]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
q35/440fx/arm/spapr: Add QEMU 4.0 machine type
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_XICP 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 static int xics_max_server_number(sPAPRMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
514 *
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521 }
522
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 }
529
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
535 }
536
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
541
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
544
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 }
548
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
561 }
562
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 {
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
571
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
576
577 /*
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
581 *
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
584 */
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
590 }
591
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
598
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
601 }
602
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
608 }
609
610 g_free(rev);
611 }
612
613 static int spapr_rng_populate_dt(void *fdt)
614 {
615 int node;
616 int ret;
617
618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
619 if (node <= 0) {
620 return -1;
621 }
622 ret = fdt_setprop_string(fdt, node, "device_type",
623 "ibm,platform-facilities");
624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626
627 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
628 if (node <= 0) {
629 return -1;
630 }
631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632
633 return ret ? -1 : 0;
634 }
635
636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 {
638 MemoryDeviceInfoList *info;
639
640 for (info = list; info; info = info->next) {
641 MemoryDeviceInfo *value = info->value;
642
643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645
646 if (addr >= pcdimm_info->addr &&
647 addr < (pcdimm_info->addr + pcdimm_info->size)) {
648 return pcdimm_info->node;
649 }
650 }
651 }
652
653 return -1;
654 }
655
656 struct sPAPRDrconfCellV2 {
657 uint32_t seq_lmbs;
658 uint64_t base_addr;
659 uint32_t drc_index;
660 uint32_t aa_index;
661 uint32_t flags;
662 } QEMU_PACKED;
663
664 typedef struct DrconfCellQueue {
665 struct sPAPRDrconfCellV2 cell;
666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
667 } DrconfCellQueue;
668
669 static DrconfCellQueue *
670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
671 uint32_t drc_index, uint32_t aa_index,
672 uint32_t flags)
673 {
674 DrconfCellQueue *elem;
675
676 elem = g_malloc0(sizeof(*elem));
677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
678 elem->cell.base_addr = cpu_to_be64(base_addr);
679 elem->cell.drc_index = cpu_to_be32(drc_index);
680 elem->cell.aa_index = cpu_to_be32(aa_index);
681 elem->cell.flags = cpu_to_be32(flags);
682
683 return elem;
684 }
685
686 /* ibm,dynamic-memory-v2 */
687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
688 int offset, MemoryDeviceInfoList *dimms)
689 {
690 MachineState *machine = MACHINE(spapr);
691 uint8_t *int_buf, *cur_index, buf_len;
692 int ret;
693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
694 uint64_t addr, cur_addr, size;
695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
696 uint64_t mem_end = machine->device_memory->base +
697 memory_region_size(&machine->device_memory->mr);
698 uint32_t node, nr_entries = 0;
699 sPAPRDRConnector *drc;
700 DrconfCellQueue *elem, *next;
701 MemoryDeviceInfoList *info;
702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704
705 /* Entry to cover RAM and the gap area */
706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
707 SPAPR_LMB_FLAGS_RESERVED |
708 SPAPR_LMB_FLAGS_DRC_INVALID);
709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
710 nr_entries++;
711
712 cur_addr = machine->device_memory->base;
713 for (info = dimms; info; info = info->next) {
714 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715
716 addr = di->addr;
717 size = di->size;
718 node = di->node;
719
720 /* Entry for hot-pluggable area */
721 if (cur_addr < addr) {
722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
723 g_assert(drc);
724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
725 cur_addr, spapr_drc_index(drc), -1, 0);
726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
727 nr_entries++;
728 }
729
730 /* Entry for DIMM */
731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
732 g_assert(drc);
733 elem = spapr_get_drconf_cell(size / lmb_size, addr,
734 spapr_drc_index(drc), node,
735 SPAPR_LMB_FLAGS_ASSIGNED);
736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737 nr_entries++;
738 cur_addr = addr + size;
739 }
740
741 /* Entry for remaining hotpluggable area */
742 if (cur_addr < mem_end) {
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
746 cur_addr, spapr_drc_index(drc), -1, 0);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
749 }
750
751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
752 int_buf = cur_index = g_malloc0(buf_len);
753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
754 cur_index += sizeof(nr_entries);
755
756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
757 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
758 cur_index += sizeof(elem->cell);
759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
760 g_free(elem);
761 }
762
763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
764 g_free(int_buf);
765 if (ret < 0) {
766 return -1;
767 }
768 return 0;
769 }
770
771 /* ibm,dynamic-memory */
772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
773 int offset, MemoryDeviceInfoList *dimms)
774 {
775 MachineState *machine = MACHINE(spapr);
776 int i, ret;
777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
779 uint32_t nr_lmbs = (machine->device_memory->base +
780 memory_region_size(&machine->device_memory->mr)) /
781 lmb_size;
782 uint32_t *int_buf, *cur_index, buf_len;
783
784 /*
785 * Allocate enough buffer size to fit in ibm,dynamic-memory
786 */
787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
788 cur_index = int_buf = g_malloc0(buf_len);
789 int_buf[0] = cpu_to_be32(nr_lmbs);
790 cur_index++;
791 for (i = 0; i < nr_lmbs; i++) {
792 uint64_t addr = i * lmb_size;
793 uint32_t *dynamic_memory = cur_index;
794
795 if (i >= device_lmb_start) {
796 sPAPRDRConnector *drc;
797
798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
799 g_assert(drc);
800
801 dynamic_memory[0] = cpu_to_be32(addr >> 32);
802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
806 if (memory_region_present(get_system_memory(), addr)) {
807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808 } else {
809 dynamic_memory[5] = cpu_to_be32(0);
810 }
811 } else {
812 /*
813 * LMB information for RMA, boot time RAM and gap b/n RAM and
814 * device memory region -- all these are marked as reserved
815 * and as having no valid DRC.
816 */
817 dynamic_memory[0] = cpu_to_be32(addr >> 32);
818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819 dynamic_memory[2] = cpu_to_be32(0);
820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821 dynamic_memory[4] = cpu_to_be32(-1);
822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
823 SPAPR_LMB_FLAGS_DRC_INVALID);
824 }
825
826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827 }
828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829 g_free(int_buf);
830 if (ret < 0) {
831 return -1;
832 }
833 return 0;
834 }
835
836 /*
837 * Adds ibm,dynamic-reconfiguration-memory node.
838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
839 * of this device tree node.
840 */
841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 {
843 MachineState *machine = MACHINE(spapr);
844 int ret, i, offset;
845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
847 uint32_t *int_buf, *cur_index, buf_len;
848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
849 MemoryDeviceInfoList *dimms = NULL;
850
851 /*
852 * Don't create the node if there is no device memory
853 */
854 if (machine->ram_size == machine->maxram_size) {
855 return 0;
856 }
857
858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859
860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
861 sizeof(prop_lmb_size));
862 if (ret < 0) {
863 return ret;
864 }
865
866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
867 if (ret < 0) {
868 return ret;
869 }
870
871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
872 if (ret < 0) {
873 return ret;
874 }
875
876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
877 dimms = qmp_memory_device_list();
878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
880 } else {
881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882 }
883 qapi_free_MemoryDeviceInfoList(dimms);
884
885 if (ret < 0) {
886 return ret;
887 }
888
889 /* ibm,associativity-lookup-arrays */
890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
891 cur_index = int_buf = g_malloc0(buf_len);
892
893 cur_index = int_buf;
894 int_buf[0] = cpu_to_be32(nr_nodes);
895 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
896 cur_index += 2;
897 for (i = 0; i < nr_nodes; i++) {
898 uint32_t associativity[] = {
899 cpu_to_be32(0x0),
900 cpu_to_be32(0x0),
901 cpu_to_be32(0x0),
902 cpu_to_be32(i)
903 };
904 memcpy(cur_index, associativity, sizeof(associativity));
905 cur_index += 4;
906 }
907 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
908 (cur_index - int_buf) * sizeof(uint32_t));
909 g_free(int_buf);
910
911 return ret;
912 }
913
914 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
915 sPAPROptionVector *ov5_updates)
916 {
917 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
918 int ret = 0, offset;
919
920 /* Generate ibm,dynamic-reconfiguration-memory node if required */
921 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
922 g_assert(smc->dr_lmb_enabled);
923 ret = spapr_populate_drconf_memory(spapr, fdt);
924 if (ret) {
925 goto out;
926 }
927 }
928
929 offset = fdt_path_offset(fdt, "/chosen");
930 if (offset < 0) {
931 offset = fdt_add_subnode(fdt, 0, "chosen");
932 if (offset < 0) {
933 return offset;
934 }
935 }
936 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
937 "ibm,architecture-vec-5");
938
939 out:
940 return ret;
941 }
942
943 static bool spapr_hotplugged_dev_before_cas(void)
944 {
945 Object *drc_container, *obj;
946 ObjectProperty *prop;
947 ObjectPropertyIterator iter;
948
949 drc_container = container_get(object_get_root(), "/dr-connector");
950 object_property_iter_init(&iter, drc_container);
951 while ((prop = object_property_iter_next(&iter))) {
952 if (!strstart(prop->type, "link<", NULL)) {
953 continue;
954 }
955 obj = object_property_get_link(drc_container, prop->name, NULL);
956 if (spapr_drc_needed(obj)) {
957 return true;
958 }
959 }
960 return false;
961 }
962
963 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
964 target_ulong addr, target_ulong size,
965 sPAPROptionVector *ov5_updates)
966 {
967 void *fdt, *fdt_skel;
968 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
969
970 if (spapr_hotplugged_dev_before_cas()) {
971 return 1;
972 }
973
974 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
975 error_report("SLOF provided an unexpected CAS buffer size "
976 TARGET_FMT_lu " (min: %zu, max: %u)",
977 size, sizeof(hdr), FW_MAX_SIZE);
978 exit(EXIT_FAILURE);
979 }
980
981 size -= sizeof(hdr);
982
983 /* Create skeleton */
984 fdt_skel = g_malloc0(size);
985 _FDT((fdt_create(fdt_skel, size)));
986 _FDT((fdt_finish_reservemap(fdt_skel)));
987 _FDT((fdt_begin_node(fdt_skel, "")));
988 _FDT((fdt_end_node(fdt_skel)));
989 _FDT((fdt_finish(fdt_skel)));
990 fdt = g_malloc0(size);
991 _FDT((fdt_open_into(fdt_skel, fdt, size)));
992 g_free(fdt_skel);
993
994 /* Fixup cpu nodes */
995 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
996
997 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
998 return -1;
999 }
1000
1001 /* Pack resulting tree */
1002 _FDT((fdt_pack(fdt)));
1003
1004 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1005 trace_spapr_cas_failed(size);
1006 return -1;
1007 }
1008
1009 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1010 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1011 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1012 g_free(fdt);
1013
1014 return 0;
1015 }
1016
1017 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1018 {
1019 int rtas;
1020 GString *hypertas = g_string_sized_new(256);
1021 GString *qemu_hypertas = g_string_sized_new(256);
1022 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1023 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1024 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1025 uint32_t lrdr_capacity[] = {
1026 cpu_to_be32(max_device_addr >> 32),
1027 cpu_to_be32(max_device_addr & 0xffffffff),
1028 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1029 cpu_to_be32(max_cpus / smp_threads),
1030 };
1031 uint32_t maxdomains[] = {
1032 cpu_to_be32(4),
1033 cpu_to_be32(0),
1034 cpu_to_be32(0),
1035 cpu_to_be32(0),
1036 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1037 };
1038
1039 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1040
1041 /* hypertas */
1042 add_str(hypertas, "hcall-pft");
1043 add_str(hypertas, "hcall-term");
1044 add_str(hypertas, "hcall-dabr");
1045 add_str(hypertas, "hcall-interrupt");
1046 add_str(hypertas, "hcall-tce");
1047 add_str(hypertas, "hcall-vio");
1048 add_str(hypertas, "hcall-splpar");
1049 add_str(hypertas, "hcall-bulk");
1050 add_str(hypertas, "hcall-set-mode");
1051 add_str(hypertas, "hcall-sprg0");
1052 add_str(hypertas, "hcall-copy");
1053 add_str(hypertas, "hcall-debug");
1054 add_str(qemu_hypertas, "hcall-memop1");
1055
1056 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1057 add_str(hypertas, "hcall-multi-tce");
1058 }
1059
1060 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1061 add_str(hypertas, "hcall-hpt-resize");
1062 }
1063
1064 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1065 hypertas->str, hypertas->len));
1066 g_string_free(hypertas, TRUE);
1067 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1068 qemu_hypertas->str, qemu_hypertas->len));
1069 g_string_free(qemu_hypertas, TRUE);
1070
1071 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1072 refpoints, sizeof(refpoints)));
1073
1074 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1075 maxdomains, sizeof(maxdomains)));
1076
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1078 RTAS_ERROR_LOG_MAX));
1079 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1080 RTAS_EVENT_SCAN_RATE));
1081
1082 g_assert(msi_nonbroken);
1083 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1084
1085 /*
1086 * According to PAPR, rtas ibm,os-term does not guarantee a return
1087 * back to the guest cpu.
