt_size = fdt_totalsize(fdt);
1757 spapr->fdt_initial_size = spapr->fdt_size;
1758 spapr->fdt_blob = fdt;
1759
1760 /* Set up the entry state */
1761 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1762 first_ppc_cpu->env.gpr[5] = 0;
1763
1764 spapr->cas_reboot = false;
1765 }
1766
1767 static void spapr_create_nvram(SpaprMachineState *spapr)
1768 {
1769 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1770 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1771
1772 if (dinfo) {
1773 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1774 &error_fatal);
1775 }
1776
1777 qdev_init_nofail(dev);
1778
1779 spapr->nvram = (struct SpaprNvram *)dev;
1780 }
1781
1782 static void spapr_rtc_create(SpaprMachineState *spapr)
1783 {
1784 object_initialize_child(OBJECT(spapr), "rtc",
1785 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1786 &error_fatal, NULL);
1787 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1788 &error_fatal);
1789 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1790 "date", &error_fatal);
1791 }
1792
1793 /* Returns whether we want to use VGA or not */
1794 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1795 {
1796 switch (vga_interface_type) {
1797 case VGA_NONE:
1798 return false;
1799 case VGA_DEVICE:
1800 return true;
1801 case VGA_STD:
1802 case VGA_VIRTIO:
1803 case VGA_CIRRUS:
1804 return pci_vga_init(pci_bus) != NULL;
1805 default:
1806 error_setg(errp,
1807 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1808 return false;
1809 }
1810 }
1811
1812 static int spapr_pre_load(void *opaque)
1813 {
1814 int rc;
1815
1816 rc = spapr_caps_pre_load(opaque);
1817 if (rc) {
1818 return rc;
1819 }
1820
1821 return 0;
1822 }
1823
1824 static int spapr_post_load(void *opaque, int version_id)
1825 {
1826 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1827 int err = 0;
1828
1829 err = spapr_caps_post_migration(spapr);
1830 if (err) {
1831 return err;
1832 }
1833
1834 /*
1835 * In earlier versions, there was no separate qdev for the PAPR
1836 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1837 * So when migrating from those versions, poke the incoming offset
1838 * value into the RTC device
1839 */
1840 if (version_id < 3) {
1841 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1842 if (err) {
1843 return err;
1844 }
1845 }
1846
1847 if (kvm_enabled() && spapr->patb_entry) {
1848 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1849 bool radix = !!(spapr->patb_entry & PATE1_GR);
1850 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1851
1852 /*
1853 * Update LPCR:HR and UPRT as they may not be set properly in
1854 * the stream
1855 */
1856 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1857 LPCR_HR | LPCR_UPRT);
1858
1859 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1860 if (err) {
1861 error_report("Process table config unsupported by the host");
1862 return -EINVAL;
1863 }
1864 }
1865
1866 err = spapr_irq_post_load(spapr, version_id);
1867 if (err) {
1868 return err;
1869 }
1870
1871 return err;
1872 }
1873
1874 static int spapr_pre_save(void *opaque)
1875 {
1876 int rc;
1877
1878 rc = spapr_caps_pre_save(opaque);
1879 if (rc) {
1880 return rc;
1881 }
1882
1883 return 0;
1884 }
1885
1886 static bool version_before_3(void *opaque, int version_id)
1887 {
1888 return version_id < 3;
1889 }
1890
1891 static bool spapr_pending_events_needed(void *opaque)
1892 {
1893 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1894 return !QTAILQ_EMPTY(&spapr->pending_events);
1895 }
1896
1897 static const VMStateDescription vmstate_spapr_event_entry = {
1898 .name = "spapr_event_log_entry",
1899 .version_id = 1,
1900 .minimum_version_id = 1,
1901 .fields = (VMStateField[]) {
1902 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1903 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1904 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1905 NULL, extended_length),
1906 VMSTATE_END_OF_LIST()
1907 },
1908 };
1909
1910 static const VMStateDescription vmstate_spapr_pending_events = {
1911 .name = "spapr_pending_events",
1912 .version_id = 1,
1913 .minimum_version_id = 1,
1914 .needed = spapr_pending_events_needed,
1915 .fields = (VMStateField[]) {
1916 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1917 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1918 VMSTATE_END_OF_LIST()
1919 },
1920 };
1921
1922 static bool spapr_ov5_cas_needed(void *opaque)
1923 {
1924 SpaprMachineState *spapr = opaque;
1925 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1926 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1927 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1928 bool cas_needed;
1929
1930 /* Prior to the introduction of SpaprOptionVector, we had two option
1931 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1932 * Both of these options encode machine topology into the device-tree
1933 * in such a way that the now-booted OS should still be able to interact
1934 * appropriately with QEMU regardless of what options were actually
1935 * negotiatied on the source side.
1936 *
1937 * As such, we can avoid migrating the CAS-negotiated options if these
1938 * are the only options available on the current machine/platform.
1939 * Since these are the only options available for pseries-2.7 and
1940 * earlier, this allows us to maintain old->new/new->old migration
1941 * compatibility.
1942 *
1943 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1944 * via default pseries-2.8 machines and explicit command-line parameters.
1945 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1946 * of the actual CAS-negotiated values to continue working properly. For
1947 * example, availability of memory unplug depends on knowing whether
1948 * OV5_HP_EVT was negotiated via CAS.
1949 *
1950 * Thus, for any cases where the set of available CAS-negotiatable
1951 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1952 * include the CAS-negotiated options in the migration stream, unless
1953 * if they affect boot time behaviour only.
1954 */
1955 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1956 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1957 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1958
1959 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1960 * the mask itself since in the future it's possible "legacy" bits may be
1961 * removed via machine options, which could generate a false positive
1962 * that breaks migration.
1963 */
1964 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1965 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1966
1967 spapr_ovec_cleanup(ov5_mask);
1968 spapr_ovec_cleanup(ov5_legacy);
1969 spapr_ovec_cleanup(ov5_removed);
1970
1971 return cas_needed;
1972 }
1973
1974 static const VMStateDescription vmstate_spapr_ov5_cas = {
1975 .name = "spapr_option_vector_ov5_cas",
1976 .version_id = 1,
1977 .minimum_version_id = 1,
1978 .needed = spapr_ov5_cas_needed,
1979 .fields = (VMStateField[]) {
1980 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1981 vmstate_spapr_ovec, SpaprOptionVector),
1982 VMSTATE_END_OF_LIST()
1983 },
1984 };
1985
1986 static bool spapr_patb_entry_needed(void *opaque)
1987 {
1988 SpaprMachineState *spapr = opaque;
1989
1990 return !!spapr->patb_entry;
1991 }
1992
1993 static const VMStateDescription vmstate_spapr_patb_entry = {
1994 .name = "spapr_patb_entry",
1995 .version_id = 1,
1996 .minimum_version_id = 1,
1997 .needed = spapr_patb_entry_needed,
1998 .fields = (VMStateField[]) {
1999 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2000 VMSTATE_END_OF_LIST()
2001 },
2002 };
2003
2004 static bool spapr_irq_map_needed(void *opaque)
2005 {
2006 SpaprMachineState *spapr = opaque;
2007
2008 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2009 }
2010
2011 static const VMStateDescription vmstate_spapr_irq_map = {
2012 .name = "spapr_irq_map",
2013 .version_id = 1,
2014 .minimum_version_id = 1,
2015 .needed = spapr_irq_map_needed,
2016 .fields = (VMStateField[]) {
2017 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2018 VMSTATE_END_OF_LIST()
2019 },
2020 };
2021
2022 static bool spapr_dtb_needed(void *opaque)
2023 {
2024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2025
2026 return smc->update_dt_enabled;
2027 }
2028
2029 static int spapr_dtb_pre_load(void *opaque)
2030 {
2031 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2032
2033 g_free(spapr->fdt_blob);
2034 spapr->fdt_blob = NULL;
2035 spapr->fdt_size = 0;
2036
2037 return 0;
2038 }
2039
2040 static const VMStateDescription vmstate_spapr_dtb = {
2041 .name = "spapr_dtb",
2042 .version_id = 1,
2043 .minimum_version_id = 1,
2044 .needed = spapr_dtb_needed,
2045 .pre_load = spapr_dtb_pre_load,
2046 .fields = (VMStateField[]) {
2047 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2048 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2049 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2050 fdt_size),
2051 VMSTATE_END_OF_LIST()
2052 },
2053 };
2054
2055 static const VMStateDescription vmstate_spapr = {
2056 .name = "spapr",
2057 .version_id = 3,
2058 .minimum_version_id = 1,
2059 .pre_load = spapr_pre_load,
2060 .post_load = spapr_post_load,
2061 .pre_save = spapr_pre_save,
2062 .fields = (VMStateField[]) {
2063 /* used to be @next_irq */
2064 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2065
2066 /* RTC offset */
2067 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2068
2069 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2070 VMSTATE_END_OF_LIST()
2071 },
2072 .subsections = (const VMStateDescription*[]) {
2073 &vmstate_spapr_ov5_cas,
2074 &vmstate_spapr_patb_entry,
2075 &vmstate_spapr_pending_events,
2076 &vmstate_spapr_cap_htm,
2077 &vmstate_spapr_cap_vsx,
2078 &vmstate_spapr_cap_dfp,
2079 &vmstate_spapr_cap_cfpc,
2080 &vmstate_spapr_cap_sbbc,
2081 &vmstate_spapr_cap_ibs,
2082 &vmstate_spapr_irq_map,
2083 &vmstate_spapr_cap_nested_kvm_hv,
2084 &vmstate_spapr_dtb,
2085 &vmstate_spapr_cap_large_decr,
2086 &vmstate_spapr_cap_ccf_assist,
2087 NULL
2088 }
2089 };
2090
2091 static int htab_save_setup(QEMUFile *f, void *opaque)
2092 {
2093 SpaprMachineState *spapr = opaque;
2094
2095 /* "Iteration" header */
2096 if (!spapr->htab_shift) {
2097 qemu_put_be32(f, -1);
2098 } else {
2099 qemu_put_be32(f, spapr->htab_shift);
2100 }
2101
2102 if (spapr->htab) {
2103 spapr->htab_save_index = 0;
2104 spapr->htab_first_pass = true;
2105 } else {
2106 if (spapr->htab_shift) {
2107 assert(kvm_enabled());
2108 }
2109 }
2110
2111
2112 return 0;
2113 }
2114
2115 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2116 int chunkstart, int n_valid, int n_invalid)
2117 {
2118 qemu_put_be32(f, chunkstart);
2119 qemu_put_be16(f, n_valid);
2120 qemu_put_be16(f, n_invalid);
