]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
e4be00b732a00b043de0a39d1327ef6cbc2c0070
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56
57 #include "hw/boards.h"
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72
73 #include "exec/address-spaces.h"
74 #include "exec/ram_addr.h"
75 #include "hw/usb.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
78 #include "trace.h"
79 #include "hw/nmi.h"
80 #include "hw/intc/intc.h"
81
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
88
89 #include "monitor/monitor.h"
90
91 #include <libfdt.h>
92
93 /* SLOF memory layout:
94 *
95 * SLOF raw image loaded at 0, copies its romfs right below the flat
96 * device-tree, then position SLOF itself 31M below that
97 *
98 * So we set FW_OVERHEAD to 40MB which should account for all of that
99 * and more
100 *
101 * We load our kernel at 4M, leaving space for SLOF initial image
102 */
103 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
104 #define FW_MAX_SIZE 0x400000
105 #define FW_FILE_NAME "slof.bin"
106 #define FW_OVERHEAD 0x2800000
107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108
109 #define MIN_RMA_SLOF (128 * MiB)
110
111 #define PHANDLE_INTC 0x00001111
112
113 /* These two functions implement the VCPU id numbering: one to compute them
114 * all and one to identify thread 0 of a VCORE. Any change to the first one
115 * is likely to have an impact on the second one, so let's keep them close.
116 */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119 MachineState *ms = MACHINE(spapr);
120 unsigned int smp_threads = ms->smp.threads;
121
122 assert(spapr->vsmt);
123 return
124 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127 PowerPCCPU *cpu)
128 {
129 assert(spapr->vsmt);
130 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136 * and newer QEMUs don't even have them. In both cases, we don't want
137 * to send anything on the wire.
138 */
139 return false;
140 }
141
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143 .name = "icp/server",
144 .version_id = 1,
145 .minimum_version_id = 1,
146 .needed = pre_2_10_vmstate_dummy_icp_needed,
147 .fields = (VMStateField[]) {
148 VMSTATE_UNUSED(4), /* uint32_t xirr */
149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150 VMSTATE_UNUSED(1), /* uint8_t mfrr */
151 VMSTATE_END_OF_LIST()
152 },
153 };
154
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
159 }
160
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164 (void *)(uintptr_t) i);
165 }
166
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169 MachineState *ms = MACHINE(spapr);
170
171 assert(spapr->vsmt);
172 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176 int smt_threads)
177 {
178 int i, ret = 0;
179 uint32_t servers_prop[smt_threads];
180 uint32_t gservers_prop[smt_threads * 2];
181 int index = spapr_get_vcpu_id(cpu);
182
183 if (cpu->compat_pvr) {
184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185 if (ret < 0) {
186 return ret;
187 }
188 }
189
190 /* Build interrupt servers and gservers properties */
191 for (i = 0; i < smt_threads; i++) {
192 servers_prop[i] = cpu_to_be32(index + i);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop[i*2] = cpu_to_be32(index + i);
195 gservers_prop[i*2 + 1] = 0;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198 servers_prop, sizeof(servers_prop));
199 if (ret < 0) {
200 return ret;
201 }
202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop, sizeof(gservers_prop));
204
205 return ret;
206 }
207
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288 if (machine->numa_state->num_nodes) {
289 int i;
290 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291 if (machine->numa_state->nodes[i].node_mem) {
292 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293 machine->ram_size);
294 }
295 }
296 }
297 return machine->ram_size;
298 }
299
300 static void add_str(GString *s, const gchar *s1)
301 {
302 g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306 hwaddr start, hwaddr size)
307 {
308 char mem_name[32];
309 uint64_t mem_reg_property[2];
310 int off;
311
312 mem_reg_property[0] = cpu_to_be64(start);
313 mem_reg_property[1] = cpu_to_be64(size);
314
315 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316 off = fdt_add_subnode(fdt, 0, mem_name);
317 _FDT(off);
318 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320 sizeof(mem_reg_property))));
321 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322 return off;
323 }
324
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327 MemoryDeviceInfoList *info;
328
329 for (info = list; info; info = info->next) {
330 MemoryDeviceInfo *value = info->value;
331
332 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334
335 if (addr >= pcdimm_info->addr &&
336 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337 return pcdimm_info->node;
338 }
339 }
340 }
341
342 return -1;
343 }
344
345 struct sPAPRDrconfCellV2 {
346 uint32_t seq_lmbs;
347 uint64_t base_addr;
348 uint32_t drc_index;
349 uint32_t aa_index;
350 uint32_t flags;
351 } QEMU_PACKED;
352
353 typedef struct DrconfCellQueue {
354 struct sPAPRDrconfCellV2 cell;
355 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360 uint32_t drc_index, uint32_t aa_index,
361 uint32_t flags)
362 {
363 DrconfCellQueue *elem;
364
365 elem = g_malloc0(sizeof(*elem));
366 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367 elem->cell.base_addr = cpu_to_be64(base_addr);
368 elem->cell.drc_index = cpu_to_be32(drc_index);
369 elem->cell.aa_index = cpu_to_be32(aa_index);
370 elem->cell.flags = cpu_to_be32(flags);
371
372 return elem;
373 }
374
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376 int offset, MemoryDeviceInfoList *dimms)
377 {
378 MachineState *machine = MACHINE(spapr);
379 uint8_t *int_buf, *cur_index;
380 int ret;
381 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382 uint64_t addr, cur_addr, size;
383 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384 uint64_t mem_end = machine->device_memory->base +
385 memory_region_size(&machine->device_memory->mr);
386 uint32_t node, buf_len, nr_entries = 0;
387 SpaprDrc *drc;
388 DrconfCellQueue *elem, *next;
389 MemoryDeviceInfoList *info;
390 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392
393 /* Entry to cover RAM and the gap area */
394 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395 SPAPR_LMB_FLAGS_RESERVED |
396 SPAPR_LMB_FLAGS_DRC_INVALID);
397 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398 nr_entries++;
399
400 cur_addr = machine->device_memory->base;
401 for (info = dimms; info; info = info->next) {
402 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403
404 addr = di->addr;
405 size = di->size;
406 node = di->node;
407
408 /*
409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410 * area is marked hotpluggable in the next iteration for the bigger
411 * chunk including the NVDIMM occupied area.
412 */
413 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414 continue;
415
416 /* Entry for hot-pluggable area */
417 if (cur_addr < addr) {
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419 g_assert(drc);
420 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421 cur_addr, spapr_drc_index(drc), -1, 0);
422 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423 nr_entries++;
424 }
425
426 /* Entry for DIMM */
427 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428 g_assert(drc);
429 elem = spapr_get_drconf_cell(size / lmb_size, addr,
430 spapr_drc_index(drc), node,
431 (SPAPR_LMB_FLAGS_ASSIGNED |
432 SPAPR_LMB_FLAGS_HOTREMOVABLE));
433 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434 nr_entries++;
435 cur_addr = addr + size;
436 }
437
438 /* Entry for remaining hotpluggable area */
439 if (cur_addr < mem_end) {
440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441 g_assert(drc);
442 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443 cur_addr, spapr_drc_index(drc), -1, 0);
444 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445 nr_entries++;
446 }
447
448 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449 int_buf = cur_index = g_malloc0(buf_len);
450 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451 cur_index += sizeof(nr_entries);
452
453 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455 cur_index += sizeof(elem->cell);
456 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457 g_free(elem);
458 }
459
460 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461 g_free(int_buf);
462 if (ret < 0) {
463 return -1;
464 }
465 return 0;
466 }
467
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469 int offset, MemoryDeviceInfoList *dimms)
470 {
471 MachineState *machine = MACHINE(spapr);
472 int i, ret;
473 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475 uint32_t nr_lmbs = (machine->device_memory->base +
476 memory_region_size(&machine->device_memory->mr)) /
477 lmb_size;
478 uint32_t *int_buf, *cur_index, buf_len;
479
480 /*
481 * Allocate enough buffer size to fit in ibm,dynamic-memory
482 */
483 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484 cur_index = int_buf = g_malloc0(buf_len);
485 int_buf[0] = cpu_to_be32(nr_lmbs);
486 cur_index++;
487 for (i = 0; i < nr_lmbs; i++) {
488 uint64_t addr = i * lmb_size;
489 uint32_t *dynamic_memory = cur_index;
490
491 if (i >= device_lmb_start) {
492 SpaprDrc *drc;
493
494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495 g_assert(drc);
496
497 dynamic_memory[0] = cpu_to_be32(addr >> 32);
498 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502 if (memory_region_present(get_system_memory(), addr)) {
503 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504 } else {
505 dynamic_memory[5] = cpu_to_be32(0);
506 }
507 } else {
508 /*
509 * LMB information for RMA, boot time RAM and gap b/n RAM and
510 * device memory region -- all these are marked as reserved
511 * and as having no valid DRC.
512 */
513 dynamic_memory[0] = cpu_to_be32(addr >> 32);
514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515 dynamic_memory[2] = cpu_to_be32(0);
516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory[4] = cpu_to_be32(-1);
518 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519 SPAPR_LMB_FLAGS_DRC_INVALID);
520 }
521
522 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523 }
524 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525 g_free(int_buf);
526 if (ret < 0) {
527 return -1;
528 }
529 return 0;
530 }
531
532 /*
533 * Adds ibm,dynamic-reconfiguration-memory node.
534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535 * of this device tree node.