1088 *
1089 * While an additional ibm,extended-os-term property indicates
1090 * that rtas call return will always occur. Set this property.
1091 */
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1093
1094 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1095 lrdr_capacity, sizeof(lrdr_capacity)));
1096
1097 spapr_dt_rtas_tokens(fdt, rtas);
1098 }
1099
1100 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1101 * that the guest may request and thus the valid values for bytes 24..26 of
1102 * option vector 5: */
1103 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1104 {
1105 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1106
1107 char val[2 * 4] = {
1108 23, 0x00, /* Xive mode, filled in below. */
1109 24, 0x00, /* Hash/Radix, filled in below. */
1110 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1111 26, 0x40, /* Radix options: GTSE == yes. */
1112 };
1113
1114 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1115 first_ppc_cpu->compat_pvr)) {
1116 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1117 val[3] = 0x00; /* Hash */
1118 } else if (kvm_enabled()) {
1119 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1120 val[3] = 0x80; /* OV5_MMU_BOTH */
1121 } else if (kvmppc_has_cap_mmu_radix()) {
1122 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1123 } else {
1124 val[3] = 0x00; /* Hash */
1125 }
1126 } else {
1127 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1128 val[3] = 0xC0;
1129 }
1130 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1131 val, sizeof(val)));
1132 }
1133
1134 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1135 {
1136 MachineState *machine = MACHINE(spapr);
1137 int chosen;
1138 const char *boot_device = machine->boot_order;
1139 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1140 size_t cb = 0;
1141 char *bootlist = get_boot_devices_list(&cb);
1142
1143 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1144
1145 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1146 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1147 spapr->initrd_base));
1148 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1149 spapr->initrd_base + spapr->initrd_size));
1150
1151 if (spapr->kernel_size) {
1152 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1153 cpu_to_be64(spapr->kernel_size) };
1154
1155 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1156 &kprop, sizeof(kprop)));
1157 if (spapr->kernel_le) {
1158 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1159 }
1160 }
1161 if (boot_menu) {
1162 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1163 }
1164 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1165 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1166 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1167
1168 if (cb && bootlist) {
1169 int i;
1170
1171 for (i = 0; i < cb; i++) {
1172 if (bootlist[i] == '\n') {
1173 bootlist[i] = ' ';
1174 }
1175 }
1176 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1177 }
1178
1179 if (boot_device && strlen(boot_device)) {
1180 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1181 }
1182
1183 if (!spapr->has_graphics && stdout_path) {
1184 /*
1185 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1186 * kernel. New platforms should only use the "stdout-path" property. Set
1187 * the new property and continue using older property to remain
1188 * compatible with the existing firmware.
1189 */
1190 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1191 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1192 }
1193
1194 spapr_dt_ov5_platform_support(fdt, chosen);
1195
1196 g_free(stdout_path);
1197 g_free(bootlist);
1198 }
1199
1200 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1201 {
1202 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1203 * KVM to work under pHyp with some guest co-operation */
1204 int hypervisor;
1205 uint8_t hypercall[16];
1206
1207 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1208 /* indicate KVM hypercall interface */
1209 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1210 if (kvmppc_has_cap_fixup_hcalls()) {
1211 /*
1212 * Older KVM versions with older guest kernels were broken
1213 * with the magic page, don't allow the guest to map it.
1214 */
1215 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1216 sizeof(hypercall))) {
1217 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1218 hypercall, sizeof(hypercall)));
1219 }
1220 }
1221 }
1222
1223 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1224 hwaddr rtas_addr,
1225 hwaddr rtas_size)
1226 {
1227 MachineState *machine = MACHINE(spapr);
1228 MachineClass *mc = MACHINE_GET_CLASS(machine);
1229 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1230 int ret;
1231 void *fdt;
1232 sPAPRPHBState *phb;
1233 char *buf;
1234
1235 fdt = g_malloc0(FDT_MAX_SIZE);
1236 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1237
1238 /* Root node */
1239 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1240 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1241 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1242
1243 /*
1244 * Add info to guest to indentify which host is it being run on
1245 * and what is the uuid of the guest
1246 */
1247 if (kvmppc_get_host_model(&buf)) {
1248 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1249 g_free(buf);
1250 }
1251 if (kvmppc_get_host_serial(&buf)) {
1252 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1253 g_free(buf);
1254 }
1255
1256 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1257
1258 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259 if (qemu_uuid_set) {
1260 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1261 }
1262 g_free(buf);
1263
1264 if (qemu_get_vm_name()) {
1265 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266 qemu_get_vm_name()));
1267 }
1268
1269 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1270 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1271
1272 /* /interrupt controller */
1273 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1274
1275 ret = spapr_populate_memory(spapr, fdt);
1276 if (ret < 0) {
1277 error_report("couldn't setup memory nodes in fdt");
1278 exit(1);
1279 }
1280
1281 /* /vdevice */
1282 spapr_dt_vdevice(spapr->vio_bus, fdt);
1283
1284 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1285 ret = spapr_rng_populate_dt(fdt);
1286 if (ret < 0) {
1287 error_report("could not set up rng device in the fdt");
1288 exit(1);
1289 }
1290 }
1291
1292 QLIST_FOREACH(phb, &spapr->phbs, list) {
1293 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1294 if (ret < 0) {
1295 error_report("couldn't setup PCI devices in fdt");
1296 exit(1);
1297 }
1298 }
1299
1300 /* cpus */
1301 spapr_populate_cpus_dt_node(fdt, spapr);
1302
1303 if (smc->dr_lmb_enabled) {
1304 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1305 }
1306
1307 if (mc->has_hotpluggable_cpus) {
1308 int offset = fdt_path_offset(fdt, "/cpus");
1309 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1310 SPAPR_DR_CONNECTOR_TYPE_CPU);
1311 if (ret < 0) {
1312 error_report("Couldn't set up CPU DR device tree properties");
1313 exit(1);
1314 }
1315 }
1316
1317 /* /event-sources */
1318 spapr_dt_events(spapr, fdt);
1319
1320 /* /rtas */
1321 spapr_dt_rtas(spapr, fdt);
1322
1323 /* /chosen */
1324 spapr_dt_chosen(spapr, fdt);
1325
1326 /* /hypervisor */
1327 if (kvm_enabled()) {
1328 spapr_dt_hypervisor(spapr, fdt);
1329 }
1330
1331 /* Build memory reserve map */
1332 if (spapr->kernel_size) {
1333 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1334 }
1335 if (spapr->initrd_size) {
1336 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1337 }
1338
1339 /* ibm,client-architecture-support updates */
1340 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1341 if (ret < 0) {
1342 error_report("couldn't setup CAS properties fdt");
1343 exit(1);
1344 }
1345
1346 return fdt;
1347 }
1348
1349 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1350 {
1351 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1352 }
1353
1354 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1355 PowerPCCPU *cpu)
1356 {
1357 CPUPPCState *env = &cpu->env;
1358
1359 /* The TCG path should also be holding the BQL at this point */
1360 g_assert(qemu_mutex_iothread_locked());
1361
1362 if (msr_pr) {
1363 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1364 env->gpr[3] = H_PRIVILEGE;
1365 } else {
1366 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1367 }
1368 }
1369
1370 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1371 {
1372 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1373
1374 return spapr->patb_entry;
1375 }
1376
1377 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1378 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1379 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1380 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1381 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1382
1383 /*
1384 * Get the fd to access the kernel htab, re-opening it if necessary
1385 */
1386 static int get_htab_fd(sPAPRMachineState *spapr)
1387 {
1388 Error *local_err = NULL;
1389
1390 if (spapr->htab_fd >= 0) {
1391 return spapr->htab_fd;
1392 }
1393
1394 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1395 if (spapr->htab_fd < 0) {
1396 error_report_err(local_err);
1397 }
1398
1399 return spapr->htab_fd;
1400 }
1401
1402 void close_htab_fd(sPAPRMachineState *spapr)
1403 {
1404 if (spapr->htab_fd >= 0) {
1405 close(spapr->htab_fd);
1406 }
1407 spapr->htab_fd = -1;
1408 }
1409
1410 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1411 {
1412 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1413
1414 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1415 }
1416
1417 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1418 {
1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420
1421 assert(kvm_enabled());
1422
1423 if (!spapr->htab) {
1424 return 0;
1425 }
1426
1427 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1428 }
1429
1430 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1431 hwaddr ptex, int n)
1432 {
1433 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1434 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1435
1436 if (!spapr->htab) {
1437 /*
1438 * HTAB is controlled by KVM. Fetch into temporary buffer
1439 */
1440 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1441 kvmppc_read_hptes(hptes, ptex, n);
1442 return hptes;
1443 }
1444
1445 /*
1446 * HTAB is controlled by QEMU. Just point to the internally
1447 * accessible PTEG.
1448 */
1449 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1450 }
1451
1452 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1453 const ppc_hash_pte64_t *hptes,
1454 hwaddr ptex, int n)
1455 {
1456 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1457
1458 if (!spapr->htab) {
1459 g_free((void *)hptes);
1460 }
1461
1462 /* Nothing to do for qemu managed HPT */
1463 }
1464
1465 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1466 uint64_t pte0, uint64_t pte1)
1467 {
1468 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1469 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1470
1471 if (!spapr->htab) {
1472 kvmppc_write_hpte(ptex, pte0, pte1);
1473 } else {
1474 stq_p(spapr->htab + offset, pte0);
1475 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1476 }
1477 }
1478
1479 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1480 {
1481 int shift;
1482
1483 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1484 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1485 * that's much more than is needed for Linux guests */
1486 shift = ctz64(pow2ceil(ramsize)) - 7;
1487 shift = MAX(shift, 18); /* Minimum architected size */
1488 shift = MIN(shift, 46); /* Maximum architected size */
1489 return shift;
1490 }
1491
1492 void spapr_free_hpt(sPAPRMachineState *spapr)
1493 {
1494 g_free(spapr->htab);
1495 spapr->htab = NULL;
1496 spapr->htab_shift = 0;
1497 close_htab_fd(spapr);
1498 }
1499
1500 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1501 Error **errp)
1502 {
1503 long rc;
1504
1505 /* Clean up any HPT info from a previous boot */
1506 spapr_free_hpt(spapr);
1507
1508 rc = kvmppc_reset_htab(shift);
1509 if (rc < 0) {
1510 /* kernel-side HPT needed, but couldn't allocate one */
1511 error_setg_errno(errp, errno,
1512 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1513 shift);
1514 /* This is almost certainly fatal, but if the caller really
1515 * wants to carry on with shift == 0, it's welcome to try */
1516 } else if (rc > 0) {
1517 /* kernel-side HPT allocated */
1518 if (rc != shift) {
1519 error_setg(errp,
1520 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1521 shift, rc);
1522 }
1523
1524 spapr->htab_shift = shift;
1525 spapr->htab = NULL;
1526 } else {
1527 /* kernel-side HPT not needed, allocate in userspace instead */
1528 size_t size = 1ULL << shift;
1529 int i;
1530
1531 spapr->htab = qemu_memalign(size, size);
1532 if (!spapr->htab) {
1533 error_setg_errno(errp, errno,
1534 "Could not allocate HPT of order %d", shift);
1535 return;
1536 }
1537
1538 memset(spapr->htab, 0, size);
1539 spapr->htab_shift = shift;
1540
1541 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1542 DIRTY_HPTE(HPTE(spapr->htab, i));
1543 }
1544 }
1545 /* We're setting up a hash table, so that means we're not radix */
1546 spapr->patb_entry = 0;
1547 }
1548
1549 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1550 {
1551 int hpt_shift;
1552
1553 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1554 || (spapr->cas_reboot
1555 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1556 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1557 } else {
1558 uint64_t current_ram_size;
1559
1560 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1561 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1562 }
1563 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1564
1565 if (spapr->vrma_adjust) {
1566 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1567 spapr->htab_shift);
1568 }
1569 }
1570
1571 static int spapr_reset_drcs(Object *child, void *opaque)
1572 {
1573 sPAPRDRConnector *drc =
1574 (sPAPRDRConnector *) object_dynamic_cast(child,
1575 TYPE_SPAPR_DR_CONNECTOR);
1576
1577 if (drc) {
1578 spapr_drc_reset(drc);
1579 }
1580
1581 return 0;
1582 }
1583
1584 static void spapr_machine_reset(void)
1585 {
1586 MachineState *machine = MACHINE(qdev_get_machine());
1587 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1588 PowerPCCPU *first_ppc_cpu;
1589 uint32_t rtas_limit;
1590 hwaddr rtas_addr, fdt_addr;
1591 void *fdt;
1592 int rc;
1593
1594 spapr_caps_apply(spapr);
1595
1596 first_ppc_cpu = POWERPC_CPU(first_cpu);
1597 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1598 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1599 spapr->max_compat_pvr)) {
1600 /* If using KVM with radix mode available, VCPUs can be started
1601 * without a HPT because KVM will start them in radix mode.