2121 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2122 HASH_PTE_SIZE_64 * n_valid);
2123 }
2124
2125 static void htab_save_end_marker(QEMUFile *f)
2126 {
2127 qemu_put_be32(f, 0);
2128 qemu_put_be16(f, 0);
2129 qemu_put_be16(f, 0);
2130 }
2131
2132 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2133 int64_t max_ns)
2134 {
2135 bool has_timeout = max_ns != -1;
2136 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137 int index = spapr->htab_save_index;
2138 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2139
2140 assert(spapr->htab_first_pass);
2141
2142 do {
2143 int chunkstart;
2144
2145 /* Consume invalid HPTEs */
2146 while ((index < htabslots)
2147 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2148 CLEAN_HPTE(HPTE(spapr->htab, index));
2149 index++;
2150 }
2151
2152 /* Consume valid HPTEs */
2153 chunkstart = index;
2154 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2155 && HPTE_VALID(HPTE(spapr->htab, index))) {
2156 CLEAN_HPTE(HPTE(spapr->htab, index));
2157 index++;
2158 }
2159
2160 if (index > chunkstart) {
2161 int n_valid = index - chunkstart;
2162
2163 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2164
2165 if (has_timeout &&
2166 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2167 break;
2168 }
2169 }
2170 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2171
2172 if (index >= htabslots) {
2173 assert(index == htabslots);
2174 index = 0;
2175 spapr->htab_first_pass = false;
2176 }
2177 spapr->htab_save_index = index;
2178 }
2179
2180 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2181 int64_t max_ns)
2182 {
2183 bool final = max_ns < 0;
2184 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2185 int examined = 0, sent = 0;
2186 int index = spapr->htab_save_index;
2187 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2188
2189 assert(!spapr->htab_first_pass);
2190
2191 do {
2192 int chunkstart, invalidstart;
2193
2194 /* Consume non-dirty HPTEs */
2195 while ((index < htabslots)
2196 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2197 index++;
2198 examined++;
2199 }
2200
2201 chunkstart = index;
2202 /* Consume valid dirty HPTEs */
2203 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2204 && HPTE_DIRTY(HPTE(spapr->htab, index))
2205 && HPTE_VALID(HPTE(spapr->htab, index))) {
2206 CLEAN_HPTE(HPTE(spapr->htab, index));
2207 index++;
2208 examined++;
2209 }
2210
2211 invalidstart = index;
2212 /* Consume invalid dirty HPTEs */
2213 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2214 && HPTE_DIRTY(HPTE(spapr->htab, index))
2215 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2216 CLEAN_HPTE(HPTE(spapr->htab, index));
2217 index++;
2218 examined++;
2219 }
2220
2221 if (index > chunkstart) {
2222 int n_valid = invalidstart - chunkstart;
2223 int n_invalid = index - invalidstart;
2224
2225 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2226 sent += index - chunkstart;
2227
2228 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2229 break;
2230 }
2231 }
2232
2233 if (examined >= htabslots) {
2234 break;
2235 }
2236
2237 if (index >= htabslots) {
2238 assert(index == htabslots);
2239 index = 0;
2240 }
2241 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2242
2243 if (index >= htabslots) {
2244 assert(index == htabslots);
2245 index = 0;
2246 }
2247
2248 spapr->htab_save_index = index;
2249
2250 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2251 }
2252
2253 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2254 #define MAX_KVM_BUF_SIZE 2048
2255
2256 static int htab_save_iterate(QEMUFile *f, void *opaque)
2257 {
2258 SpaprMachineState *spapr = opaque;
2259 int fd;
2260 int rc = 0;
2261
2262 /* Iteration header */
2263 if (!spapr->htab_shift) {
2264 qemu_put_be32(f, -1);
2265 return 1;
2266 } else {
2267 qemu_put_be32(f, 0);
2268 }
2269
2270 if (!spapr->htab) {
2271 assert(kvm_enabled());
2272
2273 fd = get_htab_fd(spapr);
2274 if (fd < 0) {
2275 return fd;
2276 }
2277
2278 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2279 if (rc < 0) {
2280 return rc;
2281 }
2282 } else if (spapr->htab_first_pass) {
2283 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2284 } else {
2285 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2286 }
2287
2288 htab_save_end_marker(f);
2289
2290 return rc;
2291 }
2292
2293 static int htab_save_complete(QEMUFile *f, void *opaque)
2294 {
2295 SpaprMachineState *spapr = opaque;
2296 int fd;
2297
2298 /* Iteration header */
2299 if (!spapr->htab_shift) {
2300 qemu_put_be32(f, -1);
2301 return 0;
2302 } else {
2303 qemu_put_be32(f, 0);
2304 }
2305
2306 if (!spapr->htab) {
2307 int rc;
2308
2309 assert(kvm_enabled());
2310
2311 fd = get_htab_fd(spapr);
2312 if (fd < 0) {
2313 return fd;
2314 }
2315
2316 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2317 if (rc < 0) {
2318 return rc;
2319 }
2320 } else {
2321 if (spapr->htab_first_pass) {
2322 htab_save_first_pass(f, spapr, -1);
2323 }
2324 htab_save_later_pass(f, spapr, -1);
2325 }
2326
2327 /* End marker */
2328 htab_save_end_marker(f);
2329
2330 return 0;
2331 }
2332
2333 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2334 {
2335 SpaprMachineState *spapr = opaque;
2336 uint32_t section_hdr;
2337 int fd = -1;
2338 Error *local_err = NULL;
2339
2340 if (version_id < 1 || version_id > 1) {
2341 error_report("htab_load() bad version");
2342 return -EINVAL;
2343 }
2344
2345 section_hdr = qemu_get_be32(f);
2346
2347 if (section_hdr == -1) {
2348 spapr_free_hpt(spapr);
2349 return 0;
2350 }
2351
2352 if (section_hdr) {
2353 /* First section gives the htab size */
2354 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2355 if (local_err) {
2356 error_report_err(local_err);
2357 return -EINVAL;
2358 }
2359 return 0;
2360 }
2361
2362 if (!spapr->htab) {
2363 assert(kvm_enabled());
2364
2365 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2366 if (fd < 0) {
2367 error_report_err(local_err);
2368 return fd;
2369 }
2370 }
2371
2372 while (true) {
2373 uint32_t index;
2374 uint16_t n_valid, n_invalid;
2375
2376 index = qemu_get_be32(f);
2377 n_valid = qemu_get_be16(f);
2378 n_invalid = qemu_get_be16(f);
2379
2380 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2381 /* End of Stream */
2382 break;
2383 }
2384
2385 if ((index + n_valid + n_invalid) >
2386 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2387 /* Bad index in stream */
2388 error_report(
2389 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390 index, n_valid, n_invalid, spapr->htab_shift);
2391 return -EINVAL;
2392 }
2393
2394 if (spapr->htab) {
2395 if (n_valid) {
2396 qemu_get_buffer(f, HPTE(spapr->htab, index),
2397 HASH_PTE_SIZE_64 * n_valid);
2398 }
2399 if (n_invalid) {
2400 memset(HPTE(spapr->htab, index + n_valid), 0,
2401 HASH_PTE_SIZE_64 * n_invalid);
2402 }
2403 } else {
2404 int rc;
2405
2406 assert(fd >= 0);
2407
2408 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2409 if (rc < 0) {
2410 return rc;
2411 }
2412 }
2413 }
2414
2415 if (!spapr->htab) {
2416 assert(fd >= 0);
2417 close(fd);
2418 }
2419
2420 return 0;
2421 }
2422
2423 static void htab_save_cleanup(void *opaque)
2424 {
2425 SpaprMachineState *spapr = opaque;
2426
2427 close_htab_fd(spapr);
2428 }
2429
2430 static SaveVMHandlers savevm_htab_handlers = {
2431 .save_setup = htab_save_setup,
2432 .save_live_iterate = htab_save_iterate,
2433 .save_live_complete_precopy = htab_save_complete,
2434 .save_cleanup = htab_save_cleanup,
2435 .load_state = htab_load,
2436 };
2437
2438 static void spapr_boot_set(void *opaque, const char *boot_device,
2439 Error **errp)
2440 {
2441 MachineState *machine = MACHINE(opaque);
2442 machine->boot_order = g_strdup(boot_device);
2443 }
2444
2445 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2446 {
2447 MachineState *machine = MACHINE(spapr);
2448 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2449 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2450 int i;
2451
2452 for (i = 0; i < nr_lmbs; i++) {
2453 uint64_t addr;
2454
2455 addr = i * lmb_size + machine->device_memory->base;
2456 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2457 addr / lmb_size);
2458 }
2459 }
2460
2461 /*
2462 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2463 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2464 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2465 */
2466 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2467 {
2468 int i;
2469
2470 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2471 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2472 " is not aligned to %" PRIu64 " MiB",
2473 machine->ram_size,
2474 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2475 return;
2476 }
2477
2478 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2479 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2480 " is not aligned to %" PRIu64 " MiB",
2481 machine->ram_size,
2482 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2483 return;
2484 }
2485
2486 for (i = 0; i < nb_numa_nodes; i++) {
2487 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2488 error_setg(errp,
2489 "Node %d memory size 0x%" PRIx64
2490 " is not aligned to %" PRIu64 " MiB",
2491 i, numa_info[i].node_mem,
2492 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2493 return;
2494 }
2495 }
2496 }
2497
2498 /* find cpu slot in machine->possible_cpus by core_id */
2499 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2500 {
2501 int index = id / smp_threads;
2502
2503 if (index >= ms->possible_cpus->len) {
2504 return NULL;
2505 }
2506 if (idx) {
2507 *idx = index;
2508 }
2509 return &ms->possible_cpus->cpus[index];
2510 }
2511
2512 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2513 {
2514 Error *local_err = NULL;
2515 bool vsmt_user = !!spapr->vsmt;
2516 int kvm_smt = kvmppc_smt_threads();
2517 int ret;
2518
2519 if (!kvm_enabled() && (smp_threads > 1)) {
2520 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2521 "on a pseries machine");
2522 goto out;
2523 }
2524 if (!is_power_of_2(smp_threads)) {
2525 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2526 "machine because it must be a power of 2", smp_threads);
2527 goto out;
2528 }
2529
2530 /* Detemine the VSMT mode to use: */
2531 if (vsmt_user) {
2532 if (spapr->vsmt < smp_threads) {
2533 error_setg(&local_err, "Cannot support VSMT mode %d"
2534 " because it must be >= threads/core (%d)",
2535 spapr->vsmt, smp_threads);
2536 goto out;
2537 }
2538 /* In this case, spapr->vsmt has been set by the command line */
2539 } else {
2540 /*
2541 * Default VSMT value is tricky, because we need it to be as
2542 * consistent as possible (for migration), but this requires
2543 * changing it for at least some existing cases. We pick 8 as
2544 * the value that we'd get with KVM on POWER8, the
2545 * overwhelmingly common case in production systems.