536 */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538 void *fdt)
539 {
540 MachineState *machine = MACHINE(spapr);
541 int ret, offset;
542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544 cpu_to_be32(lmb_size & 0xffffffff)};
545 MemoryDeviceInfoList *dimms = NULL;
546
547 /*
548 * Don't create the node if there is no device memory
549 */
550 if (machine->ram_size == machine->maxram_size) {
551 return 0;
552 }
553
554 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555
556 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557 sizeof(prop_lmb_size));
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563 if (ret < 0) {
564 return ret;
565 }
566
567 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568 if (ret < 0) {
569 return ret;
570 }
571
572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573 dimms = qmp_memory_device_list();
574 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576 } else {
577 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578 }
579 qapi_free_MemoryDeviceInfoList(dimms);
580
581 if (ret < 0) {
582 return ret;
583 }
584
585 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586
587 return ret;
588 }
589
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592 MachineState *machine = MACHINE(spapr);
593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594 hwaddr mem_start, node_size;
595 int i, nb_nodes = machine->numa_state->num_nodes;
596 NodeInfo *nodes = machine->numa_state->nodes;
597
598 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599 if (!nodes[i].node_mem) {
600 continue;
601 }
602 if (mem_start >= machine->ram_size) {
603 node_size = 0;
604 } else {
605 node_size = nodes[i].node_mem;
606 if (node_size > machine->ram_size - mem_start) {
607 node_size = machine->ram_size - mem_start;
608 }
609 }
610 if (!mem_start) {
611 /* spapr_machine_init() checks for rma_size <= node0_size
612 * already */
613 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614 mem_start += spapr->rma_size;
615 node_size -= spapr->rma_size;
616 }
617 for ( ; node_size; ) {
618 hwaddr sizetmp = pow2floor(node_size);
619
620 /* mem_start != 0 here */
621 if (ctzl(mem_start) < ctzl(sizetmp)) {
622 sizetmp = 1ULL << ctzl(mem_start);
623 }
624
625 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626 node_size -= sizetmp;
627 mem_start += sizetmp;
628 }
629 }
630
631 /* Generate ibm,dynamic-reconfiguration-memory node if required */
632 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633 int ret;
634
635 g_assert(smc->dr_lmb_enabled);
636 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637 if (ret) {
638 return ret;
639 }
640 }
641
642 return 0;
643 }
644
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646 SpaprMachineState *spapr)
647 {
648 MachineState *ms = MACHINE(spapr);
649 PowerPCCPU *cpu = POWERPC_CPU(cs);
650 CPUPPCState *env = &cpu->env;
651 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652 int index = spapr_get_vcpu_id(cpu);
653 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654 0xffffffff, 0xffffffff};
655 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656 : SPAPR_TIMEBASE_FREQ;
657 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658 uint32_t page_sizes_prop[64];
659 size_t page_sizes_prop_size;
660 unsigned int smp_threads = ms->smp.threads;
661 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664 SpaprDrc *drc;
665 int drc_index;
666 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667 int i;
668
669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670 if (drc) {
671 drc_index = spapr_drc_index(drc);
672 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673 }
674
675 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677
678 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682 env->dcache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684 env->icache_line_size)));
685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686 env->icache_line_size)));
687
688 if (pcc->l1_dcache_size) {
689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690 pcc->l1_dcache_size)));
691 } else {
692 warn_report("Unknown L1 dcache size for cpu");
693 }
694 if (pcc->l1_icache_size) {
695 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696 pcc->l1_icache_size)));
697 } else {
698 warn_report("Unknown L1 icache size for cpu");
699 }
700
701 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707
708 if (env->spr_cb[SPR_PURR].oea_read) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710 }
711 if (env->spr_cb[SPR_SPURR].oea_read) {
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713 }
714
715 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717 segs, sizeof(segs))));
718 }
719
720 /* Advertise VSX (vector extensions) if available
721 * 1 == VMX / Altivec available
722 * 2 == VSX available
723 *
724 * Only CPUs for which we create core types in spapr_cpu_core.c
725 * are possible, and all of those have VMX */
726 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
727 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
728 } else {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
730 }
731
732 /* Advertise DFP (Decimal Floating Point) if available
733 * 0 / no property == no DFP
734 * 1 == DFP available */
735 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
736 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
737 }
738
739 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
740 sizeof(page_sizes_prop));
741 if (page_sizes_prop_size) {
742 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
743 page_sizes_prop, page_sizes_prop_size)));
744 }
745
746 spapr_dt_pa_features(spapr, cpu, fdt, offset);
747
748 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
749 cs->cpu_index / vcpus_per_socket)));
750
751 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
752 pft_size_prop, sizeof(pft_size_prop))));
753
754 if (ms->numa_state->num_nodes > 1) {
755 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
756 }
757
758 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
759
760 if (pcc->radix_page_info) {
761 for (i = 0; i < pcc->radix_page_info->count; i++) {
762 radix_AP_encodings[i] =
763 cpu_to_be32(pcc->radix_page_info->entries[i]);
764 }
765 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
766 radix_AP_encodings,
767 pcc->radix_page_info->count *
768 sizeof(radix_AP_encodings[0]))));
769 }
770
771 /*
772 * We set this property to let the guest know that it can use the large
773 * decrementer and its width in bits.
774 */
775 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
776 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
777 pcc->lrg_decr_bits)));
778 }
779
780 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
781 {
782 CPUState **rev;
783 CPUState *cs;
784 int n_cpus;
785 int cpus_offset;
786 int i;
787
788 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
789 _FDT(cpus_offset);
790 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
791 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
792
793 /*
794 * We walk the CPUs in reverse order to ensure that CPU DT nodes
795 * created by fdt_add_subnode() end up in the right order in FDT
796 * for the guest kernel the enumerate the CPUs correctly.
797 *
798 * The CPU list cannot be traversed in reverse order, so we need
799 * to do extra work.
800 */
801 n_cpus = 0;
802 rev = NULL;
803 CPU_FOREACH(cs) {
804 rev = g_renew(CPUState *, rev, n_cpus + 1);
805 rev[n_cpus++] = cs;
806 }
807
808 for (i = n_cpus - 1; i >= 0; i--) {
809 CPUState *cs = rev[i];
810 PowerPCCPU *cpu = POWERPC_CPU(cs);
811 int index = spapr_get_vcpu_id(cpu);
812 DeviceClass *dc = DEVICE_GET_CLASS(cs);
813 g_autofree char *nodename = NULL;
814 int offset;
815
816 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
817 continue;
818 }
819
820 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
821 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
822 _FDT(offset);
823 spapr_dt_cpu(cs, fdt, offset, spapr);
824 }
825
826 g_free(rev);
827 }
828
829 static int spapr_dt_rng(void *fdt)
830 {
831 int node;
832 int ret;
833
834 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
835 if (node <= 0) {
836 return -1;
837 }
838 ret = fdt_setprop_string(fdt, node, "device_type",
839 "ibm,platform-facilities");
840 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
841 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
842
843 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
844 if (node <= 0) {
845 return -1;
846 }
847 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
848
849 return ret ? -1 : 0;
850 }
851
852 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
853 {
854 MachineState *ms = MACHINE(spapr);
855 int rtas;
856 GString *hypertas = g_string_sized_new(256);
857 GString *qemu_hypertas = g_string_sized_new(256);
858 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
859 memory_region_size(&MACHINE(spapr)->device_memory->mr);
860 uint32_t lrdr_capacity[] = {
861 cpu_to_be32(max_device_addr >> 32),
862 cpu_to_be32(max_device_addr & 0xffffffff),
863 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
865 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
866 };
867
868 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
869
870 /* hypertas */
871 add_str(hypertas, "hcall-pft");
872 add_str(hypertas, "hcall-term");
873 add_str(hypertas, "hcall-dabr");
874 add_str(hypertas, "hcall-interrupt");
875 add_str(hypertas, "hcall-tce");
876 add_str(hypertas, "hcall-vio");
877 add_str(hypertas, "hcall-splpar");
878 add_str(hypertas, "hcall-join");
879 add_str(hypertas, "hcall-bulk");
880 add_str(hypertas, "hcall-set-mode");
881 add_str(hypertas, "hcall-sprg0");
882 add_str(hypertas, "hcall-copy");
883 add_str(hypertas, "hcall-debug");
884 add_str(hypertas, "hcall-vphn");
885 add_str(qemu_hypertas, "hcall-memop1");
886
887 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
888 add_str(hypertas, "hcall-multi-tce");
889 }
890
891 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
892 add_str(hypertas, "hcall-hpt-resize");
893 }
894
895 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
896 hypertas->str, hypertas->len));
897 g_string_free(hypertas, TRUE);
898 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
899 qemu_hypertas->str, qemu_hypertas->len));
900 g_string_free(qemu_hypertas, TRUE);
901
902 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
903
904 /*
905 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
906 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
907 *
908 * The system reset requirements are driven by existing Linux and PowerVM
909 * implementation which (contrary to PAPR) saves r3 in the error log
910 * structure like machine check, so Linux expects to find the saved r3
911 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
912 * does not look at the error value).
913 *
914 * System reset interrupts are not subject to interlock like machine
915 * check, so this memory area could be corrupted if the sreset is
916 * interrupted by a machine check (or vice versa) if it was shared. To
917 * prevent this, system reset uses per-CPU areas for the sreset save
918 * area. A system reset that interrupts a system reset handler could
919 * still overwrite this area, but Linux doesn't try to recover in that
920 * case anyway.
921 *
922 * The extra 8 bytes is required because Linux's FWNMI error log check
923 * is off-by-one.
924 */
925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
926 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
928 RTAS_ERROR_LOG_MAX));
929 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
930 RTAS_EVENT_SCAN_RATE));
931
932 g_assert(msi_nonbroken);
933 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
934
935 /*
936 * According to PAPR, rtas ibm,os-term does not guarantee a return
937 * back to the guest cpu.
938 *
939 * While an additional ibm,extended-os-term property indicates
940 * that rtas call return will always occur. Set this property.
941 */
942 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
943
944 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
945 lrdr_capacity, sizeof(lrdr_capacity)));
946
947 spapr_dt_rtas_tokens(fdt, rtas);
948 }
949
950 /*
951 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
952 * and the XIVE features that the guest may request and thus the valid
953 * values for bytes 23..26 of option vector 5:
954 */
955 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
956 int chosen)
957 {
958 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
959
960 char val[2 * 4] = {
961 23, 0x00, /* XICS / XIVE mode */
962 24, 0x00, /* Hash/Radix, filled in below. */
963 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
964 26, 0x40, /* Radix options: GTSE == yes. */
965 };
966
967 if (spapr->irq->xics && spapr->irq->xive) {
968 val[1] = SPAPR_OV5_XIVE_BOTH;
969 } else if (spapr->irq->xive) {
970 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
971 } else {
972 assert(spapr->irq->xics);
973 val[1] = SPAPR_OV5_XIVE_LEGACY;
974 }
975
976 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
977 first_ppc_cpu->compat_pvr)) {
978 /*
979 * If we're in a pre POWER9 compat mode then the guest should
980 * do hash and use the legacy interrupt mode
981 */
982 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
983 val[3] = 0x00; /* Hash */
984 } else if (kvm_enabled()) {
985 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
986 val[3] = 0x80; /* OV5_MMU_BOTH */
987 } else if (kvmppc_has_cap_mmu_radix()) {
988 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
989 } else {
990 val[3] = 0x00; /* Hash */
991 }
992 } else {
993 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
994 val[3] = 0xC0;
995 }
996 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
997 val, sizeof(val)));
998 }
999
1000 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1001 {
1002 MachineState *machine = MACHINE(spapr);
1003 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1004 int chosen;
1005
1006 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1007
1008 if (reset) {
1009 const char *boot_device = machine->boot_order;
1010 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1011 size_t cb = 0;
1012 char *bootlist = get_boot_devices_list(&cb);
1013
1014 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1015 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1016 machine->kernel_cmdline));
1017 }
1018
1019 if (spapr->initrd_size) {
1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1021 spapr->initrd_base));
1022 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1023 spapr->initrd_base + spapr->initrd_size));
1024 }
1025
1026 if (spapr->kernel_size) {
1027 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1028 cpu_to_be64(spapr->kernel_size) };
1029
1030 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1031 &kprop, sizeof(kprop)));
1032 if (spapr->kernel_le) {
1033 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1034 }
1035 }
1036 if (boot_menu) {
1037 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1038 }
1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1040 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1041 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1042
1043 if (cb && bootlist) {
1044 int i;
1045
1046 for (i = 0; i < cb; i++) {
1047 if (bootlist[i] == '\n') {
1048 bootlist[i] = ' ';
1049 }
1050 }
1051 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1052 }
1053
1054 if (boot_device && strlen(boot_device)) {
1055 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1056 }
1057
1058 if (!spapr->has_graphics && stdout_path) {
1059 /*
1060 * "linux,stdout-path" and "stdout" properties are
1061 * deprecated by linux kernel. New platforms should only
1062 * use the "stdout-path" property. Set the new property
1063 * and continue using older property to remain compatible
1064 * with the existing firmware.