1602 * Set the GR bit in PATB so that we know there is no HPT. */
1603 spapr->patb_entry = PATBE1_GR;
1604 } else {
1605 spapr_setup_hpt_and_vrma(spapr);
1606 }
1607
1608 /* if this reset wasn't generated by CAS, we should reset our
1609 * negotiated options and start from scratch */
1610 if (!spapr->cas_reboot) {
1611 spapr_ovec_cleanup(spapr->ov5_cas);
1612 spapr->ov5_cas = spapr_ovec_new();
1613
1614 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1615 }
1616
1617 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1618 spapr_irq_msi_reset(spapr);
1619 }
1620
1621 qemu_devices_reset();
1622
1623 /* DRC reset may cause a device to be unplugged. This will cause troubles
1624 * if this device is used by another device (eg, a running vhost backend
1625 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1626 * situations, we reset DRCs after all devices have been reset.
1627 */
1628 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1629
1630 spapr_clear_pending_events(spapr);
1631
1632 /*
1633 * We place the device tree and RTAS just below either the top of the RMA,
1634 * or just below 2GB, whichever is lowere, so that it can be
1635 * processed with 32-bit real mode code if necessary
1636 */
1637 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1638 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1639 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1640
1641 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1642
1643 spapr_load_rtas(spapr, fdt, rtas_addr);
1644
1645 rc = fdt_pack(fdt);
1646
1647 /* Should only fail if we've built a corrupted tree */
1648 assert(rc == 0);
1649
1650 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1651 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1652 fdt_totalsize(fdt), FDT_MAX_SIZE);
1653 exit(1);
1654 }
1655
1656 /* Load the fdt */
1657 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1658 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1659 g_free(fdt);
1660
1661 /* Set up the entry state */
1662 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1663 first_ppc_cpu->env.gpr[5] = 0;
1664
1665 spapr->cas_reboot = false;
1666 }
1667
1668 static void spapr_create_nvram(sPAPRMachineState *spapr)
1669 {
1670 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1671 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1672
1673 if (dinfo) {
1674 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1675 &error_fatal);
1676 }
1677
1678 qdev_init_nofail(dev);
1679
1680 spapr->nvram = (struct sPAPRNVRAM *)dev;
1681 }
1682
1683 static void spapr_rtc_create(sPAPRMachineState *spapr)
1684 {
1685 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1686 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1687 &error_fatal);
1688 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1689 &error_fatal);
1690 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1691 "date", &error_fatal);
1692 }
1693
1694 /* Returns whether we want to use VGA or not */
1695 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1696 {
1697 switch (vga_interface_type) {
1698 case VGA_NONE:
1699 return false;
1700 case VGA_DEVICE:
1701 return true;
1702 case VGA_STD:
1703 case VGA_VIRTIO:
1704 return pci_vga_init(pci_bus) != NULL;
1705 default:
1706 error_setg(errp,
1707 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1708 return false;
1709 }
1710 }
1711
1712 static int spapr_pre_load(void *opaque)
1713 {
1714 int rc;
1715
1716 rc = spapr_caps_pre_load(opaque);
1717 if (rc) {
1718 return rc;
1719 }
1720
1721 return 0;
1722 }
1723
1724 static int spapr_post_load(void *opaque, int version_id)
1725 {
1726 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1727 int err = 0;
1728
1729 err = spapr_caps_post_migration(spapr);
1730 if (err) {
1731 return err;
1732 }
1733
1734 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1735 CPUState *cs;
1736 CPU_FOREACH(cs) {
1737 PowerPCCPU *cpu = POWERPC_CPU(cs);
1738 icp_resend(ICP(cpu->intc));
1739 }
1740 }
1741
1742 /* In earlier versions, there was no separate qdev for the PAPR
1743 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1744 * So when migrating from those versions, poke the incoming offset
1745 * value into the RTC device */
1746 if (version_id < 3) {
1747 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1748 }
1749
1750 if (kvm_enabled() && spapr->patb_entry) {
1751 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1752 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1753 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1754
1755 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1756 if (err) {
1757 error_report("Process table config unsupported by the host");
1758 return -EINVAL;
1759 }
1760 }
1761
1762 return err;
1763 }
1764
1765 static int spapr_pre_save(void *opaque)
1766 {
1767 int rc;
1768
1769 rc = spapr_caps_pre_save(opaque);
1770 if (rc) {
1771 return rc;
1772 }
1773
1774 return 0;
1775 }
1776
1777 static bool version_before_3(void *opaque, int version_id)
1778 {
1779 return version_id < 3;
1780 }
1781
1782 static bool spapr_pending_events_needed(void *opaque)
1783 {
1784 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1785 return !QTAILQ_EMPTY(&spapr->pending_events);
1786 }
1787
1788 static const VMStateDescription vmstate_spapr_event_entry = {
1789 .name = "spapr_event_log_entry",
1790 .version_id = 1,
1791 .minimum_version_id = 1,
1792 .fields = (VMStateField[]) {
1793 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1794 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1795 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1796 NULL, extended_length),
1797 VMSTATE_END_OF_LIST()
1798 },
1799 };
1800
1801 static const VMStateDescription vmstate_spapr_pending_events = {
1802 .name = "spapr_pending_events",
1803 .version_id = 1,
1804 .minimum_version_id = 1,
1805 .needed = spapr_pending_events_needed,
1806 .fields = (VMStateField[]) {
1807 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1808 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1809 VMSTATE_END_OF_LIST()
1810 },
1811 };
1812
1813 static bool spapr_ov5_cas_needed(void *opaque)
1814 {
1815 sPAPRMachineState *spapr = opaque;
1816 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1817 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1818 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1819 bool cas_needed;
1820
1821 /* Prior to the introduction of sPAPROptionVector, we had two option
1822 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1823 * Both of these options encode machine topology into the device-tree
1824 * in such a way that the now-booted OS should still be able to interact
1825 * appropriately with QEMU regardless of what options were actually
1826 * negotiatied on the source side.
1827 *
1828 * As such, we can avoid migrating the CAS-negotiated options if these
1829 * are the only options available on the current machine/platform.
1830 * Since these are the only options available for pseries-2.7 and
1831 * earlier, this allows us to maintain old->new/new->old migration
1832 * compatibility.
1833 *
1834 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1835 * via default pseries-2.8 machines and explicit command-line parameters.
1836 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1837 * of the actual CAS-negotiated values to continue working properly. For
1838 * example, availability of memory unplug depends on knowing whether
1839 * OV5_HP_EVT was negotiated via CAS.
1840 *
1841 * Thus, for any cases where the set of available CAS-negotiatable
1842 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1843 * include the CAS-negotiated options in the migration stream, unless
1844 * if they affect boot time behaviour only.
1845 */
1846 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1847 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1848 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1849
1850 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1851 * the mask itself since in the future it's possible "legacy" bits may be
1852 * removed via machine options, which could generate a false positive
1853 * that breaks migration.
1854 */
1855 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1856 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1857
1858 spapr_ovec_cleanup(ov5_mask);
1859 spapr_ovec_cleanup(ov5_legacy);
1860 spapr_ovec_cleanup(ov5_removed);
1861
1862 return cas_needed;
1863 }
1864
1865 static const VMStateDescription vmstate_spapr_ov5_cas = {
1866 .name = "spapr_option_vector_ov5_cas",
1867 .version_id = 1,
1868 .minimum_version_id = 1,
1869 .needed = spapr_ov5_cas_needed,
1870 .fields = (VMStateField[]) {
1871 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1872 vmstate_spapr_ovec, sPAPROptionVector),
1873 VMSTATE_END_OF_LIST()
1874 },
1875 };
1876
1877 static bool spapr_patb_entry_needed(void *opaque)
1878 {
1879 sPAPRMachineState *spapr = opaque;
1880
1881 return !!spapr->patb_entry;
1882 }
1883
1884 static const VMStateDescription vmstate_spapr_patb_entry = {
1885 .name = "spapr_patb_entry",
1886 .version_id = 1,
1887 .minimum_version_id = 1,
1888 .needed = spapr_patb_entry_needed,
1889 .fields = (VMStateField[]) {
1890 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1891 VMSTATE_END_OF_LIST()
1892 },
1893 };
1894
1895 static bool spapr_irq_map_needed(void *opaque)
1896 {
1897 sPAPRMachineState *spapr = opaque;
1898
1899 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1900 }
1901
1902 static const VMStateDescription vmstate_spapr_irq_map = {
1903 .name = "spapr_irq_map",
1904 .version_id = 1,
1905 .minimum_version_id = 1,
1906 .needed = spapr_irq_map_needed,
1907 .fields = (VMStateField[]) {
1908 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1909 VMSTATE_END_OF_LIST()
1910 },
1911 };
1912
1913 static const VMStateDescription vmstate_spapr = {
1914 .name = "spapr",
1915 .version_id = 3,
1916 .minimum_version_id = 1,
1917 .pre_load = spapr_pre_load,
1918 .post_load = spapr_post_load,
1919 .pre_save = spapr_pre_save,
1920 .fields = (VMStateField[]) {
1921 /* used to be @next_irq */
1922 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923
1924 /* RTC offset */
1925 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926
1927 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1928 VMSTATE_END_OF_LIST()
1929 },
1930 .subsections = (const VMStateDescription*[]) {
1931 &vmstate_spapr_ov5_cas,
1932 &vmstate_spapr_patb_entry,
1933 &vmstate_spapr_pending_events,
1934 &vmstate_spapr_cap_htm,
1935 &vmstate_spapr_cap_vsx,
1936 &vmstate_spapr_cap_dfp,
1937 &vmstate_spapr_cap_cfpc,
1938 &vmstate_spapr_cap_sbbc,
1939 &vmstate_spapr_cap_ibs,
1940 &vmstate_spapr_irq_map,
1941 &vmstate_spapr_cap_nested_kvm_hv,
1942 NULL
1943 }
1944 };
1945
1946 static int htab_save_setup(QEMUFile *f, void *opaque)
1947 {
1948 sPAPRMachineState *spapr = opaque;
1949
1950 /* "Iteration" header */
1951 if (!spapr->htab_shift) {
1952 qemu_put_be32(f, -1);
1953 } else {
1954 qemu_put_be32(f, spapr->htab_shift);
1955 }
1956
1957 if (spapr->htab) {
1958 spapr->htab_save_index = 0;
1959 spapr->htab_first_pass = true;
1960 } else {
1961 if (spapr->htab_shift) {
1962 assert(kvm_enabled());
1963 }
1964 }
1965
1966
1967 return 0;
1968 }
1969
1970 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1971 int chunkstart, int n_valid, int n_invalid)
1972 {
1973 qemu_put_be32(f, chunkstart);
1974 qemu_put_be16(f, n_valid);
1975 qemu_put_be16(f, n_invalid);
1976 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1977 HASH_PTE_SIZE_64 * n_valid);
1978 }
1979
1980 static void htab_save_end_marker(QEMUFile *f)
1981 {
1982 qemu_put_be32(f, 0);
1983 qemu_put_be16(f, 0);
1984 qemu_put_be16(f, 0);
1985 }
1986
1987 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1988 int64_t max_ns)
1989 {
1990 bool has_timeout = max_ns != -1;
1991 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1992 int index = spapr->htab_save_index;
1993 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1994
1995 assert(spapr->htab_first_pass);
1996
1997 do {
1998 int chunkstart;
1999
2000 /* Consume invalid HPTEs */
2001 while ((index < htabslots)
2002 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2003 CLEAN_HPTE(HPTE(spapr->htab, index));
2004 index++;
2005 }
2006
2007 /* Consume valid HPTEs */
2008 chunkstart = index;
2009 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2010 && HPTE_VALID(HPTE(spapr->htab, index))) {
