]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge tag 'pull-ppc-20220920' of https://gitlab.com/danielhb/qemu into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
68
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
73
74 #include "exec/ram_addr.h"
75 #include "hw/usb.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
78 #include "trace.h"
79 #include "hw/nmi.h"
80 #include "hw/intc/intc.h"
81
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
88
89 #include "monitor/monitor.h"
90
91 #include <libfdt.h>
92
93 /* SLOF memory layout:
94 *
95 * SLOF raw image loaded at 0, copies its romfs right below the flat
96 * device-tree, then position SLOF itself 31M below that
97 *
98 * So we set FW_OVERHEAD to 40MB which should account for all of that
99 * and more
100 *
101 * We load our kernel at 4M, leaving space for SLOF initial image
102 */
103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE 0x400000
105 #define FW_FILE_NAME "slof.bin"
106 #define FW_FILE_NAME_VOF "vof.bin"
107 #define FW_OVERHEAD 0x2800000
108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
109
110 #define MIN_RMA_SLOF (128 * MiB)
111
112 #define PHANDLE_INTC 0x00001111
113
114 /* These two functions implement the VCPU id numbering: one to compute them
115 * all and one to identify thread 0 of a VCORE. Any change to the first one
116 * is likely to have an impact on the second one, so let's keep them close.
117 */
118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
119 {
120 MachineState *ms = MACHINE(spapr);
121 unsigned int smp_threads = ms->smp.threads;
122
123 assert(spapr->vsmt);
124 return
125 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
126 }
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
128 PowerPCCPU *cpu)
129 {
130 assert(spapr->vsmt);
131 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
132 }
133
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
135 {
136 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137 * and newer QEMUs don't even have them. In both cases, we don't want
138 * to send anything on the wire.
139 */
140 return false;
141 }
142
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
144 .name = "icp/server",
145 .version_id = 1,
146 .minimum_version_id = 1,
147 .needed = pre_2_10_vmstate_dummy_icp_needed,
148 .fields = (VMStateField[]) {
149 VMSTATE_UNUSED(4), /* uint32_t xirr */
150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151 VMSTATE_UNUSED(1), /* uint8_t mfrr */
152 VMSTATE_END_OF_LIST()
153 },
154 };
155
156 static void pre_2_10_vmstate_register_dummy_icp(int i)
157 {
158 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
160 }
161
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
163 {
164 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
165 (void *)(uintptr_t) i);
166 }
167
168 int spapr_max_server_number(SpaprMachineState *spapr)
169 {
170 MachineState *ms = MACHINE(spapr);
171
172 assert(spapr->vsmt);
173 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
174 }
175
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177 int smt_threads)
178 {
179 int i, ret = 0;
180 uint32_t servers_prop[smt_threads];
181 uint32_t gservers_prop[smt_threads * 2];
182 int index = spapr_get_vcpu_id(cpu);
183
184 if (cpu->compat_pvr) {
185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186 if (ret < 0) {
187 return ret;
188 }
189 }
190
191 /* Build interrupt servers and gservers properties */
192 for (i = 0; i < smt_threads; i++) {
193 servers_prop[i] = cpu_to_be32(index + i);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop[i*2] = cpu_to_be32(index + i);
196 gservers_prop[i*2 + 1] = 0;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199 servers_prop, sizeof(servers_prop));
200 if (ret < 0) {
201 return ret;
202 }
203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop, sizeof(gservers_prop));
205
206 return ret;
207 }
208
209 static void spapr_dt_pa_features(SpaprMachineState *spapr,
210 PowerPCCPU *cpu,
211 void *fdt, int offset)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static hwaddr spapr_node0_size(MachineState *machine)
288 {
289 if (machine->numa_state->num_nodes) {
290 int i;
291 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
292 if (machine->numa_state->nodes[i].node_mem) {
293 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
294 machine->ram_size);
295 }
296 }
297 }
298 return machine->ram_size;
299 }
300
301 static void add_str(GString *s, const gchar *s1)
302 {
303 g_string_append_len(s, s1, strlen(s1) + 1);
304 }
305
306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
307 hwaddr start, hwaddr size)
308 {
309 char mem_name[32];
310 uint64_t mem_reg_property[2];
311 int off;
312
313 mem_reg_property[0] = cpu_to_be64(start);
314 mem_reg_property[1] = cpu_to_be64(size);
315
316 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
317 off = fdt_add_subnode(fdt, 0, mem_name);
318 _FDT(off);
319 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
320 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
321 sizeof(mem_reg_property))));
322 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
323 return off;
324 }
325
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
327 {
328 MemoryDeviceInfoList *info;
329
330 for (info = list; info; info = info->next) {
331 MemoryDeviceInfo *value = info->value;
332
333 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
334 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
335
336 if (addr >= pcdimm_info->addr &&
337 addr < (pcdimm_info->addr + pcdimm_info->size)) {
338 return pcdimm_info->node;
339 }
340 }
341 }
342
343 return -1;
344 }
345
346 struct sPAPRDrconfCellV2 {
347 uint32_t seq_lmbs;
348 uint64_t base_addr;
349 uint32_t drc_index;
350 uint32_t aa_index;
351 uint32_t flags;
352 } QEMU_PACKED;
353
354 typedef struct DrconfCellQueue {
355 struct sPAPRDrconfCellV2 cell;
356 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
357 } DrconfCellQueue;
358
359 static DrconfCellQueue *
360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
361 uint32_t drc_index, uint32_t aa_index,
362 uint32_t flags)
363 {
364 DrconfCellQueue *elem;
365
366 elem = g_malloc0(sizeof(*elem));
367 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
368 elem->cell.base_addr = cpu_to_be64(base_addr);
369 elem->cell.drc_index = cpu_to_be32(drc_index);
370 elem->cell.aa_index = cpu_to_be32(aa_index);
371 elem->cell.flags = cpu_to_be32(flags);
372
373 return elem;
374 }
375
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
377 int offset, MemoryDeviceInfoList *dimms)
378 {
379 MachineState *machine = MACHINE(spapr);
380 uint8_t *int_buf, *cur_index;
381 int ret;
382 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
383 uint64_t addr, cur_addr, size;
384 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
385 uint64_t mem_end = machine->device_memory->base +
386 memory_region_size(&machine->device_memory->mr);
387 uint32_t node, buf_len, nr_entries = 0;
388 SpaprDrc *drc;
389 DrconfCellQueue *elem, *next;
390 MemoryDeviceInfoList *info;
391 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
393
394 /* Entry to cover RAM and the gap area */
395 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
396 SPAPR_LMB_FLAGS_RESERVED |
397 SPAPR_LMB_FLAGS_DRC_INVALID);
398 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
399 nr_entries++;
400
401 cur_addr = machine->device_memory->base;
402 for (info = dimms; info; info = info->next) {
403 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
404
405 addr = di->addr;
406 size = di->size;
407 node = di->node;
408
409 /*
410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411 * area is marked hotpluggable in the next iteration for the bigger
412 * chunk including the NVDIMM occupied area.
413 */
414 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
415 continue;
416
417 /* Entry for hot-pluggable area */
418 if (cur_addr < addr) {
419 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
420 g_assert(drc);
421 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
422 cur_addr, spapr_drc_index(drc), -1, 0);
423 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
424 nr_entries++;
425 }
426
427 /* Entry for DIMM */
428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
429 g_assert(drc);
430 elem = spapr_get_drconf_cell(size / lmb_size, addr,
431 spapr_drc_index(drc), node,
432 (SPAPR_LMB_FLAGS_ASSIGNED |
433 SPAPR_LMB_FLAGS_HOTREMOVABLE));
434 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
435 nr_entries++;
436 cur_addr = addr + size;
437 }
438
439 /* Entry for remaining hotpluggable area */
440 if (cur_addr < mem_end) {
441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
442 g_assert(drc);
443 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
444 cur_addr, spapr_drc_index(drc), -1, 0);
445 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
446 nr_entries++;
447 }
448
449 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
450 int_buf = cur_index = g_malloc0(buf_len);
451 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
452 cur_index += sizeof(nr_entries);
453
454 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
455 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
456 cur_index += sizeof(elem->cell);
457 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
458 g_free(elem);
459 }
460
461 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
462 g_free(int_buf);
463 if (ret < 0) {
464 return -1;
465 }
466 return 0;
467 }
468
469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
470 int offset, MemoryDeviceInfoList *dimms)
471 {
472 MachineState *machine = MACHINE(spapr);
473 int i, ret;
474 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
475 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
476 uint32_t nr_lmbs = (machine->device_memory->base +
477 memory_region_size(&machine->device_memory->mr)) /
478 lmb_size;
479 uint32_t *int_buf, *cur_index, buf_len;
480
481 /*
482 * Allocate enough buffer size to fit in ibm,dynamic-memory
483 */
484 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
485 cur_index = int_buf = g_malloc0(buf_len);
486 int_buf[0] = cpu_to_be32(nr_lmbs);
487 cur_index++;
488 for (i = 0; i < nr_lmbs; i++) {
489 uint64_t addr = i * lmb_size;
490 uint32_t *dynamic_memory = cur_index;
491
492 if (i >= device_lmb_start) {
493 SpaprDrc *drc;
494
495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
496 g_assert(drc);
497
498 dynamic_memory[0] = cpu_to_be32(addr >> 32);
499 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
500 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
501 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
502 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
503 if (memory_region_present(get_system_memory(), addr)) {
504 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
505 } else {
506 dynamic_memory[5] = cpu_to_be32(0);
507 }
508 } else {
509 /*
510 * LMB information for RMA, boot time RAM and gap b/n RAM and
511 * device memory region -- all these are marked as reserved
512 * and as having no valid DRC.
513 */
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(0);
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(-1);
519 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
520 SPAPR_LMB_FLAGS_DRC_INVALID);
521 }
522
523 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
524 }
525 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
526 g_free(int_buf);
527 if (ret < 0) {
528 return -1;
529 }
530 return 0;
531 }
532
533 /*
534 * Adds ibm,dynamic-reconfiguration-memory node.
535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536 * of this device tree node.
537 */
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
539 void *fdt)
540 {
541 MachineState *machine = MACHINE(spapr);
542 int ret, offset;
543 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
544 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
545 cpu_to_be32(lmb_size & 0xffffffff)};
546 MemoryDeviceInfoList *dimms = NULL;
547
548 /*
549 * Don't create the node if there is no device memory
550 */
551 if (machine->ram_size == machine->maxram_size) {
552 return 0;
553 }
554
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
561 }
562
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
566 }
567
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
571 }
572
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579 }
580 qapi_free_MemoryDeviceInfoList(dimms);
581
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587
588 return ret;
589 }
590
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
598
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
602 }
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
609 }
610 }
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
617 }
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
620
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
624 }
625
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
629 }
630 }
631
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
635
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
640 }
641 }
642
643 return 0;
644 }
645
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
648 {
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
669
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674 }
675
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
688
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
694 }
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
700 }
701
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711 }
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714 }
715
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
719 }
720
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
724 *
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732 }
733 }
734
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740 }
741
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
747 }
748
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
750
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
753
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
756
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759 }
760
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
767 }
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
772 }
773
774 /*
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
777 */
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
781 }
782
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785 CPUState **rev;
786 CPUState *cs;
787 int n_cpus;
788 int cpus_offset;
789 int i;
790
791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792 _FDT(cpus_offset);
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795
796 /*
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
800 *
801 * The CPU list cannot be traversed in reverse order, so we need
802 * to do extra work.
803 */
804 n_cpus = 0;
805 rev = NULL;
806 CPU_FOREACH(cs) {
807 rev = g_renew(CPUState *, rev, n_cpus + 1);
808 rev[n_cpus++] = cs;
809 }
810
811 for (i = n_cpus - 1; i >= 0; i--) {
812 CPUState *cs = rev[i];
813 PowerPCCPU *cpu = POWERPC_CPU(cs);
814 int index = spapr_get_vcpu_id(cpu);
815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
816 g_autofree char *nodename = NULL;
817 int offset;
818
819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820 continue;
821 }
822
823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825 _FDT(offset);
826 spapr_dt_cpu(cs, fdt, offset, spapr);
827 }
828
829 g_free(rev);
830 }
831
832 static int spapr_dt_rng(void *fdt)
833 {
834 int node;
835 int ret;
836
837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838 if (node <= 0) {
839 return -1;
840 }
841 ret = fdt_setprop_string(fdt, node, "device_type",
842 "ibm,platform-facilities");
843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845
846 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847 if (node <= 0) {
848 return -1;
849 }
850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851
852 return ret ? -1 : 0;
853 }
854
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857 MachineState *ms = MACHINE(spapr);
858 int rtas;
859 GString *hypertas = g_string_sized_new(256);
860 GString *qemu_hypertas = g_string_sized_new(256);
861 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
862 memory_region_size(&MACHINE(spapr)->device_memory->mr);
863 uint32_t lrdr_capacity[] = {
864 cpu_to_be32(max_device_addr >> 32),
865 cpu_to_be32(max_device_addr & 0xffffffff),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
868 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
869 };
870
871 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
872
873 /* hypertas */
874 add_str(hypertas, "hcall-pft");
875 add_str(hypertas, "hcall-term");
876 add_str(hypertas, "hcall-dabr");
877 add_str(hypertas, "hcall-interrupt");
878 add_str(hypertas, "hcall-tce");
879 add_str(hypertas, "hcall-vio");
880 add_str(hypertas, "hcall-splpar");
881 add_str(hypertas, "hcall-join");
882 add_str(hypertas, "hcall-bulk");
883 add_str(hypertas, "hcall-set-mode");
884 add_str(hypertas, "hcall-sprg0");
885 add_str(hypertas, "hcall-copy");
886 add_str(hypertas, "hcall-debug");
887 add_str(hypertas, "hcall-vphn");
888 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
889 add_str(hypertas, "hcall-rpt-invalidate");
890 }
891
892 add_str(qemu_hypertas, "hcall-memop1");
893
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas, "hcall-multi-tce");
896 }
897
898 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899 add_str(hypertas, "hcall-hpt-resize");
900 }
901
902 add_str(hypertas, "hcall-watchdog");
903
904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905 hypertas->str, hypertas->len));
906 g_string_free(hypertas, TRUE);
907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908 qemu_hypertas->str, qemu_hypertas->len));
909 g_string_free(qemu_hypertas, TRUE);
910
911 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
912
913 /*
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916 *
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
922 *
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
929 * case anyway.
930 *
931 * The extra 8 bytes is required because Linux's FWNMI error log check
932 * is off-by-one.
933 *
934 * RTAS_MIN_SIZE is required for the RTAS blob itself.
935 */
936 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
937 RTAS_ERROR_LOG_MAX +
938 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
939 sizeof(uint64_t)));
940 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
941 RTAS_ERROR_LOG_MAX));
942 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
943 RTAS_EVENT_SCAN_RATE));
944
945 g_assert(msi_nonbroken);
946 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
947
948 /*
949 * According to PAPR, rtas ibm,os-term does not guarantee a return
950 * back to the guest cpu.
951 *
952 * While an additional ibm,extended-os-term property indicates
953 * that rtas call return will always occur. Set this property.