1065 */
1066 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1067 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1068 }
1069
1070 /*
1071 * We can deal with BAR reallocation just fine, advertise it
1072 * to the guest
1073 */
1074 if (smc->linux_pci_probe) {
1075 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1076 }
1077
1078 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1079
1080 g_free(stdout_path);
1081 g_free(bootlist);
1082 }
1083
1084 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1085 }
1086
1087 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1088 {
1089 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1090 * KVM to work under pHyp with some guest co-operation */
1091 int hypervisor;
1092 uint8_t hypercall[16];
1093
1094 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1095 /* indicate KVM hypercall interface */
1096 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1097 if (kvmppc_has_cap_fixup_hcalls()) {
1098 /*
1099 * Older KVM versions with older guest kernels were broken
1100 * with the magic page, don't allow the guest to map it.
1101 */
1102 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1103 sizeof(hypercall))) {
1104 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1105 hypercall, sizeof(hypercall)));
1106 }
1107 }
1108 }
1109
1110 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1111 {
1112 MachineState *machine = MACHINE(spapr);
1113 MachineClass *mc = MACHINE_GET_CLASS(machine);
1114 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1115 uint32_t root_drc_type_mask = 0;
1116 int ret;
1117 void *fdt;
1118 SpaprPhbState *phb;
1119 char *buf;
1120
1121 fdt = g_malloc0(space);
1122 _FDT((fdt_create_empty_tree(fdt, space)));
1123
1124 /* Root node */
1125 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1126 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1127 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1128
1129 /* Guest UUID & Name*/
1130 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1131 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1132 if (qemu_uuid_set) {
1133 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1134 }
1135 g_free(buf);
1136
1137 if (qemu_get_vm_name()) {
1138 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1139 qemu_get_vm_name()));
1140 }
1141
1142 /* Host Model & Serial Number */
1143 if (spapr->host_model) {
1144 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1145 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1146 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1147 g_free(buf);
1148 }
1149
1150 if (spapr->host_serial) {
1151 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1152 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1153 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1154 g_free(buf);
1155 }
1156
1157 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1158 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1159
1160 /* /interrupt controller */
1161 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1162
1163 ret = spapr_dt_memory(spapr, fdt);
1164 if (ret < 0) {
1165 error_report("couldn't setup memory nodes in fdt");
1166 exit(1);
1167 }
1168
1169 /* /vdevice */
1170 spapr_dt_vdevice(spapr->vio_bus, fdt);
1171
1172 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1173 ret = spapr_dt_rng(fdt);
1174 if (ret < 0) {
1175 error_report("could not set up rng device in the fdt");
1176 exit(1);
1177 }
1178 }
1179
1180 QLIST_FOREACH(phb, &spapr->phbs, list) {
1181 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1182 if (ret < 0) {
1183 error_report("couldn't setup PCI devices in fdt");
1184 exit(1);
1185 }
1186 }
1187
1188 spapr_dt_cpus(fdt, spapr);
1189
1190 /* ibm,drc-indexes and friends */
1191 if (smc->dr_lmb_enabled) {
1192 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1193 }
1194 if (smc->dr_phb_enabled) {
1195 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1196 }
1197 if (mc->nvdimm_supported) {
1198 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1199 }
1200 if (root_drc_type_mask) {
1201 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1202 }
1203
1204 if (mc->has_hotpluggable_cpus) {
1205 int offset = fdt_path_offset(fdt, "/cpus");
1206 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1207 if (ret < 0) {
1208 error_report("Couldn't set up CPU DR device tree properties");
1209 exit(1);
1210 }
1211 }
1212
1213 /* /event-sources */
1214 spapr_dt_events(spapr, fdt);
1215
1216 /* /rtas */
1217 spapr_dt_rtas(spapr, fdt);
1218
1219 /* /chosen */
1220 spapr_dt_chosen(spapr, fdt, reset);
1221
1222 /* /hypervisor */
1223 if (kvm_enabled()) {
1224 spapr_dt_hypervisor(spapr, fdt);
1225 }
1226
1227 /* Build memory reserve map */
1228 if (reset) {
1229 if (spapr->kernel_size) {
1230 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1231 spapr->kernel_size)));
1232 }
1233 if (spapr->initrd_size) {
1234 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1235 spapr->initrd_size)));
1236 }
1237 }
1238
1239 /* NVDIMM devices */
1240 if (mc->nvdimm_supported) {
1241 spapr_dt_persistent_memory(spapr, fdt);
1242 }
1243
1244 return fdt;
1245 }
1246
1247 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1248 {
1249 SpaprMachineState *spapr = opaque;
1250
1251 return (addr & 0x0fffffff) + spapr->kernel_addr;
1252 }
1253
1254 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1255 PowerPCCPU *cpu)
1256 {
1257 CPUPPCState *env = &cpu->env;
1258
1259 /* The TCG path should also be holding the BQL at this point */
1260 g_assert(qemu_mutex_iothread_locked());
1261
1262 if (msr_pr) {
1263 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1264 env->gpr[3] = H_PRIVILEGE;
1265 } else {
1266 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1267 }
1268 }
1269
1270 struct LPCRSyncState {
1271 target_ulong value;
1272 target_ulong mask;
1273 };
1274
1275 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1276 {
1277 struct LPCRSyncState *s = arg.host_ptr;
1278 PowerPCCPU *cpu = POWERPC_CPU(cs);
1279 CPUPPCState *env = &cpu->env;
1280 target_ulong lpcr;
1281
1282 cpu_synchronize_state(cs);
1283 lpcr = env->spr[SPR_LPCR];
1284 lpcr &= ~s->mask;
1285 lpcr |= s->value;
1286 ppc_store_lpcr(cpu, lpcr);
1287 }
1288
1289 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1290 {
1291 CPUState *cs;
1292 struct LPCRSyncState s = {
1293 .value = value,
1294 .mask = mask
1295 };
1296 CPU_FOREACH(cs) {
1297 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1298 }
1299 }
1300
1301 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1302 {
1303 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1304
1305 /* Copy PATE1:GR into PATE0:HR */
1306 entry->dw0 = spapr->patb_entry & PATE0_HR;
1307 entry->dw1 = spapr->patb_entry;
1308 }
1309
1310 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1311 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1312 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1313 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1314 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1315
1316 /*
1317 * Get the fd to access the kernel htab, re-opening it if necessary
1318 */
1319 static int get_htab_fd(SpaprMachineState *spapr)
1320 {
1321 Error *local_err = NULL;
1322
1323 if (spapr->htab_fd >= 0) {
1324 return spapr->htab_fd;
1325 }
1326
1327 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1328 if (spapr->htab_fd < 0) {
1329 error_report_err(local_err);
1330 }
1331
1332 return spapr->htab_fd;
1333 }
1334
1335 void close_htab_fd(SpaprMachineState *spapr)
1336 {
1337 if (spapr->htab_fd >= 0) {
1338 close(spapr->htab_fd);
1339 }
1340 spapr->htab_fd = -1;
1341 }
1342
1343 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1344 {
1345 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1346
1347 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1348 }
1349
1350 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1351 {
1352 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1353
1354 assert(kvm_enabled());
1355
1356 if (!spapr->htab) {
1357 return 0;
1358 }
1359
1360 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1361 }
1362
1363 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1364 hwaddr ptex, int n)
1365 {
1366 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1367 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1368
1369 if (!spapr->htab) {
1370 /*
1371 * HTAB is controlled by KVM. Fetch into temporary buffer
1372 */
1373 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1374 kvmppc_read_hptes(hptes, ptex, n);
1375 return hptes;
1376 }
1377
1378 /*
1379 * HTAB is controlled by QEMU. Just point to the internally
1380 * accessible PTEG.
1381 */
1382 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1383 }
1384
1385 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1386 const ppc_hash_pte64_t *hptes,
1387 hwaddr ptex, int n)
1388 {
1389 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1390
1391 if (!spapr->htab) {
1392 g_free((void *)hptes);
1393 }
1394
1395 /* Nothing to do for qemu managed HPT */
1396 }
1397
1398 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1399 uint64_t pte0, uint64_t pte1)
1400 {
1401 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1402 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1403
1404 if (!spapr->htab) {
1405 kvmppc_write_hpte(ptex, pte0, pte1);
1406 } else {
1407 if (pte0 & HPTE64_V_VALID) {
1408 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1409 /*
1410 * When setting valid, we write PTE1 first. This ensures
1411 * proper synchronization with the reading code in
1412 * ppc_hash64_pteg_search()
1413 */
1414 smp_wmb();
1415 stq_p(spapr->htab + offset, pte0);
1416 } else {
1417 stq_p(spapr->htab + offset, pte0);
1418 /*
1419 * When clearing it we set PTE0 first. This ensures proper
1420 * synchronization with the reading code in
1421 * ppc_hash64_pteg_search()
1422 */
1423 smp_wmb();
1424 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1425 }
1426 }
1427 }
1428
1429 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1430 uint64_t pte1)
1431 {
1432 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1433 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1434
1435 if (!spapr->htab) {
1436 /* There should always be a hash table when this is called */
1437 error_report("spapr_hpte_set_c called with no hash table !");
1438 return;
1439 }
1440
1441 /* The HW performs a non-atomic byte update */
1442 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1443 }
1444
1445 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1446 uint64_t pte1)
1447 {
1448 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1449 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1450
1451 if (!spapr->htab) {
1452 /* There should always be a hash table when this is called */
1453 error_report("spapr_hpte_set_r called with no hash table !");
1454 return;
1455 }
1456
1457 /* The HW performs a non-atomic byte update */
1458 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1459 }
1460
1461 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1462 {
1463 int shift;
1464
1465 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1466 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1467 * that's much more than is needed for Linux guests */
1468 shift = ctz64(pow2ceil(ramsize)) - 7;
1469 shift = MAX(shift, 18); /* Minimum architected size */
1470 shift = MIN(shift, 46); /* Maximum architected size */
1471 return shift;
1472 }
1473
1474 void spapr_free_hpt(SpaprMachineState *spapr)
1475 {
1476 g_free(spapr->htab);
1477 spapr->htab = NULL;
1478 spapr->htab_shift = 0;
1479 close_htab_fd(spapr);
1480 }
1481
1482 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1483 {
1484 ERRP_GUARD();
1485 long rc;
1486
1487 /* Clean up any HPT info from a previous boot */
1488 spapr_free_hpt(spapr);
1489
1490 rc = kvmppc_reset_htab(shift);
1491
1492 if (rc == -EOPNOTSUPP) {
1493 error_setg(errp, "HPT not supported in nested guests");
1494 return -EOPNOTSUPP;
1495 }
1496
1497 if (rc < 0) {
1498 /* kernel-side HPT needed, but couldn't allocate one */
1499 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1500 shift);
1501 error_append_hint(errp, "Try smaller maxmem?\n");
1502 return -errno;
1503 } else if (rc > 0) {
1504 /* kernel-side HPT allocated */
1505 if (rc != shift) {
1506 error_setg(errp,
1507 "Requested order %d HPT, but kernel allocated order %ld",
1508 shift, rc);
1509 error_append_hint(errp, "Try smaller maxmem?\n");
1510 return -ENOSPC;
1511 }
1512
1513 spapr->htab_shift = shift;
1514 spapr->htab = NULL;
1515 } else {
1516 /* kernel-side HPT not needed, allocate in userspace instead */
1517 size_t size = 1ULL << shift;
1518 int i;
1519
1520 spapr->htab = qemu_memalign(size, size);
1521 memset(spapr->htab, 0, size);
1522 spapr->htab_shift = shift;
1523
1524 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1525 DIRTY_HPTE(HPTE(spapr->htab, i));
1526 }
1527 }
1528 /* We're setting up a hash table, so that means we're not radix */
1529 spapr->patb_entry = 0;
1530 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1531 return 0;
1532 }
1533
1534 void spapr_setup_hpt(SpaprMachineState *spapr)
1535 {
1536 int hpt_shift;
1537
1538 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1539 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1540 } else {
1541 uint64_t current_ram_size;
1542
1543 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1544 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1545 }
1546 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1547
1548 if (kvm_enabled()) {
1549 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1550
1551 /* Check our RMA fits in the possible VRMA */
1552 if (vrma_limit < spapr->rma_size) {
1553 error_report("Unable to create %" HWADDR_PRIu
1554 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1555 spapr->rma_size / MiB, vrma_limit / MiB);
1556 exit(EXIT_FAILURE);
1557 }
1558 }
1559 }
1560
1561 static void spapr_machine_reset(MachineState *machine)
1562 {
1563 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1564 PowerPCCPU *first_ppc_cpu;
1565 hwaddr fdt_addr;
1566 void *fdt;
1567 int rc;
1568
1569 pef_kvm_reset(machine->cgs, &error_fatal);
1570 spapr_caps_apply(spapr);
1571
1572 first_ppc_cpu = POWERPC_CPU(first_cpu);
1573 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1574 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1575 spapr->max_compat_pvr)) {
1576 /*
1577 * If using KVM with radix mode available, VCPUs can be started
1578 * without a HPT because KVM will start them in radix mode.