2011 CLEAN_HPTE(HPTE(spapr->htab, index));
2012 index++;
2013 }
2014
2015 if (index > chunkstart) {
2016 int n_valid = index - chunkstart;
2017
2018 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2019
2020 if (has_timeout &&
2021 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2022 break;
2023 }
2024 }
2025 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2026
2027 if (index >= htabslots) {
2028 assert(index == htabslots);
2029 index = 0;
2030 spapr->htab_first_pass = false;
2031 }
2032 spapr->htab_save_index = index;
2033 }
2034
2035 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2036 int64_t max_ns)
2037 {
2038 bool final = max_ns < 0;
2039 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2040 int examined = 0, sent = 0;
2041 int index = spapr->htab_save_index;
2042 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2043
2044 assert(!spapr->htab_first_pass);
2045
2046 do {
2047 int chunkstart, invalidstart;
2048
2049 /* Consume non-dirty HPTEs */
2050 while ((index < htabslots)
2051 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2052 index++;
2053 examined++;
2054 }
2055
2056 chunkstart = index;
2057 /* Consume valid dirty HPTEs */
2058 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2059 && HPTE_DIRTY(HPTE(spapr->htab, index))
2060 && HPTE_VALID(HPTE(spapr->htab, index))) {
2061 CLEAN_HPTE(HPTE(spapr->htab, index));
2062 index++;
2063 examined++;
2064 }
2065
2066 invalidstart = index;
2067 /* Consume invalid dirty HPTEs */
2068 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2069 && HPTE_DIRTY(HPTE(spapr->htab, index))
2070 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2071 CLEAN_HPTE(HPTE(spapr->htab, index));
2072 index++;
2073 examined++;
2074 }
2075
2076 if (index > chunkstart) {
2077 int n_valid = invalidstart - chunkstart;
2078 int n_invalid = index - invalidstart;
2079
2080 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2081 sent += index - chunkstart;
2082
2083 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2084 break;
2085 }
2086 }
2087
2088 if (examined >= htabslots) {
2089 break;
2090 }
2091
2092 if (index >= htabslots) {
2093 assert(index == htabslots);
2094 index = 0;
2095 }
2096 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2097
2098 if (index >= htabslots) {
2099 assert(index == htabslots);
2100 index = 0;
2101 }
2102
2103 spapr->htab_save_index = index;
2104
2105 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2106 }
2107
2108 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2109 #define MAX_KVM_BUF_SIZE 2048
2110
2111 static int htab_save_iterate(QEMUFile *f, void *opaque)
2112 {
2113 sPAPRMachineState *spapr = opaque;
2114 int fd;
2115 int rc = 0;
2116
2117 /* Iteration header */
2118 if (!spapr->htab_shift) {
2119 qemu_put_be32(f, -1);
2120 return 1;
2121 } else {
2122 qemu_put_be32(f, 0);
2123 }
2124
2125 if (!spapr->htab) {
2126 assert(kvm_enabled());
2127
2128 fd = get_htab_fd(spapr);
2129 if (fd < 0) {
2130 return fd;
2131 }
2132
2133 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2134 if (rc < 0) {
2135 return rc;
2136 }
2137 } else if (spapr->htab_first_pass) {
2138 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2139 } else {
2140 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2141 }
2142
2143 htab_save_end_marker(f);
2144
2145 return rc;
2146 }
2147
2148 static int htab_save_complete(QEMUFile *f, void *opaque)
2149 {
2150 sPAPRMachineState *spapr = opaque;
2151 int fd;
2152
2153 /* Iteration header */
2154 if (!spapr->htab_shift) {
2155 qemu_put_be32(f, -1);
2156 return 0;
2157 } else {
2158 qemu_put_be32(f, 0);
2159 }
2160
2161 if (!spapr->htab) {
2162 int rc;
2163
2164 assert(kvm_enabled());
2165
2166 fd = get_htab_fd(spapr);
2167 if (fd < 0) {
2168 return fd;
2169 }
2170
2171 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2172 if (rc < 0) {
2173 return rc;
2174 }
2175 } else {
2176 if (spapr->htab_first_pass) {
2177 htab_save_first_pass(f, spapr, -1);
2178 }
2179 htab_save_later_pass(f, spapr, -1);
2180 }
2181
2182 /* End marker */
2183 htab_save_end_marker(f);
2184
2185 return 0;
2186 }
2187
2188 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2189 {
2190 sPAPRMachineState *spapr = opaque;
2191 uint32_t section_hdr;
2192 int fd = -1;
2193 Error *local_err = NULL;
2194
2195 if (version_id < 1 || version_id > 1) {
2196 error_report("htab_load() bad version");
2197 return -EINVAL;
2198 }
2199
2200 section_hdr = qemu_get_be32(f);
2201
2202 if (section_hdr == -1) {
2203 spapr_free_hpt(spapr);
2204 return 0;
2205 }
2206
2207 if (section_hdr) {
2208 /* First section gives the htab size */
2209 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2210 if (local_err) {
2211 error_report_err(local_err);
2212 return -EINVAL;
2213 }
2214 return 0;
2215 }
2216
2217 if (!spapr->htab) {
2218 assert(kvm_enabled());
2219
2220 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2221 if (fd < 0) {
2222 error_report_err(local_err);
2223 return fd;
2224 }
2225 }
2226
2227 while (true) {
2228 uint32_t index;
2229 uint16_t n_valid, n_invalid;
2230
2231 index = qemu_get_be32(f);
2232 n_valid = qemu_get_be16(f);
2233 n_invalid = qemu_get_be16(f);
2234
2235 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2236 /* End of Stream */
2237 break;
2238 }
2239
2240 if ((index + n_valid + n_invalid) >
2241 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2242 /* Bad index in stream */
2243 error_report(
2244 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2245 index, n_valid, n_invalid, spapr->htab_shift);
2246 return -EINVAL;
2247 }
2248
2249 if (spapr->htab) {
2250 if (n_valid) {
2251 qemu_get_buffer(f, HPTE(spapr->htab, index),
2252 HASH_PTE_SIZE_64 * n_valid);
2253 }
2254 if (n_invalid) {
2255 memset(HPTE(spapr->htab, index + n_valid), 0,
2256 HASH_PTE_SIZE_64 * n_invalid);
2257 }
2258 } else {
2259 int rc;
2260
2261 assert(fd >= 0);
2262
2263 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2264 if (rc < 0) {
2265 return rc;
2266 }
2267 }
2268 }
2269
2270 if (!spapr->htab) {
2271 assert(fd >= 0);
2272 close(fd);
2273 }
2274
2275 return 0;
2276 }
2277
2278 static void htab_save_cleanup(void *opaque)
2279 {
2280 sPAPRMachineState *spapr = opaque;
2281
2282 close_htab_fd(spapr);
2283 }
2284
2285 static SaveVMHandlers savevm_htab_handlers = {
2286 .save_setup = htab_save_setup,
2287 .save_live_iterate = htab_save_iterate,
2288 .save_live_complete_precopy = htab_save_complete,
2289 .save_cleanup = htab_save_cleanup,
2290 .load_state = htab_load,
2291 };
2292
2293 static void spapr_boot_set(void *opaque, const char *boot_device,
2294 Error **errp)
2295 {
2296 MachineState *machine = MACHINE(opaque);
2297 machine->boot_order = g_strdup(boot_device);
2298 }
2299
2300 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2301 {
2302 MachineState *machine = MACHINE(spapr);
2303 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2304 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2305 int i;
2306
2307 for (i = 0; i < nr_lmbs; i++) {
2308 uint64_t addr;
2309
2310 addr = i * lmb_size + machine->device_memory->base;
2311 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2312 addr / lmb_size);
2313 }
2314 }
2315
2316 /*
2317 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2318 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2319 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2320 */
2321 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2322 {
2323 int i;
2324
2325 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2326 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2327 " is not aligned to %" PRIu64 " MiB",
2328 machine->ram_size,
2329 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2330 return;
2331 }
2332
2333 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2334 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2335 " is not aligned to %" PRIu64 " MiB",
2336 machine->ram_size,
2337 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2338 return;
2339 }
2340
2341 for (i = 0; i < nb_numa_nodes; i++) {
2342 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2343 error_setg(errp,
2344 "Node %d memory size 0x%" PRIx64
2345 " is not aligned to %" PRIu64 " MiB",
2346 i, numa_info[i].node_mem,
2347 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2348 return;
2349 }
2350 }
2351 }
2352
2353 /* find cpu slot in machine->possible_cpus by core_id */
2354 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2355 {
2356 int index = id / smp_threads;
2357
2358 if (index >= ms->possible_cpus->len) {
2359 return NULL;
2360 }
2361 if (idx) {
2362 *idx = index;
2363 }
2364 return &ms->possible_cpus->cpus[index];
2365 }
2366
2367 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2368 {
2369 Error *local_err = NULL;
2370 bool vsmt_user = !!spapr->vsmt;
2371 int kvm_smt = kvmppc_smt_threads();
2372 int ret;
2373
2374 if (!kvm_enabled() && (smp_threads > 1)) {
2375 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2376 "on a pseries machine");
2377 goto out;
2378 }
2379 if (!is_power_of_2(smp_threads)) {
2380 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2381 "machine because it must be a power of 2", smp_threads);
2382 goto out;
2383 }
2384
2385 /* Detemine the VSMT mode to use: */
2386 if (vsmt_user) {
2387 if (spapr->vsmt < smp_threads) {
2388 error_setg(&local_err, "Cannot support VSMT mode %d"
2389 " because it must be >= threads/core (%d)",
2390 spapr->vsmt, smp_threads);
2391 goto out;
2392 }
2393 /* In this case, spapr->vsmt has been set by the command line */
2394 } else {
2395 /*
2396 * Default VSMT value is tricky, because we need it to be as
2397 * consistent as possible (for migration), but this requires
2398 * changing it for at least some existing cases. We pick 8 as
2399 * the value that we'd get with KVM on POWER8, the
2400 * overwhelmingly common case in production systems.
2401 */
2402 spapr->vsmt = MAX(8, smp_threads);
2403 }
2404
2405 /* KVM: If necessary, set the SMT mode: */
2406 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2407 ret = kvmppc_set_smt_threads(spapr->vsmt);
2408 if (ret) {
2409 /* Looks like KVM isn't able to change VSMT mode */
2410 error_setg(&local_err,
2411 "Failed to set KVM's VSMT mode to %d (errno %d)",
2412 spapr->vsmt, ret);
2413 /* We can live with that if the default one is big enough
2414 * for the number of threads, and a submultiple of the one
2415 * we want. In this case we'll waste some vcpu ids, but
2416 * behaviour will be correct */
2417 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2418 warn_report_err(local_err);
2419 local_err = NULL;
2420 goto out;
2421 } else {
2422 if (!vsmt_user) {
2423 error_append_hint(&local_err,
2424 "On PPC, a VM with %d threads/core"
2425 " on a host with %d threads/core"
2426 " requires the use of VSMT mode %d.\n",
2427 smp_threads, kvm_smt, spapr->vsmt);
2428 }
2429 kvmppc_hint_smt_possible(&local_err);
2430 goto out;
2431 }
2432 }
2433 }
2434 /* else TCG: nothing to do currently */
2435 out:
2436 error_propagate(errp, local_err);
2437 }
2438
2439 static void spapr_init_cpus(sPAPRMachineState *spapr)
2440 {
2441 MachineState *machine = MACHINE(spapr);
2442 MachineClass *mc = MACHINE_GET_CLASS(machine);
2443 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2444 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2445 const CPUArchIdList *possible_cpus;
2446 int boot_cores_nr = smp_cpus / smp_threads;
2447 int i;
2448
2449 possible_cpus = mc->possible_cpu_arch_ids(machine);
2450 if (mc->has_hotpluggable_cpus) {
2451 if (smp_cpus % smp_threads) {
2452 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2453 smp_cpus, smp_threads);
2454 exit(1);
2455 }
2456 if (max_cpus % smp_threads) {
2457 error_report("max_cpus (%u) must be multiple of threads (%u)",
2458 max_cpus, smp_threads);
2459 exit(1);
2460 }
2461 } else {
2462 if (max_cpus != smp_cpus) {
2463 error_report("This machine version does not support CPU hotplug");
2464 exit(1);
2465 }
2466 boot_cores_nr = possible_cpus->len;
2467 }
2468
2469 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2470 * call xics_max_server_number() or spapr_vcpu_id().
2471 */
2472 spapr_set_vsmt_mode(spapr, &error_fatal);
2473
2474 if (smc->pre_2_10_has_unused_icps) {
2475 int i;
2476
2477 for (i = 0; i < xics_max_server_number(spapr); i++) {
2478 /* Dummy entries get deregistered when real ICPState objects
2479 * are registered during CPU core hotplug.