2546 */
2547 spapr->vsmt = MAX(8, smp_threads);
2548 }
2549
2550 /* KVM: If necessary, set the SMT mode: */
2551 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2552 ret = kvmppc_set_smt_threads(spapr->vsmt);
2553 if (ret) {
2554 /* Looks like KVM isn't able to change VSMT mode */
2555 error_setg(&local_err,
2556 "Failed to set KVM's VSMT mode to %d (errno %d)",
2557 spapr->vsmt, ret);
2558 /* We can live with that if the default one is big enough
2559 * for the number of threads, and a submultiple of the one
2560 * we want. In this case we'll waste some vcpu ids, but
2561 * behaviour will be correct */
2562 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2563 warn_report_err(local_err);
2564 local_err = NULL;
2565 goto out;
2566 } else {
2567 if (!vsmt_user) {
2568 error_append_hint(&local_err,
2569 "On PPC, a VM with %d threads/core"
2570 " on a host with %d threads/core"
2571 " requires the use of VSMT mode %d.\n",
2572 smp_threads, kvm_smt, spapr->vsmt);
2573 }
2574 kvmppc_hint_smt_possible(&local_err);
2575 goto out;
2576 }
2577 }
2578 }
2579 /* else TCG: nothing to do currently */
2580 out:
2581 error_propagate(errp, local_err);
2582 }
2583
2584 static void spapr_init_cpus(SpaprMachineState *spapr)
2585 {
2586 MachineState *machine = MACHINE(spapr);
2587 MachineClass *mc = MACHINE_GET_CLASS(machine);
2588 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2589 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2590 const CPUArchIdList *possible_cpus;
2591 int boot_cores_nr = smp_cpus / smp_threads;
2592 int i;
2593
2594 possible_cpus = mc->possible_cpu_arch_ids(machine);
2595 if (mc->has_hotpluggable_cpus) {
2596 if (smp_cpus % smp_threads) {
2597 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2598 smp_cpus, smp_threads);
2599 exit(1);
2600 }
2601 if (max_cpus % smp_threads) {
2602 error_report("max_cpus (%u) must be multiple of threads (%u)",
2603 max_cpus, smp_threads);
2604 exit(1);
2605 }
2606 } else {
2607 if (max_cpus != smp_cpus) {
2608 error_report("This machine version does not support CPU hotplug");
2609 exit(1);
2610 }
2611 boot_cores_nr = possible_cpus->len;
2612 }
2613
2614 if (smc->pre_2_10_has_unused_icps) {
2615 int i;
2616
2617 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2618 /* Dummy entries get deregistered when real ICPState objects
2619 * are registered during CPU core hotplug.
2620 */
2621 pre_2_10_vmstate_register_dummy_icp(i);
2622 }
2623 }
2624
2625 for (i = 0; i < possible_cpus->len; i++) {
2626 int core_id = i * smp_threads;
2627
2628 if (mc->has_hotpluggable_cpus) {
2629 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2630 spapr_vcpu_id(spapr, core_id));
2631 }
2632
2633 if (i < boot_cores_nr) {
2634 Object *core = object_new(type);
2635 int nr_threads = smp_threads;
2636
2637 /* Handle the partially filled core for older machine types */
2638 if ((i + 1) * smp_threads >= smp_cpus) {
2639 nr_threads = smp_cpus - i * smp_threads;
2640 }
2641
2642 object_property_set_int(core, nr_threads, "nr-threads",
2643 &error_fatal);
2644 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2645 &error_fatal);
2646 object_property_set_bool(core, true, "realized", &error_fatal);
2647
2648 object_unref(core);
2649 }
2650 }
2651 }
2652
2653 static PCIHostState *spapr_create_default_phb(void)
2654 {
2655 DeviceState *dev;
2656
2657 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2658 qdev_prop_set_uint32(dev, "index", 0);
2659 qdev_init_nofail(dev);
2660
2661 return PCI_HOST_BRIDGE(dev);
2662 }
2663
2664 /* pSeries LPAR / sPAPR hardware init */
2665 static void spapr_machine_init(MachineState *machine)
2666 {
2667 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2668 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2669 const char *kernel_filename = machine->kernel_filename;
2670 const char *initrd_filename = machine->initrd_filename;
2671 PCIHostState *phb;
2672 int i;
2673 MemoryRegion *sysmem = get_system_memory();
2674 MemoryRegion *ram = g_new(MemoryRegion, 1);
2675 hwaddr node0_size = spapr_node0_size(machine);
2676 long load_limit, fw_size;
2677 char *filename;
2678 Error *resize_hpt_err = NULL;
2679
2680 msi_nonbroken = true;
2681
2682 QLIST_INIT(&spapr->phbs);
2683 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2684
2685 /* Determine capabilities to run with */
2686 spapr_caps_init(spapr);
2687
2688 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2689 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2690 /*
2691 * If the user explicitly requested a mode we should either
2692 * supply it, or fail completely (which we do below). But if
2693 * it's not set explicitly, we reset our mode to something
2694 * that works
2695 */
2696 if (resize_hpt_err) {
2697 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2698 error_free(resize_hpt_err);
2699 resize_hpt_err = NULL;
2700 } else {
2701 spapr->resize_hpt = smc->resize_hpt_default;
2702 }
2703 }
2704
2705 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2706
2707 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2708 /*
2709 * User requested HPT resize, but this host can't supply it. Bail out
2710 */
2711 error_report_err(resize_hpt_err);
2712 exit(1);
2713 }
2714
2715 spapr->rma_size = node0_size;
2716
2717 /* With KVM, we don't actually know whether KVM supports an
2718 * unbounded RMA (PR KVM) or is limited by the hash table size
2719 * (HV KVM using VRMA), so we always assume the latter
2720 *
2721 * In that case, we also limit the initial allocations for RTAS
2722 * etc... to 256M since we have no way to know what the VRMA size
2723 * is going to be as it depends on the size of the hash table
2724 * which isn't determined yet.
2725 */
2726 if (kvm_enabled()) {
2727 spapr->vrma_adjust = 1;
2728 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2729 }
2730
2731 /* Actually we don't support unbounded RMA anymore since we added
2732 * proper emulation of HV mode. The max we can get is 16G which
2733 * also happens to be what we configure for PAPR mode so make sure
2734 * we don't do anything bigger than that
2735 */
2736 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2737
2738 if (spapr->rma_size > node0_size) {
2739 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2740 spapr->rma_size);
2741 exit(1);
2742 }
2743
2744 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2745 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2746
2747 /*
2748 * VSMT must be set in order to be able to compute VCPU ids, ie to
2749 * call spapr_max_server_number() or spapr_vcpu_id().
2750 */
2751 spapr_set_vsmt_mode(spapr, &error_fatal);
2752
2753 /* Set up Interrupt Controller before we create the VCPUs */
2754 spapr_irq_init(spapr, &error_fatal);
2755
2756 /* Set up containers for ibm,client-architecture-support negotiated options
2757 */
2758 spapr->ov5 = spapr_ovec_new();
2759 spapr->ov5_cas = spapr_ovec_new();
2760
2761 if (smc->dr_lmb_enabled) {
2762 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2763 spapr_validate_node_memory(machine, &error_fatal);
2764 }
2765
2766 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2767
2768 /* advertise support for dedicated HP event source to guests */
2769 if (spapr->use_hotplug_event_source) {
2770 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2771 }
2772
2773 /* advertise support for HPT resizing */
2774 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2775 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2776 }
2777
2778 /* advertise support for ibm,dyamic-memory-v2 */
2779 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2780
2781 /* advertise XIVE on POWER9 machines */
2782 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2783 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2784 }
2785
2786 /* init CPUs */
2787 spapr_init_cpus(spapr);
2788
2789 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2790 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2791 spapr->max_compat_pvr)) {
2792 /* KVM and TCG always allow GTSE with radix... */
2793 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2794 }
2795 /* ... but not with hash (currently). */
2796
2797 if (kvm_enabled()) {
2798 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2799 kvmppc_enable_logical_ci_hcalls();
2800 kvmppc_enable_set_mode_hcall();
2801
2802 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2803 kvmppc_enable_clear_ref_mod_hcalls();
2804
2805 /* Enable H_PAGE_INIT */
2806 kvmppc_enable_h_page_init();
2807 }
2808
2809 /* allocate RAM */
2810 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2811 machine->ram_size);
2812 memory_region_add_subregion(sysmem, 0, ram);
2813
2814 /* always allocate the device memory information */
2815 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2816
2817 /* initialize hotplug memory address space */
2818 if (machine->ram_size < machine->maxram_size) {
2819 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2820 /*
2821 * Limit the number of hotpluggable memory slots to half the number
2822 * slots that KVM supports, leaving the other half for PCI and other
2823 * devices. However ensure that number of slots doesn't drop below 32.