954 */
955 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
956
957 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
958 lrdr_capacity, sizeof(lrdr_capacity)));
959
960 spapr_dt_rtas_tokens(fdt, rtas);
961 }
962
963 /*
964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965 * and the XIVE features that the guest may request and thus the valid
966 * values for bytes 23..26 of option vector 5:
967 */
968 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
969 int chosen)
970 {
971 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
972
973 char val[2 * 4] = {
974 23, 0x00, /* XICS / XIVE mode */
975 24, 0x00, /* Hash/Radix, filled in below. */
976 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977 26, 0x40, /* Radix options: GTSE == yes. */
978 };
979
980 if (spapr->irq->xics && spapr->irq->xive) {
981 val[1] = SPAPR_OV5_XIVE_BOTH;
982 } else if (spapr->irq->xive) {
983 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
984 } else {
985 assert(spapr->irq->xics);
986 val[1] = SPAPR_OV5_XIVE_LEGACY;
987 }
988
989 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
990 first_ppc_cpu->compat_pvr)) {
991 /*
992 * If we're in a pre POWER9 compat mode then the guest should
993 * do hash and use the legacy interrupt mode
994 */
995 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
996 val[3] = 0x00; /* Hash */
997 spapr_check_mmu_mode(false);
998 } else if (kvm_enabled()) {
999 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000 val[3] = 0x80; /* OV5_MMU_BOTH */
1001 } else if (kvmppc_has_cap_mmu_radix()) {
1002 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1003 } else {
1004 val[3] = 0x00; /* Hash */
1005 }
1006 } else {
1007 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1008 val[3] = 0xC0;
1009 }
1010 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1011 val, sizeof(val)));
1012 }
1013
1014 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1015 {
1016 MachineState *machine = MACHINE(spapr);
1017 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1018 uint8_t rng_seed[32];
1019 int chosen;
1020
1021 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1022
1023 if (reset) {
1024 const char *boot_device = spapr->boot_device;
1025 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1026 size_t cb = 0;
1027 g_autofree char *bootlist = get_boot_devices_list(&cb);
1028
1029 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1030 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1031 machine->kernel_cmdline));
1032 }
1033
1034 if (spapr->initrd_size) {
1035 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1036 spapr->initrd_base));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1038 spapr->initrd_base + spapr->initrd_size));
1039 }
1040
1041 if (spapr->kernel_size) {
1042 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1043 cpu_to_be64(spapr->kernel_size) };
1044
1045 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1046 &kprop, sizeof(kprop)));
1047 if (spapr->kernel_le) {
1048 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1049 }
1050 }
1051 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1052 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1053 }
1054 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1055 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1057
1058 if (cb && bootlist) {
1059 int i;
1060
1061 for (i = 0; i < cb; i++) {
1062 if (bootlist[i] == '\n') {
1063 bootlist[i] = ' ';
1064 }
1065 }
1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1067 }
1068
1069 if (boot_device && strlen(boot_device)) {
1070 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1071 }
1072
1073 if (spapr->want_stdout_path && stdout_path) {
1074 /*
1075 * "linux,stdout-path" and "stdout" properties are
1076 * deprecated by linux kernel. New platforms should only
1077 * use the "stdout-path" property. Set the new property
1078 * and continue using older property to remain compatible
1079 * with the existing firmware.
1080 */
1081 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1082 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1083 }
1084
1085 /*
1086 * We can deal with BAR reallocation just fine, advertise it
1087 * to the guest
1088 */
1089 if (smc->linux_pci_probe) {
1090 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1091 }
1092
1093 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1094 }
1095
1096 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1097 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1098
1099 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1100 }
1101
1102 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1103 {
1104 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105 * KVM to work under pHyp with some guest co-operation */
1106 int hypervisor;
1107 uint8_t hypercall[16];
1108
1109 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1110 /* indicate KVM hypercall interface */
1111 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1112 if (kvmppc_has_cap_fixup_hcalls()) {
1113 /*
1114 * Older KVM versions with older guest kernels were broken
1115 * with the magic page, don't allow the guest to map it.
1116 */
1117 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1118 sizeof(hypercall))) {
1119 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1120 hypercall, sizeof(hypercall)));
1121 }
1122 }
1123 }
1124
1125 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1126 {
1127 MachineState *machine = MACHINE(spapr);
1128 MachineClass *mc = MACHINE_GET_CLASS(machine);
1129 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1130 uint32_t root_drc_type_mask = 0;
1131 int ret;
1132 void *fdt;
1133 SpaprPhbState *phb;
1134 char *buf;
1135
1136 fdt = g_malloc0(space);
1137 _FDT((fdt_create_empty_tree(fdt, space)));
1138
1139 /* Root node */
1140 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1141 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1142 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1143
1144 /* Guest UUID & Name*/
1145 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1146 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1147 if (qemu_uuid_set) {
1148 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1149 }
1150 g_free(buf);
1151
1152 if (qemu_get_vm_name()) {
1153 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1154 qemu_get_vm_name()));
1155 }
1156
1157 /* Host Model & Serial Number */
1158 if (spapr->host_model) {
1159 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1161 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1162 g_free(buf);
1163 }
1164
1165 if (spapr->host_serial) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1169 g_free(buf);
1170 }
1171
1172 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1173 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1174
1175 /* /interrupt controller */
1176 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1177
1178 ret = spapr_dt_memory(spapr, fdt);
1179 if (ret < 0) {
1180 error_report("couldn't setup memory nodes in fdt");
1181 exit(1);
1182 }
1183
1184 /* /vdevice */
1185 spapr_dt_vdevice(spapr->vio_bus, fdt);
1186
1187 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1188 ret = spapr_dt_rng(fdt);
1189 if (ret < 0) {
1190 error_report("could not set up rng device in the fdt");
1191 exit(1);
1192 }
1193 }
1194
1195 QLIST_FOREACH(phb, &spapr->phbs, list) {
1196 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1197 if (ret < 0) {
1198 error_report("couldn't setup PCI devices in fdt");
1199 exit(1);
1200 }
1201 }
1202
1203 spapr_dt_cpus(fdt, spapr);
1204
1205 /* ibm,drc-indexes and friends */
1206 if (smc->dr_lmb_enabled) {
1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1208 }
1209 if (smc->dr_phb_enabled) {
1210 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1211 }
1212 if (mc->nvdimm_supported) {
1213 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1214 }
1215 if (root_drc_type_mask) {
1216 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1217 }
1218
1219 if (mc->has_hotpluggable_cpus) {
1220 int offset = fdt_path_offset(fdt, "/cpus");
1221 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1222 if (ret < 0) {
1223 error_report("Couldn't set up CPU DR device tree properties");
1224 exit(1);
1225 }
1226 }
1227
1228 /* /event-sources */
1229 spapr_dt_events(spapr, fdt);
1230
1231 /* /rtas */
1232 spapr_dt_rtas(spapr, fdt);
1233
1234 /* /chosen */
1235 spapr_dt_chosen(spapr, fdt, reset);
1236
1237 /* /hypervisor */
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr, fdt);
1240 }
1241
1242 /* Build memory reserve map */
1243 if (reset) {
1244 if (spapr->kernel_size) {
1245 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1246 spapr->kernel_size)));
1247 }
1248 if (spapr->initrd_size) {
1249 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250 spapr->initrd_size)));
1251 }
1252 }
1253
1254 /* NVDIMM devices */
1255 if (mc->nvdimm_supported) {
1256 spapr_dt_persistent_memory(spapr, fdt);
1257 }
1258
1259 return fdt;
1260 }
1261
1262 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1263 {
1264 SpaprMachineState *spapr = opaque;
1265
1266 return (addr & 0x0fffffff) + spapr->kernel_addr;
1267 }
1268
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1270 PowerPCCPU *cpu)
1271 {
1272 CPUPPCState *env = &cpu->env;
1273
1274 /* The TCG path should also be holding the BQL at this point */
1275 g_assert(qemu_mutex_iothread_locked());
1276
1277 g_assert(!vhyp_cpu_in_nested(cpu));
1278
1279 if (FIELD_EX64(env->msr, MSR, PR)) {
1280 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281 env->gpr[3] = H_PRIVILEGE;
1282 } else {
1283 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1284 }
1285 }
1286
1287 struct LPCRSyncState {
1288 target_ulong value;
1289 target_ulong mask;
1290 };
1291
1292 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1293 {
1294 struct LPCRSyncState *s = arg.host_ptr;
1295 PowerPCCPU *cpu = POWERPC_CPU(cs);
1296 CPUPPCState *env = &cpu->env;
1297 target_ulong lpcr;
1298
1299 cpu_synchronize_state(cs);
1300 lpcr = env->spr[SPR_LPCR];
1301 lpcr &= ~s->mask;
1302 lpcr |= s->value;
1303 ppc_store_lpcr(cpu, lpcr);
1304 }
1305
1306 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1307 {
1308 CPUState *cs;
1309 struct LPCRSyncState s = {
1310 .value = value,
1311 .mask = mask
1312 };
1313 CPU_FOREACH(cs) {
1314 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1315 }
1316 }
1317
1318 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1319 target_ulong lpid, ppc_v3_pate_t *entry)
1320 {
1321 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1322 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1323
1324 if (!spapr_cpu->in_nested) {
1325 assert(lpid == 0);
1326
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry->dw0 = spapr->patb_entry & PATE0_HR;
1329 entry->dw1 = spapr->patb_entry;
1330
1331 } else {
1332 uint64_t patb, pats;
1333
1334 assert(lpid != 0);
1335
1336 patb = spapr->nested_ptcr & PTCR_PATB;
1337 pats = spapr->nested_ptcr & PTCR_PATS;
1338
1339 /* Check if partition table is properly aligned */
1340 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1341 return false;
1342 }
1343
1344 /* Calculate number of entries */
1345 pats = 1ull << (pats + 12 - 4);
1346 if (pats <= lpid) {
1347 return false;
1348 }
1349
1350 /* Grab entry */
1351 patb += 16 * lpid;
1352 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1353 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1354 }
1355
1356 return true;
1357 }
1358
1359 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364
1365 /*
1366 * Get the fd to access the kernel htab, re-opening it if necessary
1367 */
1368 static int get_htab_fd(SpaprMachineState *spapr)
1369 {
1370 Error *local_err = NULL;
1371
1372 if (spapr->htab_fd >= 0) {
1373 return spapr->htab_fd;
1374 }
1375
1376 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1377 if (spapr->htab_fd < 0) {
1378 error_report_err(local_err);
1379 }
1380
1381 return spapr->htab_fd;
1382 }
1383
1384 void close_htab_fd(SpaprMachineState *spapr)
1385 {
1386 if (spapr->htab_fd >= 0) {
1387 close(spapr->htab_fd);
1388 }
1389 spapr->htab_fd = -1;
1390 }
1391
1392 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1393 {
1394 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395
1396 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397 }
1398
1399 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1400 {
1401 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402
1403 assert(kvm_enabled());
1404
1405 if (!spapr->htab) {
1406 return 0;
1407 }
1408
1409 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410 }
1411
1412 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1413 hwaddr ptex, int n)
1414 {
1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1417
1418 if (!spapr->htab) {
1419 /*
1420 * HTAB is controlled by KVM. Fetch into temporary buffer
1421 */
1422 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1423 kvmppc_read_hptes(hptes, ptex, n);
1424 return hptes;
1425 }
1426
1427 /*
1428 * HTAB is controlled by QEMU. Just point to the internally
1429 * accessible PTEG.
1430 */
1431 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432 }
1433
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1435 const ppc_hash_pte64_t *hptes,
1436 hwaddr ptex, int n)
1437 {
1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439
1440 if (!spapr->htab) {
1441 g_free((void *)hptes);
1442 }
1443
1444 /* Nothing to do for qemu managed HPT */
1445 }
1446
1447 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1448 uint64_t pte0, uint64_t pte1)
1449 {
1450 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1451 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1452
1453 if (!spapr->htab) {
1454 kvmppc_write_hpte(ptex, pte0, pte1);
1455 } else {
1456 if (pte0 & HPTE64_V_VALID) {
1457 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1458 /*
1459 * When setting valid, we write PTE1 first. This ensures
1460 * proper synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1462 */
1463 smp_wmb();
1464 stq_p(spapr->htab + offset, pte0);
1465 } else {
1466 stq_p(spapr->htab + offset, pte0);
1467 /*
1468 * When clearing it we set PTE0 first. This ensures proper
1469 * synchronization with the reading code in
1470 * ppc_hash64_pteg_search()
1471 */
1472 smp_wmb();
1473 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1474 }
1475 }
1476 }
1477
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479 uint64_t pte1)
1480 {
1481 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1482 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483
1484 if (!spapr->htab) {
1485 /* There should always be a hash table when this is called */
1486 error_report("spapr_hpte_set_c called with no hash table !");
1487 return;
1488 }
1489
1490 /* The HW performs a non-atomic byte update */
1491 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492 }
1493
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1495 uint64_t pte1)
1496 {
1497 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1498 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1499
1500 if (!spapr->htab) {
1501 /* There should always be a hash table when this is called */
1502 error_report("spapr_hpte_set_r called with no hash table !");
1503 return;
1504 }
1505
1506 /* The HW performs a non-atomic byte update */
1507 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508 }
1509
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1511 {
1512 int shift;
1513
1514 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1516 * that's much more than is needed for Linux guests */
1517 shift = ctz64(pow2ceil(ramsize)) - 7;
1518 shift = MAX(shift, 18); /* Minimum architected size */
1519 shift = MIN(shift, 46); /* Maximum architected size */
1520 return shift;
1521 }
1522
1523 void spapr_free_hpt(SpaprMachineState *spapr)
1524 {
1525 qemu_vfree(spapr->htab);
1526 spapr->htab = NULL;
1527 spapr->htab_shift = 0;
1528 close_htab_fd(spapr);
1529 }
1530
1531 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1532 {
1533 ERRP_GUARD();
1534 long rc;
1535
1536 /* Clean up any HPT info from a previous boot */
1537 spapr_free_hpt(spapr);
1538
1539 rc = kvmppc_reset_htab(shift);
1540
1541 if (rc == -EOPNOTSUPP) {
1542 error_setg(errp, "HPT not supported in nested guests");
1543 return -EOPNOTSUPP;
1544 }
1545
1546 if (rc < 0) {
1547 /* kernel-side HPT needed, but couldn't allocate one */
1548 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1549 shift);
1550 error_append_hint(errp, "Try smaller maxmem?\n");
1551 return -errno;
1552 } else if (rc > 0) {
1553 /* kernel-side HPT allocated */
1554 if (rc != shift) {
1555 error_setg(errp,
1556 "Requested order %d HPT, but kernel allocated order %ld",
1557 shift, rc);
1558 error_append_hint(errp, "Try smaller maxmem?\n");
1559 return -ENOSPC;
1560 }
1561
1562 spapr->htab_shift = shift;
1563 spapr->htab = NULL;
1564 } else {
1565 /* kernel-side HPT not needed, allocate in userspace instead */
1566 size_t size = 1ULL << shift;
1567 int i;
1568
1569 spapr->htab = qemu_memalign(size, size);
1570 memset(spapr->htab, 0, size);
1571 spapr->htab_shift = shift;
1572
1573 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1574 DIRTY_HPTE(HPTE(spapr->htab, i));
1575 }
1576 }
1577 /* We're setting up a hash table, so that means we're not radix */
1578 spapr->patb_entry = 0;
1579 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1580 return 0;
1581 }
1582
1583 void spapr_setup_hpt(SpaprMachineState *spapr)
1584 {
1585 int hpt_shift;
1586
1587 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1588 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589 } else {
1590 uint64_t current_ram_size;
1591
1592 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1593 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1594 }
1595 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1596
1597 if (kvm_enabled()) {
1598 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1599
1600 /* Check our RMA fits in the possible VRMA */
1601 if (vrma_limit < spapr->rma_size) {
1602 error_report("Unable to create %" HWADDR_PRIu
1603 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1604 spapr->rma_size / MiB, vrma_limit / MiB);
1605 exit(EXIT_FAILURE);
1606 }
1607 }
1608 }
1609
1610 void spapr_check_mmu_mode(bool guest_radix)
1611 {
1612 if (guest_radix) {
1613 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614 error_report("Guest requested unavailable MMU mode (radix).");
1615 exit(EXIT_FAILURE);
1616 }
1617 } else {
1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619 && !kvmppc_has_cap_mmu_hash_v3()) {
1620 error_report("Guest requested unavailable MMU mode (hash).");
1621 exit(EXIT_FAILURE);
1622 }
1623 }
1624 }
1625
1626 static void spapr_machine_reset(MachineState *machine)
1627 {
1628 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1629 PowerPCCPU *first_ppc_cpu;
1630 hwaddr fdt_addr;
1631 void *fdt;
1632 int rc;
1633
1634 pef_kvm_reset(machine->cgs, &error_fatal);
1635 spapr_caps_apply(spapr);
1636
1637 first_ppc_cpu = POWERPC_CPU(first_cpu);
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1640 spapr->max_compat_pvr)) {
1641 /*
1642 * If using KVM with radix mode available, VCPUs can be started
1643 * without a HPT because KVM will start them in radix mode.