1579 * Set the GR bit in PATE so that we know there is no HPT.
1580 */
1581 spapr->patb_entry = PATE1_GR;
1582 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1583 } else {
1584 spapr_setup_hpt(spapr);
1585 }
1586
1587 qemu_devices_reset();
1588
1589 spapr_ovec_cleanup(spapr->ov5_cas);
1590 spapr->ov5_cas = spapr_ovec_new();
1591
1592 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1593
1594 /*
1595 * This is fixing some of the default configuration of the XIVE
1596 * devices. To be called after the reset of the machine devices.
1597 */
1598 spapr_irq_reset(spapr, &error_fatal);
1599
1600 /*
1601 * There is no CAS under qtest. Simulate one to please the code that
1602 * depends on spapr->ov5_cas. This is especially needed to test device
1603 * unplug, so we do that before resetting the DRCs.
1604 */
1605 if (qtest_enabled()) {
1606 spapr_ovec_cleanup(spapr->ov5_cas);
1607 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1608 }
1609
1610 /* DRC reset may cause a device to be unplugged. This will cause troubles
1611 * if this device is used by another device (eg, a running vhost backend
1612 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1613 * situations, we reset DRCs after all devices have been reset.
1614 */
1615 spapr_drc_reset_all(spapr);
1616
1617 spapr_clear_pending_events(spapr);
1618
1619 /*
1620 * We place the device tree and RTAS just below either the top of the RMA,
1621 * or just below 2GB, whichever is lower, so that it can be
1622 * processed with 32-bit real mode code if necessary
1623 */
1624 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1625
1626 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1627
1628 rc = fdt_pack(fdt);
1629
1630 /* Should only fail if we've built a corrupted tree */
1631 assert(rc == 0);
1632
1633 /* Load the fdt */
1634 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1635 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1636 g_free(spapr->fdt_blob);
1637 spapr->fdt_size = fdt_totalsize(fdt);
1638 spapr->fdt_initial_size = spapr->fdt_size;
1639 spapr->fdt_blob = fdt;
1640
1641 /* Set up the entry state */
1642 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1643 first_ppc_cpu->env.gpr[5] = 0;
1644
1645 spapr->fwnmi_system_reset_addr = -1;
1646 spapr->fwnmi_machine_check_addr = -1;
1647 spapr->fwnmi_machine_check_interlock = -1;
1648
1649 /* Signal all vCPUs waiting on this condition */
1650 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1651
1652 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1653 }
1654
1655 static void spapr_create_nvram(SpaprMachineState *spapr)
1656 {
1657 DeviceState *dev = qdev_new("spapr-nvram");
1658 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1659
1660 if (dinfo) {
1661 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1662 &error_fatal);
1663 }
1664
1665 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1666
1667 spapr->nvram = (struct SpaprNvram *)dev;
1668 }
1669
1670 static void spapr_rtc_create(SpaprMachineState *spapr)
1671 {
1672 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1673 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1674 &error_fatal, NULL);
1675 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1676 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1677 "date");
1678 }
1679
1680 /* Returns whether we want to use VGA or not */
1681 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1682 {
1683 switch (vga_interface_type) {
1684 case VGA_NONE:
1685 return false;
1686 case VGA_DEVICE:
1687 return true;
1688 case VGA_STD:
1689 case VGA_VIRTIO:
1690 case VGA_CIRRUS:
1691 return pci_vga_init(pci_bus) != NULL;
1692 default:
1693 error_setg(errp,
1694 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1695 return false;
1696 }
1697 }
1698
1699 static int spapr_pre_load(void *opaque)
1700 {
1701 int rc;
1702
1703 rc = spapr_caps_pre_load(opaque);
1704 if (rc) {
1705 return rc;
1706 }
1707
1708 return 0;
1709 }
1710
1711 static int spapr_post_load(void *opaque, int version_id)
1712 {
1713 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1714 int err = 0;
1715
1716 err = spapr_caps_post_migration(spapr);
1717 if (err) {
1718 return err;
1719 }
1720
1721 /*
1722 * In earlier versions, there was no separate qdev for the PAPR
1723 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1724 * So when migrating from those versions, poke the incoming offset
1725 * value into the RTC device
1726 */
1727 if (version_id < 3) {
1728 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1729 if (err) {
1730 return err;
1731 }
1732 }
1733
1734 if (kvm_enabled() && spapr->patb_entry) {
1735 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1736 bool radix = !!(spapr->patb_entry & PATE1_GR);
1737 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1738
1739 /*
1740 * Update LPCR:HR and UPRT as they may not be set properly in
1741 * the stream
1742 */
1743 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1744 LPCR_HR | LPCR_UPRT);
1745
1746 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1747 if (err) {
1748 error_report("Process table config unsupported by the host");
1749 return -EINVAL;
1750 }
1751 }
1752
1753 err = spapr_irq_post_load(spapr, version_id);
1754 if (err) {
1755 return err;
1756 }
1757
1758 return err;
1759 }
1760
1761 static int spapr_pre_save(void *opaque)
1762 {
1763 int rc;
1764
1765 rc = spapr_caps_pre_save(opaque);
1766 if (rc) {
1767 return rc;
1768 }
1769
1770 return 0;
1771 }
1772
1773 static bool version_before_3(void *opaque, int version_id)
1774 {
1775 return version_id < 3;
1776 }
1777
1778 static bool spapr_pending_events_needed(void *opaque)
1779 {
1780 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1781 return !QTAILQ_EMPTY(&spapr->pending_events);
1782 }
1783
1784 static const VMStateDescription vmstate_spapr_event_entry = {
1785 .name = "spapr_event_log_entry",
1786 .version_id = 1,
1787 .minimum_version_id = 1,
1788 .fields = (VMStateField[]) {
1789 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1790 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1791 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1792 NULL, extended_length),
1793 VMSTATE_END_OF_LIST()
1794 },
1795 };
1796
1797 static const VMStateDescription vmstate_spapr_pending_events = {
1798 .name = "spapr_pending_events",
1799 .version_id = 1,
1800 .minimum_version_id = 1,
1801 .needed = spapr_pending_events_needed,
1802 .fields = (VMStateField[]) {
1803 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1804 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1805 VMSTATE_END_OF_LIST()
1806 },
1807 };
1808
1809 static bool spapr_ov5_cas_needed(void *opaque)
1810 {
1811 SpaprMachineState *spapr = opaque;
1812 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1813 bool cas_needed;
1814
1815 /* Prior to the introduction of SpaprOptionVector, we had two option
1816 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1817 * Both of these options encode machine topology into the device-tree
1818 * in such a way that the now-booted OS should still be able to interact
1819 * appropriately with QEMU regardless of what options were actually
1820 * negotiatied on the source side.
1821 *
1822 * As such, we can avoid migrating the CAS-negotiated options if these
1823 * are the only options available on the current machine/platform.
1824 * Since these are the only options available for pseries-2.7 and
1825 * earlier, this allows us to maintain old->new/new->old migration
1826 * compatibility.
1827 *
1828 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1829 * via default pseries-2.8 machines and explicit command-line parameters.
1830 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1831 * of the actual CAS-negotiated values to continue working properly. For
1832 * example, availability of memory unplug depends on knowing whether
1833 * OV5_HP_EVT was negotiated via CAS.
1834 *
1835 * Thus, for any cases where the set of available CAS-negotiatable
1836 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1837 * include the CAS-negotiated options in the migration stream, unless
1838 * if they affect boot time behaviour only.
1839 */
1840 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1841 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1842 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1843
1844 /* We need extra information if we have any bits outside the mask
1845 * defined above */
1846 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1847
1848 spapr_ovec_cleanup(ov5_mask);
1849
1850 return cas_needed;
1851 }
1852
1853 static const VMStateDescription vmstate_spapr_ov5_cas = {
1854 .name = "spapr_option_vector_ov5_cas",
1855 .version_id = 1,
1856 .minimum_version_id = 1,
1857 .needed = spapr_ov5_cas_needed,
1858 .fields = (VMStateField[]) {
1859 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1860 vmstate_spapr_ovec, SpaprOptionVector),
1861 VMSTATE_END_OF_LIST()
1862 },
1863 };
1864
1865 static bool spapr_patb_entry_needed(void *opaque)
1866 {
1867 SpaprMachineState *spapr = opaque;
1868
1869 return !!spapr->patb_entry;
1870 }
1871
1872 static const VMStateDescription vmstate_spapr_patb_entry = {
1873 .name = "spapr_patb_entry",
1874 .version_id = 1,
1875 .minimum_version_id = 1,
1876 .needed = spapr_patb_entry_needed,
1877 .fields = (VMStateField[]) {
1878 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1879 VMSTATE_END_OF_LIST()
1880 },
1881 };
1882
1883 static bool spapr_irq_map_needed(void *opaque)
1884 {
1885 SpaprMachineState *spapr = opaque;
1886
1887 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1888 }
1889
1890 static const VMStateDescription vmstate_spapr_irq_map = {
1891 .name = "spapr_irq_map",
1892 .version_id = 1,
1893 .minimum_version_id = 1,
1894 .needed = spapr_irq_map_needed,
1895 .fields = (VMStateField[]) {
1896 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1897 VMSTATE_END_OF_LIST()
1898 },
1899 };
1900
1901 static bool spapr_dtb_needed(void *opaque)
1902 {
1903 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1904
1905 return smc->update_dt_enabled;
1906 }
1907
1908 static int spapr_dtb_pre_load(void *opaque)
1909 {
1910 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1911
1912 g_free(spapr->fdt_blob);
1913 spapr->fdt_blob = NULL;
1914 spapr->fdt_size = 0;
1915
1916 return 0;
1917 }
1918
1919 static const VMStateDescription vmstate_spapr_dtb = {
1920 .name = "spapr_dtb",
1921 .version_id = 1,
1922 .minimum_version_id = 1,
1923 .needed = spapr_dtb_needed,
1924 .pre_load = spapr_dtb_pre_load,
1925 .fields = (VMStateField[]) {
1926 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1927 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1928 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1929 fdt_size),
1930 VMSTATE_END_OF_LIST()
1931 },
1932 };
1933
1934 static bool spapr_fwnmi_needed(void *opaque)
1935 {
1936 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1937
1938 return spapr->fwnmi_machine_check_addr != -1;
1939 }
1940
1941 static int spapr_fwnmi_pre_save(void *opaque)
1942 {
1943 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1944
1945 /*
1946 * Check if machine check handling is in progress and print a
1947 * warning message.