2824 */
2825 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2826 SPAPR_MAX_RAM_SLOTS;
2827
2828 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2829 max_memslots = SPAPR_MAX_RAM_SLOTS;
2830 }
2831 if (machine->ram_slots > max_memslots) {
2832 error_report("Specified number of memory slots %"
2833 PRIu64" exceeds max supported %d",
2834 machine->ram_slots, max_memslots);
2835 exit(1);
2836 }
2837
2838 machine->device_memory->base = ROUND_UP(machine->ram_size,
2839 SPAPR_DEVICE_MEM_ALIGN);
2840 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2841 "device-memory", device_mem_size);
2842 memory_region_add_subregion(sysmem, machine->device_memory->base,
2843 &machine->device_memory->mr);
2844 }
2845
2846 if (smc->dr_lmb_enabled) {
2847 spapr_create_lmb_dr_connectors(spapr);
2848 }
2849
2850 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2851 if (!filename) {
2852 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2853 exit(1);
2854 }
2855 spapr->rtas_size = get_image_size(filename);
2856 if (spapr->rtas_size < 0) {
2857 error_report("Could not get size of LPAR rtas '%s'", filename);
2858 exit(1);
2859 }
2860 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2861 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2862 error_report("Could not load LPAR rtas '%s'", filename);
2863 exit(1);
2864 }
2865 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2866 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2867 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2868 exit(1);
2869 }
2870 g_free(filename);
2871
2872 /* Set up RTAS event infrastructure */
2873 spapr_events_init(spapr);
2874
2875 /* Set up the RTC RTAS interfaces */
2876 spapr_rtc_create(spapr);
2877
2878 /* Set up VIO bus */
2879 spapr->vio_bus = spapr_vio_bus_init();
2880
2881 for (i = 0; i < serial_max_hds(); i++) {
2882 if (serial_hd(i)) {
2883 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2884 }
2885 }
2886
2887 /* We always have at least the nvram device on VIO */
2888 spapr_create_nvram(spapr);
2889
2890 /*
2891 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2892 * connectors (described in root DT node's "ibm,drc-types" property)
2893 * are pre-initialized here. additional child connectors (such as
2894 * connectors for a PHBs PCI slots) are added as needed during their
2895 * parent's realization.
2896 */
2897 if (smc->dr_phb_enabled) {
2898 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2899 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2900 }
2901 }
2902
2903 /* Set up PCI */
2904 spapr_pci_rtas_init();
2905
2906 phb = spapr_create_default_phb();
2907
2908 for (i = 0; i < nb_nics; i++) {
2909 NICInfo *nd = &nd_table[i];
2910
2911 if (!nd->model) {
2912 nd->model = g_strdup("spapr-vlan");
2913 }
2914
2915 if (g_str_equal(nd->model, "spapr-vlan") ||
2916 g_str_equal(nd->model, "ibmveth")) {
2917 spapr_vlan_create(spapr->vio_bus, nd);
2918 } else {
2919 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2920 }
2921 }
2922
2923 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2924 spapr_vscsi_create(spapr->vio_bus);
2925 }
2926
2927 /* Graphics */
2928 if (spapr_vga_init(phb->bus, &error_fatal)) {
2929 spapr->has_graphics = true;
2930 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2931 }
2932
2933 if (machine->usb) {
2934 if (smc->use_ohci_by_default) {
2935 pci_create_simple(phb->bus, -1, "pci-ohci");
2936 } else {
2937 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2938 }
2939
2940 if (spapr->has_graphics) {
2941 USBBus *usb_bus = usb_bus_find(-1);
2942
2943 usb_create_simple(usb_bus, "usb-kbd");
2944 usb_create_simple(usb_bus, "usb-mouse");
2945 }
2946 }
2947
2948 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2949 error_report(
2950 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2951 MIN_RMA_SLOF);
2952 exit(1);
2953 }
2954
2955 if (kernel_filename) {
2956 uint64_t lowaddr = 0;
2957
2958 spapr->kernel_size = load_elf(kernel_filename, NULL,
2959 translate_kernel_address, NULL,
2960 NULL, &lowaddr, NULL, 1,
2961 PPC_ELF_MACHINE, 0, 0);
2962 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2963 spapr->kernel_size = load_elf(kernel_filename, NULL,
2964 translate_kernel_address, NULL, NULL,
2965 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2966 0, 0);
2967 spapr->kernel_le = spapr->kernel_size > 0;
2968 }
2969 if (spapr->kernel_size < 0) {
2970 error_report("error loading %s: %s", kernel_filename,
2971 load_elf_strerror(spapr->kernel_size));
2972 exit(1);
2973 }
2974
2975 /* load initrd */
2976 if (initrd_filename) {
2977 /* Try to locate the initrd in the gap between the kernel
2978 * and the firmware. Add a bit of space just in case
2979 */
2980 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2981 + 0x1ffff) & ~0xffff;
2982 spapr->initrd_size = load_image_targphys(initrd_filename,
2983 spapr->initrd_base,
2984 load_limit
2985 - spapr->initrd_base);
2986 if (spapr->initrd_size < 0) {
2987 error_report("could not load initial ram disk '%s'",
2988 initrd_filename);
2989 exit(1);
2990 }
2991 }
2992 }
2993
2994 if (bios_name == NULL) {
2995 bios_name = FW_FILE_NAME;
2996 }
2997 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2998 if (!filename) {
2999 error_report("Could not find LPAR firmware '%s'", bios_name);
3000 exit(1);
3001 }
3002 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3003 if (fw_size <= 0) {
3004 error_report("Could not load LPAR firmware '%s'", filename);
3005 exit(1);
3006 }
3007 g_free(filename);
3008
3009 /* FIXME: Should register things through the MachineState's qdev
3010 * interface, this is a legacy from the sPAPREnvironment structure
3011 * which predated MachineState but had a similar function */
3012 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3013 register_savevm_live(NULL, "spapr/htab", -1, 1,
3014 &savevm_htab_handlers, spapr);
3015
3016 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3017 &error_fatal);
3018
3019 qemu_register_boot_set(spapr_boot_set, spapr);
3020
3021 if (kvm_enabled()) {
3022 /* to stop and start vmclock */
3023 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3024 &spapr->tb);
3025
3026 kvmppc_spapr_enable_inkernel_multitce();
3027 }
3028 }
3029
3030 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3031 {
3032 if (!vm_type) {
3033 return 0;
3034 }
3035
3036 if (!strcmp(vm_type, "HV")) {
3037 return 1;
3038 }
3039
3040 if (!strcmp(vm_type, "PR")) {
3041 return 2;
3042 }
3043
3044 error_report("Unknown kvm-type specified '%s'", vm_type);
3045 exit(1);
3046 }
3047
3048 /*
3049 * Implementation of an interface to adjust firmware path
3050 * for the bootindex property handling.