1644 * Set the GR bit in PATE so that we know there is no HPT.
1645 */
1646 spapr->patb_entry = PATE1_GR;
1647 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1648 } else {
1649 spapr_setup_hpt(spapr);
1650 }
1651
1652 qemu_devices_reset();
1653
1654 spapr_ovec_cleanup(spapr->ov5_cas);
1655 spapr->ov5_cas = spapr_ovec_new();
1656
1657 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658
1659 /*
1660 * This is fixing some of the default configuration of the XIVE
1661 * devices. To be called after the reset of the machine devices.
1662 */
1663 spapr_irq_reset(spapr, &error_fatal);
1664
1665 /*
1666 * There is no CAS under qtest. Simulate one to please the code that
1667 * depends on spapr->ov5_cas. This is especially needed to test device
1668 * unplug, so we do that before resetting the DRCs.
1669 */
1670 if (qtest_enabled()) {
1671 spapr_ovec_cleanup(spapr->ov5_cas);
1672 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1673 }
1674
1675 spapr_nvdimm_finish_flushes();
1676
1677 /* DRC reset may cause a device to be unplugged. This will cause troubles
1678 * if this device is used by another device (eg, a running vhost backend
1679 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680 * situations, we reset DRCs after all devices have been reset.
1681 */
1682 spapr_drc_reset_all(spapr);
1683
1684 spapr_clear_pending_events(spapr);
1685
1686 /*
1687 * We place the device tree just below either the top of the RMA,
1688 * or just below 2GB, whichever is lower, so that it can be
1689 * processed with 32-bit real mode code if necessary
1690 */
1691 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1692
1693 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1694 if (spapr->vof) {
1695 spapr_vof_reset(spapr, fdt, &error_fatal);
1696 /*
1697 * Do not pack the FDT as the client may change properties.
1698 * VOF client does not expect the FDT so we do not load it to the VM.
1699 */
1700 } else {
1701 rc = fdt_pack(fdt);
1702 /* Should only fail if we've built a corrupted tree */
1703 assert(rc == 0);
1704
1705 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1706 0, fdt_addr, 0);
1707 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1708 }
1709 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1710
1711 g_free(spapr->fdt_blob);
1712 spapr->fdt_size = fdt_totalsize(fdt);
1713 spapr->fdt_initial_size = spapr->fdt_size;
1714 spapr->fdt_blob = fdt;
1715
1716 /* Set up the entry state */
1717 first_ppc_cpu->env.gpr[5] = 0;
1718
1719 spapr->fwnmi_system_reset_addr = -1;
1720 spapr->fwnmi_machine_check_addr = -1;
1721 spapr->fwnmi_machine_check_interlock = -1;
1722
1723 /* Signal all vCPUs waiting on this condition */
1724 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1725
1726 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1727 }
1728
1729 static void spapr_create_nvram(SpaprMachineState *spapr)
1730 {
1731 DeviceState *dev = qdev_new("spapr-nvram");
1732 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1733
1734 if (dinfo) {
1735 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1736 &error_fatal);
1737 }
1738
1739 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1740
1741 spapr->nvram = (struct SpaprNvram *)dev;
1742 }
1743
1744 static void spapr_rtc_create(SpaprMachineState *spapr)
1745 {
1746 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1747 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1748 &error_fatal, NULL);
1749 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1750 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1751 "date");
1752 }
1753
1754 /* Returns whether we want to use VGA or not */
1755 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1756 {
1757 vga_interface_created = true;
1758 switch (vga_interface_type) {
1759 case VGA_NONE:
1760 return false;
1761 case VGA_DEVICE:
1762 return true;
1763 case VGA_STD:
1764 case VGA_VIRTIO:
1765 case VGA_CIRRUS:
1766 return pci_vga_init(pci_bus) != NULL;
1767 default:
1768 error_setg(errp,
1769 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1770 return false;
1771 }
1772 }
1773
1774 static int spapr_pre_load(void *opaque)
1775 {
1776 int rc;
1777
1778 rc = spapr_caps_pre_load(opaque);
1779 if (rc) {
1780 return rc;
1781 }
1782
1783 return 0;
1784 }
1785
1786 static int spapr_post_load(void *opaque, int version_id)
1787 {
1788 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1789 int err = 0;
1790
1791 err = spapr_caps_post_migration(spapr);
1792 if (err) {
1793 return err;
1794 }
1795
1796 /*
1797 * In earlier versions, there was no separate qdev for the PAPR
1798 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1799 * So when migrating from those versions, poke the incoming offset
1800 * value into the RTC device
1801 */
1802 if (version_id < 3) {
1803 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1804 if (err) {
1805 return err;
1806 }
1807 }
1808
1809 if (kvm_enabled() && spapr->patb_entry) {
1810 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1811 bool radix = !!(spapr->patb_entry & PATE1_GR);
1812 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1813
1814 /*
1815 * Update LPCR:HR and UPRT as they may not be set properly in
1816 * the stream
1817 */
1818 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1819 LPCR_HR | LPCR_UPRT);
1820
1821 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1822 if (err) {
1823 error_report("Process table config unsupported by the host");
1824 return -EINVAL;
1825 }
1826 }
1827
1828 err = spapr_irq_post_load(spapr, version_id);
1829 if (err) {
1830 return err;
1831 }
1832
1833 return err;
1834 }
1835
1836 static int spapr_pre_save(void *opaque)
1837 {
1838 int rc;
1839
1840 rc = spapr_caps_pre_save(opaque);
1841 if (rc) {
1842 return rc;
1843 }
1844
1845 return 0;
1846 }
1847
1848 static bool version_before_3(void *opaque, int version_id)
1849 {
1850 return version_id < 3;
1851 }
1852
1853 static bool spapr_pending_events_needed(void *opaque)
1854 {
1855 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1856 return !QTAILQ_EMPTY(&spapr->pending_events);
1857 }
1858
1859 static const VMStateDescription vmstate_spapr_event_entry = {
1860 .name = "spapr_event_log_entry",
1861 .version_id = 1,
1862 .minimum_version_id = 1,
1863 .fields = (VMStateField[]) {
1864 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1865 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1866 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1867 NULL, extended_length),
1868 VMSTATE_END_OF_LIST()
1869 },
1870 };
1871
1872 static const VMStateDescription vmstate_spapr_pending_events = {
1873 .name = "spapr_pending_events",
1874 .version_id = 1,
1875 .minimum_version_id = 1,
1876 .needed = spapr_pending_events_needed,
1877 .fields = (VMStateField[]) {
1878 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1879 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1880 VMSTATE_END_OF_LIST()
1881 },
1882 };
1883
1884 static bool spapr_ov5_cas_needed(void *opaque)
1885 {
1886 SpaprMachineState *spapr = opaque;
1887 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1888 bool cas_needed;
1889
1890 /* Prior to the introduction of SpaprOptionVector, we had two option
1891 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1892 * Both of these options encode machine topology into the device-tree
1893 * in such a way that the now-booted OS should still be able to interact
1894 * appropriately with QEMU regardless of what options were actually
1895 * negotiatied on the source side.
1896 *
1897 * As such, we can avoid migrating the CAS-negotiated options if these
1898 * are the only options available on the current machine/platform.
1899 * Since these are the only options available for pseries-2.7 and
1900 * earlier, this allows us to maintain old->new/new->old migration
1901 * compatibility.
1902 *
1903 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1904 * via default pseries-2.8 machines and explicit command-line parameters.
1905 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1906 * of the actual CAS-negotiated values to continue working properly. For
1907 * example, availability of memory unplug depends on knowing whether
1908 * OV5_HP_EVT was negotiated via CAS.
1909 *
1910 * Thus, for any cases where the set of available CAS-negotiatable
1911 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1912 * include the CAS-negotiated options in the migration stream, unless
1913 * if they affect boot time behaviour only.
1914 */
1915 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1916 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1917 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1918
1919 /* We need extra information if we have any bits outside the mask
1920 * defined above */
1921 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1922
1923 spapr_ovec_cleanup(ov5_mask);
1924
1925 return cas_needed;
1926 }
1927
1928 static const VMStateDescription vmstate_spapr_ov5_cas = {
1929 .name = "spapr_option_vector_ov5_cas",
1930 .version_id = 1,
1931 .minimum_version_id = 1,
1932 .needed = spapr_ov5_cas_needed,
1933 .fields = (VMStateField[]) {
1934 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1935 vmstate_spapr_ovec, SpaprOptionVector),
1936 VMSTATE_END_OF_LIST()
1937 },
1938 };
1939
1940 static bool spapr_patb_entry_needed(void *opaque)
1941 {
1942 SpaprMachineState *spapr = opaque;
1943
1944 return !!spapr->patb_entry;
1945 }
1946
1947 static const VMStateDescription vmstate_spapr_patb_entry = {
1948 .name = "spapr_patb_entry",
1949 .version_id = 1,
1950 .minimum_version_id = 1,
1951 .needed = spapr_patb_entry_needed,
1952 .fields = (VMStateField[]) {
1953 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1954 VMSTATE_END_OF_LIST()
1955 },
1956 };
1957
1958 static bool spapr_irq_map_needed(void *opaque)
1959 {
1960 SpaprMachineState *spapr = opaque;
1961
1962 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1963 }
1964
1965 static const VMStateDescription vmstate_spapr_irq_map = {
1966 .name = "spapr_irq_map",
1967 .version_id = 1,
1968 .minimum_version_id = 1,
1969 .needed = spapr_irq_map_needed,
1970 .fields = (VMStateField[]) {
1971 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1972 VMSTATE_END_OF_LIST()
1973 },
1974 };
1975
1976 static bool spapr_dtb_needed(void *opaque)
1977 {
1978 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1979
1980 return smc->update_dt_enabled;
1981 }
1982
1983 static int spapr_dtb_pre_load(void *opaque)
1984 {
1985 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1986
1987 g_free(spapr->fdt_blob);
1988 spapr->fdt_blob = NULL;
1989 spapr->fdt_size = 0;
1990
1991 return 0;
1992 }
1993
1994 static const VMStateDescription vmstate_spapr_dtb = {
1995 .name = "spapr_dtb",
1996 .version_id = 1,
1997 .minimum_version_id = 1,
1998 .needed = spapr_dtb_needed,
1999 .pre_load = spapr_dtb_pre_load,
2000 .fields = (VMStateField[]) {
2001 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2002 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2003 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2004 fdt_size),
2005 VMSTATE_END_OF_LIST()
2006 },
2007 };
2008
2009 static bool spapr_fwnmi_needed(void *opaque)
2010 {
2011 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2012
2013 return spapr->fwnmi_machine_check_addr != -1;
2014 }
2015
2016 static int spapr_fwnmi_pre_save(void *opaque)
2017 {
2018 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2019
2020 /*
2021 * Check if machine check handling is in progress and print a
2022 * warning message.
2023 */
2024 if (spapr->fwnmi_machine_check_interlock != -1) {
2025 warn_report("A machine check is being handled during migration. The"
2026 "handler may run and log hardware error on the destination");
2027 }
2028
2029 return 0;
2030 }
2031
2032 static const VMStateDescription vmstate_spapr_fwnmi = {
2033 .name = "spapr_fwnmi",
2034 .version_id = 1,
2035 .minimum_version_id = 1,
2036 .needed = spapr_fwnmi_needed,
2037 .pre_save = spapr_fwnmi_pre_save,
2038 .fields = (VMStateField[]) {
2039 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2040 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2041 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2042 VMSTATE_END_OF_LIST()
2043 },
2044 };
2045
2046 static const VMStateDescription vmstate_spapr = {
2047 .name = "spapr",
2048 .version_id = 3,
2049 .minimum_version_id = 1,
2050 .pre_load = spapr_pre_load,
2051 .post_load = spapr_post_load,
2052 .pre_save = spapr_pre_save,
2053 .fields = (VMStateField[]) {
2054 /* used to be @next_irq */
2055 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2056
2057 /* RTC offset */
2058 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2059
2060 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2061 VMSTATE_END_OF_LIST()
2062 },
2063 .subsections = (const VMStateDescription*[]) {
2064 &vmstate_spapr_ov5_cas,
2065 &vmstate_spapr_patb_entry,
2066 &vmstate_spapr_pending_events,
2067 &vmstate_spapr_cap_htm,
2068 &vmstate_spapr_cap_vsx,
2069 &vmstate_spapr_cap_dfp,
2070 &vmstate_spapr_cap_cfpc,
2071 &vmstate_spapr_cap_sbbc,
2072 &vmstate_spapr_cap_ibs,
2073 &vmstate_spapr_cap_hpt_maxpagesize,
2074 &vmstate_spapr_irq_map,
2075 &vmstate_spapr_cap_nested_kvm_hv,
2076 &vmstate_spapr_dtb,
2077 &vmstate_spapr_cap_large_decr,
2078 &vmstate_spapr_cap_ccf_assist,
2079 &vmstate_spapr_cap_fwnmi,
2080 &vmstate_spapr_fwnmi,
2081 &vmstate_spapr_cap_rpt_invalidate,
2082 NULL
2083 }
2084 };
2085
2086 static int htab_save_setup(QEMUFile *f, void *opaque)
2087 {
2088 SpaprMachineState *spapr = opaque;
2089
2090 /* "Iteration" header */
2091 if (!spapr->htab_shift) {
2092 qemu_put_be32(f, -1);
2093 } else {
2094 qemu_put_be32(f, spapr->htab_shift);
2095 }
2096
2097 if (spapr->htab) {
2098 spapr->htab_save_index = 0;
2099 spapr->htab_first_pass = true;
2100 } else {
2101 if (spapr->htab_shift) {
2102 assert(kvm_enabled());
2103 }
2104 }
2105
2106
2107 return 0;
2108 }
2109
2110 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2111 int chunkstart, int n_valid, int n_invalid)
2112 {
2113 qemu_put_be32(f, chunkstart);
2114 qemu_put_be16(f, n_valid);
2115 qemu_put_be16(f, n_invalid);
2116 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2117 HASH_PTE_SIZE_64 * n_valid);
2118 }
2119
2120 static void htab_save_end_marker(QEMUFile *f)
2121 {
2122 qemu_put_be32(f, 0);
2123 qemu_put_be16(f, 0);
2124 qemu_put_be16(f, 0);
2125 }
2126
2127 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2128 int64_t max_ns)
2129 {
2130 bool has_timeout = max_ns != -1;
2131 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2132 int index = spapr->htab_save_index;
2133 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2134
2135 assert(spapr->htab_first_pass);
2136
2137 do {
2138 int chunkstart;
2139
2140 /* Consume invalid HPTEs */
2141 while ((index < htabslots)
2142 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2143 CLEAN_HPTE(HPTE(spapr->htab, index));
2144 index++;
2145 }
2146
2147 /* Consume valid HPTEs */
2148 chunkstart = index;
2149 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2150 && HPTE_VALID(HPTE(spapr->htab, index))) {
2151 CLEAN_HPTE(HPTE(spapr->htab, index));
2152 index++;
2153 }
2154
2155 if (index > chunkstart) {
2156 int n_valid = index - chunkstart;
2157
2158 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2159
2160 if (has_timeout &&
2161 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2162 break;
2163 }
2164 }
2165 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2166
2167 if (index >= htabslots) {
2168 assert(index == htabslots);
2169 index = 0;
2170 spapr->htab_first_pass = false;
2171 }
2172 spapr->htab_save_index = index;
2173 }
2174
2175 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2176 int64_t max_ns)
2177 {
2178 bool final = max_ns < 0;
2179 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2180 int examined = 0, sent = 0;
2181 int index = spapr->htab_save_index;
2182 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2183
2184 assert(!spapr->htab_first_pass);
2185
2186 do {
2187 int chunkstart, invalidstart;
2188
2189 /* Consume non-dirty HPTEs */
2190 while ((index < htabslots)
2191 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2192 index++;
2193 examined++;
2194 }
2195
2196 chunkstart = index;
2197 /* Consume valid dirty HPTEs */
2198 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2199 && HPTE_DIRTY(HPTE(spapr->htab, index))
2200 && HPTE_VALID(HPTE(spapr->htab, index))) {