1948 */
1949 if (spapr->fwnmi_machine_check_interlock != -1) {
1950 warn_report("A machine check is being handled during migration. The"
1951 "handler may run and log hardware error on the destination");
1952 }
1953
1954 return 0;
1955 }
1956
1957 static const VMStateDescription vmstate_spapr_fwnmi = {
1958 .name = "spapr_fwnmi",
1959 .version_id = 1,
1960 .minimum_version_id = 1,
1961 .needed = spapr_fwnmi_needed,
1962 .pre_save = spapr_fwnmi_pre_save,
1963 .fields = (VMStateField[]) {
1964 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1965 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1966 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1967 VMSTATE_END_OF_LIST()
1968 },
1969 };
1970
1971 static const VMStateDescription vmstate_spapr = {
1972 .name = "spapr",
1973 .version_id = 3,
1974 .minimum_version_id = 1,
1975 .pre_load = spapr_pre_load,
1976 .post_load = spapr_post_load,
1977 .pre_save = spapr_pre_save,
1978 .fields = (VMStateField[]) {
1979 /* used to be @next_irq */
1980 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1981
1982 /* RTC offset */
1983 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1984
1985 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1986 VMSTATE_END_OF_LIST()
1987 },
1988 .subsections = (const VMStateDescription*[]) {
1989 &vmstate_spapr_ov5_cas,
1990 &vmstate_spapr_patb_entry,
1991 &vmstate_spapr_pending_events,
1992 &vmstate_spapr_cap_htm,
1993 &vmstate_spapr_cap_vsx,
1994 &vmstate_spapr_cap_dfp,
1995 &vmstate_spapr_cap_cfpc,
1996 &vmstate_spapr_cap_sbbc,
1997 &vmstate_spapr_cap_ibs,
1998 &vmstate_spapr_cap_hpt_maxpagesize,
1999 &vmstate_spapr_irq_map,
2000 &vmstate_spapr_cap_nested_kvm_hv,
2001 &vmstate_spapr_dtb,
2002 &vmstate_spapr_cap_large_decr,
2003 &vmstate_spapr_cap_ccf_assist,
2004 &vmstate_spapr_cap_fwnmi,
2005 &vmstate_spapr_fwnmi,
2006 NULL
2007 }
2008 };
2009
2010 static int htab_save_setup(QEMUFile *f, void *opaque)
2011 {
2012 SpaprMachineState *spapr = opaque;
2013
2014 /* "Iteration" header */
2015 if (!spapr->htab_shift) {
2016 qemu_put_be32(f, -1);
2017 } else {
2018 qemu_put_be32(f, spapr->htab_shift);
2019 }
2020
2021 if (spapr->htab) {
2022 spapr->htab_save_index = 0;
2023 spapr->htab_first_pass = true;
2024 } else {
2025 if (spapr->htab_shift) {
2026 assert(kvm_enabled());
2027 }
2028 }
2029
2030
2031 return 0;
2032 }
2033
2034 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2035 int chunkstart, int n_valid, int n_invalid)
2036 {
2037 qemu_put_be32(f, chunkstart);
2038 qemu_put_be16(f, n_valid);
2039 qemu_put_be16(f, n_invalid);
2040 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2041 HASH_PTE_SIZE_64 * n_valid);
2042 }
2043
2044 static void htab_save_end_marker(QEMUFile *f)
2045 {
2046 qemu_put_be32(f, 0);
2047 qemu_put_be16(f, 0);
2048 qemu_put_be16(f, 0);
2049 }
2050
2051 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2052 int64_t max_ns)
2053 {
2054 bool has_timeout = max_ns != -1;
2055 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2056 int index = spapr->htab_save_index;
2057 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2058
2059 assert(spapr->htab_first_pass);
2060
2061 do {
2062 int chunkstart;
2063
2064 /* Consume invalid HPTEs */
2065 while ((index < htabslots)
2066 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2067 CLEAN_HPTE(HPTE(spapr->htab, index));
2068 index++;
2069 }
2070
2071 /* Consume valid HPTEs */
2072 chunkstart = index;
2073 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2074 && HPTE_VALID(HPTE(spapr->htab, index))) {
2075 CLEAN_HPTE(HPTE(spapr->htab, index));
2076 index++;
2077 }
2078
2079 if (index > chunkstart) {
2080 int n_valid = index - chunkstart;
2081
2082 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2083
2084 if (has_timeout &&
2085 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2086 break;
2087 }
2088 }
2089 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2090
2091 if (index >= htabslots) {
2092 assert(index == htabslots);
2093 index = 0;
2094 spapr->htab_first_pass = false;
2095 }
2096 spapr->htab_save_index = index;
2097 }
2098
2099 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2100 int64_t max_ns)
2101 {
2102 bool final = max_ns < 0;
2103 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2104 int examined = 0, sent = 0;
2105 int index = spapr->htab_save_index;
2106 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2107
2108 assert(!spapr->htab_first_pass);
2109
2110 do {
2111 int chunkstart, invalidstart;
2112
2113 /* Consume non-dirty HPTEs */
2114 while ((index < htabslots)
2115 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2116 index++;
2117 examined++;
2118 }
2119
2120 chunkstart = index;
2121 /* Consume valid dirty HPTEs */
2122 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2123 && HPTE_DIRTY(HPTE(spapr->htab, index))
2124 && HPTE_VALID(HPTE(spapr->htab, index))) {
2125 CLEAN_HPTE(HPTE(spapr->htab, index));
2126 index++;
2127 examined++;
2128 }
2129
2130 invalidstart = index;
2131 /* Consume invalid dirty HPTEs */
2132 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2133 && HPTE_DIRTY(HPTE(spapr->htab, index))
2134 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2135 CLEAN_HPTE(HPTE(spapr->htab, index));
2136 index++;
2137 examined++;
2138 }
2139
2140 if (index > chunkstart) {
2141 int n_valid = invalidstart - chunkstart;
2142 int n_invalid = index - invalidstart;
2143
2144 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2145 sent += index - chunkstart;
2146
2147 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2148 break;
2149 }
2150 }
2151
2152 if (examined >= htabslots) {
2153 break;
2154 }
2155
2156 if (index >= htabslots) {
2157 assert(index == htabslots);
2158 index = 0;
2159 }
2160 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2161
2162 if (index >= htabslots) {
2163 assert(index == htabslots);
2164 index = 0;
2165 }
2166
2167 spapr->htab_save_index = index;
2168
2169 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2170 }
2171
2172 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2173 #define MAX_KVM_BUF_SIZE 2048
2174
2175 static int htab_save_iterate(QEMUFile *f, void *opaque)
2176 {
2177 SpaprMachineState *spapr = opaque;
2178 int fd;
2179 int rc = 0;
2180
2181 /* Iteration header */
2182 if (!spapr->htab_shift) {
2183 qemu_put_be32(f, -1);
2184 return 1;
2185 } else {
2186 qemu_put_be32(f, 0);
2187 }
2188
2189 if (!spapr->htab) {
2190 assert(kvm_enabled());
2191
2192 fd = get_htab_fd(spapr);
2193 if (fd < 0) {
2194 return fd;
2195 }
2196
2197 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2198 if (rc < 0) {
2199 return rc;
2200 }
2201 } else if (spapr->htab_first_pass) {
2202 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2203 } else {
2204 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2205 }
2206
2207 htab_save_end_marker(f);
2208
2209 return rc;
2210 }
2211
2212 static int htab_save_complete(QEMUFile *f, void *opaque)
2213 {
2214 SpaprMachineState *spapr = opaque;
2215 int fd;
2216
2217 /* Iteration header */
2218 if (!spapr->htab_shift) {
2219 qemu_put_be32(f, -1);
2220 return 0;
2221 } else {
2222 qemu_put_be32(f, 0);
2223 }
2224
2225 if (!spapr->htab) {
2226 int rc;
2227
2228 assert(kvm_enabled());
2229
2230 fd = get_htab_fd(spapr);
2231 if (fd < 0) {
2232 return fd;
2233 }
2234
2235 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2236 if (rc < 0) {
2237 return rc;
2238 }
2239 } else {
2240 if (spapr->htab_first_pass) {
2241 htab_save_first_pass(f, spapr, -1);
2242 }
2243 htab_save_later_pass(f, spapr, -1);
2244 }
2245
2246 /* End marker */
2247 htab_save_end_marker(f);
2248
2249 return 0;
2250 }
2251
2252 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2253 {
2254 SpaprMachineState *spapr = opaque;
2255 uint32_t section_hdr;
2256 int fd = -1;
2257 Error *local_err = NULL;
2258
2259 if (version_id < 1 || version_id > 1) {
2260 error_report("htab_load() bad version");
2261 return -EINVAL;
2262 }
2263
2264 section_hdr = qemu_get_be32(f);
2265
2266 if (section_hdr == -1) {
2267 spapr_free_hpt(spapr);
2268 return 0;
2269 }
2270
2271 if (section_hdr) {
2272 int ret;
2273
2274 /* First section gives the htab size */
2275 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2276 if (ret < 0) {
2277 error_report_err(local_err);
2278 return ret;
2279 }
2280 return 0;
2281 }
2282
2283 if (!spapr->htab) {
2284 assert(kvm_enabled());
2285
2286 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2287 if (fd < 0) {
2288 error_report_err(local_err);
2289 return fd;
2290 }
2291 }
2292
2293 while (true) {
2294 uint32_t index;
2295 uint16_t n_valid, n_invalid;
2296
2297 index = qemu_get_be32(f);
2298 n_valid = qemu_get_be16(f);
2299 n_invalid = qemu_get_be16(f);
2300
2301 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2302 /* End of Stream */
2303 break;
2304 }
2305
2306 if ((index + n_valid + n_invalid) >
2307 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2308 /* Bad index in stream */
2309 error_report(
2310 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2311 index, n_valid, n_invalid, spapr->htab_shift);
2312 return -EINVAL;
2313 }
2314
2315 if (spapr->htab) {
2316 if (n_valid) {
2317 qemu_get_buffer(f, HPTE(spapr->htab, index),
2318 HASH_PTE_SIZE_64 * n_valid);
2319 }
2320 if (n_invalid) {
2321 memset(HPTE(spapr->htab, index + n_valid), 0,
2322 HASH_PTE_SIZE_64 * n_invalid);
2323 }
2324 } else {
2325 int rc;
2326
2327 assert(fd >= 0);
2328
2329 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2330 &local_err);
2331 if (rc < 0) {
2332 error_report_err(local_err);
2333 return rc;
2334 }
2335 }
2336 }
2337
2338 if (!spapr->htab) {
2339 assert(fd >= 0);
2340 close(fd);
2341 }
2342
2343 return 0;
2344 }
2345
2346 static void htab_save_cleanup(void *opaque)
2347 {
2348 SpaprMachineState *spapr = opaque;
2349
2350 close_htab_fd(spapr);
2351 }
2352
2353 static SaveVMHandlers savevm_htab_handlers = {
2354 .save_setup = htab_save_setup,
2355 .save_live_iterate = htab_save_iterate,
2356 .save_live_complete_precopy = htab_save_complete,
2357 .save_cleanup = htab_save_cleanup,
2358 .load_state = htab_load,
2359 };
2360
2361 static void spapr_boot_set(void *opaque, const char *boot_device,
2362 Error **errp)
2363 {
2364 MachineState *machine = MACHINE(opaque);
2365 machine->boot_order = g_strdup(boot_device);
2366 }
2367
2368 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2369 {
2370 MachineState *machine = MACHINE(spapr);