3051 */
3052 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3053 DeviceState *dev)
3054 {
3055 #define CAST(type, obj, name) \
3056 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3057 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3058 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3059 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3060
3061 if (d) {
3062 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3063 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3064 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3065
3066 if (spapr) {
3067 /*
3068 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3069 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3070 * 0x8000 | (target << 8) | (bus << 5) | lun
3071 * (see the "Logical unit addressing format" table in SAM5)
3072 */
3073 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3074 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3075 (uint64_t)id << 48);
3076 } else if (virtio) {
3077 /*
3078 * We use SRP luns of the form 01000000 | (target << 8) | lun
3079 * in the top 32 bits of the 64-bit LUN
3080 * Note: the quote above is from SLOF and it is wrong,
3081 * the actual binding is:
3082 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3083 */
3084 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3085 if (d->lun >= 256) {
3086 /* Use the LUN "flat space addressing method" */
3087 id |= 0x4000;
3088 }
3089 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3090 (uint64_t)id << 32);
3091 } else if (usb) {
3092 /*
3093 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3094 * in the top 32 bits of the 64-bit LUN
3095 */
3096 unsigned usb_port = atoi(usb->port->path);
3097 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3098 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3099 (uint64_t)id << 32);
3100 }
3101 }
3102
3103 /*
3104 * SLOF probes the USB devices, and if it recognizes that the device is a
3105 * storage device, it changes its name to "storage" instead of "usb-host",
3106 * and additionally adds a child node for the SCSI LUN, so the correct
3107 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3108 */
3109 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3110 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3111 if (usb_host_dev_is_scsi_storage(usbdev)) {
3112 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3113 }
3114 }
3115
3116 if (phb) {
3117 /* Replace "pci" with "pci@800000020000000" */
3118 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3119 }
3120
3121 if (vsc) {
3122 /* Same logic as virtio above */
3123 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3124 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3125 }
3126
3127 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3128 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3129 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3130 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3131 }
3132
3133 return NULL;
3134 }
3135
3136 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3137 {
3138 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140 return g_strdup(spapr->kvm_type);
3141 }
3142
3143 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3144 {
3145 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3146
3147 g_free(spapr->kvm_type);
3148 spapr->kvm_type = g_strdup(value);
3149 }
3150
3151 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3152 {
3153 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3154
3155 return spapr->use_hotplug_event_source;
3156 }
3157
3158 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3159 Error **errp)
3160 {
3161 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162
3163 spapr->use_hotplug_event_source = value;
3164 }
3165
3166 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3167 {
3168 return true;
3169 }
3170
3171 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3172 {
3173 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175 switch (spapr->resize_hpt) {
3176 case SPAPR_RESIZE_HPT_DEFAULT:
3177 return g_strdup("default");
3178 case SPAPR_RESIZE_HPT_DISABLED:
3179 return g_strdup("disabled");
3180 case SPAPR_RESIZE_HPT_ENABLED:
3181 return g_strdup("enabled");
3182 case SPAPR_RESIZE_HPT_REQUIRED:
3183 return g_strdup("required");
3184 }
3185 g_assert_not_reached();
3186 }
3187
3188 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3189 {
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191
3192 if (strcmp(value, "default") == 0) {
3193 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3194 } else if (strcmp(value, "disabled") == 0) {
3195 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3196 } else if (strcmp(value, "enabled") == 0) {
3197 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3198 } else if (strcmp(value, "required") == 0) {
3199 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3200 } else {
3201 error_setg(errp, "Bad value for \"resize-hpt\" property");
3202 }
3203 }
3204
3205 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3206 void *opaque, Error **errp)
3207 {
3208 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3209 }
3210
3211 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3212 void *opaque, Error **errp)
3213 {
3214 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3215 }
3216
3217 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3218 {
3219 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3220
3221 if (spapr->irq == &spapr_irq_xics_legacy) {
3222 return g_strdup("legacy");
3223 } else if (spapr->irq == &spapr_irq_xics) {
3224 return g_strdup("xics");
3225 } else if (spapr->irq == &spapr_irq_xive) {
3226 return g_strdup("xive");
3227 } else if (spapr->irq == &spapr_irq_dual) {
3228 return g_strdup("dual");
3229 }
3230 g_assert_not_reached();
3231 }
3232
3233 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3234 {
3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236
3237 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3238 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3239 return;
3240 }
3241
3242 /* The legacy IRQ backend can not be set */
3243 if (strcmp(value, "xics") == 0) {
3244 spapr->irq = &spapr_irq_xics;
3245 } else if (strcmp(value, "xive") == 0) {
3246 spapr->irq = &spapr_irq_xive;
3247 } else if (strcmp(value, "dual") == 0) {
3248 spapr->irq = &spapr_irq_dual;
3249 } else {
3250 error_setg(errp, "Bad value for \"ic-mode\" property");
3251 }
3252 }
3253
3254 static char *spapr_get_host_model(Object *obj, Error **errp)
3255 {
3256 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3257
3258 return g_strdup(spapr->host_model);
3259 }
3260
3261 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3262 {
3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265 g_free(spapr->host_model);
3266 spapr->host_model = g_strdup(value);
3267 }
3268
3269 static char *spapr_get_host_serial(Object *obj, Error **errp)
3270 {
3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272
3273 return g_strdup(spapr->host_serial);
3274 }
3275
3276 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3277 {
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280 g_free(spapr->host_serial);
3281 spapr->host_serial = g_strdup(value);
3282 }
3283
3284 static void spapr_instance_init(Object *obj)
3285 {
3286 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3287 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3288
3289 spapr->htab_fd = -1;
3290 spapr->use_hotplug_event_source = true;
3291 object_property_add_str(obj, "kvm-type",
3292 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3293 object_property_set_description(obj, "kvm-type",
3294 "Specifies the KVM virtualization mode (HV, PR)",
3295 NULL);
3296 object_property_add_bool(obj, "modern-hotplug-events",
3297 spapr_get_modern_hotplug_events,
3298 spapr_set_modern_hotplug_events,
3299 NULL);
3300 object_property_set_description(obj, "modern-hotplug-events",
3301 "Use dedicated hotplug event mechanism in"
3302 " place of standard EPOW events when possible"
3303 " (required for memory hot-unplug support)",
3304 NULL);
3305 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3306 "Maximum permitted CPU compatibility mode",
3307 &error_fatal);
3308
3309 object_property_add_str(obj, "resize-hpt",
3310 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3311 object_property_set_description(obj, "resize-hpt",
3312 "Resizing of the Hash Page Table (enabled, disabled, required)",
3313 NULL);
3314 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3315 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3316 object_property_set_description(obj, "vsmt",
3317 "Virtual SMT: KVM behaves as if this were"
3318 " the host's SMT mode", &error_abort);
3319 object_property_add_bool(obj, "vfio-no-msix-emulation",
3320 spapr_get_msix_emulation, NULL, NULL);
3321
3322 /* The machine class defines the default interrupt controller mode */
3323 spapr->irq = smc->irq;
3324 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3325 spapr_set_ic_mode, NULL);
3326 object_property_set_description(obj, "ic-mode",
3327 "Specifies the interrupt controller mode (xics, xive, dual)",
3328 NULL);
3329
3330 object_property_add_str(obj, "host-model",
3331 spapr_get_host_model, spapr_set_host_model,
3332 &error_abort);
3333 object_property_set_description(obj, "host-model",
3334 "Host model to advertise in guest device tree", &error_abort);
3335 object_property_add_str(obj, "host-serial",
3336 spapr_get_host_serial, spapr_set_host_serial,
3337 &error_abort);
3338 object_property_set_description(obj, "host-serial",
3339 "Host serial number to advertise in guest device tree", &error_abort);
3340 }
3341
3342 static void spapr_machine_finalizefn(Object *obj)
3343 {
3344 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345
3346 g_free(spapr->kvm_type);
3347 }
3348
3349 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3350 {
3351 cpu_synchronize_state(cs);
3352 ppc_cpu_do_system_reset(cs);
3353 }
3354
3355 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3356 {
3357 CPUState *cs;
3358
3359 CPU_FOREACH(cs) {
3360 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3361 }
3362 }
3363
3364 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3365 void *fdt, int *fdt_start_offset, Error **errp)
3366 {
3367 uint64_t addr;
3368 uint32_t node;
3369
3370 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3371 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3372 &error_abort);
3373 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3374 SPAPR_MEMORY_BLOCK_SIZE);
3375 return 0;
3376 }
3377
3378 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3379 bool dedicated_hp_event_source, Error **errp)
3380 {
3381 SpaprDrc *drc;
3382 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3383 int i;
3384 uint64_t addr = addr_start;
3385 bool hotplugged = spapr_drc_hotplugged(dev);
3386 Error *local_err = NULL;
3387
3388 for (i = 0; i < nr_lmbs; i++) {
3389 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3390 addr / SPAPR_MEMORY_BLOCK_SIZE);
3391 g_assert(drc);
3392
3393 spapr_drc_attach(drc, dev, &local_err);
3394 if (local_err) {
3395 while (addr > addr_start) {
3396 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3397 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3398 addr / SPAPR_MEMORY_BLOCK_SIZE);
3399 spapr_drc_detach(drc);
3400 }
3401 error_propagate(errp, local_err);
3402 return;
3403 }
3404 if (!hotplugged) {
3405 spapr_drc_reset(drc);
3406 }
3407 addr += SPAPR_MEMORY_BLOCK_SIZE;
3408 }
3409 /* send hotplug notification to the
3410 * guest only in case of hotplugged memory
3411 */
3412 if (hotplugged) {
3413 if (dedicated_hp_event_source) {
3414 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3416 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3417 nr_lmbs,
3418 spapr_drc_index(drc));
3419 } else {
3420 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3421 nr_lmbs);
3422 }
3423 }
3424 }
3425
3426 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3427 Error **errp)
3428 {
3429 Error *local_err = NULL;
3430 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3431 PCDIMMDevice *dimm = PC_DIMM(dev);
3432 uint64_t size, addr;
3433
3434 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3435
3436 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3437 if (local_err) {
3438 goto out;
3439 }
3440
3441 addr = object_property_get_uint(OBJECT(dimm),
3442 PC_DIMM_ADDR_PROP, &local_err);
3443 if (local_err) {
3444 goto out_unplug;
3445 }
3446
3447 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3448 &local_err);
3449 if (local_err) {
3450 goto out_unplug;
3451 }
3452
3453 return;
3454
3455 out_unplug:
3456 pc_dimm_unplug(dimm, MACHINE(ms));
3457 out:
3458 error_propagate(errp, local_err);
3459 }
3460
3461 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3462 Error **errp)
3463 {
3464 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3465 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3466 PCDIMMDevice *dimm = PC_DIMM(dev);
3467 Error *local_err = NULL;
3468 uint64_t size;
3469 Object *memdev;
3470 hwaddr pagesize;
3471
3472 if (!smc->dr_lmb_enabled) {
3473 error_setg(errp, "Memory hotplug not supported for this machine");
3474 return;
3475 }
3476
3477 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3478 if (local_err) {
3479 error_propagate(errp, local_err);
3480 return;
3481 }
3482
3483 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3484 error_setg(errp, "Hotplugged memory size must be a multiple of "
3485 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3486 return;
3487 }
3488
3489 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3490 &error_abort);
3491 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3492 spapr_check_pagesize(spapr, pagesize, &local_err);
3493 if (local_err) {
3494 error_propagate(errp, local_err);
3495 return;
3496 }
3497
3498 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3499 }
3500
3501 struct SpaprDimmState {
3502 PCDIMMDevice *dimm;
3503 uint32_t nr_lmbs;
3504 QTAILQ_ENTRY(SpaprDimmState) next;
3505 };
3506
3507 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3508 PCDIMMDevice *dimm)
3509 {
3510 SpaprDimmState *dimm_state = NULL;
3511
3512 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3513 if (dimm_state->dimm == dimm) {
3514 break;
3515 }
3516 }
3517 return dimm_state;
3518 }
3519
3520 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3521 uint32_t nr_lmbs,
3522 PCDIMMDevice *dimm)
3523 {
3524 SpaprDimmState *ds = NULL;
3525
3526 /*
3527 * If this request is for a DIMM whose removal had failed earlier
3528 * (due to guest's refusal to remove the LMBs), we would have this
3529 * dimm already in the pending_dimm_unplugs list. In that
3530 * case don't add again.