2480 */
2481 pre_2_10_vmstate_register_dummy_icp(i);
2482 }
2483 }
2484
2485 for (i = 0; i < possible_cpus->len; i++) {
2486 int core_id = i * smp_threads;
2487
2488 if (mc->has_hotpluggable_cpus) {
2489 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2490 spapr_vcpu_id(spapr, core_id));
2491 }
2492
2493 if (i < boot_cores_nr) {
2494 Object *core = object_new(type);
2495 int nr_threads = smp_threads;
2496
2497 /* Handle the partially filled core for older machine types */
2498 if ((i + 1) * smp_threads >= smp_cpus) {
2499 nr_threads = smp_cpus - i * smp_threads;
2500 }
2501
2502 object_property_set_int(core, nr_threads, "nr-threads",
2503 &error_fatal);
2504 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2505 &error_fatal);
2506 object_property_set_bool(core, true, "realized", &error_fatal);
2507
2508 object_unref(core);
2509 }
2510 }
2511 }
2512
2513 /* pSeries LPAR / sPAPR hardware init */
2514 static void spapr_machine_init(MachineState *machine)
2515 {
2516 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2517 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2518 const char *kernel_filename = machine->kernel_filename;
2519 const char *initrd_filename = machine->initrd_filename;
2520 PCIHostState *phb;
2521 int i;
2522 MemoryRegion *sysmem = get_system_memory();
2523 MemoryRegion *ram = g_new(MemoryRegion, 1);
2524 hwaddr node0_size = spapr_node0_size(machine);
2525 long load_limit, fw_size;
2526 char *filename;
2527 Error *resize_hpt_err = NULL;
2528
2529 msi_nonbroken = true;
2530
2531 QLIST_INIT(&spapr->phbs);
2532 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2533
2534 /* Determine capabilities to run with */
2535 spapr_caps_init(spapr);
2536
2537 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2538 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2539 /*
2540 * If the user explicitly requested a mode we should either
2541 * supply it, or fail completely (which we do below). But if
2542 * it's not set explicitly, we reset our mode to something
2543 * that works
2544 */
2545 if (resize_hpt_err) {
2546 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2547 error_free(resize_hpt_err);
2548 resize_hpt_err = NULL;
2549 } else {
2550 spapr->resize_hpt = smc->resize_hpt_default;
2551 }
2552 }
2553
2554 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2555
2556 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2557 /*
2558 * User requested HPT resize, but this host can't supply it. Bail out
2559 */
2560 error_report_err(resize_hpt_err);
2561 exit(1);
2562 }
2563
2564 spapr->rma_size = node0_size;
2565
2566 /* With KVM, we don't actually know whether KVM supports an
2567 * unbounded RMA (PR KVM) or is limited by the hash table size
2568 * (HV KVM using VRMA), so we always assume the latter
2569 *
2570 * In that case, we also limit the initial allocations for RTAS
2571 * etc... to 256M since we have no way to know what the VRMA size
2572 * is going to be as it depends on the size of the hash table
2573 * which isn't determined yet.
2574 */
2575 if (kvm_enabled()) {
2576 spapr->vrma_adjust = 1;
2577 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2578 }
2579
2580 /* Actually we don't support unbounded RMA anymore since we added
2581 * proper emulation of HV mode. The max we can get is 16G which
2582 * also happens to be what we configure for PAPR mode so make sure
2583 * we don't do anything bigger than that
2584 */
2585 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2586
2587 if (spapr->rma_size > node0_size) {
2588 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2589 spapr->rma_size);
2590 exit(1);
2591 }
2592
2593 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2594 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2595
2596 /* Set up Interrupt Controller before we create the VCPUs */
2597 smc->irq->init(spapr, &error_fatal);
2598
2599 /* Set up containers for ibm,client-architecture-support negotiated options
2600 */
2601 spapr->ov5 = spapr_ovec_new();
2602 spapr->ov5_cas = spapr_ovec_new();
2603
2604 if (smc->dr_lmb_enabled) {
2605 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2606 spapr_validate_node_memory(machine, &error_fatal);
2607 }
2608
2609 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2610
2611 /* advertise support for dedicated HP event source to guests */
2612 if (spapr->use_hotplug_event_source) {
2613 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2614 }
2615
2616 /* advertise support for HPT resizing */
2617 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2618 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2619 }
2620
2621 /* advertise support for ibm,dyamic-memory-v2 */
2622 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2623
2624 /* init CPUs */
2625 spapr_init_cpus(spapr);
2626
2627 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2628 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2629 spapr->max_compat_pvr)) {
2630 /* KVM and TCG always allow GTSE with radix... */
2631 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2632 }
2633 /* ... but not with hash (currently). */
2634
2635 if (kvm_enabled()) {
2636 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2637 kvmppc_enable_logical_ci_hcalls();
2638 kvmppc_enable_set_mode_hcall();
2639
2640 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2641 kvmppc_enable_clear_ref_mod_hcalls();
2642 }
2643
2644 /* allocate RAM */
2645 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2646 machine->ram_size);
2647 memory_region_add_subregion(sysmem, 0, ram);
2648
2649 /* always allocate the device memory information */
2650 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2651
2652 /* initialize hotplug memory address space */
2653 if (machine->ram_size < machine->maxram_size) {
2654 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2655 /*
2656 * Limit the number of hotpluggable memory slots to half the number
2657 * slots that KVM supports, leaving the other half for PCI and other
2658 * devices. However ensure that number of slots doesn't drop below 32.
2659 */
2660 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2661 SPAPR_MAX_RAM_SLOTS;
2662
2663 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2664 max_memslots = SPAPR_MAX_RAM_SLOTS;
2665 }
2666 if (machine->ram_slots > max_memslots) {
2667 error_report("Specified number of memory slots %"
2668 PRIu64" exceeds max supported %d",
2669 machine->ram_slots, max_memslots);
2670 exit(1);
2671 }
2672
2673 machine->device_memory->base = ROUND_UP(machine->ram_size,
2674 SPAPR_DEVICE_MEM_ALIGN);
2675 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2676 "device-memory", device_mem_size);
2677 memory_region_add_subregion(sysmem, machine->device_memory->base,
2678 &machine->device_memory->mr);
2679 }
2680
2681 if (smc->dr_lmb_enabled) {
2682 spapr_create_lmb_dr_connectors(spapr);
2683 }
2684
2685 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2686 if (!filename) {
2687 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2688 exit(1);
2689 }
2690 spapr->rtas_size = get_image_size(filename);
2691 if (spapr->rtas_size < 0) {
2692 error_report("Could not get size of LPAR rtas '%s'", filename);
2693 exit(1);
2694 }
2695 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2696 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2697 error_report("Could not load LPAR rtas '%s'", filename);
2698 exit(1);
2699 }
2700 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2701 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2702 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2703 exit(1);
2704 }
2705 g_free(filename);
2706
2707 /* Set up RTAS event infrastructure */
2708 spapr_events_init(spapr);
2709
2710 /* Set up the RTC RTAS interfaces */
2711 spapr_rtc_create(spapr);
2712
2713 /* Set up VIO bus */
2714 spapr->vio_bus = spapr_vio_bus_init();
2715
2716 for (i = 0; i < serial_max_hds(); i++) {
2717 if (serial_hd(i)) {
2718 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2719 }
2720 }
2721
2722 /* We always have at least the nvram device on VIO */
2723 spapr_create_nvram(spapr);
2724
2725 /* Set up PCI */
2726 spapr_pci_rtas_init();
2727
2728 phb = spapr_create_phb(spapr, 0);
2729
2730 for (i = 0; i < nb_nics; i++) {
2731 NICInfo *nd = &nd_table[i];
2732
2733 if (!nd->model) {
2734 nd->model = g_strdup("spapr-vlan");
2735 }
2736
2737 if (g_str_equal(nd->model, "spapr-vlan") ||
2738 g_str_equal(nd->model, "ibmveth")) {
2739 spapr_vlan_create(spapr->vio_bus, nd);
2740 } else {
2741 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2742 }
2743 }
2744
2745 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2746 spapr_vscsi_create(spapr->vio_bus);
2747 }
2748
2749 /* Graphics */
2750 if (spapr_vga_init(phb->bus, &error_fatal)) {
2751 spapr->has_graphics = true;
2752 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2753 }
2754
2755 if (machine->usb) {
2756 if (smc->use_ohci_by_default) {
2757 pci_create_simple(phb->bus, -1, "pci-ohci");
2758 } else {
2759 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2760 }
2761
2762 if (spapr->has_graphics) {
2763 USBBus *usb_bus = usb_bus_find(-1);
2764
2765 usb_create_simple(usb_bus, "usb-kbd");
2766 usb_create_simple(usb_bus, "usb-mouse");
2767 }
2768 }
2769
2770 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2771 error_report(
2772 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2773 MIN_RMA_SLOF);
2774 exit(1);
2775 }
2776
2777 if (kernel_filename) {
2778 uint64_t lowaddr = 0;
2779
2780 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2781 NULL, NULL, &lowaddr, NULL, 1,
2782 PPC_ELF_MACHINE, 0, 0);
2783 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2784 spapr->kernel_size = load_elf(kernel_filename,
2785 translate_kernel_address, NULL, NULL,
2786 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2787 0, 0);
2788 spapr->kernel_le = spapr->kernel_size > 0;
2789 }
2790 if (spapr->kernel_size < 0) {
2791 error_report("error loading %s: %s", kernel_filename,
2792 load_elf_strerror(spapr->kernel_size));
2793 exit(1);
2794 }
2795
2796 /* load initrd */
2797 if (initrd_filename) {
2798 /* Try to locate the initrd in the gap between the kernel
2799 * and the firmware. Add a bit of space just in case
2800 */
2801 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2802 + 0x1ffff) & ~0xffff;
2803 spapr->initrd_size = load_image_targphys(initrd_filename,
2804 spapr->initrd_base,
2805 load_limit
2806 - spapr->initrd_base);
2807 if (spapr->initrd_size < 0) {
2808 error_report("could not load initial ram disk '%s'",
2809 initrd_filename);
2810 exit(1);
2811 }
2812 }
2813 }
2814
2815 if (bios_name == NULL) {
2816 bios_name = FW_FILE_NAME;
2817 }
2818 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2819 if (!filename) {
2820 error_report("Could not find LPAR firmware '%s'", bios_name);
2821 exit(1);
2822 }
2823 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2824 if (fw_size <= 0) {
2825 error_report("Could not load LPAR firmware '%s'", filename);
2826 exit(1);
2827 }
2828 g_free(filename);
2829
2830 /* FIXME: Should register things through the MachineState's qdev
2831 * interface, this is a legacy from the sPAPREnvironment structure
2832 * which predated MachineState but had a similar function */
2833 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2834 register_savevm_live(NULL, "spapr/htab", -1, 1,
2835 &savevm_htab_handlers, spapr);
2836
2837 qemu_register_boot_set(spapr_boot_set, spapr);
2838
2839 if (kvm_enabled()) {
2840 /* to stop and start vmclock */
2841 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2842 &spapr->tb);
2843
2844 kvmppc_spapr_enable_inkernel_multitce();
2845 }
2846 }
2847
2848 static int spapr_kvm_type(const char *vm_type)
2849 {
2850 if (!vm_type) {
2851 return 0;
2852 }
2853
2854 if (!strcmp(vm_type, "HV")) {
2855 return 1;
2856 }
2857
2858 if (!strcmp(vm_type, "PR")) {
2859 return 2;
2860 }
2861
2862 error_report("Unknown kvm-type specified '%s'", vm_type);
2863 exit(1);
2864 }
2865
2866 /*
2867 * Implementation of an interface to adjust firmware path
2868 * for the bootindex property handling.