2201 CLEAN_HPTE(HPTE(spapr->htab, index));
2202 index++;
2203 examined++;
2204 }
2205
2206 invalidstart = index;
2207 /* Consume invalid dirty HPTEs */
2208 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2209 && HPTE_DIRTY(HPTE(spapr->htab, index))
2210 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2211 CLEAN_HPTE(HPTE(spapr->htab, index));
2212 index++;
2213 examined++;
2214 }
2215
2216 if (index > chunkstart) {
2217 int n_valid = invalidstart - chunkstart;
2218 int n_invalid = index - invalidstart;
2219
2220 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2221 sent += index - chunkstart;
2222
2223 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2224 break;
2225 }
2226 }
2227
2228 if (examined >= htabslots) {
2229 break;
2230 }
2231
2232 if (index >= htabslots) {
2233 assert(index == htabslots);
2234 index = 0;
2235 }
2236 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2237
2238 if (index >= htabslots) {
2239 assert(index == htabslots);
2240 index = 0;
2241 }
2242
2243 spapr->htab_save_index = index;
2244
2245 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2246 }
2247
2248 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2249 #define MAX_KVM_BUF_SIZE 2048
2250
2251 static int htab_save_iterate(QEMUFile *f, void *opaque)
2252 {
2253 SpaprMachineState *spapr = opaque;
2254 int fd;
2255 int rc = 0;
2256
2257 /* Iteration header */
2258 if (!spapr->htab_shift) {
2259 qemu_put_be32(f, -1);
2260 return 1;
2261 } else {
2262 qemu_put_be32(f, 0);
2263 }
2264
2265 if (!spapr->htab) {
2266 assert(kvm_enabled());
2267
2268 fd = get_htab_fd(spapr);
2269 if (fd < 0) {
2270 return fd;
2271 }
2272
2273 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2274 if (rc < 0) {
2275 return rc;
2276 }
2277 } else if (spapr->htab_first_pass) {
2278 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2279 } else {
2280 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2281 }
2282
2283 htab_save_end_marker(f);
2284
2285 return rc;
2286 }
2287
2288 static int htab_save_complete(QEMUFile *f, void *opaque)
2289 {
2290 SpaprMachineState *spapr = opaque;
2291 int fd;
2292
2293 /* Iteration header */
2294 if (!spapr->htab_shift) {
2295 qemu_put_be32(f, -1);
2296 return 0;
2297 } else {
2298 qemu_put_be32(f, 0);
2299 }
2300
2301 if (!spapr->htab) {
2302 int rc;
2303
2304 assert(kvm_enabled());
2305
2306 fd = get_htab_fd(spapr);
2307 if (fd < 0) {
2308 return fd;
2309 }
2310
2311 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2312 if (rc < 0) {
2313 return rc;
2314 }
2315 } else {
2316 if (spapr->htab_first_pass) {
2317 htab_save_first_pass(f, spapr, -1);
2318 }
2319 htab_save_later_pass(f, spapr, -1);
2320 }
2321
2322 /* End marker */
2323 htab_save_end_marker(f);
2324
2325 return 0;
2326 }
2327
2328 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2329 {
2330 SpaprMachineState *spapr = opaque;
2331 uint32_t section_hdr;
2332 int fd = -1;
2333 Error *local_err = NULL;
2334
2335 if (version_id < 1 || version_id > 1) {
2336 error_report("htab_load() bad version");
2337 return -EINVAL;
2338 }
2339
2340 section_hdr = qemu_get_be32(f);
2341
2342 if (section_hdr == -1) {
2343 spapr_free_hpt(spapr);
2344 return 0;
2345 }
2346
2347 if (section_hdr) {
2348 int ret;
2349
2350 /* First section gives the htab size */
2351 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2352 if (ret < 0) {
2353 error_report_err(local_err);
2354 return ret;
2355 }
2356 return 0;
2357 }
2358
2359 if (!spapr->htab) {
2360 assert(kvm_enabled());
2361
2362 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2363 if (fd < 0) {
2364 error_report_err(local_err);
2365 return fd;
2366 }
2367 }
2368
2369 while (true) {
2370 uint32_t index;
2371 uint16_t n_valid, n_invalid;
2372
2373 index = qemu_get_be32(f);
2374 n_valid = qemu_get_be16(f);
2375 n_invalid = qemu_get_be16(f);
2376
2377 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2378 /* End of Stream */
2379 break;
2380 }
2381
2382 if ((index + n_valid + n_invalid) >
2383 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2384 /* Bad index in stream */
2385 error_report(
2386 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2387 index, n_valid, n_invalid, spapr->htab_shift);
2388 return -EINVAL;
2389 }
2390
2391 if (spapr->htab) {
2392 if (n_valid) {
2393 qemu_get_buffer(f, HPTE(spapr->htab, index),
2394 HASH_PTE_SIZE_64 * n_valid);
2395 }
2396 if (n_invalid) {
2397 memset(HPTE(spapr->htab, index + n_valid), 0,
2398 HASH_PTE_SIZE_64 * n_invalid);
2399 }
2400 } else {
2401 int rc;
2402
2403 assert(fd >= 0);
2404
2405 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2406 &local_err);
2407 if (rc < 0) {
2408 error_report_err(local_err);
2409 return rc;
2410 }
2411 }
2412 }
2413
2414 if (!spapr->htab) {
2415 assert(fd >= 0);
2416 close(fd);
2417 }
2418
2419 return 0;
2420 }
2421
2422 static void htab_save_cleanup(void *opaque)
2423 {
2424 SpaprMachineState *spapr = opaque;
2425
2426 close_htab_fd(spapr);
2427 }
2428
2429 static SaveVMHandlers savevm_htab_handlers = {
2430 .save_setup = htab_save_setup,
2431 .save_live_iterate = htab_save_iterate,
2432 .save_live_complete_precopy = htab_save_complete,
2433 .save_cleanup = htab_save_cleanup,
2434 .load_state = htab_load,
2435 };
2436
2437 static void spapr_boot_set(void *opaque, const char *boot_device,
2438 Error **errp)
2439 {
2440 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2441
2442 g_free(spapr->boot_device);
2443 spapr->boot_device = g_strdup(boot_device);
2444 }
2445
2446 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2447 {
2448 MachineState *machine = MACHINE(spapr);
2449 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2450 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2451 int i;
2452
2453 for (i = 0; i < nr_lmbs; i++) {
2454 uint64_t addr;
2455
2456 addr = i * lmb_size + machine->device_memory->base;
2457 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2458 addr / lmb_size);
2459 }
2460 }
2461
2462 /*
2463 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2464 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2465 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2466 */
2467 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2468 {
2469 int i;
2470
2471 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2472 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2473 " is not aligned to %" PRIu64 " MiB",
2474 machine->ram_size,
2475 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2476 return;
2477 }
2478
2479 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2480 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2481 " is not aligned to %" PRIu64 " MiB",
2482 machine->ram_size,
2483 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2484 return;
2485 }
2486
2487 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2488 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2489 error_setg(errp,
2490 "Node %d memory size 0x%" PRIx64
2491 " is not aligned to %" PRIu64 " MiB",
2492 i, machine->numa_state->nodes[i].node_mem,
2493 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2494 return;
2495 }
2496 }
2497 }
2498
2499 /* find cpu slot in machine->possible_cpus by core_id */
2500 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2501 {
2502 int index = id / ms->smp.threads;
2503
2504 if (index >= ms->possible_cpus->len) {
2505 return NULL;
2506 }
2507 if (idx) {
2508 *idx = index;
2509 }
2510 return &ms->possible_cpus->cpus[index];
2511 }
2512
2513 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2514 {
2515 MachineState *ms = MACHINE(spapr);
2516 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2517 Error *local_err = NULL;
2518 bool vsmt_user = !!spapr->vsmt;
2519 int kvm_smt = kvmppc_smt_threads();
2520 int ret;
2521 unsigned int smp_threads = ms->smp.threads;
2522
2523 if (!kvm_enabled() && (smp_threads > 1)) {
2524 error_setg(errp, "TCG cannot support more than 1 thread/core "
2525 "on a pseries machine");
2526 return;
2527 }
2528 if (!is_power_of_2(smp_threads)) {
2529 error_setg(errp, "Cannot support %d threads/core on a pseries "
2530 "machine because it must be a power of 2", smp_threads);
2531 return;
2532 }
2533
2534 /* Detemine the VSMT mode to use: */
2535 if (vsmt_user) {
2536 if (spapr->vsmt < smp_threads) {
2537 error_setg(errp, "Cannot support VSMT mode %d"
2538 " because it must be >= threads/core (%d)",
2539 spapr->vsmt, smp_threads);
2540 return;
2541 }
2542 /* In this case, spapr->vsmt has been set by the command line */
2543 } else if (!smc->smp_threads_vsmt) {
2544 /*
2545 * Default VSMT value is tricky, because we need it to be as
2546 * consistent as possible (for migration), but this requires
2547 * changing it for at least some existing cases. We pick 8 as
2548 * the value that we'd get with KVM on POWER8, the
2549 * overwhelmingly common case in production systems.
2550 */
2551 spapr->vsmt = MAX(8, smp_threads);
2552 } else {
2553 spapr->vsmt = smp_threads;
2554 }
2555
2556 /* KVM: If necessary, set the SMT mode: */
2557 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2558 ret = kvmppc_set_smt_threads(spapr->vsmt);
2559 if (ret) {
2560 /* Looks like KVM isn't able to change VSMT mode */
2561 error_setg(&local_err,
2562 "Failed to set KVM's VSMT mode to %d (errno %d)",
2563 spapr->vsmt, ret);
2564 /* We can live with that if the default one is big enough
2565 * for the number of threads, and a submultiple of the one
2566 * we want. In this case we'll waste some vcpu ids, but
2567 * behaviour will be correct */
2568 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2569 warn_report_err(local_err);
2570 } else {
2571 if (!vsmt_user) {
2572 error_append_hint(&local_err,
2573 "On PPC, a VM with %d threads/core"
2574 " on a host with %d threads/core"
2575 " requires the use of VSMT mode %d.\n",
2576 smp_threads, kvm_smt, spapr->vsmt);
2577 }
2578 kvmppc_error_append_smt_possible_hint(&local_err);
2579 error_propagate(errp, local_err);
2580 }
2581 }
2582 }
2583 /* else TCG: nothing to do currently */
2584 }
2585
2586 static void spapr_init_cpus(SpaprMachineState *spapr)
2587 {
2588 MachineState *machine = MACHINE(spapr);
2589 MachineClass *mc = MACHINE_GET_CLASS(machine);
2590 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2591 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2592 const CPUArchIdList *possible_cpus;
2593 unsigned int smp_cpus = machine->smp.cpus;
2594 unsigned int smp_threads = machine->smp.threads;
2595 unsigned int max_cpus = machine->smp.max_cpus;
2596 int boot_cores_nr = smp_cpus / smp_threads;
2597 int i;
2598
2599 possible_cpus = mc->possible_cpu_arch_ids(machine);
2600 if (mc->has_hotpluggable_cpus) {
2601 if (smp_cpus % smp_threads) {
2602 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2603 smp_cpus, smp_threads);
2604 exit(1);
2605 }
2606 if (max_cpus % smp_threads) {
2607 error_report("max_cpus (%u) must be multiple of threads (%u)",
2608 max_cpus, smp_threads);
2609 exit(1);
2610 }
2611 } else {
2612 if (max_cpus != smp_cpus) {
2613 error_report("This machine version does not support CPU hotplug");
2614 exit(1);
2615 }
2616 boot_cores_nr = possible_cpus->len;
2617 }
2618
2619 if (smc->pre_2_10_has_unused_icps) {
2620 int i;
2621
2622 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2623 /* Dummy entries get deregistered when real ICPState objects
2624 * are registered during CPU core hotplug.
2625 */
2626 pre_2_10_vmstate_register_dummy_icp(i);
2627 }
2628 }
2629
2630 for (i = 0; i < possible_cpus->len; i++) {
2631 int core_id = i * smp_threads;
2632
2633 if (mc->has_hotpluggable_cpus) {
2634 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2635 spapr_vcpu_id(spapr, core_id));
2636 }
2637
2638 if (i < boot_cores_nr) {
2639 Object *core = object_new(type);
2640 int nr_threads = smp_threads;
2641
2642 /* Handle the partially filled core for older machine types */
2643 if ((i + 1) * smp_threads >= smp_cpus) {
2644 nr_threads = smp_cpus - i * smp_threads;
2645 }
2646
2647 object_property_set_int(core, "nr-threads", nr_threads,
2648 &error_fatal);
2649 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2650 &error_fatal);
2651 qdev_realize(DEVICE(core), NULL, &error_fatal);
2652
2653 object_unref(core);
2654 }
2655 }
2656 }
2657
2658 static PCIHostState *spapr_create_default_phb(void)
2659 {
2660 DeviceState *dev;
2661
2662 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2663 qdev_prop_set_uint32(dev, "index", 0);
2664 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2665
2666 return PCI_HOST_BRIDGE(dev);
2667 }
2668
2669 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2670 {
2671 MachineState *machine = MACHINE(spapr);
2672 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2673 hwaddr rma_size = machine->ram_size;
2674 hwaddr node0_size = spapr_node0_size(machine);
2675
2676 /* RMA has to fit in the first NUMA node */
2677 rma_size = MIN(rma_size, node0_size);
2678
2679 /*
2680 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2681 * never exceed that
2682 */
2683 rma_size = MIN(rma_size, 1 * TiB);
2684
2685 /*
2686 * Clamp the RMA size based on machine type. This is for
2687 * migration compatibility with older qemu versions, which limited
2688 * the RMA size for complicated and mostly bad reasons.
2689 */
2690 if (smc->rma_limit) {
2691 rma_size = MIN(rma_size, smc->rma_limit);
2692 }
2693
2694 if (rma_size < MIN_RMA_SLOF) {
2695 error_setg(errp,
2696 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2697 "ldMiB guest RMA (Real Mode Area memory)",
2698 MIN_RMA_SLOF / MiB);
2699 return 0;
2700 }
2701
2702 return rma_size;
2703 }
2704
2705 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2706 {
2707 MachineState *machine = MACHINE(spapr);
2708 int i;
2709
2710 for (i = 0; i < machine->ram_slots; i++) {
2711 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2712 }
2713 }
2714
2715 /* pSeries LPAR / sPAPR hardware init */
2716 static void spapr_machine_init(MachineState *machine)
2717 {
2718 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2719 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2720 MachineClass *mc = MACHINE_GET_CLASS(machine);
2721 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2722 const char *bios_name = machine->firmware ?: bios_default;
2723 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2724 const char *kernel_filename = machine->kernel_filename;
2725 const char *initrd_filename = machine->initrd_filename;
2726 PCIHostState *phb;
2727 bool has_vga;
2728 int i;
2729 MemoryRegion *sysmem = get_system_memory();
2730 long load_limit, fw_size;
2731 Error *resize_hpt_err = NULL;
2732
2733 if (!filename) {
2734 error_report("Could not find LPAR firmware '%s'", bios_name);
2735 exit(1);
2736 }
2737 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2738 if (fw_size <= 0) {
2739 error_report("Could not load LPAR firmware '%s'", filename);
2740 exit(1);
2741 }
2742
2743 /*
2744 * if Secure VM (PEF) support is configured, then initialize it
2745 */
2746 pef_kvm_init(machine->cgs, &error_fatal);
2747
2748 msi_nonbroken = true;
2749
2750 QLIST_INIT(&spapr->phbs);
2751 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2752
2753 /* Determine capabilities to run with */
2754 spapr_caps_init(spapr);
2755
2756 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2757 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2758 /*
2759 * If the user explicitly requested a mode we should either
2760 * supply it, or fail completely (which we do below). But if
2761 * it's not set explicitly, we reset our mode to something
2762 * that works
2763 */
2764 if (resize_hpt_err) {
2765 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2766 error_free(resize_hpt_err);
2767 resize_hpt_err = NULL;
2768 } else {
2769 spapr->resize_hpt = smc->resize_hpt_default;
2770 }
2771 }
2772
2773 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2774
2775 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2776 /*
2777 * User requested HPT resize, but this host can't supply it. Bail out
2778 */
2779 error_report_err(resize_hpt_err);
2780 exit(1);
2781 }
2782 error_free(resize_hpt_err);
2783
2784 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2785
2786 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2787 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2788
2789 /*
2790 * VSMT must be set in order to be able to compute VCPU ids, ie to
2791 * call spapr_max_server_number() or spapr_vcpu_id().