2371 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2372 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2373 int i;
2374
2375 for (i = 0; i < nr_lmbs; i++) {
2376 uint64_t addr;
2377
2378 addr = i * lmb_size + machine->device_memory->base;
2379 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2380 addr / lmb_size);
2381 }
2382 }
2383
2384 /*
2385 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2386 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2387 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2388 */
2389 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2390 {
2391 int i;
2392
2393 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2394 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2395 " is not aligned to %" PRIu64 " MiB",
2396 machine->ram_size,
2397 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2398 return;
2399 }
2400
2401 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2402 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2403 " is not aligned to %" PRIu64 " MiB",
2404 machine->ram_size,
2405 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2406 return;
2407 }
2408
2409 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2410 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2411 error_setg(errp,
2412 "Node %d memory size 0x%" PRIx64
2413 " is not aligned to %" PRIu64 " MiB",
2414 i, machine->numa_state->nodes[i].node_mem,
2415 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2416 return;
2417 }
2418 }
2419 }
2420
2421 /* find cpu slot in machine->possible_cpus by core_id */
2422 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2423 {
2424 int index = id / ms->smp.threads;
2425
2426 if (index >= ms->possible_cpus->len) {
2427 return NULL;
2428 }
2429 if (idx) {
2430 *idx = index;
2431 }
2432 return &ms->possible_cpus->cpus[index];
2433 }
2434
2435 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2436 {
2437 MachineState *ms = MACHINE(spapr);
2438 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2439 Error *local_err = NULL;
2440 bool vsmt_user = !!spapr->vsmt;
2441 int kvm_smt = kvmppc_smt_threads();
2442 int ret;
2443 unsigned int smp_threads = ms->smp.threads;
2444
2445 if (!kvm_enabled() && (smp_threads > 1)) {
2446 error_setg(errp, "TCG cannot support more than 1 thread/core "
2447 "on a pseries machine");
2448 return;
2449 }
2450 if (!is_power_of_2(smp_threads)) {
2451 error_setg(errp, "Cannot support %d threads/core on a pseries "
2452 "machine because it must be a power of 2", smp_threads);
2453 return;
2454 }
2455
2456 /* Detemine the VSMT mode to use: */
2457 if (vsmt_user) {
2458 if (spapr->vsmt < smp_threads) {
2459 error_setg(errp, "Cannot support VSMT mode %d"
2460 " because it must be >= threads/core (%d)",
2461 spapr->vsmt, smp_threads);
2462 return;
2463 }
2464 /* In this case, spapr->vsmt has been set by the command line */
2465 } else if (!smc->smp_threads_vsmt) {
2466 /*
2467 * Default VSMT value is tricky, because we need it to be as
2468 * consistent as possible (for migration), but this requires
2469 * changing it for at least some existing cases. We pick 8 as
2470 * the value that we'd get with KVM on POWER8, the
2471 * overwhelmingly common case in production systems.
2472 */
2473 spapr->vsmt = MAX(8, smp_threads);
2474 } else {
2475 spapr->vsmt = smp_threads;
2476 }
2477
2478 /* KVM: If necessary, set the SMT mode: */
2479 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2480 ret = kvmppc_set_smt_threads(spapr->vsmt);
2481 if (ret) {
2482 /* Looks like KVM isn't able to change VSMT mode */
2483 error_setg(&local_err,
2484 "Failed to set KVM's VSMT mode to %d (errno %d)",
2485 spapr->vsmt, ret);
2486 /* We can live with that if the default one is big enough
2487 * for the number of threads, and a submultiple of the one
2488 * we want. In this case we'll waste some vcpu ids, but
2489 * behaviour will be correct */
2490 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2491 warn_report_err(local_err);
2492 } else {
2493 if (!vsmt_user) {
2494 error_append_hint(&local_err,
2495 "On PPC, a VM with %d threads/core"
2496 " on a host with %d threads/core"
2497 " requires the use of VSMT mode %d.\n",
2498 smp_threads, kvm_smt, spapr->vsmt);
2499 }
2500 kvmppc_error_append_smt_possible_hint(&local_err);
2501 error_propagate(errp, local_err);
2502 }
2503 }
2504 }
2505 /* else TCG: nothing to do currently */
2506 }
2507
2508 static void spapr_init_cpus(SpaprMachineState *spapr)
2509 {
2510 MachineState *machine = MACHINE(spapr);
2511 MachineClass *mc = MACHINE_GET_CLASS(machine);
2512 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2513 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2514 const CPUArchIdList *possible_cpus;
2515 unsigned int smp_cpus = machine->smp.cpus;
2516 unsigned int smp_threads = machine->smp.threads;
2517 unsigned int max_cpus = machine->smp.max_cpus;
2518 int boot_cores_nr = smp_cpus / smp_threads;
2519 int i;
2520
2521 possible_cpus = mc->possible_cpu_arch_ids(machine);
2522 if (mc->has_hotpluggable_cpus) {
2523 if (smp_cpus % smp_threads) {
2524 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2525 smp_cpus, smp_threads);
2526 exit(1);
2527 }
2528 if (max_cpus % smp_threads) {
2529 error_report("max_cpus (%u) must be multiple of threads (%u)",
2530 max_cpus, smp_threads);
2531 exit(1);
2532 }
2533 } else {
2534 if (max_cpus != smp_cpus) {
2535 error_report("This machine version does not support CPU hotplug");
2536 exit(1);
2537 }
2538 boot_cores_nr = possible_cpus->len;
2539 }
2540
2541 if (smc->pre_2_10_has_unused_icps) {
2542 int i;
2543
2544 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2545 /* Dummy entries get deregistered when real ICPState objects
2546 * are registered during CPU core hotplug.
2547 */
2548 pre_2_10_vmstate_register_dummy_icp(i);
2549 }
2550 }
2551
2552 for (i = 0; i < possible_cpus->len; i++) {
2553 int core_id = i * smp_threads;
2554
2555 if (mc->has_hotpluggable_cpus) {
2556 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2557 spapr_vcpu_id(spapr, core_id));
2558 }
2559
2560 if (i < boot_cores_nr) {
2561 Object *core = object_new(type);
2562 int nr_threads = smp_threads;
2563
2564 /* Handle the partially filled core for older machine types */
2565 if ((i + 1) * smp_threads >= smp_cpus) {
2566 nr_threads = smp_cpus - i * smp_threads;
2567 }
2568
2569 object_property_set_int(core, "nr-threads", nr_threads,
2570 &error_fatal);
2571 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2572 &error_fatal);
2573 qdev_realize(DEVICE(core), NULL, &error_fatal);
2574
2575 object_unref(core);
2576 }
2577 }
2578 }
2579
2580 static PCIHostState *spapr_create_default_phb(void)
2581 {
2582 DeviceState *dev;
2583
2584 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2585 qdev_prop_set_uint32(dev, "index", 0);
2586 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2587
2588 return PCI_HOST_BRIDGE(dev);
2589 }
2590
2591 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2592 {
2593 MachineState *machine = MACHINE(spapr);
2594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2595 hwaddr rma_size = machine->ram_size;
2596 hwaddr node0_size = spapr_node0_size(machine);
2597
2598 /* RMA has to fit in the first NUMA node */
2599 rma_size = MIN(rma_size, node0_size);
2600
2601 /*
2602 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2603 * never exceed that
2604 */
2605 rma_size = MIN(rma_size, 1 * TiB);
2606
2607 /*
2608 * Clamp the RMA size based on machine type. This is for
2609 * migration compatibility with older qemu versions, which limited
2610 * the RMA size for complicated and mostly bad reasons.
2611 */
2612 if (smc->rma_limit) {
2613 rma_size = MIN(rma_size, smc->rma_limit);
2614 }
2615
2616 if (rma_size < MIN_RMA_SLOF) {
2617 error_setg(errp,
2618 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2619 "ldMiB guest RMA (Real Mode Area memory)",
2620 MIN_RMA_SLOF / MiB);
2621 return 0;
2622 }
2623
2624 return rma_size;
2625 }
2626
2627 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2628 {
2629 MachineState *machine = MACHINE(spapr);
2630 int i;
2631
2632 for (i = 0; i < machine->ram_slots; i++) {
2633 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2634 }
2635 }
2636
2637 /* pSeries LPAR / sPAPR hardware init */
2638 static void spapr_machine_init(MachineState *machine)
2639 {
2640 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2641 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2642 MachineClass *mc = MACHINE_GET_CLASS(machine);
2643 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2644 const char *kernel_filename = machine->kernel_filename;
2645 const char *initrd_filename = machine->initrd_filename;
2646 PCIHostState *phb;
2647 int i;
2648 MemoryRegion *sysmem = get_system_memory();
2649 long load_limit, fw_size;
2650 char *filename;
2651 Error *resize_hpt_err = NULL;
2652
2653 /*
2654 * if Secure VM (PEF) support is configured, then initialize it
2655 */
2656 pef_kvm_init(machine->cgs, &error_fatal);
2657
2658 msi_nonbroken = true;
2659
2660 QLIST_INIT(&spapr->phbs);
2661 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2662
2663 /* Determine capabilities to run with */
2664 spapr_caps_init(spapr);
2665
2666 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2667 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2668 /*
2669 * If the user explicitly requested a mode we should either
2670 * supply it, or fail completely (which we do below). But if
2671 * it's not set explicitly, we reset our mode to something
2672 * that works
2673 */
2674 if (resize_hpt_err) {
2675 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2676 error_free(resize_hpt_err);
2677 resize_hpt_err = NULL;
2678 } else {
2679 spapr->resize_hpt = smc->resize_hpt_default;
2680 }
2681 }
2682
2683 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2684
2685 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2686 /*
2687 * User requested HPT resize, but this host can't supply it. Bail out
2688 */
2689 error_report_err(resize_hpt_err);
2690 exit(1);
2691 }
2692 error_free(resize_hpt_err);
2693
2694 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2695
2696 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2697 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2698
2699 /*
2700 * VSMT must be set in order to be able to compute VCPU ids, ie to
2701 * call spapr_max_server_number() or spapr_vcpu_id().