2869 */
2870 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2871 DeviceState *dev)
2872 {
2873 #define CAST(type, obj, name) \
2874 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2875 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2876 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2877 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2878
2879 if (d) {
2880 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2881 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2882 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2883
2884 if (spapr) {
2885 /*
2886 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2887 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2888 * in the top 16 bits of the 64-bit LUN
2889 */
2890 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2891 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2892 (uint64_t)id << 48);
2893 } else if (virtio) {
2894 /*
2895 * We use SRP luns of the form 01000000 | (target << 8) | lun
2896 * in the top 32 bits of the 64-bit LUN
2897 * Note: the quote above is from SLOF and it is wrong,
2898 * the actual binding is:
2899 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2900 */
2901 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2902 if (d->lun >= 256) {
2903 /* Use the LUN "flat space addressing method" */
2904 id |= 0x4000;
2905 }
2906 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2907 (uint64_t)id << 32);
2908 } else if (usb) {
2909 /*
2910 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2911 * in the top 32 bits of the 64-bit LUN
2912 */
2913 unsigned usb_port = atoi(usb->port->path);
2914 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2915 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2916 (uint64_t)id << 32);
2917 }
2918 }
2919
2920 /*
2921 * SLOF probes the USB devices, and if it recognizes that the device is a
2922 * storage device, it changes its name to "storage" instead of "usb-host",
2923 * and additionally adds a child node for the SCSI LUN, so the correct
2924 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2925 */
2926 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2927 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2928 if (usb_host_dev_is_scsi_storage(usbdev)) {
2929 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2930 }
2931 }
2932
2933 if (phb) {
2934 /* Replace "pci" with "pci@800000020000000" */
2935 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2936 }
2937
2938 if (vsc) {
2939 /* Same logic as virtio above */
2940 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2941 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2942 }
2943
2944 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2945 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2946 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2947 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2948 }
2949
2950 return NULL;
2951 }
2952
2953 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2954 {
2955 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2956
2957 return g_strdup(spapr->kvm_type);
2958 }
2959
2960 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2961 {
2962 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2963
2964 g_free(spapr->kvm_type);
2965 spapr->kvm_type = g_strdup(value);
2966 }
2967
2968 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2969 {
2970 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2971
2972 return spapr->use_hotplug_event_source;
2973 }
2974
2975 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2976 Error **errp)
2977 {
2978 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2979
2980 spapr->use_hotplug_event_source = value;
2981 }
2982
2983 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2984 {
2985 return true;
2986 }
2987
2988 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2989 {
2990 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2991
2992 switch (spapr->resize_hpt) {
2993 case SPAPR_RESIZE_HPT_DEFAULT:
2994 return g_strdup("default");
2995 case SPAPR_RESIZE_HPT_DISABLED:
2996 return g_strdup("disabled");
2997 case SPAPR_RESIZE_HPT_ENABLED:
2998 return g_strdup("enabled");
2999 case SPAPR_RESIZE_HPT_REQUIRED:
3000 return g_strdup("required");
3001 }
3002 g_assert_not_reached();
3003 }
3004
3005 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3006 {
3007 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3008
3009 if (strcmp(value, "default") == 0) {
3010 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3011 } else if (strcmp(value, "disabled") == 0) {
3012 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3013 } else if (strcmp(value, "enabled") == 0) {
3014 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3015 } else if (strcmp(value, "required") == 0) {
3016 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3017 } else {
3018 error_setg(errp, "Bad value for \"resize-hpt\" property");
3019 }
3020 }
3021
3022 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3023 void *opaque, Error **errp)
3024 {
3025 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3026 }
3027
3028 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3029 void *opaque, Error **errp)
3030 {
3031 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3032 }
3033
3034 static void spapr_instance_init(Object *obj)
3035 {
3036 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3037
3038 spapr->htab_fd = -1;
3039 spapr->use_hotplug_event_source = true;
3040 object_property_add_str(obj, "kvm-type",
3041 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3042 object_property_set_description(obj, "kvm-type",
3043 "Specifies the KVM virtualization mode (HV, PR)",
3044 NULL);
3045 object_property_add_bool(obj, "modern-hotplug-events",
3046 spapr_get_modern_hotplug_events,
3047 spapr_set_modern_hotplug_events,
3048 NULL);
3049 object_property_set_description(obj, "modern-hotplug-events",
3050 "Use dedicated hotplug event mechanism in"
3051 " place of standard EPOW events when possible"
3052 " (required for memory hot-unplug support)",
3053 NULL);
3054 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3055 "Maximum permitted CPU compatibility mode",
3056 &error_fatal);
3057
3058 object_property_add_str(obj, "resize-hpt",
3059 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3060 object_property_set_description(obj, "resize-hpt",
3061 "Resizing of the Hash Page Table (enabled, disabled, required)",
3062 NULL);
3063 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3064 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3065 object_property_set_description(obj, "vsmt",
3066 "Virtual SMT: KVM behaves as if this were"
3067 " the host's SMT mode", &error_abort);
3068 object_property_add_bool(obj, "vfio-no-msix-emulation",
3069 spapr_get_msix_emulation, NULL, NULL);
3070 }
3071
3072 static void spapr_machine_finalizefn(Object *obj)
3073 {
3074 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3075
3076 g_free(spapr->kvm_type);
3077 }
3078
3079 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3080 {
3081 cpu_synchronize_state(cs);
3082 ppc_cpu_do_system_reset(cs);
3083 }
3084
3085 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3086 {
3087 CPUState *cs;
3088
3089 CPU_FOREACH(cs) {
3090 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3091 }
3092 }
3093
3094 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3095 uint32_t node, bool dedicated_hp_event_source,
3096 Error **errp)
3097 {
3098 sPAPRDRConnector *drc;
3099 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3100 int i, fdt_offset, fdt_size;
3101 void *fdt;
3102 uint64_t addr = addr_start;
3103 bool hotplugged = spapr_drc_hotplugged(dev);
3104 Error *local_err = NULL;
3105
3106 for (i = 0; i < nr_lmbs; i++) {
3107 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3108 addr / SPAPR_MEMORY_BLOCK_SIZE);
3109 g_assert(drc);
3110
3111 fdt = create_device_tree(&fdt_size);
3112 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3113 SPAPR_MEMORY_BLOCK_SIZE);
3114
3115 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3116 if (local_err) {
3117 while (addr > addr_start) {
3118 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3119 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3120 addr / SPAPR_MEMORY_BLOCK_SIZE);
3121 spapr_drc_detach(drc);
3122 }
3123 g_free(fdt);
3124 error_propagate(errp, local_err);
3125 return;
3126 }
3127 if (!hotplugged) {
3128 spapr_drc_reset(drc);
3129 }
3130 addr += SPAPR_MEMORY_BLOCK_SIZE;
3131 }
3132 /* send hotplug notification to the
3133 * guest only in case of hotplugged memory
3134 */
3135 if (hotplugged) {
3136 if (dedicated_hp_event_source) {
3137 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3138 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3139 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3140 nr_lmbs,
3141 spapr_drc_index(drc));
3142 } else {
3143 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3144 nr_lmbs);
3145 }
3146 }
3147 }
3148
3149 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3150 Error **errp)
3151 {
3152 Error *local_err = NULL;
3153 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3154 PCDIMMDevice *dimm = PC_DIMM(dev);
3155 uint64_t size, addr;
3156 uint32_t node;
3157
3158 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3159
3160 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3161 if (local_err) {
3162 goto out;
3163 }
3164
3165 addr = object_property_get_uint(OBJECT(dimm),
3166 PC_DIMM_ADDR_PROP, &local_err);
3167 if (local_err) {
3168 goto out_unplug;
3169 }
3170
3171 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3172 &error_abort);
3173 spapr_add_lmbs(dev, addr, size, node,
3174 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3175 &local_err);
3176 if (local_err) {
3177 goto out_unplug;
3178 }
3179
3180 return;
3181
3182 out_unplug:
3183 pc_dimm_unplug(dimm, MACHINE(ms));
3184 out:
3185 error_propagate(errp, local_err);
3186 }
3187
3188 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3189 Error **errp)
3190 {
3191 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3192 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3193 PCDIMMDevice *dimm = PC_DIMM(dev);
3194 Error *local_err = NULL;
3195 uint64_t size;
3196 Object *memdev;
3197 hwaddr pagesize;
3198
3199 if (!smc->dr_lmb_enabled) {
3200 error_setg(errp, "Memory hotplug not supported for this machine");
3201 return;
3202 }
3203
3204 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3205 if (local_err) {
3206 error_propagate(errp, local_err);
3207 return;
3208 }
3209
3210 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3211 error_setg(errp, "Hotplugged memory size must be a multiple of "
3212 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3213 return;
3214 }
3215
3216 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3217 &error_abort);
3218 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3219 spapr_check_pagesize(spapr, pagesize, &local_err);
3220 if (local_err) {
3221 error_propagate(errp, local_err);
3222 return;
3223 }
3224
3225 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3226 }
3227
3228 struct sPAPRDIMMState {
3229 PCDIMMDevice *dimm;
3230 uint32_t nr_lmbs;
3231 QTAILQ_ENTRY(sPAPRDIMMState) next;
3232 };
3233
3234 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3235 PCDIMMDevice *dimm)
3236 {
3237 sPAPRDIMMState *dimm_state = NULL;
3238
3239 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3240 if (dimm_state->dimm == dimm) {
3241 break;
3242 }
3243 }
3244 return dimm_state;
3245 }
3246
3247 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3248 uint32_t nr_lmbs,
3249 PCDIMMDevice *dimm)
3250 {
3251 sPAPRDIMMState *ds = NULL;
3252
3253 /*
3254 * If this request is for a DIMM whose removal had failed earlier
3255 * (due to guest's refusal to remove the LMBs), we would have this
3256 * dimm already in the pending_dimm_unplugs list. In that
3257 * case don't add again.
3258 */
3259 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3260 if (!ds) {
3261 ds = g_malloc0(sizeof(sPAPRDIMMState));
3262 ds->nr_lmbs = nr_lmbs;
3263 ds->dimm = dimm;
3264 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3265 }
3266 return ds;
3267 }
3268
3269 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3270 sPAPRDIMMState *dimm_state)
3271 {
3272 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3273 g_free(dimm_state);
3274 }
3275
3276 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3277 PCDIMMDevice *dimm)
3278 {
3279 sPAPRDRConnector *drc;
3280 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3281 &error_abort);
3282 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3283 uint32_t avail_lmbs = 0;
3284 uint64_t addr_start, addr;
3285 int i;
3286
3287 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3288 &error_abort);
3289
3290 addr = addr_start;
3291 for (i = 0; i < nr_lmbs; i++) {
3292 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3293 addr / SPAPR_MEMORY_BLOCK_SIZE);
3294 g_assert(drc);
3295 if (drc->dev) {
3296 avail_lmbs++;
3297 }
3298 addr += SPAPR_MEMORY_BLOCK_SIZE;
3299 }
3300
3301 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3302 }
3303
3304 /* Callback to be called during DRC release. */
3305 void spapr_lmb_release(DeviceState *dev)
3306 {
3307 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3308 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3309 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3310
3311 /* This information will get lost if a migration occurs
3312 * during the unplug process. In this case recover it. */
3313 if (ds == NULL) {
3314 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3315 g_assert(ds);
3316 /* The DRC being examined by the caller at least must be counted */
3317 g_assert(ds->nr_lmbs);
3318 }
3319
3320 if (--ds->nr_lmbs) {
3321 return;
3322 }
3323
3324 /*
3325 * Now that all the LMBs have been removed by the guest, call the
3326 * unplug handler chain. This can never fail.
3327 */
3328 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3329 }
3330
3331 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3332 {
3333 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3334 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3335
3336 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3337 object_unparent(OBJECT(dev));
3338 spapr_pending_dimm_unplugs_remove(spapr, ds);
3339 }
3340
3341 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3342 DeviceState *dev, Error **errp)
3343 {
3344 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3345 Error *local_err = NULL;
3346 PCDIMMDevice *dimm = PC_DIMM(dev);
3347 uint32_t nr_lmbs;
3348 uint64_t size, addr_start, addr;
3349 int i;
3350 sPAPRDRConnector *drc;
3351
3352 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3353 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3354
3355 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3356 &local_err);
3357 if (local_err) {
3358 goto out;
3359 }
3360
3361 /*
3362 * An existing pending dimm state for this DIMM means that there is an
3363 * unplug operation in progress, waiting for the spapr_lmb_release
3364 * callback to complete the job (BQL can't cover that far). In this case,
3365 * bail out to avoid detaching DRCs that were already released.
3366 */
3367 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3368 error_setg(&local_err,
3369 "Memory unplug already in progress for device %s",
3370 dev->id);
3371 goto out;
3372 }
3373
3374 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3375
3376 addr = addr_start;
3377 for (i = 0; i < nr_lmbs; i++) {
3378 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3379 addr / SPAPR_MEMORY_BLOCK_SIZE);
3380 g_assert(drc);
3381
3382 spapr_drc_detach(drc);
3383 addr += SPAPR_MEMORY_BLOCK_SIZE;
3384 }
3385
3386 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3387 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3388 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3389 nr_lmbs, spapr_drc_index(drc));
3390 out:
3391 error_propagate(errp, local_err);
3392 }
3393
3394 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3395 sPAPRMachineState *spapr)
3396 {
3397 PowerPCCPU *cpu = POWERPC_CPU(cs);
3398 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3399 int id = spapr_get_vcpu_id(cpu);
3400 void *fdt;
3401 int offset, fdt_size;
3402 char *nodename;
3403
3404 fdt = create_device_tree(&fdt_size);
3405 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3406 offset = fdt_add_subnode(fdt, 0, nodename);
3407
3408 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3409 g_free(nodename);
3410
3411 *fdt_offset = offset;
3412 return fdt;
3413 }
3414
3415 /* Callback to be called during DRC release. */
3416 void spapr_core_release(DeviceState *dev)
3417 {
3418 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3419
3420 /* Call the unplug handler chain. This can never fail. */
3421 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3422 }
3423
3424 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3425 {
3426 MachineState *ms = MACHINE(hotplug_dev);
3427 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3428 CPUCore *cc = CPU_CORE(dev);
3429 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3430
3431 if (smc->pre_2_10_has_unused_icps) {
3432 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3433 int i;
3434
3435 for (i = 0; i < cc->nr_threads; i++) {
3436 CPUState *cs = CPU(sc->threads[i]);
3437
3438 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3439 }
3440 }
3441
3442 assert(core_slot);
3443 core_slot->cpu = NULL;
3444 object_unparent(OBJECT(dev));
3445 }
3446
3447 static
3448 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3449 Error **errp)
3450 {
3451 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3452 int index;
3453 sPAPRDRConnector *drc;
3454 CPUCore *cc = CPU_CORE(dev);
3455
3456 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3457 error_setg(errp, "Unable to find CPU core with core-id: %d",
3458 cc->core_id);
3459 return;
3460 }
3461 if (index == 0) {
3462 error_setg(errp, "Boot CPU core may not be unplugged");
3463 return;
3464 }
3465
3466 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3467 spapr_vcpu_id(spapr, cc->core_id));
3468 g_assert(drc);
3469
3470 spapr_drc_detach(drc);
3471
3472 spapr_hotplug_req_remove_by_index(drc);
3473 }
3474
3475 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476 Error **errp)
3477 {
3478 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3479 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3480 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3481 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3482 CPUCore *cc = CPU_CORE(dev);
3483 CPUState *cs = CPU(core->threads[0]);
3484 sPAPRDRConnector *drc;
3485 Error *local_err = NULL;
3486 CPUArchId *core_slot;
3487 int index;
3488 bool hotplugged = spapr_drc_hotplugged(dev);
3489
3490 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3491 if (!core_slot) {
3492 error_setg(errp, "Unable to find CPU core with core-id: %d",
3493 cc->core_id);
3494 return;
3495 }
3496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3497 spapr_vcpu_id(spapr, cc->core_id));
3498
3499 g_assert(drc || !mc->has_hotpluggable_cpus);
3500
3501 if (drc) {
3502 void *fdt;
3503 int fdt_offset;
3504
3505 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3506
3507 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3508 if (local_err) {
3509 g_free(fdt);
3510 error_propagate(errp, local_err);
3511 return;
3512 }
3513
3514 if (hotplugged) {
3515 /*
3516 * Send hotplug notification interrupt to the guest only
3517 * in case of hotplugged CPUs.