3531 */
3532 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3533 if (!ds) {
3534 ds = g_malloc0(sizeof(SpaprDimmState));
3535 ds->nr_lmbs = nr_lmbs;
3536 ds->dimm = dimm;
3537 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3538 }
3539 return ds;
3540 }
3541
3542 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3543 SpaprDimmState *dimm_state)
3544 {
3545 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3546 g_free(dimm_state);
3547 }
3548
3549 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3550 PCDIMMDevice *dimm)
3551 {
3552 SpaprDrc *drc;
3553 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3554 &error_abort);
3555 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3556 uint32_t avail_lmbs = 0;
3557 uint64_t addr_start, addr;
3558 int i;
3559
3560 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3561 &error_abort);
3562
3563 addr = addr_start;
3564 for (i = 0; i < nr_lmbs; i++) {
3565 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3566 addr / SPAPR_MEMORY_BLOCK_SIZE);
3567 g_assert(drc);
3568 if (drc->dev) {
3569 avail_lmbs++;
3570 }
3571 addr += SPAPR_MEMORY_BLOCK_SIZE;
3572 }
3573
3574 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3575 }
3576
3577 /* Callback to be called during DRC release. */
3578 void spapr_lmb_release(DeviceState *dev)
3579 {
3580 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3581 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3582 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3583
3584 /* This information will get lost if a migration occurs
3585 * during the unplug process. In this case recover it. */
3586 if (ds == NULL) {
3587 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3588 g_assert(ds);
3589 /* The DRC being examined by the caller at least must be counted */
3590 g_assert(ds->nr_lmbs);
3591 }
3592
3593 if (--ds->nr_lmbs) {
3594 return;
3595 }
3596
3597 /*
3598 * Now that all the LMBs have been removed by the guest, call the
3599 * unplug handler chain. This can never fail.
3600 */
3601 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3602 object_unparent(OBJECT(dev));
3603 }
3604
3605 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3606 {
3607 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3608 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3609
3610 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3611 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3612 spapr_pending_dimm_unplugs_remove(spapr, ds);
3613 }
3614
3615 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3616 DeviceState *dev, Error **errp)
3617 {
3618 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3619 Error *local_err = NULL;
3620 PCDIMMDevice *dimm = PC_DIMM(dev);
3621 uint32_t nr_lmbs;
3622 uint64_t size, addr_start, addr;
3623 int i;
3624 SpaprDrc *drc;
3625
3626 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3627 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3628
3629 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3630 &local_err);
3631 if (local_err) {
3632 goto out;
3633 }
3634
3635 /*
3636 * An existing pending dimm state for this DIMM means that there is an
3637 * unplug operation in progress, waiting for the spapr_lmb_release
3638 * callback to complete the job (BQL can't cover that far). In this case,
3639 * bail out to avoid detaching DRCs that were already released.
3640 */
3641 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3642 error_setg(&local_err,
3643 "Memory unplug already in progress for device %s",
3644 dev->id);
3645 goto out;
3646 }
3647
3648 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3649
3650 addr = addr_start;
3651 for (i = 0; i < nr_lmbs; i++) {
3652 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3653 addr / SPAPR_MEMORY_BLOCK_SIZE);
3654 g_assert(drc);
3655
3656 spapr_drc_detach(drc);
3657 addr += SPAPR_MEMORY_BLOCK_SIZE;
3658 }
3659
3660 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3661 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3662 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3663 nr_lmbs, spapr_drc_index(drc));
3664 out:
3665 error_propagate(errp, local_err);
3666 }
3667
3668 /* Callback to be called during DRC release. */
3669 void spapr_core_release(DeviceState *dev)
3670 {
3671 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3672
3673 /* Call the unplug handler chain. This can never fail. */
3674 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3675 object_unparent(OBJECT(dev));
3676 }
3677
3678 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3679 {
3680 MachineState *ms = MACHINE(hotplug_dev);
3681 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3682 CPUCore *cc = CPU_CORE(dev);
3683 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3684
3685 if (smc->pre_2_10_has_unused_icps) {
3686 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3687 int i;
3688
3689 for (i = 0; i < cc->nr_threads; i++) {
3690 CPUState *cs = CPU(sc->threads[i]);
3691
3692 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3693 }
3694 }
3695
3696 assert(core_slot);
3697 core_slot->cpu = NULL;
3698 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3699 }
3700
3701 static
3702 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3703 Error **errp)
3704 {
3705 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3706 int index;
3707 SpaprDrc *drc;
3708 CPUCore *cc = CPU_CORE(dev);
3709
3710 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3711 error_setg(errp, "Unable to find CPU core with core-id: %d",
3712 cc->core_id);
3713 return;
3714 }
3715 if (index == 0) {
3716 error_setg(errp, "Boot CPU core may not be unplugged");
3717 return;
3718 }
3719
3720 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3721 spapr_vcpu_id(spapr, cc->core_id));
3722 g_assert(drc);
3723
3724 spapr_drc_detach(drc);
3725
3726 spapr_hotplug_req_remove_by_index(drc);
3727 }
3728
3729 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3730 void *fdt, int *fdt_start_offset, Error **errp)
3731 {
3732 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3733 CPUState *cs = CPU(core->threads[0]);
3734 PowerPCCPU *cpu = POWERPC_CPU(cs);
3735 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3736 int id = spapr_get_vcpu_id(cpu);
3737 char *nodename;
3738 int offset;
3739
3740 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3741 offset = fdt_add_subnode(fdt, 0, nodename);
3742 g_free(nodename);
3743
3744 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3745
3746 *fdt_start_offset = offset;
3747 return 0;
3748 }
3749
3750 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3751 Error **errp)
3752 {
3753 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3754 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3755 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3756 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3757 CPUCore *cc = CPU_CORE(dev);
3758 CPUState *cs;
3759 SpaprDrc *drc;
3760 Error *local_err = NULL;
3761 CPUArchId *core_slot;
3762 int index;
3763 bool hotplugged = spapr_drc_hotplugged(dev);
3764
3765 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3766 if (!core_slot) {
3767 error_setg(errp, "Unable to find CPU core with core-id: %d",
3768 cc->core_id);
3769 return;
3770 }
3771 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3772 spapr_vcpu_id(spapr, cc->core_id));
3773
3774 g_assert(drc || !mc->has_hotpluggable_cpus);
3775
3776 if (drc) {
3777 spapr_drc_attach(drc, dev, &local_err);
3778 if (local_err) {
3779 error_propagate(errp, local_err);
3780 return;
3781 }
3782
3783 if (hotplugged) {
3784 /*
3785 * Send hotplug notification interrupt to the guest only
3786 * in case of hotplugged CPUs.
3787 */
3788 spapr_hotplug_req_add_by_index(drc);
3789 } else {
3790 spapr_drc_reset(drc);
3791 }
3792 }
3793
3794 core_slot->cpu = OBJECT(dev);
3795
3796 if (smc->pre_2_10_has_unused_icps) {
3797 int i;
3798
3799 for (i = 0; i < cc->nr_threads; i++) {
3800 cs = CPU(core->threads[i]);
3801 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3802 }
3803 }
3804 }
3805
3806 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3807 Error **errp)
3808 {
3809 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3810 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3811 Error *local_err = NULL;
3812 CPUCore *cc = CPU_CORE(dev);
3813 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3814 const char *type = object_get_typename(OBJECT(dev));
3815 CPUArchId *core_slot;
3816 int index;
3817
3818 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3819 error_setg(&local_err, "CPU hotplug not supported for this machine");
3820 goto out;
3821 }
3822
3823 if (strcmp(base_core_type, type)) {
3824 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3825 goto out;
3826 }
3827
3828 if (cc->core_id % smp_threads) {
3829 error_setg(&local_err, "invalid core id %d", cc->core_id);
3830 goto out;
3831 }
3832
3833 /*
3834 * In general we should have homogeneous threads-per-core, but old
3835 * (pre hotplug support) machine types allow the last core to have
3836 * reduced threads as a compatibility hack for when we allowed
3837 * total vcpus not a multiple of threads-per-core.
3838 */
3839 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3840 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3841 cc->nr_threads, smp_threads);
3842 goto out;
3843 }
3844
3845 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3846 if (!core_slot) {
3847 error_setg(&local_err, "core id %d out of range", cc->core_id);
3848 goto out;
3849 }
3850
3851 if (core_slot->cpu) {
3852 error_setg(&local_err, "core %d already populated", cc->core_id);
3853 goto out;
3854 }
3855
3856 numa_cpu_pre_plug(core_slot, dev, &local_err);
3857
3858 out:
3859 error_propagate(errp, local_err);
3860 }
3861
3862 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3863 void *fdt, int *fdt_start_offset, Error **errp)
3864 {
3865 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3866 int intc_phandle;
3867
3868 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3869 if (intc_phandle <= 0) {
3870 return -1;
3871 }
3872
3873 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3874 fdt_start_offset)) {
3875 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3876 return -1;
3877 }
3878
3879 /* generally SLOF creates these, for hotplug it's up to QEMU */
3880 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3881
3882 return 0;
3883 }
3884
3885 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3886 Error **errp)
3887 {
3888 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3889 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3890 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3891 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3892
3893 if (dev->hotplugged && !smc->dr_phb_enabled) {
3894 error_setg(errp, "PHB hotplug not supported for this machine");
3895 return;
3896 }
3897
3898 if (sphb->index == (uint32_t)-1) {
3899 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3900 return;
3901 }
3902
3903 /*
3904 * This will check that sphb->index doesn't exceed the maximum number of
3905 * PHBs for the current machine type.