2702 */
2703 spapr_set_vsmt_mode(spapr, &error_fatal);
2704
2705 /* Set up Interrupt Controller before we create the VCPUs */
2706 spapr_irq_init(spapr, &error_fatal);
2707
2708 /* Set up containers for ibm,client-architecture-support negotiated options
2709 */
2710 spapr->ov5 = spapr_ovec_new();
2711 spapr->ov5_cas = spapr_ovec_new();
2712
2713 if (smc->dr_lmb_enabled) {
2714 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2715 spapr_validate_node_memory(machine, &error_fatal);
2716 }
2717
2718 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2719
2720 /* advertise support for dedicated HP event source to guests */
2721 if (spapr->use_hotplug_event_source) {
2722 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2723 }
2724
2725 /* advertise support for HPT resizing */
2726 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2727 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2728 }
2729
2730 /* advertise support for ibm,dyamic-memory-v2 */
2731 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2732
2733 /* advertise XIVE on POWER9 machines */
2734 if (spapr->irq->xive) {
2735 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2736 }
2737
2738 /* init CPUs */
2739 spapr_init_cpus(spapr);
2740
2741 /*
2742 * check we don't have a memory-less/cpu-less NUMA node
2743 * Firmware relies on the existing memory/cpu topology to provide the
2744 * NUMA topology to the kernel.
2745 * And the linux kernel needs to know the NUMA topology at start
2746 * to be able to hotplug CPUs later.
2747 */
2748 if (machine->numa_state->num_nodes) {
2749 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2750 /* check for memory-less node */
2751 if (machine->numa_state->nodes[i].node_mem == 0) {
2752 CPUState *cs;
2753 int found = 0;
2754 /* check for cpu-less node */
2755 CPU_FOREACH(cs) {
2756 PowerPCCPU *cpu = POWERPC_CPU(cs);
2757 if (cpu->node_id == i) {
2758 found = 1;
2759 break;
2760 }
2761 }
2762 /* memory-less and cpu-less node */
2763 if (!found) {
2764 error_report(
2765 "Memory-less/cpu-less nodes are not supported (node %d)",
2766 i);
2767 exit(1);
2768 }
2769 }
2770 }
2771
2772 }
2773
2774 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2775
2776 /* Init numa_assoc_array */
2777 spapr_numa_associativity_init(spapr, machine);
2778
2779 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2780 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2781 spapr->max_compat_pvr)) {
2782 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2783 /* KVM and TCG always allow GTSE with radix... */
2784 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2785 }
2786 /* ... but not with hash (currently). */
2787
2788 if (kvm_enabled()) {
2789 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2790 kvmppc_enable_logical_ci_hcalls();
2791 kvmppc_enable_set_mode_hcall();
2792
2793 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2794 kvmppc_enable_clear_ref_mod_hcalls();
2795
2796 /* Enable H_PAGE_INIT */
2797 kvmppc_enable_h_page_init();
2798 }
2799
2800 /* map RAM */
2801 memory_region_add_subregion(sysmem, 0, machine->ram);
2802
2803 /* always allocate the device memory information */
2804 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2805
2806 /* initialize hotplug memory address space */
2807 if (machine->ram_size < machine->maxram_size) {
2808 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2809 /*
2810 * Limit the number of hotpluggable memory slots to half the number
2811 * slots that KVM supports, leaving the other half for PCI and other
2812 * devices. However ensure that number of slots doesn't drop below 32.
2813 */
2814 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2815 SPAPR_MAX_RAM_SLOTS;
2816
2817 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2818 max_memslots = SPAPR_MAX_RAM_SLOTS;
2819 }
2820 if (machine->ram_slots > max_memslots) {
2821 error_report("Specified number of memory slots %"
2822 PRIu64" exceeds max supported %d",
2823 machine->ram_slots, max_memslots);
2824 exit(1);
2825 }
2826
2827 machine->device_memory->base = ROUND_UP(machine->ram_size,
2828 SPAPR_DEVICE_MEM_ALIGN);
2829 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2830 "device-memory", device_mem_size);
2831 memory_region_add_subregion(sysmem, machine->device_memory->base,
2832 &machine->device_memory->mr);
2833 }
2834
2835 if (smc->dr_lmb_enabled) {
2836 spapr_create_lmb_dr_connectors(spapr);
2837 }
2838
2839 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2840 /* Create the error string for live migration blocker */
2841 error_setg(&spapr->fwnmi_migration_blocker,
2842 "A machine check is being handled during migration. The handler"
2843 "may run and log hardware error on the destination");
2844 }
2845
2846 if (mc->nvdimm_supported) {
2847 spapr_create_nvdimm_dr_connectors(spapr);
2848 }
2849
2850 /* Set up RTAS event infrastructure */
2851 spapr_events_init(spapr);
2852
2853 /* Set up the RTC RTAS interfaces */
2854 spapr_rtc_create(spapr);
2855
2856 /* Set up VIO bus */
2857 spapr->vio_bus = spapr_vio_bus_init();
2858
2859 for (i = 0; serial_hd(i); i++) {
2860 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2861 }
2862
2863 /* We always have at least the nvram device on VIO */
2864 spapr_create_nvram(spapr);
2865
2866 /*
2867 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2868 * connectors (described in root DT node's "ibm,drc-types" property)
2869 * are pre-initialized here. additional child connectors (such as
2870 * connectors for a PHBs PCI slots) are added as needed during their
2871 * parent's realization.
2872 */
2873 if (smc->dr_phb_enabled) {
2874 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2875 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2876 }
2877 }
2878
2879 /* Set up PCI */
2880 spapr_pci_rtas_init();
2881
2882 phb = spapr_create_default_phb();
2883
2884 for (i = 0; i < nb_nics; i++) {
2885 NICInfo *nd = &nd_table[i];
2886
2887 if (!nd->model) {
2888 nd->model = g_strdup("spapr-vlan");
2889 }
2890
2891 if (g_str_equal(nd->model, "spapr-vlan") ||
2892 g_str_equal(nd->model, "ibmveth")) {
2893 spapr_vlan_create(spapr->vio_bus, nd);
2894 } else {
2895 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2896 }
2897 }
2898
2899 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2900 spapr_vscsi_create(spapr->vio_bus);
2901 }
2902
2903 /* Graphics */
2904 if (spapr_vga_init(phb->bus, &error_fatal)) {
2905 spapr->has_graphics = true;
2906 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2907 }
2908
2909 if (machine->usb) {
2910 if (smc->use_ohci_by_default) {
2911 pci_create_simple(phb->bus, -1, "pci-ohci");
2912 } else {
2913 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2914 }
2915
2916 if (spapr->has_graphics) {
2917 USBBus *usb_bus = usb_bus_find(-1);
2918
2919 usb_create_simple(usb_bus, "usb-kbd");
2920 usb_create_simple(usb_bus, "usb-mouse");
2921 }
2922 }
2923
2924 if (kernel_filename) {
2925 spapr->kernel_size = load_elf(kernel_filename, NULL,
2926 translate_kernel_address, spapr,
2927 NULL, NULL, NULL, NULL, 1,
2928 PPC_ELF_MACHINE, 0, 0);
2929 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2930 spapr->kernel_size = load_elf(kernel_filename, NULL,
2931 translate_kernel_address, spapr,
2932 NULL, NULL, NULL, NULL, 0,
2933 PPC_ELF_MACHINE, 0, 0);
2934 spapr->kernel_le = spapr->kernel_size > 0;
2935 }
2936 if (spapr->kernel_size < 0) {
2937 error_report("error loading %s: %s", kernel_filename,
2938 load_elf_strerror(spapr->kernel_size));
2939 exit(1);
2940 }
2941
2942 /* load initrd */
2943 if (initrd_filename) {
2944 /* Try to locate the initrd in the gap between the kernel
2945 * and the firmware. Add a bit of space just in case
2946 */
2947 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2948 + 0x1ffff) & ~0xffff;
2949 spapr->initrd_size = load_image_targphys(initrd_filename,
2950 spapr->initrd_base,
2951 load_limit
2952 - spapr->initrd_base);
2953 if (spapr->initrd_size < 0) {
2954 error_report("could not load initial ram disk '%s'",
2955 initrd_filename);
2956 exit(1);
2957 }
2958 }
2959 }
2960
2961 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2962 if (!filename) {
2963 error_report("Could not find LPAR firmware '%s'", bios_name);
2964 exit(1);
2965 }
2966 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2967 if (fw_size <= 0) {
2968 error_report("Could not load LPAR firmware '%s'", filename);
2969 exit(1);
2970 }
2971 g_free(filename);
2972
2973 /* FIXME: Should register things through the MachineState's qdev
2974 * interface, this is a legacy from the sPAPREnvironment structure
2975 * which predated MachineState but had a similar function */
2976 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2977 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2978 &savevm_htab_handlers, spapr);
2979
2980 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2981
2982 qemu_register_boot_set(spapr_boot_set, spapr);
2983
2984 /*
2985 * Nothing needs to be done to resume a suspended guest because
2986 * suspending does not change the machine state, so no need for
2987 * a ->wakeup method.
2988 */
2989 qemu_register_wakeup_support();
2990
2991 if (kvm_enabled()) {
2992 /* to stop and start vmclock */
2993 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2994 &spapr->tb);
2995
2996 kvmppc_spapr_enable_inkernel_multitce();
2997 }
2998
2999 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3000 }
3001
3002 #define DEFAULT_KVM_TYPE "auto"
3003 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3004 {
3005 /*
3006 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3007 * accomodate the 'HV' and 'PV' formats that exists in the
3008 * wild. The 'auto' mode is being introduced already as
3009 * lower-case, thus we don't need to bother checking for
3010 * "AUTO".
3011 */
3012 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3013 return 0;
3014 }
3015
3016 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3017 return 1;
3018 }
3019
3020 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3021 return 2;
3022 }
3023
3024 error_report("Unknown kvm-type specified '%s'", vm_type);
3025 exit(1);
3026 }
3027
3028 /*
3029 * Implementation of an interface to adjust firmware path
3030 * for the bootindex property handling.