3518 */
3519 spapr_hotplug_req_add_by_index(drc);
3520 } else {
3521 spapr_drc_reset(drc);
3522 }
3523 }
3524
3525 core_slot->cpu = OBJECT(dev);
3526
3527 if (smc->pre_2_10_has_unused_icps) {
3528 int i;
3529
3530 for (i = 0; i < cc->nr_threads; i++) {
3531 cs = CPU(core->threads[i]);
3532 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3533 }
3534 }
3535 }
3536
3537 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3538 Error **errp)
3539 {
3540 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3541 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3542 Error *local_err = NULL;
3543 CPUCore *cc = CPU_CORE(dev);
3544 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3545 const char *type = object_get_typename(OBJECT(dev));
3546 CPUArchId *core_slot;
3547 int index;
3548
3549 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3550 error_setg(&local_err, "CPU hotplug not supported for this machine");
3551 goto out;
3552 }
3553
3554 if (strcmp(base_core_type, type)) {
3555 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3556 goto out;
3557 }
3558
3559 if (cc->core_id % smp_threads) {
3560 error_setg(&local_err, "invalid core id %d", cc->core_id);
3561 goto out;
3562 }
3563
3564 /*
3565 * In general we should have homogeneous threads-per-core, but old
3566 * (pre hotplug support) machine types allow the last core to have
3567 * reduced threads as a compatibility hack for when we allowed
3568 * total vcpus not a multiple of threads-per-core.
3569 */
3570 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3571 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3572 cc->nr_threads, smp_threads);
3573 goto out;
3574 }
3575
3576 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3577 if (!core_slot) {
3578 error_setg(&local_err, "core id %d out of range", cc->core_id);
3579 goto out;
3580 }
3581
3582 if (core_slot->cpu) {
3583 error_setg(&local_err, "core %d already populated", cc->core_id);
3584 goto out;
3585 }
3586
3587 numa_cpu_pre_plug(core_slot, dev, &local_err);
3588
3589 out:
3590 error_propagate(errp, local_err);
3591 }
3592
3593 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3594 DeviceState *dev, Error **errp)
3595 {
3596 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3597 spapr_memory_plug(hotplug_dev, dev, errp);
3598 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3599 spapr_core_plug(hotplug_dev, dev, errp);
3600 }
3601 }
3602
3603 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3604 DeviceState *dev, Error **errp)
3605 {
3606 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3607 spapr_memory_unplug(hotplug_dev, dev);
3608 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3609 spapr_core_unplug(hotplug_dev, dev);
3610 }
3611 }
3612
3613 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3614 DeviceState *dev, Error **errp)
3615 {
3616 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3617 MachineClass *mc = MACHINE_GET_CLASS(sms);
3618
3619 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3620 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3621 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3622 } else {
3623 /* NOTE: this means there is a window after guest reset, prior to
3624 * CAS negotiation, where unplug requests will fail due to the
3625 * capability not being detected yet. This is a bit different than
3626 * the case with PCI unplug, where the events will be queued and
3627 * eventually handled by the guest after boot
3628 */
3629 error_setg(errp, "Memory hot unplug not supported for this guest");
3630 }
3631 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3632 if (!mc->has_hotpluggable_cpus) {
3633 error_setg(errp, "CPU hot unplug not supported on this machine");
3634 return;
3635 }
3636 spapr_core_unplug_request(hotplug_dev, dev, errp);
3637 }
3638 }
3639
3640 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3641 DeviceState *dev, Error **errp)
3642 {
3643 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3644 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3645 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3646 spapr_core_pre_plug(hotplug_dev, dev, errp);
3647 }
3648 }
3649
3650 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3651 DeviceState *dev)
3652 {
3653 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3654 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3655 return HOTPLUG_HANDLER(machine);
3656 }
3657 return NULL;
3658 }
3659
3660 static CpuInstanceProperties
3661 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3662 {
3663 CPUArchId *core_slot;
3664 MachineClass *mc = MACHINE_GET_CLASS(machine);
3665
3666 /* make sure possible_cpu are intialized */
3667 mc->possible_cpu_arch_ids(machine);
3668 /* get CPU core slot containing thread that matches cpu_index */
3669 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3670 assert(core_slot);
3671 return core_slot->props;
3672 }
3673
3674 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3675 {
3676 return idx / smp_cores % nb_numa_nodes;
3677 }
3678
3679 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3680 {
3681 int i;
3682 const char *core_type;
3683 int spapr_max_cores = max_cpus / smp_threads;
3684 MachineClass *mc = MACHINE_GET_CLASS(machine);
3685
3686 if (!mc->has_hotpluggable_cpus) {
3687 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3688 }
3689 if (machine->possible_cpus) {
3690 assert(machine->possible_cpus->len == spapr_max_cores);
3691 return machine->possible_cpus;
3692 }
3693
3694 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3695 if (!core_type) {
3696 error_report("Unable to find sPAPR CPU Core definition");
3697 exit(1);
3698 }
3699
3700 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3701 sizeof(CPUArchId) * spapr_max_cores);
3702 machine->possible_cpus->len = spapr_max_cores;
3703 for (i = 0; i < machine->possible_cpus->len; i++) {
3704 int core_id = i * smp_threads;
3705
3706 machine->possible_cpus->cpus[i].type = core_type;
3707 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3708 machine->possible_cpus->cpus[i].arch_id = core_id;
3709 machine->possible_cpus->cpus[i].props.has_core_id = true;
3710 machine->possible_cpus->cpus[i].props.core_id = core_id;
3711 }
3712 return machine->possible_cpus;
3713 }
3714
3715 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3716 uint64_t *buid, hwaddr *pio,
3717 hwaddr *mmio32, hwaddr *mmio64,
3718 unsigned n_dma, uint32_t *liobns, Error **errp)
3719 {
3720 /*
3721 * New-style PHB window placement.
3722 *
3723 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3724 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3725 * windows.
3726 *
3727 * Some guest kernels can't work with MMIO windows above 1<<46
3728 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3729 *
3730 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3731 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3732 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3733 * 1TiB 64-bit MMIO windows for each PHB.
3734 */
3735 const uint64_t base_buid = 0x800000020000000ULL;
3736 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3737 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3738 int i;
3739
3740 /* Sanity check natural alignments */
3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3742 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3743 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3744 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3745 /* Sanity check bounds */
3746 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3747 SPAPR_PCI_MEM32_WIN_SIZE);
3748 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3749 SPAPR_PCI_MEM64_WIN_SIZE);
3750
3751 if (index >= SPAPR_MAX_PHBS) {
3752 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3753 SPAPR_MAX_PHBS - 1);
3754 return;
3755 }
3756
3757 *buid = base_buid + index;
3758 for (i = 0; i < n_dma; ++i) {
3759 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3760 }
3761
3762 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3763 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3764 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3765 }
3766
3767 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3768 {
3769 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3770
3771 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3772 }
3773
3774 static void spapr_ics_resend(XICSFabric *dev)
3775 {
3776 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3777
3778 ics_resend(spapr->ics);
3779 }
3780
3781 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3782 {
3783 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3784
3785 return cpu ? ICP(cpu->intc) : NULL;
3786 }
3787
3788 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3789 Monitor *mon)
3790 {
3791 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3792 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3793
3794 smc->irq->print_info(spapr, mon);
3795 }
3796
3797 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3798 {
3799 return cpu->vcpu_id;
3800 }
3801
3802 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3803 {
3804 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3805 int vcpu_id;
3806
3807 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3808
3809 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3810 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3811 error_append_hint(errp, "Adjust the number of cpus to %d "
3812 "or try to raise the number of threads per core\n",
3813 vcpu_id * smp_threads / spapr->vsmt);
3814 return;
3815 }
3816
3817 cpu->vcpu_id = vcpu_id;
3818 }
3819
3820 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3821 {
3822 CPUState *cs;
3823
3824 CPU_FOREACH(cs) {
3825 PowerPCCPU *cpu = POWERPC_CPU(cs);
3826
3827 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3828 return cpu;
3829 }
3830 }
3831
3832 return NULL;
3833 }
3834
3835 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3836 {
3837 MachineClass *mc = MACHINE_CLASS(oc);
3838 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3839 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3840 NMIClass *nc = NMI_CLASS(oc);
3841 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3842 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3843 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3844 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3845
3846 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3847 mc->ignore_boot_device_suffixes = true;
3848
3849 /*
3850 * We set up the default / latest behaviour here. The class_init
3851 * functions for the specific versioned machine types can override
3852 * these details for backwards compatibility
3853 */
3854 mc->init = spapr_machine_init;
3855 mc->reset = spapr_machine_reset;
3856 mc->block_default_type = IF_SCSI;
3857 mc->max_cpus = 1024;
3858 mc->no_parallel = 1;
3859 mc->default_boot_order = "";
3860 mc->default_ram_size = 512 * MiB;
3861 mc->default_display = "std";
3862 mc->kvm_type = spapr_kvm_type;
3863 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3864 mc->pci_allow_0_address = true;
3865 assert(!mc->get_hotplug_handler);
3866 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3867 hc->pre_plug = spapr_machine_device_pre_plug;
3868 hc->plug = spapr_machine_device_plug;
3869 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3870 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3871 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3872 hc->unplug_request = spapr_machine_device_unplug_request;
3873 hc->unplug = spapr_machine_device_unplug;
3874
3875 smc->dr_lmb_enabled = true;
3876 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3877 mc->has_hotpluggable_cpus = true;
3878 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3879 fwc->get_dev_path = spapr_get_fw_dev_path;
3880 nc->nmi_monitor_handler = spapr_nmi;
3881 smc->phb_placement = spapr_phb_placement;
3882 vhc->hypercall = emulate_spapr_hypercall;
3883 vhc->hpt_mask = spapr_hpt_mask;
3884 vhc->map_hptes = spapr_map_hptes;
3885 vhc->unmap_hptes = spapr_unmap_hptes;
3886 vhc->store_hpte = spapr_store_hpte;
3887 vhc->get_patbe = spapr_get_patbe;
3888 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3889 xic->ics_get = spapr_ics_get;
3890 xic->ics_resend = spapr_ics_resend;
3891 xic->icp_get = spapr_icp_get;
3892 ispc->print_info = spapr_pic_print_info;
3893 /* Force NUMA node memory size to be a multiple of
3894 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3895 * in which LMBs are represented and hot-added
3896 */
3897 mc->numa_mem_align_shift = 28;
3898
3899 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3900 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3901 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3902 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3903 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3904 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3905 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3906 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3907 spapr_caps_add_properties(smc, &error_abort);
3908 smc->irq = &spapr_irq_xics;
3909 }
3910
3911 static const TypeInfo spapr_machine_info = {
3912 .name = TYPE_SPAPR_MACHINE,
3913 .parent = TYPE_MACHINE,
3914 .abstract = true,
3915 .instance_size = sizeof(sPAPRMachineState),
3916 .instance_init = spapr_instance_init,
3917 .instance_finalize = spapr_machine_finalizefn,
3918 .class_size = sizeof(sPAPRMachineClass),
3919 .class_init = spapr_machine_class_init,
3920 .interfaces = (InterfaceInfo[]) {
3921 { TYPE_FW_PATH_PROVIDER },
3922 { TYPE_NMI },
3923 { TYPE_HOTPLUG_HANDLER },
3924 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3925 { TYPE_XICS_FABRIC },