3906 */
3907 smc->phb_placement(spapr, sphb->index,
3908 &sphb->buid, &sphb->io_win_addr,
3909 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3910 windows_supported, sphb->dma_liobn, errp);
3911 }
3912
3913 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3914 Error **errp)
3915 {
3916 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3917 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3918 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3919 SpaprDrc *drc;
3920 bool hotplugged = spapr_drc_hotplugged(dev);
3921 Error *local_err = NULL;
3922
3923 if (!smc->dr_phb_enabled) {
3924 return;
3925 }
3926
3927 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3928 /* hotplug hooks should check it's enabled before getting this far */
3929 assert(drc);
3930
3931 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3932 if (local_err) {
3933 error_propagate(errp, local_err);
3934 return;
3935 }
3936
3937 if (hotplugged) {
3938 spapr_hotplug_req_add_by_index(drc);
3939 } else {
3940 spapr_drc_reset(drc);
3941 }
3942 }
3943
3944 void spapr_phb_release(DeviceState *dev)
3945 {
3946 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3947
3948 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3949 object_unparent(OBJECT(dev));
3950 }
3951
3952 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3953 {
3954 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3955 }
3956
3957 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3958 DeviceState *dev, Error **errp)
3959 {
3960 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3961 SpaprDrc *drc;
3962
3963 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3964 assert(drc);
3965
3966 if (!spapr_drc_unplug_requested(drc)) {
3967 spapr_drc_detach(drc);
3968 spapr_hotplug_req_remove_by_index(drc);
3969 }
3970 }
3971
3972 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3973 DeviceState *dev, Error **errp)
3974 {
3975 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3976 spapr_memory_plug(hotplug_dev, dev, errp);
3977 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3978 spapr_core_plug(hotplug_dev, dev, errp);
3979 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3980 spapr_phb_plug(hotplug_dev, dev, errp);
3981 }
3982 }
3983
3984 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3985 DeviceState *dev, Error **errp)
3986 {
3987 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3988 spapr_memory_unplug(hotplug_dev, dev);
3989 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3990 spapr_core_unplug(hotplug_dev, dev);
3991 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3992 spapr_phb_unplug(hotplug_dev, dev);
3993 }
3994 }
3995
3996 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3997 DeviceState *dev, Error **errp)
3998 {
3999 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000 MachineClass *mc = MACHINE_GET_CLASS(sms);
4001 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4002
4003 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4004 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4005 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4006 } else {
4007 /* NOTE: this means there is a window after guest reset, prior to
4008 * CAS negotiation, where unplug requests will fail due to the
4009 * capability not being detected yet. This is a bit different than
4010 * the case with PCI unplug, where the events will be queued and
4011 * eventually handled by the guest after boot
4012 */
4013 error_setg(errp, "Memory hot unplug not supported for this guest");
4014 }
4015 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4016 if (!mc->has_hotpluggable_cpus) {
4017 error_setg(errp, "CPU hot unplug not supported on this machine");
4018 return;
4019 }
4020 spapr_core_unplug_request(hotplug_dev, dev, errp);
4021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4022 if (!smc->dr_phb_enabled) {
4023 error_setg(errp, "PHB hot unplug not supported on this machine");
4024 return;
4025 }
4026 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4027 }
4028 }
4029
4030 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4031 DeviceState *dev, Error **errp)
4032 {
4033 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4034 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4035 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4036 spapr_core_pre_plug(hotplug_dev, dev, errp);
4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4038 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4039 }
4040 }
4041
4042 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4043 DeviceState *dev)
4044 {
4045 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4046 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4047 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4048 return HOTPLUG_HANDLER(machine);
4049 }
4050 return NULL;
4051 }
4052
4053 static CpuInstanceProperties
4054 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4055 {
4056 CPUArchId *core_slot;
4057 MachineClass *mc = MACHINE_GET_CLASS(machine);
4058
4059 /* make sure possible_cpu are intialized */
4060 mc->possible_cpu_arch_ids(machine);
4061 /* get CPU core slot containing thread that matches cpu_index */
4062 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4063 assert(core_slot);
4064 return core_slot->props;
4065 }
4066
4067 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4068 {
4069 return idx / smp_cores % nb_numa_nodes;
4070 }
4071
4072 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4073 {
4074 int i;
4075 const char *core_type;
4076 int spapr_max_cores = max_cpus / smp_threads;
4077 MachineClass *mc = MACHINE_GET_CLASS(machine);
4078
4079 if (!mc->has_hotpluggable_cpus) {
4080 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4081 }
4082 if (machine->possible_cpus) {
4083 assert(machine->possible_cpus->len == spapr_max_cores);
4084 return machine->possible_cpus;
4085 }
4086
4087 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4088 if (!core_type) {
4089 error_report("Unable to find sPAPR CPU Core definition");
4090 exit(1);
4091 }
4092
4093 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4094 sizeof(CPUArchId) * spapr_max_cores);
4095 machine->possible_cpus->len = spapr_max_cores;
4096 for (i = 0; i < machine->possible_cpus->len; i++) {
4097 int core_id = i * smp_threads;
4098
4099 machine->possible_cpus->cpus[i].type = core_type;
4100 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4101 machine->possible_cpus->cpus[i].arch_id = core_id;
4102 machine->possible_cpus->cpus[i].props.has_core_id = true;
4103 machine->possible_cpus->cpus[i].props.core_id = core_id;
4104 }
4105 return machine->possible_cpus;
4106 }
4107
4108 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4109 uint64_t *buid, hwaddr *pio,
4110 hwaddr *mmio32, hwaddr *mmio64,
4111 unsigned n_dma, uint32_t *liobns, Error **errp)
4112 {
4113 /*
4114 * New-style PHB window placement.
4115 *
4116 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4117 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4118 * windows.
4119 *
4120 * Some guest kernels can't work with MMIO windows above 1<<46
4121 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4122 *
4123 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4124 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4125 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4126 * 1TiB 64-bit MMIO windows for each PHB.
4127 */
4128 const uint64_t base_buid = 0x800000020000000ULL;
4129 int i;
4130
4131 /* Sanity check natural alignments */
4132 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4133 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4134 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4135 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4136 /* Sanity check bounds */
4137 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4138 SPAPR_PCI_MEM32_WIN_SIZE);
4139 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4140 SPAPR_PCI_MEM64_WIN_SIZE);
4141
4142 if (index >= SPAPR_MAX_PHBS) {
4143 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4144 SPAPR_MAX_PHBS - 1);
4145 return;
4146 }
4147
4148 *buid = base_buid + index;
4149 for (i = 0; i < n_dma; ++i) {
4150 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4151 }
4152
4153 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4154 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4155 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4156 }
4157
4158 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4159 {
4160 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4161
4162 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4163 }
4164
4165 static void spapr_ics_resend(XICSFabric *dev)
4166 {
4167 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4168
4169 ics_resend(spapr->ics);
4170 }
4171
4172 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4173 {
4174 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4175
4176 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4177 }
4178
4179 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4180 Monitor *mon)
4181 {
4182 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4183
4184 spapr->irq->print_info(spapr, mon);
4185 }
4186
4187 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4188 {
4189 return cpu->vcpu_id;
4190 }
4191
4192 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4193 {
4194 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4195 int vcpu_id;
4196
4197 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4198
4199 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4200 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4201 error_append_hint(errp, "Adjust the number of cpus to %d "
4202 "or try to raise the number of threads per core\n",
4203 vcpu_id * smp_threads / spapr->vsmt);
4204 return;
4205 }
4206
4207 cpu->vcpu_id = vcpu_id;
4208 }
4209
4210 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4211 {
4212 CPUState *cs;
4213
4214 CPU_FOREACH(cs) {
4215 PowerPCCPU *cpu = POWERPC_CPU(cs);
4216
4217 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4218 return cpu;
4219 }
4220 }
4221
4222 return NULL;
4223 }
4224
4225 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4226 {
4227 MachineClass *mc = MACHINE_CLASS(oc);
4228 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4229 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4230 NMIClass *nc = NMI_CLASS(oc);
4231 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4232 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4233 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4234 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4235
4236 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4237 mc->ignore_boot_device_suffixes = true;
4238
4239 /*
4240 * We set up the default / latest behaviour here. The class_init
4241 * functions for the specific versioned machine types can override
4242 * these details for backwards compatibility
4243 */
4244 mc->init = spapr_machine_init;
4245 mc->reset = spapr_machine_reset;
4246 mc->block_default_type = IF_SCSI;
4247 mc->max_cpus = 1024;
4248 mc->no_parallel = 1;
4249 mc->default_boot_order = "";
4250 mc->default_ram_size = 512 * MiB;
4251 mc->default_display = "std";
4252 mc->kvm_type = spapr_kvm_type;
4253 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4254 mc->pci_allow_0_address = true;
4255 assert(!mc->get_hotplug_handler);
4256 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4257 hc->pre_plug = spapr_machine_device_pre_plug;
4258 hc->plug = spapr_machine_device_plug;
4259 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4260 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4261 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4262 hc->unplug_request = spapr_machine_device_unplug_request;
4263 hc->unplug = spapr_machine_device_unplug;
4264
4265 smc->dr_lmb_enabled = true;
4266 smc->update_dt_enabled = true;
4267 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4268 mc->has_hotpluggable_cpus = true;
4269 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4270 fwc->get_dev_path = spapr_get_fw_dev_path;
4271 nc->nmi_monitor_handler = spapr_nmi;
4272 smc->phb_placement = spapr_phb_placement;
4273 vhc->hypercall = emulate_spapr_hypercall;
4274 vhc->hpt_mask = spapr_hpt_mask;
4275 vhc->map_hptes = spapr_map_hptes;
4276 vhc->unmap_hptes = spapr_unmap_hptes;
4277 vhc->store_hpte = spapr_store_hpte;
4278 vhc->get_pate = spapr_get_pate;
4279 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4280 xic->ics_get = spapr_ics_get;