2792 */
2793 spapr_set_vsmt_mode(spapr, &error_fatal);
2794
2795 /* Set up Interrupt Controller before we create the VCPUs */
2796 spapr_irq_init(spapr, &error_fatal);
2797
2798 /* Set up containers for ibm,client-architecture-support negotiated options
2799 */
2800 spapr->ov5 = spapr_ovec_new();
2801 spapr->ov5_cas = spapr_ovec_new();
2802
2803 if (smc->dr_lmb_enabled) {
2804 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2805 spapr_validate_node_memory(machine, &error_fatal);
2806 }
2807
2808 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2809
2810 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2811 if (!smc->pre_6_2_numa_affinity) {
2812 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2813 }
2814
2815 /* advertise support for dedicated HP event source to guests */
2816 if (spapr->use_hotplug_event_source) {
2817 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2818 }
2819
2820 /* advertise support for HPT resizing */
2821 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2822 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2823 }
2824
2825 /* advertise support for ibm,dyamic-memory-v2 */
2826 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2827
2828 /* advertise XIVE on POWER9 machines */
2829 if (spapr->irq->xive) {
2830 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2831 }
2832
2833 /* init CPUs */
2834 spapr_init_cpus(spapr);
2835
2836 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2837
2838 /* Init numa_assoc_array */
2839 spapr_numa_associativity_init(spapr, machine);
2840
2841 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2842 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2843 spapr->max_compat_pvr)) {
2844 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2845 /* KVM and TCG always allow GTSE with radix... */
2846 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2847 }
2848 /* ... but not with hash (currently). */
2849
2850 if (kvm_enabled()) {
2851 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2852 kvmppc_enable_logical_ci_hcalls();
2853 kvmppc_enable_set_mode_hcall();
2854
2855 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2856 kvmppc_enable_clear_ref_mod_hcalls();
2857
2858 /* Enable H_PAGE_INIT */
2859 kvmppc_enable_h_page_init();
2860 }
2861
2862 /* map RAM */
2863 memory_region_add_subregion(sysmem, 0, machine->ram);
2864
2865 /* always allocate the device memory information */
2866 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2867
2868 /* initialize hotplug memory address space */
2869 if (machine->ram_size < machine->maxram_size) {
2870 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2871 /*
2872 * Limit the number of hotpluggable memory slots to half the number
2873 * slots that KVM supports, leaving the other half for PCI and other
2874 * devices. However ensure that number of slots doesn't drop below 32.
2875 */
2876 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2877 SPAPR_MAX_RAM_SLOTS;
2878
2879 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2880 max_memslots = SPAPR_MAX_RAM_SLOTS;
2881 }
2882 if (machine->ram_slots > max_memslots) {
2883 error_report("Specified number of memory slots %"
2884 PRIu64" exceeds max supported %d",
2885 machine->ram_slots, max_memslots);
2886 exit(1);
2887 }
2888
2889 machine->device_memory->base = ROUND_UP(machine->ram_size,
2890 SPAPR_DEVICE_MEM_ALIGN);
2891 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2892 "device-memory", device_mem_size);
2893 memory_region_add_subregion(sysmem, machine->device_memory->base,
2894 &machine->device_memory->mr);
2895 }
2896
2897 if (smc->dr_lmb_enabled) {
2898 spapr_create_lmb_dr_connectors(spapr);
2899 }
2900
2901 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2902 /* Create the error string for live migration blocker */
2903 error_setg(&spapr->fwnmi_migration_blocker,
2904 "A machine check is being handled during migration. The handler"
2905 "may run and log hardware error on the destination");
2906 }
2907
2908 if (mc->nvdimm_supported) {
2909 spapr_create_nvdimm_dr_connectors(spapr);
2910 }
2911
2912 /* Set up RTAS event infrastructure */
2913 spapr_events_init(spapr);
2914
2915 /* Set up the RTC RTAS interfaces */
2916 spapr_rtc_create(spapr);
2917
2918 /* Set up VIO bus */
2919 spapr->vio_bus = spapr_vio_bus_init();
2920
2921 for (i = 0; serial_hd(i); i++) {
2922 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2923 }
2924
2925 /* We always have at least the nvram device on VIO */
2926 spapr_create_nvram(spapr);
2927
2928 /*
2929 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2930 * connectors (described in root DT node's "ibm,drc-types" property)
2931 * are pre-initialized here. additional child connectors (such as
2932 * connectors for a PHBs PCI slots) are added as needed during their
2933 * parent's realization.
2934 */
2935 if (smc->dr_phb_enabled) {
2936 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2937 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2938 }
2939 }
2940
2941 /* Set up PCI */
2942 spapr_pci_rtas_init();
2943
2944 phb = spapr_create_default_phb();
2945
2946 for (i = 0; i < nb_nics; i++) {
2947 NICInfo *nd = &nd_table[i];
2948
2949 if (!nd->model) {
2950 nd->model = g_strdup("spapr-vlan");
2951 }
2952
2953 if (g_str_equal(nd->model, "spapr-vlan") ||
2954 g_str_equal(nd->model, "ibmveth")) {
2955 spapr_vlan_create(spapr->vio_bus, nd);
2956 } else {
2957 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2958 }
2959 }
2960
2961 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2962 spapr_vscsi_create(spapr->vio_bus);
2963 }
2964
2965 /* Graphics */
2966 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2967 if (has_vga) {
2968 spapr->want_stdout_path = !machine->enable_graphics;
2969 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2970 } else {
2971 spapr->want_stdout_path = true;
2972 }
2973
2974 if (machine->usb) {
2975 if (smc->use_ohci_by_default) {
2976 pci_create_simple(phb->bus, -1, "pci-ohci");
2977 } else {
2978 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2979 }
2980
2981 if (has_vga) {
2982 USBBus *usb_bus = usb_bus_find(-1);
2983
2984 usb_create_simple(usb_bus, "usb-kbd");
2985 usb_create_simple(usb_bus, "usb-mouse");
2986 }
2987 }
2988
2989 if (kernel_filename) {
2990 uint64_t loaded_addr = 0;
2991
2992 spapr->kernel_size = load_elf(kernel_filename, NULL,
2993 translate_kernel_address, spapr,
2994 NULL, &loaded_addr, NULL, NULL, 1,
2995 PPC_ELF_MACHINE, 0, 0);
2996 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2997 spapr->kernel_size = load_elf(kernel_filename, NULL,
2998 translate_kernel_address, spapr,
2999 NULL, &loaded_addr, NULL, NULL, 0,
3000 PPC_ELF_MACHINE, 0, 0);
3001 spapr->kernel_le = spapr->kernel_size > 0;
3002 }
3003 if (spapr->kernel_size < 0) {
3004 error_report("error loading %s: %s", kernel_filename,
3005 load_elf_strerror(spapr->kernel_size));
3006 exit(1);
3007 }
3008
3009 if (spapr->kernel_addr != loaded_addr) {
3010 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3011 " to 0x%"PRIx64,
3012 spapr->kernel_addr, loaded_addr);
3013 spapr->kernel_addr = loaded_addr;
3014 }
3015
3016 /* load initrd */
3017 if (initrd_filename) {
3018 /* Try to locate the initrd in the gap between the kernel
3019 * and the firmware. Add a bit of space just in case
3020 */
3021 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3022 + 0x1ffff) & ~0xffff;
3023 spapr->initrd_size = load_image_targphys(initrd_filename,
3024 spapr->initrd_base,
3025 load_limit
3026 - spapr->initrd_base);
3027 if (spapr->initrd_size < 0) {
3028 error_report("could not load initial ram disk '%s'",
3029 initrd_filename);
3030 exit(1);
3031 }
3032 }
3033 }
3034
3035 /* FIXME: Should register things through the MachineState's qdev
3036 * interface, this is a legacy from the sPAPREnvironment structure
3037 * which predated MachineState but had a similar function */
3038 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3039 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3040 &savevm_htab_handlers, spapr);
3041
3042 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3043
3044 qemu_register_boot_set(spapr_boot_set, spapr);
3045
3046 /*
3047 * Nothing needs to be done to resume a suspended guest because
3048 * suspending does not change the machine state, so no need for
3049 * a ->wakeup method.
3050 */
3051 qemu_register_wakeup_support();
3052
3053 if (kvm_enabled()) {
3054 /* to stop and start vmclock */
3055 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3056 &spapr->tb);
3057
3058 kvmppc_spapr_enable_inkernel_multitce();
3059 }
3060
3061 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3062 if (spapr->vof) {
3063 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3064 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3065 }
3066
3067 spapr_watchdog_init(spapr);
3068 }
3069
3070 #define DEFAULT_KVM_TYPE "auto"
3071 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3072 {
3073 /*
3074 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3075 * accomodate the 'HV' and 'PV' formats that exists in the
3076 * wild. The 'auto' mode is being introduced already as
3077 * lower-case, thus we don't need to bother checking for
3078 * "AUTO".
3079 */
3080 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3081 return 0;
3082 }
3083
3084 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3085 return 1;
3086 }
3087
3088 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3089 return 2;
3090 }
3091
3092 error_report("Unknown kvm-type specified '%s'", vm_type);
3093 exit(1);
3094 }
3095
3096 /*
3097 * Implementation of an interface to adjust firmware path
3098 * for the bootindex property handling.
3099 */
3100 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3101 DeviceState *dev)
3102 {
3103 #define CAST(type, obj, name) \
3104 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3105 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3106 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3107 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3108 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3109
3110 if (d && bus) {
3111 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3112 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3113 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3114
3115 if (spapr) {
3116 /*
3117 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3118 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3119 * 0x8000 | (target << 8) | (bus << 5) | lun
3120 * (see the "Logical unit addressing format" table in SAM5)
3121 */
3122 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3123 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3124 (uint64_t)id << 48);
3125 } else if (virtio) {
3126 /*
3127 * We use SRP luns of the form 01000000 | (target << 8) | lun
3128 * in the top 32 bits of the 64-bit LUN
3129 * Note: the quote above is from SLOF and it is wrong,
3130 * the actual binding is:
3131 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3132 */
3133 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3134 if (d->lun >= 256) {
3135 /* Use the LUN "flat space addressing method" */
3136 id |= 0x4000;
3137 }
3138 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3139 (uint64_t)id << 32);
3140 } else if (usb) {
3141 /*
3142 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3143 * in the top 32 bits of the 64-bit LUN
3144 */
3145 unsigned usb_port = atoi(usb->port->path);
3146 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3147 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3148 (uint64_t)id << 32);
3149 }
3150 }
3151
3152 /*
3153 * SLOF probes the USB devices, and if it recognizes that the device is a
3154 * storage device, it changes its name to "storage" instead of "usb-host",
3155 * and additionally adds a child node for the SCSI LUN, so the correct
3156 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3157 */
3158 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3159 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3160 if (usb_device_is_scsi_storage(usbdev)) {
3161 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3162 }
3163 }
3164
3165 if (phb) {
3166 /* Replace "pci" with "pci@800000020000000" */
3167 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3168 }
3169
3170 if (vsc) {
3171 /* Same logic as virtio above */
3172 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3173 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3174 }
3175
3176 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3177 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3178 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3179 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3180 }
3181
3182 if (pcidev) {
3183 return spapr_pci_fw_dev_name(pcidev);
3184 }
3185
3186 return NULL;
3187 }
3188
3189 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3190 {
3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192
3193 return g_strdup(spapr->kvm_type);
3194 }
3195
3196 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3197 {
3198 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199
3200 g_free(spapr->kvm_type);
3201 spapr->kvm_type = g_strdup(value);
3202 }
3203
3204 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3205 {
3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207
3208 return spapr->use_hotplug_event_source;
3209 }
3210
3211 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3212 Error **errp)
3213 {
3214 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215
3216 spapr->use_hotplug_event_source = value;
3217 }
3218
3219 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3220 {
3221 return true;
3222 }
3223
3224 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3225 {
3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227
3228 switch (spapr->resize_hpt) {
3229 case SPAPR_RESIZE_HPT_DEFAULT:
3230 return g_strdup("default");
3231 case SPAPR_RESIZE_HPT_DISABLED:
3232 return g_strdup("disabled");
3233 case SPAPR_RESIZE_HPT_ENABLED:
3234 return g_strdup("enabled");
3235 case SPAPR_RESIZE_HPT_REQUIRED:
3236 return g_strdup("required");
3237 }
3238 g_assert_not_reached();
3239 }
3240
3241 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3242 {
3243 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244
3245 if (strcmp(value, "default") == 0) {
3246 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3247 } else if (strcmp(value, "disabled") == 0) {
3248 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3249 } else if (strcmp(value, "enabled") == 0) {
3250 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3251 } else if (strcmp(value, "required") == 0) {
3252 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3253 } else {
3254 error_setg(errp, "Bad value for \"resize-hpt\" property");
3255 }
3256 }
3257
3258 static bool spapr_get_vof(Object *obj, Error **errp)
3259 {
3260 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261
3262 return spapr->vof != NULL;
3263 }
3264
3265 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3266 {
3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268
3269 if (spapr->vof) {
3270 vof_cleanup(spapr->vof);
3271 g_free(spapr->vof);
3272 spapr->vof = NULL;
3273 }
3274 if (!value) {
3275 return;
3276 }
3277 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3278 }
3279
3280 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3281 {
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283
3284 if (spapr->irq == &spapr_irq_xics_legacy) {
3285 return g_strdup("legacy");
3286 } else if (spapr->irq == &spapr_irq_xics) {
3287 return g_strdup("xics");
3288 } else if (spapr->irq == &spapr_irq_xive) {
3289 return g_strdup("xive");
3290 } else if (spapr->irq == &spapr_irq_dual) {
3291 return g_strdup("dual");
3292 }
3293 g_assert_not_reached();
3294 }
3295
3296 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3297 {
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299
3300 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3301 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3302 return;
3303 }
3304
3305 /* The legacy IRQ backend can not be set */
3306 if (strcmp(value, "xics") == 0) {
3307 spapr->irq = &spapr_irq_xics;
3308 } else if (strcmp(value, "xive") == 0) {
3309 spapr->irq = &spapr_irq_xive;
3310 } else if (strcmp(value, "dual") == 0) {
3311 spapr->irq = &spapr_irq_dual;
3312 } else {
3313 error_setg(errp, "Bad value for \"ic-mode\" property");
3314 }
3315 }
3316
3317 static char *spapr_get_host_model(Object *obj, Error **errp)
3318 {
3319 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320
3321 return g_strdup(spapr->host_model);
3322 }
3323
3324 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3325 {
3326 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3327
3328 g_free(spapr->host_model);
3329 spapr->host_model = g_strdup(value);
3330 }
3331
3332 static char *spapr_get_host_serial(Object *obj, Error **errp)
3333 {
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336 return g_strdup(spapr->host_serial);
3337 }
3338
3339 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3340 {
3341 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3342
3343 g_free(spapr->host_serial);
3344 spapr->host_serial = g_strdup(value);
3345 }
3346
3347 static void spapr_instance_init(Object *obj)
3348 {
3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3351 MachineState *ms = MACHINE(spapr);
3352 MachineClass *mc = MACHINE_GET_CLASS(ms);
3353
3354 /*
3355 * NVDIMM support went live in 5.1 without considering that, in
3356 * other archs, the user needs to enable NVDIMM support with the
3357 * 'nvdimm' machine option and the default behavior is NVDIMM
3358 * support disabled. It is too late to roll back to the standard
3359 * behavior without breaking 5.1 guests.