3926 { TYPE_INTERRUPT_STATS_PROVIDER },
3927 { }
3928 },
3929 };
3930
3931 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3932 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3933 void *data) \
3934 { \
3935 MachineClass *mc = MACHINE_CLASS(oc); \
3936 spapr_machine_##suffix##_class_options(mc); \
3937 if (latest) { \
3938 mc->alias = "pseries"; \
3939 mc->is_default = 1; \
3940 } \
3941 } \
3942 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3943 { \
3944 MachineState *machine = MACHINE(obj); \
3945 spapr_machine_##suffix##_instance_options(machine); \
3946 } \
3947 static const TypeInfo spapr_machine_##suffix##_info = { \
3948 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3949 .parent = TYPE_SPAPR_MACHINE, \
3950 .class_init = spapr_machine_##suffix##_class_init, \
3951 .instance_init = spapr_machine_##suffix##_instance_init, \
3952 }; \
3953 static void spapr_machine_register_##suffix(void) \
3954 { \
3955 type_register(&spapr_machine_##suffix##_info); \
3956 } \
3957 type_init(spapr_machine_register_##suffix)
3958
3959 /*
3960 * pseries-4.0
3961 */
3962 static void spapr_machine_4_0_instance_options(MachineState *machine)
3963 {
3964 }
3965
3966 static void spapr_machine_4_0_class_options(MachineClass *mc)
3967 {
3968 /* Defaults for the latest behaviour inherited from the base class */
3969 }
3970
3971 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
3972
3973 /*
3974 * pseries-3.1
3975 */
3976 #define SPAPR_COMPAT_3_1 \
3977 HW_COMPAT_3_1
3978
3979 static void spapr_machine_3_1_instance_options(MachineState *machine)
3980 {
3981 spapr_machine_4_0_instance_options(machine);
3982 }
3983
3984 static void spapr_machine_3_1_class_options(MachineClass *mc)
3985 {
3986 spapr_machine_4_0_class_options(mc);
3987 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_1);
3988 }
3989
3990 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
3991
3992 /*
3993 * pseries-3.0
3994 */
3995 #define SPAPR_COMPAT_3_0 \
3996 HW_COMPAT_3_0
3997
3998 static void spapr_machine_3_0_instance_options(MachineState *machine)
3999 {
4000 spapr_machine_3_1_instance_options(machine);
4001 }
4002
4003 static void spapr_machine_3_0_class_options(MachineClass *mc)
4004 {
4005 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4006
4007 spapr_machine_3_1_class_options(mc);
4008 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
4009
4010 smc->legacy_irq_allocation = true;
4011 smc->irq = &spapr_irq_xics_legacy;
4012 }
4013
4014 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4015
4016 /*
4017 * pseries-2.12
4018 */
4019 #define SPAPR_COMPAT_2_12 \
4020 HW_COMPAT_2_12 \
4021 { \
4022 .driver = TYPE_POWERPC_CPU, \
4023 .property = "pre-3.0-migration", \
4024 .value = "on", \
4025 }, \
4026 { \
4027 .driver = TYPE_SPAPR_CPU_CORE, \
4028 .property = "pre-3.0-migration", \
4029 .value = "on", \
4030 },
4031
4032 static void spapr_machine_2_12_instance_options(MachineState *machine)
4033 {
4034 spapr_machine_3_0_instance_options(machine);
4035 }
4036
4037 static void spapr_machine_2_12_class_options(MachineClass *mc)
4038 {
4039 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4040
4041 spapr_machine_3_0_class_options(mc);
4042 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4043
4044 /* We depend on kvm_enabled() to choose a default value for the
4045 * hpt-max-page-size capability. Of course we can't do it here
4046 * because this is too early and the HW accelerator isn't initialzed
4047 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4048 */
4049 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4050 }
4051
4052 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4053
4054 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4055 {
4056 spapr_machine_2_12_instance_options(machine);
4057 }
4058
4059 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4060 {
4061 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4062
4063 spapr_machine_2_12_class_options(mc);
4064 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4065 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4066 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4067 }
4068
4069 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4070
4071 /*
4072 * pseries-2.11
4073 */
4074 #define SPAPR_COMPAT_2_11 \
4075 HW_COMPAT_2_11
4076
4077 static void spapr_machine_2_11_instance_options(MachineState *machine)
4078 {
4079 spapr_machine_2_12_instance_options(machine);
4080 }
4081
4082 static void spapr_machine_2_11_class_options(MachineClass *mc)
4083 {
4084 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4085
4086 spapr_machine_2_12_class_options(mc);
4087 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4088 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4089 }
4090
4091 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4092
4093 /*
4094 * pseries-2.10
4095 */
4096 #define SPAPR_COMPAT_2_10 \
4097 HW_COMPAT_2_10
4098
4099 static void spapr_machine_2_10_instance_options(MachineState *machine)
4100 {
4101 spapr_machine_2_11_instance_options(machine);
4102 }
4103
4104 static void spapr_machine_2_10_class_options(MachineClass *mc)
4105 {
4106 spapr_machine_2_11_class_options(mc);
4107 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4108 }
4109
4110 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4111
4112 /*
4113 * pseries-2.9
4114 */
4115 #define SPAPR_COMPAT_2_9 \
4116 HW_COMPAT_2_9 \
4117 { \
4118 .driver = TYPE_POWERPC_CPU, \
4119 .property = "pre-2.10-migration", \
4120 .value = "on", \
4121 }, \
4122
4123 static void spapr_machine_2_9_instance_options(MachineState *machine)
4124 {
4125 spapr_machine_2_10_instance_options(machine);
4126 }
4127
4128 static void spapr_machine_2_9_class_options(MachineClass *mc)
4129 {
4130 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4131
4132 spapr_machine_2_10_class_options(mc);
4133 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4134 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4135 smc->pre_2_10_has_unused_icps = true;
4136 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4137 }
4138
4139 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4140
4141 /*
4142 * pseries-2.8
4143 */
4144 #define SPAPR_COMPAT_2_8 \
4145 HW_COMPAT_2_8 \
4146 { \
4147 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4148 .property = "pcie-extended-configuration-space", \
4149 .value = "off", \
4150 },
4151
4152 static void spapr_machine_2_8_instance_options(MachineState *machine)
4153 {
4154 spapr_machine_2_9_instance_options(machine);
4155 }
4156
4157 static void spapr_machine_2_8_class_options(MachineClass *mc)
4158 {
4159 spapr_machine_2_9_class_options(mc);
4160 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4161 mc->numa_mem_align_shift = 23;
4162 }
4163
4164 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4165
4166 /*
4167 * pseries-2.7
4168 */
4169 #define SPAPR_COMPAT_2_7 \
4170 HW_COMPAT_2_7 \
4171 { \
4172 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4173 .property = "mem_win_size", \
4174 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4175 }, \
4176 { \
4177 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4178 .property = "mem64_win_size", \
4179 .value = "0", \
4180 }, \
4181 { \
4182 .driver = TYPE_POWERPC_CPU, \
4183 .property = "pre-2.8-migration", \
4184 .value = "on", \
4185 }, \
4186 { \
4187 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4188 .property = "pre-2.8-migration", \
4189 .value = "on", \
4190 },
4191
4192 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4193 uint64_t *buid, hwaddr *pio,
4194 hwaddr *mmio32, hwaddr *mmio64,
4195 unsigned n_dma, uint32_t *liobns, Error **errp)
4196 {
4197 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4198 const uint64_t base_buid = 0x800000020000000ULL;
4199 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4200 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4201 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4202 const uint32_t max_index = 255;
4203 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4204
4205 uint64_t ram_top = MACHINE(spapr)->ram_size;
4206 hwaddr phb0_base, phb_base;
4207 int i;
4208
4209 /* Do we have device memory? */
4210 if (MACHINE(spapr)->maxram_size > ram_top) {
4211 /* Can't just use maxram_size, because there may be an
4212 * alignment gap between normal and device memory regions
4213 */
4214 ram_top = MACHINE(spapr)->device_memory->base +
4215 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4216 }
4217
4218 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4219
4220 if (index > max_index) {
4221 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4222 max_index);
4223 return;
4224 }
4225
4226 *buid = base_buid + index;
4227 for (i = 0; i < n_dma; ++i) {
4228 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4229 }
4230
4231 phb_base = phb0_base + index * phb_spacing;
4232 *pio = phb_base + pio_offset;
4233 *mmio32 = phb_base + mmio_offset;
4234 /*
4235 * We don't set the 64-bit MMIO window, relying on the PHB's
4236 * fallback behaviour of automatically splitting a large "32-bit"
4237 * window into contiguous 32-bit and 64-bit windows
4238 */
4239 }
4240
4241 static void spapr_machine_2_7_instance_options(MachineState *machine)
4242 {
4243 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4244
4245 spapr_machine_2_8_instance_options(machine);
4246 spapr->use_hotplug_event_source = false;
4247 }
4248
4249 static void spapr_machine_2_7_class_options(MachineClass *mc)
4250 {
4251 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4252
4253 spapr_machine_2_8_class_options(mc);
4254 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4255 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4256 smc->phb_placement = phb_placement_2_7;
4257 }
4258
4259 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4260
4261 /*
4262 * pseries-2.6
4263 */
4264 #define SPAPR_COMPAT_2_6 \
4265 HW_COMPAT_2_6 \
4266 { \
4267 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4268 .property = "ddw",\
4269 .value = stringify(off),\
4270 },
4271
4272 static void spapr_machine_2_6_instance_options(MachineState *machine)
4273 {
4274 spapr_machine_2_7_instance_options(machine);
4275 }
4276
4277 static void spapr_machine_2_6_class_options(MachineClass *mc)
4278 {
4279 spapr_machine_2_7_class_options(mc);
4280 mc->has_hotpluggable_cpus = false;
4281 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4282 }
4283
4284 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4285
4286 /*
4287 * pseries-2.5
4288 */
4289 #define SPAPR_COMPAT_2_5 \
4290 HW_COMPAT_2_5 \
4291 { \
4292 .driver = "spapr-vlan", \
4293 .property = "use-rx-buffer-pools", \
4294 .value = "off", \
4295 },
4296
4297 static void spapr_machine_2_5_instance_options(MachineState *machine)
4298 {
4299 spapr_machine_2_6_instance_options(machine);
4300 }
4301
4302 static void spapr_machine_2_5_class_options(MachineClass *mc)
4303 {
4304 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4305
4306 spapr_machine_2_6_class_options(mc);
4307 smc->use_ohci_by_default = true;
4308 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4309 }
4310
4311 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4312
4313 /*
4314 * pseries-2.4
4315 */
4316 #define SPAPR_COMPAT_2_4 \
4317 HW_COMPAT_2_4
4318
4319 static void spapr_machine_2_4_instance_options(MachineState *machine)
4320 {
4321 spapr_machine_2_5_instance_options(machine);
4322 }
4323
4324 static void spapr_machine_2_4_class_options(MachineClass *mc)
4325 {
4326 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4327
4328 spapr_machine_2_5_class_options(mc);
4329 smc->dr_lmb_enabled = false;
4330 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4331 }
4332
4333 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4334
4335 /*
4336 * pseries-2.3
4337 */
4338 #define SPAPR_COMPAT_2_3 \
4339 HW_COMPAT_2_3 \
4340 {\
4341 .driver = "spapr-pci-host-bridge",\
4342 .property = "dynamic-reconfiguration",\
4343 .value = "off",\
4344 },
4345
4346 static void spapr_machine_2_3_instance_options(MachineState *machine)
4347 {
4348 spapr_machine_2_4_instance_options(machine);
4349 }
4350
4351 static void spapr_machine_2_3_class_options(MachineClass *mc)
4352 {
4353 spapr_machine_2_4_class_options(mc);
4354 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4355 }
4356 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4357
4358 /*
4359 * pseries-2.2
4360 */
4361
4362 #define SPAPR_COMPAT_2_2 \
4363 HW_COMPAT_2_2 \
4364 {\
4365 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4366 .property = "mem_win_size",\
4367 .value = "0x20000000",\
4368 },
4369
4370 static void spapr_machine_2_2_instance_options(MachineState *machine)
4371 {
4372 spapr_machine_2_3_instance_options(machine);
4373 machine->suppress_vmdesc = true;
4374 }
4375
4376 static void spapr_machine_2_2_class_options(MachineClass *mc)
4377 {
4378 spapr_machine_2_3_class_options(mc);
4379 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4380 }
4381 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4382
4383 /*
4384 * pseries-2.1
4385 */
4386 #define SPAPR_COMPAT_2_1 \
4387 HW_COMPAT_2_1
4388
4389 static void spapr_machine_2_1_instance_options(MachineState *machine)
4390 {
4391 spapr_machine_2_2_instance_options(machine);
4392 }
4393
4394 static void spapr_machine_2_1_class_options(MachineClass *mc)
4395 {
4396 spapr_machine_2_2_class_options(mc);
4397 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4398 }
4399 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4400
4401 static void spapr_machine_register_types(void)
4402 {
4403 type_register_static(&spapr_machine_info);
4404 }
4405
4406 type_init(spapr_machine_register_types)