4281 xic->ics_resend = spapr_ics_resend;
4282 xic->icp_get = spapr_icp_get;
4283 ispc->print_info = spapr_pic_print_info;
4284 /* Force NUMA node memory size to be a multiple of
4285 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4286 * in which LMBs are represented and hot-added
4287 */
4288 mc->numa_mem_align_shift = 28;
4289
4290 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4291 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4292 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4293 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4294 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4295 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4296 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4297 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4298 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4299 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4300 spapr_caps_add_properties(smc, &error_abort);
4301 smc->irq = &spapr_irq_xics;
4302 smc->dr_phb_enabled = true;
4303 }
4304
4305 static const TypeInfo spapr_machine_info = {
4306 .name = TYPE_SPAPR_MACHINE,
4307 .parent = TYPE_MACHINE,
4308 .abstract = true,
4309 .instance_size = sizeof(SpaprMachineState),
4310 .instance_init = spapr_instance_init,
4311 .instance_finalize = spapr_machine_finalizefn,
4312 .class_size = sizeof(SpaprMachineClass),
4313 .class_init = spapr_machine_class_init,
4314 .interfaces = (InterfaceInfo[]) {
4315 { TYPE_FW_PATH_PROVIDER },
4316 { TYPE_NMI },
4317 { TYPE_HOTPLUG_HANDLER },
4318 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4319 { TYPE_XICS_FABRIC },
4320 { TYPE_INTERRUPT_STATS_PROVIDER },
4321 { }
4322 },
4323 };
4324
4325 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4326 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4327 void *data) \
4328 { \
4329 MachineClass *mc = MACHINE_CLASS(oc); \
4330 spapr_machine_##suffix##_class_options(mc); \
4331 if (latest) { \
4332 mc->alias = "pseries"; \
4333 mc->is_default = 1; \
4334 } \
4335 } \
4336 static const TypeInfo spapr_machine_##suffix##_info = { \
4337 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4338 .parent = TYPE_SPAPR_MACHINE, \
4339 .class_init = spapr_machine_##suffix##_class_init, \
4340 }; \
4341 static void spapr_machine_register_##suffix(void) \
4342 { \
4343 type_register(&spapr_machine_##suffix##_info); \
4344 } \
4345 type_init(spapr_machine_register_##suffix)
4346
4347 /*
4348 * pseries-4.0
4349 */
4350 static void spapr_machine_4_0_class_options(MachineClass *mc)
4351 {
4352 /* Defaults for the latest behaviour inherited from the base class */
4353 }
4354
4355 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4356
4357 /*
4358 * pseries-3.1
4359 */
4360 static void spapr_machine_3_1_class_options(MachineClass *mc)
4361 {
4362 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4363
4364 spapr_machine_4_0_class_options(mc);
4365 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4366
4367 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4368 smc->update_dt_enabled = false;
4369 smc->dr_phb_enabled = false;
4370 smc->broken_host_serial_model = true;
4371 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4372 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4373 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4374 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4375 }
4376
4377 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4378
4379 /*
4380 * pseries-3.0
4381 */
4382
4383 static void spapr_machine_3_0_class_options(MachineClass *mc)
4384 {
4385 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4386
4387 spapr_machine_3_1_class_options(mc);
4388 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4389
4390 smc->legacy_irq_allocation = true;
4391 smc->irq = &spapr_irq_xics_legacy;
4392 }
4393
4394 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4395
4396 /*
4397 * pseries-2.12
4398 */
4399 static void spapr_machine_2_12_class_options(MachineClass *mc)
4400 {
4401 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4402 static GlobalProperty compat[] = {
4403 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4404 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4405 };
4406
4407 spapr_machine_3_0_class_options(mc);
4408 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4409 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4410
4411 /* We depend on kvm_enabled() to choose a default value for the
4412 * hpt-max-page-size capability. Of course we can't do it here
4413 * because this is too early and the HW accelerator isn't initialzed
4414 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4415 */
4416 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4417 }
4418
4419 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4420
4421 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4422 {
4423 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4424
4425 spapr_machine_2_12_class_options(mc);
4426 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4427 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4428 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4429 }
4430
4431 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4432
4433 /*
4434 * pseries-2.11
4435 */
4436
4437 static void spapr_machine_2_11_class_options(MachineClass *mc)
4438 {
4439 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4440
4441 spapr_machine_2_12_class_options(mc);
4442 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4443 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4444 }
4445
4446 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4447
4448 /*
4449 * pseries-2.10
4450 */
4451
4452 static void spapr_machine_2_10_class_options(MachineClass *mc)
4453 {
4454 spapr_machine_2_11_class_options(mc);
4455 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4456 }
4457
4458 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4459
4460 /*
4461 * pseries-2.9
4462 */
4463
4464 static void spapr_machine_2_9_class_options(MachineClass *mc)
4465 {
4466 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4467 static GlobalProperty compat[] = {
4468 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4469 };
4470
4471 spapr_machine_2_10_class_options(mc);
4472 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4473 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4474 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4475 smc->pre_2_10_has_unused_icps = true;
4476 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4477 }
4478
4479 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4480
4481 /*
4482 * pseries-2.8
4483 */
4484
4485 static void spapr_machine_2_8_class_options(MachineClass *mc)
4486 {
4487 static GlobalProperty compat[] = {
4488 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4489 };
4490
4491 spapr_machine_2_9_class_options(mc);
4492 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4493 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4494 mc->numa_mem_align_shift = 23;
4495 }
4496
4497 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4498
4499 /*
4500 * pseries-2.7
4501 */
4502
4503 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4504 uint64_t *buid, hwaddr *pio,
4505 hwaddr *mmio32, hwaddr *mmio64,
4506 unsigned n_dma, uint32_t *liobns, Error **errp)
4507 {
4508 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4509 const uint64_t base_buid = 0x800000020000000ULL;
4510 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4511 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4512 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4513 const uint32_t max_index = 255;
4514 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4515
4516 uint64_t ram_top = MACHINE(spapr)->ram_size;
4517 hwaddr phb0_base, phb_base;
4518 int i;
4519
4520 /* Do we have device memory? */
4521 if (MACHINE(spapr)->maxram_size > ram_top) {
4522 /* Can't just use maxram_size, because there may be an
4523 * alignment gap between normal and device memory regions
4524 */
4525 ram_top = MACHINE(spapr)->device_memory->base +
4526 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4527 }
4528
4529 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4530
4531 if (index > max_index) {
4532 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4533 max_index);
4534 return;
4535 }
4536
4537 *buid = base_buid + index;
4538 for (i = 0; i < n_dma; ++i) {
4539 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4540 }
4541
4542 phb_base = phb0_base + index * phb_spacing;
4543 *pio = phb_base + pio_offset;
4544 *mmio32 = phb_base + mmio_offset;
4545 /*
4546 * We don't set the 64-bit MMIO window, relying on the PHB's
4547 * fallback behaviour of automatically splitting a large "32-bit"
4548 * window into contiguous 32-bit and 64-bit windows
4549 */
4550 }
4551
4552 static void spapr_machine_2_7_class_options(MachineClass *mc)
4553 {
4554 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4555 static GlobalProperty compat[] = {
4556 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4557 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4558 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4559 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4560 };
4561
4562 spapr_machine_2_8_class_options(mc);
4563 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4564 mc->default_machine_opts = "modern-hotplug-events=off";
4565 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4566 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4567 smc->phb_placement = phb_placement_2_7;
4568 }
4569
4570 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4571
4572 /*
4573 * pseries-2.6
4574 */
4575
4576 static void spapr_machine_2_6_class_options(MachineClass *mc)
4577 {
4578 static GlobalProperty compat[] = {
4579 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4580 };
4581
4582 spapr_machine_2_7_class_options(mc);
4583 mc->has_hotpluggable_cpus = false;
4584 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4585 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4586 }
4587
4588 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4589
4590 /*
4591 * pseries-2.5
4592 */
4593
4594 static void spapr_machine_2_5_class_options(MachineClass *mc)
4595 {
4596 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4597 static GlobalProperty compat[] = {
4598 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4599 };
4600
4601 spapr_machine_2_6_class_options(mc);
4602 smc->use_ohci_by_default = true;
4603 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4604 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4605 }
4606
4607 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4608
4609 /*
4610 * pseries-2.4
4611 */
4612
4613 static void spapr_machine_2_4_class_options(MachineClass *mc)
4614 {
4615 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4616
4617 spapr_machine_2_5_class_options(mc);
4618 smc->dr_lmb_enabled = false;
4619 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4620 }
4621
4622 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4623
4624 /*
4625 * pseries-2.3
4626 */
4627
4628 static void spapr_machine_2_3_class_options(MachineClass *mc)
4629 {
4630 static GlobalProperty compat[] = {
4631 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4632 };
4633 spapr_machine_2_4_class_options(mc);
4634 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4635 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4636 }
4637 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4638
4639 /*
4640 * pseries-2.2
4641 */
4642
4643 static void spapr_machine_2_2_class_options(MachineClass *mc)
4644 {
4645 static GlobalProperty compat[] = {
4646 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4647 };
4648
4649 spapr_machine_2_3_class_options(mc);
4650 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4651 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4652 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4653 }
4654 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4655
4656 /*
4657 * pseries-2.1
4658 */
4659
4660 static void spapr_machine_2_1_class_options(MachineClass *mc)
4661 {
4662 spapr_machine_2_2_class_options(mc);
4663 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4664 }
4665 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4666
4667 static void spapr_machine_register_types(void)
4668 {
4669 type_register_static(&spapr_machine_info);
4670 }
4671
4672 type_init(spapr_machine_register_types)