3360 */
3361 if (mc->nvdimm_supported) {
3362 ms->nvdimms_state->is_enabled = true;
3363 }
3364
3365 spapr->htab_fd = -1;
3366 spapr->use_hotplug_event_source = true;
3367 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3368 object_property_add_str(obj, "kvm-type",
3369 spapr_get_kvm_type, spapr_set_kvm_type);
3370 object_property_set_description(obj, "kvm-type",
3371 "Specifies the KVM virtualization mode (auto,"
3372 " hv, pr). Defaults to 'auto'. This mode will use"
3373 " any available KVM module loaded in the host,"
3374 " where kvm_hv takes precedence if both kvm_hv and"
3375 " kvm_pr are loaded.");
3376 object_property_add_bool(obj, "modern-hotplug-events",
3377 spapr_get_modern_hotplug_events,
3378 spapr_set_modern_hotplug_events);
3379 object_property_set_description(obj, "modern-hotplug-events",
3380 "Use dedicated hotplug event mechanism in"
3381 " place of standard EPOW events when possible"
3382 " (required for memory hot-unplug support)");
3383 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3384 "Maximum permitted CPU compatibility mode");
3385
3386 object_property_add_str(obj, "resize-hpt",
3387 spapr_get_resize_hpt, spapr_set_resize_hpt);
3388 object_property_set_description(obj, "resize-hpt",
3389 "Resizing of the Hash Page Table (enabled, disabled, required)");
3390 object_property_add_uint32_ptr(obj, "vsmt",
3391 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3392 object_property_set_description(obj, "vsmt",
3393 "Virtual SMT: KVM behaves as if this were"
3394 " the host's SMT mode");
3395
3396 object_property_add_bool(obj, "vfio-no-msix-emulation",
3397 spapr_get_msix_emulation, NULL);
3398
3399 object_property_add_uint64_ptr(obj, "kernel-addr",
3400 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3401 object_property_set_description(obj, "kernel-addr",
3402 stringify(KERNEL_LOAD_ADDR)
3403 " for -kernel is the default");
3404 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3405
3406 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3407 object_property_set_description(obj, "x-vof",
3408 "Enable Virtual Open Firmware (experimental)");
3409
3410 /* The machine class defines the default interrupt controller mode */
3411 spapr->irq = smc->irq;
3412 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3413 spapr_set_ic_mode);
3414 object_property_set_description(obj, "ic-mode",
3415 "Specifies the interrupt controller mode (xics, xive, dual)");
3416
3417 object_property_add_str(obj, "host-model",
3418 spapr_get_host_model, spapr_set_host_model);
3419 object_property_set_description(obj, "host-model",
3420 "Host model to advertise in guest device tree");
3421 object_property_add_str(obj, "host-serial",
3422 spapr_get_host_serial, spapr_set_host_serial);
3423 object_property_set_description(obj, "host-serial",
3424 "Host serial number to advertise in guest device tree");
3425 }
3426
3427 static void spapr_machine_finalizefn(Object *obj)
3428 {
3429 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3430
3431 g_free(spapr->kvm_type);
3432 }
3433
3434 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3435 {
3436 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3437 PowerPCCPU *cpu = POWERPC_CPU(cs);
3438 CPUPPCState *env = &cpu->env;
3439
3440 cpu_synchronize_state(cs);
3441 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3442 if (spapr->fwnmi_system_reset_addr != -1) {
3443 uint64_t rtas_addr, addr;
3444
3445 /* get rtas addr from fdt */
3446 rtas_addr = spapr_get_rtas_addr();
3447 if (!rtas_addr) {
3448 qemu_system_guest_panicked(NULL);
3449 return;
3450 }
3451
3452 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3453 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3454 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3455 env->gpr[3] = addr;
3456 }
3457 ppc_cpu_do_system_reset(cs);
3458 if (spapr->fwnmi_system_reset_addr != -1) {
3459 env->nip = spapr->fwnmi_system_reset_addr;
3460 }
3461 }
3462
3463 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3464 {
3465 CPUState *cs;
3466
3467 CPU_FOREACH(cs) {
3468 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3469 }
3470 }
3471
3472 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3473 void *fdt, int *fdt_start_offset, Error **errp)
3474 {
3475 uint64_t addr;
3476 uint32_t node;
3477
3478 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3479 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3480 &error_abort);
3481 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3482 SPAPR_MEMORY_BLOCK_SIZE);
3483 return 0;
3484 }
3485
3486 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3487 bool dedicated_hp_event_source)
3488 {
3489 SpaprDrc *drc;
3490 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3491 int i;
3492 uint64_t addr = addr_start;
3493 bool hotplugged = spapr_drc_hotplugged(dev);
3494
3495 for (i = 0; i < nr_lmbs; i++) {
3496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3497 addr / SPAPR_MEMORY_BLOCK_SIZE);
3498 g_assert(drc);
3499
3500 /*
3501 * memory_device_get_free_addr() provided a range of free addresses
3502 * that doesn't overlap with any existing mapping at pre-plug. The
3503 * corresponding LMB DRCs are thus assumed to be all attachable.
3504 */
3505 spapr_drc_attach(drc, dev);
3506 if (!hotplugged) {
3507 spapr_drc_reset(drc);
3508 }
3509 addr += SPAPR_MEMORY_BLOCK_SIZE;
3510 }
3511 /* send hotplug notification to the
3512 * guest only in case of hotplugged memory
3513 */
3514 if (hotplugged) {
3515 if (dedicated_hp_event_source) {
3516 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3517 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3518 g_assert(drc);
3519 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3520 nr_lmbs,
3521 spapr_drc_index(drc));
3522 } else {
3523 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3524 nr_lmbs);
3525 }
3526 }
3527 }
3528
3529 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3530 {
3531 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3532 PCDIMMDevice *dimm = PC_DIMM(dev);
3533 uint64_t size, addr;
3534 int64_t slot;
3535 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3536
3537 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3538
3539 pc_dimm_plug(dimm, MACHINE(ms));
3540
3541 if (!is_nvdimm) {
3542 addr = object_property_get_uint(OBJECT(dimm),
3543 PC_DIMM_ADDR_PROP, &error_abort);
3544 spapr_add_lmbs(dev, addr, size,
3545 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3546 } else {
3547 slot = object_property_get_int(OBJECT(dimm),
3548 PC_DIMM_SLOT_PROP, &error_abort);
3549 /* We should have valid slot number at this point */
3550 g_assert(slot >= 0);
3551 spapr_add_nvdimm(dev, slot);
3552 }
3553 }
3554
3555 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3556 Error **errp)
3557 {
3558 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3559 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3560 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3561 PCDIMMDevice *dimm = PC_DIMM(dev);
3562 Error *local_err = NULL;
3563 uint64_t size;
3564 Object *memdev;
3565 hwaddr pagesize;
3566
3567 if (!smc->dr_lmb_enabled) {
3568 error_setg(errp, "Memory hotplug not supported for this machine");
3569 return;
3570 }
3571
3572 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3573 if (local_err) {
3574 error_propagate(errp, local_err);
3575 return;
3576 }
3577
3578 if (is_nvdimm) {
3579 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3580 return;
3581 }
3582 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3583 error_setg(errp, "Hotplugged memory size must be a multiple of "
3584 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3585 return;
3586 }
3587
3588 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3589 &error_abort);
3590 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3591 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3592 return;
3593 }
3594
3595 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3596 }
3597
3598 struct SpaprDimmState {
3599 PCDIMMDevice *dimm;
3600 uint32_t nr_lmbs;
3601 QTAILQ_ENTRY(SpaprDimmState) next;
3602 };
3603
3604 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3605 PCDIMMDevice *dimm)
3606 {
3607 SpaprDimmState *dimm_state = NULL;
3608
3609 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3610 if (dimm_state->dimm == dimm) {
3611 break;
3612 }
3613 }
3614 return dimm_state;
3615 }
3616
3617 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3618 uint32_t nr_lmbs,
3619 PCDIMMDevice *dimm)
3620 {
3621 SpaprDimmState *ds = NULL;
3622
3623 /*
3624 * If this request is for a DIMM whose removal had failed earlier
3625 * (due to guest's refusal to remove the LMBs), we would have this
3626 * dimm already in the pending_dimm_unplugs list. In that
3627 * case don't add again.
3628 */
3629 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3630 if (!ds) {
3631 ds = g_new0(SpaprDimmState, 1);
3632 ds->nr_lmbs = nr_lmbs;
3633 ds->dimm = dimm;
3634 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3635 }
3636 return ds;
3637 }
3638
3639 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3640 SpaprDimmState *dimm_state)
3641 {
3642 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3643 g_free(dimm_state);
3644 }
3645
3646 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3647 PCDIMMDevice *dimm)
3648 {
3649 SpaprDrc *drc;
3650 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3651 &error_abort);
3652 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3653 uint32_t avail_lmbs = 0;
3654 uint64_t addr_start, addr;
3655 int i;
3656
3657 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3658 &error_abort);
3659
3660 addr = addr_start;
3661 for (i = 0; i < nr_lmbs; i++) {
3662 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3663 addr / SPAPR_MEMORY_BLOCK_SIZE);
3664 g_assert(drc);
3665 if (drc->dev) {
3666 avail_lmbs++;
3667 }
3668 addr += SPAPR_MEMORY_BLOCK_SIZE;
3669 }
3670
3671 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3672 }
3673
3674 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3675 {
3676 SpaprDimmState *ds;
3677 PCDIMMDevice *dimm;
3678 SpaprDrc *drc;
3679 uint32_t nr_lmbs;
3680 uint64_t size, addr_start, addr;
3681 g_autofree char *qapi_error = NULL;
3682 int i;
3683
3684 if (!dev) {
3685 return;
3686 }
3687
3688 dimm = PC_DIMM(dev);
3689 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3690
3691 /*
3692 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3693 * unplug state, but one of its DRC is marked as unplug_requested.
3694 * This is bad and weird enough to g_assert() out.
3695 */
3696 g_assert(ds);
3697
3698 spapr_pending_dimm_unplugs_remove(spapr, ds);
3699
3700 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3701 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3702
3703 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3704 &error_abort);
3705
3706 addr = addr_start;
3707 for (i = 0; i < nr_lmbs; i++) {
3708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3709 addr / SPAPR_MEMORY_BLOCK_SIZE);
3710 g_assert(drc);
3711
3712 drc->unplug_requested = false;
3713 addr += SPAPR_MEMORY_BLOCK_SIZE;
3714 }
3715
3716 /*
3717 * Tell QAPI that something happened and the memory
3718 * hotunplug wasn't successful. Keep sending
3719 * MEM_UNPLUG_ERROR even while sending
3720 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3721 * MEM_UNPLUG_ERROR is due.
3722 */
3723 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3724 "for device %s", dev->id);
3725
3726 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3727
3728 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3729 dev->canonical_path);
3730 }
3731
3732 /* Callback to be called during DRC release. */
3733 void spapr_lmb_release(DeviceState *dev)
3734 {
3735 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3736 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3737 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3738
3739 /* This information will get lost if a migration occurs
3740 * during the unplug process. In this case recover it. */
3741 if (ds == NULL) {
3742 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3743 g_assert(ds);
3744 /* The DRC being examined by the caller at least must be counted */
3745 g_assert(ds->nr_lmbs);
3746 }
3747
3748 if (--ds->nr_lmbs) {
3749 return;
3750 }
3751
3752 /*
3753 * Now that all the LMBs have been removed by the guest, call the
3754 * unplug handler chain. This can never fail.
3755 */
3756 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3757 object_unparent(OBJECT(dev));
3758 }
3759
3760 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3761 {
3762 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3763 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3764
3765 /* We really shouldn't get this far without anything to unplug */
3766 g_assert(ds);
3767
3768 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3769 qdev_unrealize(dev);
3770 spapr_pending_dimm_unplugs_remove(spapr, ds);
3771 }
3772
3773 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3774 DeviceState *dev, Error **errp)
3775 {
3776 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3777 PCDIMMDevice *dimm = PC_DIMM(dev);
3778 uint32_t nr_lmbs;
3779 uint64_t size, addr_start, addr;
3780 int i;
3781 SpaprDrc *drc;
3782
3783 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3784 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3785 return;
3786 }
3787
3788 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3789 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3790
3791 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3792 &error_abort);
3793
3794 /*
3795 * An existing pending dimm state for this DIMM means that there is an
3796 * unplug operation in progress, waiting for the spapr_lmb_release
3797 * callback to complete the job (BQL can't cover that far). In this case,
3798 * bail out to avoid detaching DRCs that were already released.
3799 */
3800 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3801 error_setg(errp, "Memory unplug already in progress for device %s",
3802 dev->id);
3803 return;
3804 }
3805
3806 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3807
3808 addr = addr_start;
3809 for (i = 0; i < nr_lmbs; i++) {
3810 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3811 addr / SPAPR_MEMORY_BLOCK_SIZE);
3812 g_assert(drc);
3813
3814 spapr_drc_unplug_request(drc);
3815 addr += SPAPR_MEMORY_BLOCK_SIZE;
3816 }
3817
3818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3819 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3820 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3821 nr_lmbs, spapr_drc_index(drc));
3822 }
3823
3824 /* Callback to be called during DRC release. */
3825 void spapr_core_release(DeviceState *dev)
3826 {
3827 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3828
3829 /* Call the unplug handler chain. This can never fail. */
3830 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3831 object_unparent(OBJECT(dev));
3832 }
3833
3834 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3835 {
3836 MachineState *ms = MACHINE(hotplug_dev);
3837 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3838 CPUCore *cc = CPU_CORE(dev);
3839 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3840
3841 if (smc->pre_2_10_has_unused_icps) {
3842 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3843 int i;
3844
3845 for (i = 0; i < cc->nr_threads; i++) {
3846 CPUState *cs = CPU(sc->threads[i]);
3847
3848 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3849 }
3850 }
3851
3852 assert(core_slot);
3853 core_slot->cpu = NULL;
3854 qdev_unrealize(dev);
3855 }
3856
3857 static
3858 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3859 Error **errp)
3860 {
3861 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3862 int index;
3863 SpaprDrc *drc;
3864 CPUCore *cc = CPU_CORE(dev);
3865
3866 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3867 error_setg(errp, "Unable to find CPU core with core-id: %d",
3868 cc->core_id);
3869 return;
3870 }
3871 if (index == 0) {
3872 error_setg(errp, "Boot CPU core may not be unplugged");
3873 return;
3874 }
3875
3876 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3877 spapr_vcpu_id(spapr, cc->core_id));
3878 g_assert(drc);
3879
3880 if (!spapr_drc_unplug_requested(drc)) {
3881 spapr_drc_unplug_request(drc);
3882 }
3883
3884 /*
3885 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3886 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3887 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3888 * attempt (e.g. the kernel will refuse to remove the last online
3889 * CPU), we will never attempt it again because unplug_requested
3890 * will still be 'true' in that case.
3891 */
3892 spapr_hotplug_req_remove_by_index(drc);
3893 }
3894
3895 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3896 void *fdt, int *fdt_start_offset, Error **errp)
3897 {
3898 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3899 CPUState *cs = CPU(core->threads[0]);
3900 PowerPCCPU *cpu = POWERPC_CPU(cs);
3901 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3902 int id = spapr_get_vcpu_id(cpu);
3903 g_autofree char *nodename = NULL;
3904 int offset;
3905
3906 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3907 offset = fdt_add_subnode(fdt, 0, nodename);
3908
3909 spapr_dt_cpu(cs, fdt, offset, spapr);
3910
3911 /*
3912 * spapr_dt_cpu() does not fill the 'name' property in the
3913 * CPU node. The function is called during boot process, before
3914 * and after CAS, and overwriting the 'name' property written
3915 * by SLOF is not allowed.
3916 *
3917 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3918 * CPUs more compatible with the coldplugged ones, which have
3919 * the 'name' property. Linux Kernel also relies on this
3920 * property to identify CPU nodes.
3921 */
3922 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3923
3924 *fdt_start_offset = offset;
3925 return 0;
3926 }
3927
3928 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3929 {
3930 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3931 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3932 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3933 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3934 CPUCore *cc = CPU_CORE(dev);
3935 CPUState *cs;
3936 SpaprDrc *drc;
3937 CPUArchId *core_slot;
3938 int index;
3939 bool hotplugged = spapr_drc_hotplugged(dev);
3940 int i;
3941
3942 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3943 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3944
3945 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3946 spapr_vcpu_id(spapr, cc->core_id));
3947
3948 g_assert(drc || !mc->has_hotpluggable_cpus);
3949
3950 if (drc) {
3951 /*
3952 * spapr_core_pre_plug() already buys us this is a brand new
3953 * core being plugged into a free slot. Nothing should already
3954 * be attached to the corresponding DRC.
3955 */
3956 spapr_drc_attach(drc, dev);
3957
3958 if (hotplugged) {
3959 /*
3960 * Send hotplug notification interrupt to the guest only
3961 * in case of hotplugged CPUs.
3962 */
3963 spapr_hotplug_req_add_by_index(drc);
3964 } else {
3965 spapr_drc_reset(drc);
3966 }
3967 }
3968
3969 core_slot->cpu = OBJECT(dev);
3970
3971 /*
3972 * Set compatibility mode to match the boot CPU, which was either set
3973 * by the machine reset code or by CAS. This really shouldn't fail at
3974 * this point.
3975 */
3976 if (hotplugged) {
3977 for (i = 0; i < cc->nr_threads; i++) {
3978 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3979 &error_abort);
3980 }
3981 }
3982
3983 if (smc->pre_2_10_has_unused_icps) {
3984 for (i = 0; i < cc->nr_threads; i++) {
3985 cs = CPU(core->threads[i]);
3986 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3987 }
3988 }
3989 }
3990
3991 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3992 Error **errp)
3993 {
3994 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3995 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3996 CPUCore *cc = CPU_CORE(dev);
3997 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3998 const char *type = object_get_typename(OBJECT(dev));
3999 CPUArchId *core_slot;
4000 int index;
4001 unsigned int smp_threads = machine->smp.threads;
4002
4003 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4004 error_setg(errp, "CPU hotplug not supported for this machine");
4005 return;
4006 }
4007
4008 if (strcmp(base_core_type, type)) {
4009 error_setg(errp, "CPU core type should be %s", base_core_type);
4010 return;
4011 }
4012
4013 if (cc->core_id % smp_threads) {
4014 error_setg(errp, "invalid core id %d", cc->core_id);
4015 return;
4016 }
4017
4018 /*
4019 * In general we should have homogeneous threads-per-core, but old
4020 * (pre hotplug support) machine types allow the last core to have
4021 * reduced threads as a compatibility hack for when we allowed
4022 * total vcpus not a multiple of threads-per-core.
4023 */
4024 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4025 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4026 smp_threads);
4027 return;
4028 }
4029
4030 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4031 if (!core_slot) {
4032 error_setg(errp, "core id %d out of range", cc->core_id);
4033 return;
4034 }
4035
4036 if (core_slot->cpu) {
4037 error_setg(errp, "core %d already populated", cc->core_id);
4038 return;
4039 }
4040
4041 numa_cpu_pre_plug(core_slot, dev, errp);
4042 }
4043
4044 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4045 void *fdt, int *fdt_start_offset, Error **errp)
4046 {
4047 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4048 int intc_phandle;
4049
4050 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4051 if (intc_phandle <= 0) {
4052 return -1;
4053 }
4054
4055 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4056 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4057 return -1;
4058 }
4059
4060 /* generally SLOF creates these, for hotplug it's up to QEMU */
4061 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4062
4063 return 0;
4064 }
4065
4066 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4067 Error **errp)
4068 {
4069 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4070 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4071 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4072 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4073 SpaprDrc *drc;
4074
4075 if (dev->hotplugged && !smc->dr_phb_enabled) {
4076 error_setg(errp, "PHB hotplug not supported for this machine");
4077 return false;
4078 }
4079
4080 if (sphb->index == (uint32_t)-1) {
4081 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4082 return false;
4083 }
4084
4085 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4086 if (drc && drc->dev) {
4087 error_setg(errp, "PHB %d already attached", sphb->index);
4088 return false;
4089 }
4090
4091 /*
4092 * This will check that sphb->index doesn't exceed the maximum number of
4093 * PHBs for the current machine type.
4094 */
4095 return
4096 smc->phb_placement(spapr, sphb->index,
4097 &sphb->buid, &sphb->io_win_addr,
4098 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4099 windows_supported, sphb->dma_liobn,
4100 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4101 errp);
4102 }
4103
4104 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4105 {
4106 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4107 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4108 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4109 SpaprDrc *drc;
4110 bool hotplugged = spapr_drc_hotplugged(dev);
4111
4112 if (!smc->dr_phb_enabled) {
4113 return;
4114 }
4115
4116 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4117 /* hotplug hooks should check it's enabled before getting this far */
4118 assert(drc);
4119
4120 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4121 spapr_drc_attach(drc, dev);
4122
4123 if (hotplugged) {
4124 spapr_hotplug_req_add_by_index(drc);
4125 } else {
4126 spapr_drc_reset(drc);
4127 }
4128 }
4129
4130 void spapr_phb_release(DeviceState *dev)
4131 {
4132 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4133
4134 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4135 object_unparent(OBJECT(dev));
4136 }
4137
4138 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4139 {
4140 qdev_unrealize(dev);
4141 }
4142
4143 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4144 DeviceState *dev, Error **errp)
4145 {
4146 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4147 SpaprDrc *drc;
4148
4149 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4150 assert(drc);
4151
4152 if (!spapr_drc_unplug_requested(drc)) {
4153 spapr_drc_unplug_request(drc);
4154 spapr_hotplug_req_remove_by_index(drc);
4155 } else {
4156 error_setg(errp,
4157 "PCI Host Bridge unplug already in progress for device %s",
4158 dev->id);
4159 }
4160 }
4161
4162 static
4163 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4164 Error **errp)
4165 {
4166 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4167
4168 if (spapr->tpm_proxy != NULL) {
4169 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4170 return false;
4171 }
4172
4173 return true;
4174 }
4175
4176 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4177 {
4178 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4179 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4180
4181 /* Already checked in spapr_tpm_proxy_pre_plug() */
4182 g_assert(spapr->tpm_proxy == NULL);
4183
4184 spapr->tpm_proxy = tpm_proxy;
4185 }
4186
4187 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4188 {
4189 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4190
4191 qdev_unrealize(dev);
4192 object_unparent(OBJECT(dev));
4193 spapr->tpm_proxy = NULL;
4194 }
4195
4196 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4197 DeviceState *dev, Error **errp)
4198 {
4199 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4200 spapr_memory_plug(hotplug_dev, dev);
4201 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4202 spapr_core_plug(hotplug_dev, dev);
4203 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4204 spapr_phb_plug(hotplug_dev, dev);
4205 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4206 spapr_tpm_proxy_plug(hotplug_dev, dev);
4207 }
4208 }
4209
4210 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4211 DeviceState *dev, Error **errp)
4212 {
4213 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4214 spapr_memory_unplug(hotplug_dev, dev);
4215 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4216 spapr_core_unplug(hotplug_dev, dev);
4217 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4218 spapr_phb_unplug(hotplug_dev, dev);
4219 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4220 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4221 }
4222 }
4223
4224 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4225 {
4226 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4227 /*
4228 * CAS will process all pending unplug requests.
4229 *
4230 * HACK: a guest could theoretically have cleared all bits in OV5,
4231 * but none of the guests we care for do.
4232 */
4233 spapr_ovec_empty(spapr->ov5_cas);
4234 }
4235
4236 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4237 DeviceState *dev, Error **errp)
4238 {
4239 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4240 MachineClass *mc = MACHINE_GET_CLASS(sms);
4241 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4242
4243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4244 if (spapr_memory_hot_unplug_supported(sms)) {
4245 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4246 } else {
4247 error_setg(errp, "Memory hot unplug not supported for this guest");
4248 }
4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4250 if (!mc->has_hotpluggable_cpus) {
4251 error_setg(errp, "CPU hot unplug not supported on this machine");
4252 return;
4253 }
4254 spapr_core_unplug_request(hotplug_dev, dev, errp);
4255 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4256 if (!smc->dr_phb_enabled) {
4257 error_setg(errp, "PHB hot unplug not supported on this machine");
4258 return;
4259 }
4260 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4261 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4262 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4263 }
4264 }
4265
4266 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4267 DeviceState *dev, Error **errp)
4268 {
4269 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4270 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4271 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4272 spapr_core_pre_plug(hotplug_dev, dev, errp);
4273 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4274 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4276 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4277 }
4278 }
4279
4280 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4281 DeviceState *dev)
4282 {
4283 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4284 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4285 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4286 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4287 return HOTPLUG_HANDLER(machine);
4288 }
4289 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4290 PCIDevice *pcidev = PCI_DEVICE(dev);
4291 PCIBus *root = pci_device_root_bus(pcidev);
4292 SpaprPhbState *phb =
4293 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4294 TYPE_SPAPR_PCI_HOST_BRIDGE);
4295
4296 if (phb) {
4297 return HOTPLUG_HANDLER(phb);
4298 }
4299 }
4300 return NULL;
4301 }
4302
4303 static CpuInstanceProperties
4304 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4305 {
4306 CPUArchId *core_slot;
4307 MachineClass *mc = MACHINE_GET_CLASS(machine);
4308
4309 /* make sure possible_cpu are intialized */
4310 mc->possible_cpu_arch_ids(machine);
4311 /* get CPU core slot containing thread that matches cpu_index */
4312 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4313 assert(core_slot);
4314 return core_slot->props;
4315 }
4316
4317 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4318 {
4319 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4320 }
4321
4322 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4323 {
4324 int i;
4325 unsigned int smp_threads = machine->smp.threads;
4326 unsigned int smp_cpus = machine->smp.cpus;
4327 const char *core_type;
4328 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4329 MachineClass *mc = MACHINE_GET_CLASS(machine);
4330
4331 if (!mc->has_hotpluggable_cpus) {
4332 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4333 }
4334 if (machine->possible_cpus) {
4335 assert(machine->possible_cpus->len == spapr_max_cores);
4336 return machine->possible_cpus;
4337 }
4338
4339 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4340 if (!core_type) {
4341 error_report("Unable to find sPAPR CPU Core definition");
4342 exit(1);
4343 }
4344
4345 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4346 sizeof(CPUArchId) * spapr_max_cores);
4347 machine->possible_cpus->len = spapr_max_cores;
4348 for (i = 0; i < machine->possible_cpus->len; i++) {
4349 int core_id = i * smp_threads;
4350
4351 machine->possible_cpus->cpus[i].type = core_type;
4352 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4353 machine->possible_cpus->cpus[i].arch_id = core_id;
4354 machine->possible_cpus->cpus[i].props.has_core_id = true;
4355 machine->possible_cpus->cpus[i].props.core_id = core_id;
4356 }
4357 return machine->possible_cpus;
4358 }
4359
4360 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4361 uint64_t *buid, hwaddr *pio,
4362 hwaddr *mmio32, hwaddr *mmio64,
4363 unsigned n_dma, uint32_t *liobns,
4364 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4365 {
4366 /*
4367 * New-style PHB window placement.
4368 *
4369 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4370 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4371 * windows.
4372 *
4373 * Some guest kernels can't work with MMIO windows above 1<<46
4374 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4375 *
4376 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4377 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4378 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4379 * 1TiB 64-bit MMIO windows for each PHB.
4380 */
4381 const uint64_t base_buid = 0x800000020000000ULL;
4382 int i;
4383
4384 /* Sanity check natural alignments */
4385 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4386 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4387 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4388 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4389 /* Sanity check bounds */
4390 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4391 SPAPR_PCI_MEM32_WIN_SIZE);
4392 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4393 SPAPR_PCI_MEM64_WIN_SIZE);
4394
4395 if (index >= SPAPR_MAX_PHBS) {
4396 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4397 SPAPR_MAX_PHBS - 1);
4398 return false;
4399 }
4400
4401 *buid = base_buid + index;
4402 for (i = 0; i < n_dma; ++i) {
4403 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4404 }
4405
4406 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4407 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4408 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4409
4410 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4411 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4412 return true;
4413 }
4414
4415 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4416 {
4417 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4418
4419 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4420 }
4421
4422 static void spapr_ics_resend(XICSFabric *dev)
4423 {
4424 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4425
4426 ics_resend(spapr->ics);
4427 }
4428
4429 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4430 {
4431 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4432
4433 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4434 }
4435
4436 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4437 Monitor *mon)
4438 {
4439 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4440
4441 spapr_irq_print_info(spapr, mon);
4442 monitor_printf(mon, "irqchip: %s\n",
4443 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4444 }
4445
4446 /*
4447 * This is a XIVE only operation
4448 */
4449 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4450 uint8_t nvt_blk, uint32_t nvt_idx,
4451 bool cam_ignore, uint8_t priority,
4452 uint32_t logic_serv, XiveTCTXMatch *match)
4453 {
4454 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4455 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4456 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4457 int count;
4458
4459 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4460 priority, logic_serv, match);
4461 if (count < 0) {
4462 return count;
4463 }
4464
4465 /*
4466 * When we implement the save and restore of the thread interrupt
4467 * contexts in the enter/exit CPU handlers of the machine and the
4468 * escalations in QEMU, we should be able to handle non dispatched
4469 * vCPUs.
4470 *
4471 * Until this is done, the sPAPR machine should find at least one
4472 * matching context always.
4473 */
4474 if (count == 0) {
4475 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4476 nvt_blk, nvt_idx);
4477 }
4478
4479 return count;
4480 }
4481
4482 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4483 {
4484 return cpu->vcpu_id;
4485 }
4486
4487 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4488 {
4489 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4490 MachineState *ms = MACHINE(spapr);
4491 int vcpu_id;
4492
4493 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4494
4495 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4496 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4497 error_append_hint(errp, "Adjust the number of cpus to %d "
4498 "or try to raise the number of threads per core\n",
4499 vcpu_id * ms->smp.threads / spapr->vsmt);
4500 return false;
4501 }
4502
4503 cpu->vcpu_id = vcpu_id;
4504 return true;
4505 }
4506
4507 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4508 {
4509 CPUState *cs;
4510
4511 CPU_FOREACH(cs) {
4512 PowerPCCPU *cpu = POWERPC_CPU(cs);
4513
4514 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4515 return cpu;
4516 }
4517 }
4518
4519 return NULL;
4520 }
4521
4522 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4523 {
4524 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4525
4526 return spapr_cpu->in_nested;
4527 }
4528
4529 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4530 {
4531 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4532
4533 /* These are only called by TCG, KVM maintains dispatch state */
4534
4535 spapr_cpu->prod = false;
4536 if (spapr_cpu->vpa_addr) {
4537 CPUState *cs = CPU(cpu);
4538 uint32_t dispatch;
4539
4540 dispatch = ldl_be_phys(cs->as,
4541 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4542 dispatch++;
4543 if ((dispatch & 1) != 0) {
4544 qemu_log_mask(LOG_GUEST_ERROR,
4545 "VPA: incorrect dispatch counter value for "
4546 "dispatched partition %u, correcting.\n", dispatch);
4547 dispatch++;
4548 }
4549 stl_be_phys(cs->as,
4550 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4551 }
4552 }
4553
4554 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4555 {
4556 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4557
4558 if (spapr_cpu->vpa_addr) {
4559 CPUState *cs = CPU(cpu);
4560 uint32_t dispatch;
4561
4562 dispatch = ldl_be_phys(cs->as,
4563 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4564 dispatch++;
4565 if ((dispatch & 1) != 1) {
4566 qemu_log_mask(LOG_GUEST_ERROR,
4567 "VPA: incorrect dispatch counter value for "
4568 "preempted partition %u, correcting.\n", dispatch);
4569 dispatch++;
4570 }
4571 stl_be_phys(cs->as,
4572 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4573 }
4574 }
4575
4576 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4577 {
4578 MachineClass *mc = MACHINE_CLASS(oc);
4579 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4580 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4581 NMIClass *nc = NMI_CLASS(oc);
4582 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4583 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4584 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4585 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4586 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4587 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4588
4589 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4590 mc->ignore_boot_device_suffixes = true;
4591
4592 /*
4593 * We set up the default / latest behaviour here. The class_init
4594 * functions for the specific versioned machine types can override
4595 * these details for backwards compatibility
4596 */
4597 mc->init = spapr_machine_init;
4598 mc->reset = spapr_machine_reset;
4599 mc->block_default_type = IF_SCSI;
4600
4601 /*
4602 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4603 * should be limited by the host capability instead of hardcoded.
4604 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4605 * guests are welcome to have as many CPUs as the host are capable
4606 * of emulate.
4607 */
4608 mc->max_cpus = INT32_MAX;
4609
4610 mc->no_parallel = 1;
4611 mc->default_boot_order = "";
4612 mc->default_ram_size = 512 * MiB;
4613 mc->default_ram_id = "ppc_spapr.ram";
4614 mc->default_display = "std";
4615 mc->kvm_type = spapr_kvm_type;
4616 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4617 mc->pci_allow_0_address = true;
4618 assert(!mc->get_hotplug_handler);
4619 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4620 hc->pre_plug = spapr_machine_device_pre_plug;
4621 hc->plug = spapr_machine_device_plug;
4622 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4623 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4624 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4625 hc->unplug_request = spapr_machine_device_unplug_request;
4626 hc->unplug = spapr_machine_device_unplug;
4627
4628 smc->dr_lmb_enabled = true;
4629 smc->update_dt_enabled = true;
4630 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4631 mc->has_hotpluggable_cpus = true;
4632 mc->nvdimm_supported = true;
4633 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4634 fwc->get_dev_path = spapr_get_fw_dev_path;
4635 nc->nmi_monitor_handler = spapr_nmi;
4636 smc->phb_placement = spapr_phb_placement;
4637 vhc->cpu_in_nested = spapr_cpu_in_nested;
4638 vhc->deliver_hv_excp = spapr_exit_nested;
4639 vhc->hypercall = emulate_spapr_hypercall;
4640 vhc->hpt_mask = spapr_hpt_mask;
4641 vhc->map_hptes = spapr_map_hptes;
4642 vhc->unmap_hptes = spapr_unmap_hptes;
4643 vhc->hpte_set_c = spapr_hpte_set_c;
4644 vhc->hpte_set_r = spapr_hpte_set_r;
4645 vhc->get_pate = spapr_get_pate;
4646 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4647 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4648 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4649 xic->ics_get = spapr_ics_get;
4650 xic->ics_resend = spapr_ics_resend;
4651 xic->icp_get = spapr_icp_get;
4652 ispc->print_info = spapr_pic_print_info;
4653 /* Force NUMA node memory size to be a multiple of
4654 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4655 * in which LMBs are represented and hot-added
4656 */
4657 mc->numa_mem_align_shift = 28;
4658 mc->auto_enable_numa = true;
4659
4660 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4661 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4662 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4663 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4664 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4665 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4666 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4667 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4668 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4669 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4670 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4671 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4672 spapr_caps_add_properties(smc);
4673 smc->irq = &spapr_irq_dual;
4674 smc->dr_phb_enabled = true;
4675 smc->linux_pci_probe = true;
4676 smc->smp_threads_vsmt = true;
4677 smc->nr_xirqs = SPAPR_NR_XIRQS;
4678 xfc->match_nvt = spapr_match_nvt;
4679 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4680 vmc->quiesce = spapr_vof_quiesce;
4681 vmc->setprop = spapr_vof_setprop;
4682 }
4683
4684 static const TypeInfo spapr_machine_info = {
4685 .name = TYPE_SPAPR_MACHINE,
4686 .parent = TYPE_MACHINE,
4687 .abstract = true,
4688 .instance_size = sizeof(SpaprMachineState),
4689 .instance_init = spapr_instance_init,
4690 .instance_finalize = spapr_machine_finalizefn,
4691 .class_size = sizeof(SpaprMachineClass),
4692 .class_init = spapr_machine_class_init,
4693 .interfaces = (InterfaceInfo[]) {
4694 { TYPE_FW_PATH_PROVIDER },
4695 { TYPE_NMI },
4696 { TYPE_HOTPLUG_HANDLER },
4697 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4698 { TYPE_XICS_FABRIC },
4699 { TYPE_INTERRUPT_STATS_PROVIDER },
4700 { TYPE_XIVE_FABRIC },
4701 { TYPE_VOF_MACHINE_IF },
4702 { }
4703 },
4704 };
4705
4706 static void spapr_machine_latest_class_options(MachineClass *mc)
4707 {
4708 mc->alias = "pseries";
4709 mc->is_default = true;
4710 }
4711
4712 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4713 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4714 void *data) \
4715 { \
4716 MachineClass *mc = MACHINE_CLASS(oc); \
4717 spapr_machine_##suffix##_class_options(mc); \
4718 if (latest) { \
4719 spapr_machine_latest_class_options(mc); \
4720 } \
4721 } \
4722 static const TypeInfo spapr_machine_##suffix##_info = { \
4723 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4724 .parent = TYPE_SPAPR_MACHINE, \
4725 .class_init = spapr_machine_##suffix##_class_init, \
4726 }; \
4727 static void spapr_machine_register_##suffix(void) \
4728 { \
4729 type_register(&spapr_machine_##suffix##_info); \
4730 } \
4731 type_init(spapr_machine_register_##suffix)
4732
4733 /*
4734 * pseries-7.2
4735 */
4736 static void spapr_machine_7_2_class_options(MachineClass *mc)
4737 {
4738 /* Defaults for the latest behaviour inherited from the base class */
4739 }
4740
4741 DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
4742
4743 /*
4744 * pseries-7.1
4745 */
4746 static void spapr_machine_7_1_class_options(MachineClass *mc)
4747 {
4748 spapr_machine_7_2_class_options(mc);
4749 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4750 }
4751
4752 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4753
4754 /*
4755 * pseries-7.0
4756 */
4757 static void spapr_machine_7_0_class_options(MachineClass *mc)
4758 {
4759 spapr_machine_7_1_class_options(mc);
4760 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4761 }
4762
4763 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4764
4765 /*
4766 * pseries-6.2
4767 */
4768 static void spapr_machine_6_2_class_options(MachineClass *mc)
4769 {
4770 spapr_machine_7_0_class_options(mc);
4771 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4772 }
4773
4774 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4775
4776 /*
4777 * pseries-6.1
4778 */
4779 static void spapr_machine_6_1_class_options(MachineClass *mc)
4780 {
4781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4782
4783 spapr_machine_6_2_class_options(mc);
4784 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4785 smc->pre_6_2_numa_affinity = true;
4786 mc->smp_props.prefer_sockets = true;
4787 }
4788
4789 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4790
4791 /*
4792 * pseries-6.0
4793 */
4794 static void spapr_machine_6_0_class_options(MachineClass *mc)
4795 {
4796 spapr_machine_6_1_class_options(mc);
4797 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4798 }
4799
4800 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4801
4802 /*
4803 * pseries-5.2
4804 */
4805 static void spapr_machine_5_2_class_options(MachineClass *mc)
4806 {
4807 spapr_machine_6_0_class_options(mc);
4808 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4809 }
4810
4811 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4812
4813 /*
4814 * pseries-5.1
4815 */
4816 static void spapr_machine_5_1_class_options(MachineClass *mc)
4817 {
4818 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4819
4820 spapr_machine_5_2_class_options(mc);
4821 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4822 smc->pre_5_2_numa_associativity = true;
4823 }
4824
4825 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4826
4827 /*
4828 * pseries-5.0
4829 */
4830 static void spapr_machine_5_0_class_options(MachineClass *mc)
4831 {
4832 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4833 static GlobalProperty compat[] = {
4834 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4835 };
4836
4837 spapr_machine_5_1_class_options(mc);
4838 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4839 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4840 mc->numa_mem_supported = true;
4841 smc->pre_5_1_assoc_refpoints = true;
4842 }
4843
4844 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4845
4846 /*
4847 * pseries-4.2
4848 */
4849 static void spapr_machine_4_2_class_options(MachineClass *mc)
4850 {
4851 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4852
4853 spapr_machine_5_0_class_options(mc);
4854 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4855 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4856 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4857 smc->rma_limit = 16 * GiB;
4858 mc->nvdimm_supported = false;
4859 }
4860
4861 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4862
4863 /*
4864 * pseries-4.1
4865 */
4866 static void spapr_machine_4_1_class_options(MachineClass *mc)
4867 {
4868 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4869 static GlobalProperty compat[] = {
4870 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4871 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4872 };
4873
4874 spapr_machine_4_2_class_options(mc);
4875 smc->linux_pci_probe = false;
4876 smc->smp_threads_vsmt = false;
4877 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4878 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4879 }
4880
4881 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4882
4883 /*
4884 * pseries-4.0
4885 */
4886 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4887 uint64_t *buid, hwaddr *pio,
4888 hwaddr *mmio32, hwaddr *mmio64,
4889 unsigned n_dma, uint32_t *liobns,
4890 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4891 {
4892 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4893 liobns, nv2gpa, nv2atsd, errp)) {
4894 return false;
4895 }
4896
4897 *nv2gpa = 0;
4898 *nv2atsd = 0;
4899 return true;
4900 }
4901 static void spapr_machine_4_0_class_options(MachineClass *mc)
4902 {
4903 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4904
4905 spapr_machine_4_1_class_options(mc);
4906 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4907 smc->phb_placement = phb_placement_4_0;
4908 smc->irq = &spapr_irq_xics;
4909 smc->pre_4_1_migration = true;
4910 }
4911
4912 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4913
4914 /*
4915 * pseries-3.1
4916 */
4917 static void spapr_machine_3_1_class_options(MachineClass *mc)
4918 {
4919 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4920
4921 spapr_machine_4_0_class_options(mc);
4922 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4923
4924 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4925 smc->update_dt_enabled = false;
4926 smc->dr_phb_enabled = false;
4927 smc->broken_host_serial_model = true;
4928 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4929 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4930 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4931 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4932 }
4933
4934 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4935
4936 /*
4937 * pseries-3.0
4938 */
4939
4940 static void spapr_machine_3_0_class_options(MachineClass *mc)
4941 {
4942 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4943
4944 spapr_machine_3_1_class_options(mc);
4945 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4946
4947 smc->legacy_irq_allocation = true;
4948 smc->nr_xirqs = 0x400;
4949 smc->irq = &spapr_irq_xics_legacy;
4950 }
4951
4952 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4953
4954 /*
4955 * pseries-2.12
4956 */
4957 static void spapr_machine_2_12_class_options(MachineClass *mc)
4958 {
4959 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4960 static GlobalProperty compat[] = {
4961 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4962 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4963 };
4964
4965 spapr_machine_3_0_class_options(mc);
4966 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4967 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4968
4969 /* We depend on kvm_enabled() to choose a default value for the
4970 * hpt-max-page-size capability. Of course we can't do it here
4971 * because this is too early and the HW accelerator isn't initialzed
4972 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4973 */
4974 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4975 }
4976
4977 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4978
4979 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4980 {
4981 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4982
4983 spapr_machine_2_12_class_options(mc);
4984 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4985 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4986 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4987 }
4988
4989 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4990
4991 /*
4992 * pseries-2.11
4993 */
4994
4995 static void spapr_machine_2_11_class_options(MachineClass *mc)
4996 {
4997 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4998
4999 spapr_machine_2_12_class_options(mc);
5000 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5001 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5002 }
5003
5004 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5005
5006 /*
5007 * pseries-2.10
5008 */
5009
5010 static void spapr_machine_2_10_class_options(MachineClass *mc)
5011 {
5012 spapr_machine_2_11_class_options(mc);
5013 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5014 }
5015
5016 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5017
5018 /*
5019 * pseries-2.9
5020 */
5021
5022 static void spapr_machine_2_9_class_options(MachineClass *mc)
5023 {
5024 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5025 static GlobalProperty compat[] = {
5026 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5027 };
5028
5029 spapr_machine_2_10_class_options(mc);
5030 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5031 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5032 smc->pre_2_10_has_unused_icps = true;
5033 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5034 }
5035
5036 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5037
5038 /*
5039 * pseries-2.8
5040 */
5041
5042 static void spapr_machine_2_8_class_options(MachineClass *mc)
5043 {
5044 static GlobalProperty compat[] = {
5045 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5046 };
5047
5048 spapr_machine_2_9_class_options(mc);
5049 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5050 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5051 mc->numa_mem_align_shift = 23;
5052 }
5053
5054 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5055
5056 /*
5057 * pseries-2.7
5058 */
5059
5060 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5061 uint64_t *buid, hwaddr *pio,
5062 hwaddr *mmio32, hwaddr *mmio64,
5063 unsigned n_dma, uint32_t *liobns,
5064 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5065 {
5066 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5067 const uint64_t base_buid = 0x800000020000000ULL;
5068 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5069 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5070 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5071 const uint32_t max_index = 255;
5072 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5073
5074 uint64_t ram_top = MACHINE(spapr)->ram_size;
5075 hwaddr phb0_base, phb_base;
5076 int i;
5077
5078 /* Do we have device memory? */
5079 if (MACHINE(spapr)->maxram_size > ram_top) {
5080 /* Can't just use maxram_size, because there may be an
5081 * alignment gap between normal and device memory regions
5082 */
5083 ram_top = MACHINE(spapr)->device_memory->base +
5084 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5085 }
5086
5087 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5088
5089 if (index > max_index) {
5090 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5091 max_index);
5092 return false;
5093 }
5094
5095 *buid = base_buid + index;
5096 for (i = 0; i < n_dma; ++i) {
5097 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5098 }
5099
5100 phb_base = phb0_base + index * phb_spacing;
5101 *pio = phb_base + pio_offset;
5102 *mmio32 = phb_base + mmio_offset;
5103 /*
5104 * We don't set the 64-bit MMIO window, relying on the PHB's
5105 * fallback behaviour of automatically splitting a large "32-bit"
5106 * window into contiguous 32-bit and 64-bit windows
5107 */
5108
5109 *nv2gpa = 0;
5110 *nv2atsd = 0;
5111 return true;
5112 }
5113
5114 static void spapr_machine_2_7_class_options(MachineClass *mc)
5115 {
5116 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5117 static GlobalProperty compat[] = {
5118 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5119 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5120 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5121 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5122 };
5123
5124 spapr_machine_2_8_class_options(mc);
5125 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5126 mc->default_machine_opts = "modern-hotplug-events=off";
5127 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5128 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5129 smc->phb_placement = phb_placement_2_7;
5130 }
5131
5132 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5133
5134 /*
5135 * pseries-2.6
5136 */
5137
5138 static void spapr_machine_2_6_class_options(MachineClass *mc)
5139 {
5140 static GlobalProperty compat[] = {
5141 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5142 };
5143
5144 spapr_machine_2_7_class_options(mc);
5145 mc->has_hotpluggable_cpus = false;
5146 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5147 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5148 }
5149
5150 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5151
5152 /*
5153 * pseries-2.5
5154 */
5155
5156 static void spapr_machine_2_5_class_options(MachineClass *mc)
5157 {
5158 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5159 static GlobalProperty compat[] = {
5160 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5161 };
5162
5163 spapr_machine_2_6_class_options(mc);
5164 smc->use_ohci_by_default = true;
5165 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5166 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5167 }
5168
5169 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5170
5171 /*
5172 * pseries-2.4
5173 */
5174
5175 static void spapr_machine_2_4_class_options(MachineClass *mc)
5176 {
5177 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5178
5179 spapr_machine_2_5_class_options(mc);
5180 smc->dr_lmb_enabled = false;
5181 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5182 }
5183
5184 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5185
5186 /*
5187 * pseries-2.3
5188 */
5189
5190 static void spapr_machine_2_3_class_options(MachineClass *mc)
5191 {
5192 static GlobalProperty compat[] = {
5193 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5194 };
5195 spapr_machine_2_4_class_options(mc);
5196 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5197 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5198 }
5199 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5200
5201 /*
5202 * pseries-2.2
5203 */
5204
5205 static void spapr_machine_2_2_class_options(MachineClass *mc)
5206 {
5207 static GlobalProperty compat[] = {
5208 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5209 };
5210
5211 spapr_machine_2_3_class_options(mc);
5212 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5213 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5214 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5215 }
5216 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5217
5218 /*
5219 * pseries-2.1
5220 */
5221
5222 static void spapr_machine_2_1_class_options(MachineClass *mc)
5223 {
5224 spapr_machine_2_2_class_options(mc);
5225 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5226 }
5227 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5228
5229 static void spapr_machine_register_types(void)
5230 {
5231 type_register_static(&spapr_machine_info);
5232 }
5233
5234 type_init(spapr_machine_register_types)