3031 */
3032 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3033 DeviceState *dev)
3034 {
3035 #define CAST(type, obj, name) \
3036 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3037 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3038 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3039 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3040 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3041
3042 if (d) {
3043 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3044 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3045 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3046
3047 if (spapr) {
3048 /*
3049 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3050 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3051 * 0x8000 | (target << 8) | (bus << 5) | lun
3052 * (see the "Logical unit addressing format" table in SAM5)
3053 */
3054 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3055 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3056 (uint64_t)id << 48);
3057 } else if (virtio) {
3058 /*
3059 * We use SRP luns of the form 01000000 | (target << 8) | lun
3060 * in the top 32 bits of the 64-bit LUN
3061 * Note: the quote above is from SLOF and it is wrong,
3062 * the actual binding is:
3063 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3064 */
3065 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3066 if (d->lun >= 256) {
3067 /* Use the LUN "flat space addressing method" */
3068 id |= 0x4000;
3069 }
3070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3071 (uint64_t)id << 32);
3072 } else if (usb) {
3073 /*
3074 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3075 * in the top 32 bits of the 64-bit LUN
3076 */
3077 unsigned usb_port = atoi(usb->port->path);
3078 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3079 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3080 (uint64_t)id << 32);
3081 }
3082 }
3083
3084 /*
3085 * SLOF probes the USB devices, and if it recognizes that the device is a
3086 * storage device, it changes its name to "storage" instead of "usb-host",
3087 * and additionally adds a child node for the SCSI LUN, so the correct
3088 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3089 */
3090 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3091 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3092 if (usb_host_dev_is_scsi_storage(usbdev)) {
3093 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3094 }
3095 }
3096
3097 if (phb) {
3098 /* Replace "pci" with "pci@800000020000000" */
3099 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3100 }
3101
3102 if (vsc) {
3103 /* Same logic as virtio above */
3104 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3105 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3106 }
3107
3108 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3109 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3110 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3111 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3112 }
3113
3114 if (pcidev) {
3115 return spapr_pci_fw_dev_name(pcidev);
3116 }
3117
3118 return NULL;
3119 }
3120
3121 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3122 {
3123 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3124
3125 return g_strdup(spapr->kvm_type);
3126 }
3127
3128 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3129 {
3130 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3131
3132 g_free(spapr->kvm_type);
3133 spapr->kvm_type = g_strdup(value);
3134 }
3135
3136 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3137 {
3138 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140 return spapr->use_hotplug_event_source;
3141 }
3142
3143 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3144 Error **errp)
3145 {
3146 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147
3148 spapr->use_hotplug_event_source = value;
3149 }
3150
3151 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3152 {
3153 return true;
3154 }
3155
3156 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3157 {
3158 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159
3160 switch (spapr->resize_hpt) {
3161 case SPAPR_RESIZE_HPT_DEFAULT:
3162 return g_strdup("default");
3163 case SPAPR_RESIZE_HPT_DISABLED:
3164 return g_strdup("disabled");
3165 case SPAPR_RESIZE_HPT_ENABLED:
3166 return g_strdup("enabled");
3167 case SPAPR_RESIZE_HPT_REQUIRED:
3168 return g_strdup("required");
3169 }
3170 g_assert_not_reached();
3171 }
3172
3173 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3174 {
3175 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176
3177 if (strcmp(value, "default") == 0) {
3178 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3179 } else if (strcmp(value, "disabled") == 0) {
3180 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3181 } else if (strcmp(value, "enabled") == 0) {
3182 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3183 } else if (strcmp(value, "required") == 0) {
3184 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3185 } else {
3186 error_setg(errp, "Bad value for \"resize-hpt\" property");
3187 }
3188 }
3189
3190 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3191 {
3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193
3194 if (spapr->irq == &spapr_irq_xics_legacy) {
3195 return g_strdup("legacy");
3196 } else if (spapr->irq == &spapr_irq_xics) {
3197 return g_strdup("xics");
3198 } else if (spapr->irq == &spapr_irq_xive) {
3199 return g_strdup("xive");
3200 } else if (spapr->irq == &spapr_irq_dual) {
3201 return g_strdup("dual");
3202 }
3203 g_assert_not_reached();
3204 }
3205
3206 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3207 {
3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209
3210 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3211 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3212 return;
3213 }
3214
3215 /* The legacy IRQ backend can not be set */
3216 if (strcmp(value, "xics") == 0) {
3217 spapr->irq = &spapr_irq_xics;
3218 } else if (strcmp(value, "xive") == 0) {
3219 spapr->irq = &spapr_irq_xive;
3220 } else if (strcmp(value, "dual") == 0) {
3221 spapr->irq = &spapr_irq_dual;
3222 } else {
3223 error_setg(errp, "Bad value for \"ic-mode\" property");
3224 }
3225 }
3226
3227 static char *spapr_get_host_model(Object *obj, Error **errp)
3228 {
3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230
3231 return g_strdup(spapr->host_model);
3232 }
3233
3234 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3235 {
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3237
3238 g_free(spapr->host_model);
3239 spapr->host_model = g_strdup(value);
3240 }
3241
3242 static char *spapr_get_host_serial(Object *obj, Error **errp)
3243 {
3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246 return g_strdup(spapr->host_serial);
3247 }
3248
3249 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3250 {
3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252
3253 g_free(spapr->host_serial);
3254 spapr->host_serial = g_strdup(value);
3255 }
3256
3257 static void spapr_instance_init(Object *obj)
3258 {
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3261 MachineState *ms = MACHINE(spapr);
3262 MachineClass *mc = MACHINE_GET_CLASS(ms);
3263
3264 /*
3265 * NVDIMM support went live in 5.1 without considering that, in
3266 * other archs, the user needs to enable NVDIMM support with the
3267 * 'nvdimm' machine option and the default behavior is NVDIMM
3268 * support disabled. It is too late to roll back to the standard
3269 * behavior without breaking 5.1 guests.
3270 */
3271 if (mc->nvdimm_supported) {
3272 ms->nvdimms_state->is_enabled = true;
3273 }
3274
3275 spapr->htab_fd = -1;
3276 spapr->use_hotplug_event_source = true;
3277 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3278 object_property_add_str(obj, "kvm-type",
3279 spapr_get_kvm_type, spapr_set_kvm_type);
3280 object_property_set_description(obj, "kvm-type",
3281 "Specifies the KVM virtualization mode (auto,"
3282 " hv, pr). Defaults to 'auto'. This mode will use"
3283 " any available KVM module loaded in the host,"
3284 " where kvm_hv takes precedence if both kvm_hv and"
3285 " kvm_pr are loaded.");
3286 object_property_add_bool(obj, "modern-hotplug-events",
3287 spapr_get_modern_hotplug_events,
3288 spapr_set_modern_hotplug_events);
3289 object_property_set_description(obj, "modern-hotplug-events",
3290 "Use dedicated hotplug event mechanism in"
3291 " place of standard EPOW events when possible"
3292 " (required for memory hot-unplug support)");
3293 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3294 "Maximum permitted CPU compatibility mode");
3295
3296 object_property_add_str(obj, "resize-hpt",
3297 spapr_get_resize_hpt, spapr_set_resize_hpt);
3298 object_property_set_description(obj, "resize-hpt",
3299 "Resizing of the Hash Page Table (enabled, disabled, required)");
3300 object_property_add_uint32_ptr(obj, "vsmt",
3301 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3302 object_property_set_description(obj, "vsmt",
3303 "Virtual SMT: KVM behaves as if this were"
3304 " the host's SMT mode");
3305
3306 object_property_add_bool(obj, "vfio-no-msix-emulation",
3307 spapr_get_msix_emulation, NULL);
3308
3309 object_property_add_uint64_ptr(obj, "kernel-addr",
3310 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3311 object_property_set_description(obj, "kernel-addr",
3312 stringify(KERNEL_LOAD_ADDR)
3313 " for -kernel is the default");
3314 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3315 /* The machine class defines the default interrupt controller mode */
3316 spapr->irq = smc->irq;
3317 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3318 spapr_set_ic_mode);
3319 object_property_set_description(obj, "ic-mode",
3320 "Specifies the interrupt controller mode (xics, xive, dual)");
3321
3322 object_property_add_str(obj, "host-model",
3323 spapr_get_host_model, spapr_set_host_model);
3324 object_property_set_description(obj, "host-model",
3325 "Host model to advertise in guest device tree");
3326 object_property_add_str(obj, "host-serial",
3327 spapr_get_host_serial, spapr_set_host_serial);
3328 object_property_set_description(obj, "host-serial",
3329 "Host serial number to advertise in guest device tree");
3330 }
3331
3332 static void spapr_machine_finalizefn(Object *obj)
3333 {
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336 g_free(spapr->kvm_type);
3337 }
3338
3339 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3340 {
3341 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3342 PowerPCCPU *cpu = POWERPC_CPU(cs);
3343 CPUPPCState *env = &cpu->env;
3344
3345 cpu_synchronize_state(cs);
3346 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3347 if (spapr->fwnmi_system_reset_addr != -1) {
3348 uint64_t rtas_addr, addr;
3349
3350 /* get rtas addr from fdt */
3351 rtas_addr = spapr_get_rtas_addr();
3352 if (!rtas_addr) {
3353 qemu_system_guest_panicked(NULL);
3354 return;
3355 }
3356
3357 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3358 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3359 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3360 env->gpr[3] = addr;
3361 }
3362 ppc_cpu_do_system_reset(cs);
3363 if (spapr->fwnmi_system_reset_addr != -1) {
3364 env->nip = spapr->fwnmi_system_reset_addr;
3365 }
3366 }
3367
3368 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3369 {
3370 CPUState *cs;
3371
3372 CPU_FOREACH(cs) {
3373 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3374 }
3375 }
3376
3377 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3378 void *fdt, int *fdt_start_offset, Error **errp)
3379 {
3380 uint64_t addr;
3381 uint32_t node;
3382
3383 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3384 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3385 &error_abort);
3386 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3387 SPAPR_MEMORY_BLOCK_SIZE);
3388 return 0;
3389 }
3390
3391 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3392 bool dedicated_hp_event_source)
3393 {
3394 SpaprDrc *drc;
3395 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3396 int i;
3397 uint64_t addr = addr_start;
3398 bool hotplugged = spapr_drc_hotplugged(dev);
3399
3400 for (i = 0; i < nr_lmbs; i++) {
3401 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3402 addr / SPAPR_MEMORY_BLOCK_SIZE);
3403 g_assert(drc);
3404
3405 /*
3406 * memory_device_get_free_addr() provided a range of free addresses
3407 * that doesn't overlap with any existing mapping at pre-plug. The
3408 * corresponding LMB DRCs are thus assumed to be all attachable.
3409 */
3410 spapr_drc_attach(drc, dev);
3411 if (!hotplugged) {
3412 spapr_drc_reset(drc);
3413 }
3414 addr += SPAPR_MEMORY_BLOCK_SIZE;
3415 }
3416 /* send hotplug notification to the
3417 * guest only in case of hotplugged memory
3418 */
3419 if (hotplugged) {
3420 if (dedicated_hp_event_source) {
3421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3422 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3423 g_assert(drc);
3424 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3425 nr_lmbs,
3426 spapr_drc_index(drc));
3427 } else {
3428 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3429 nr_lmbs);
3430 }
3431 }
3432 }
3433
3434 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3435 {
3436 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3437 PCDIMMDevice *dimm = PC_DIMM(dev);
3438 uint64_t size, addr;
3439 int64_t slot;
3440 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3441
3442 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3443
3444 pc_dimm_plug(dimm, MACHINE(ms));
3445
3446 if (!is_nvdimm) {
3447 addr = object_property_get_uint(OBJECT(dimm),
3448 PC_DIMM_ADDR_PROP, &error_abort);
3449 spapr_add_lmbs(dev, addr, size,
3450 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3451 } else {
3452 slot = object_property_get_int(OBJECT(dimm),
3453 PC_DIMM_SLOT_PROP, &error_abort);
3454 /* We should have valid slot number at this point */
3455 g_assert(slot >= 0);
3456 spapr_add_nvdimm(dev, slot);
3457 }
3458 }
3459
3460 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3461 Error **errp)
3462 {
3463 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3464 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3465 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3466 PCDIMMDevice *dimm = PC_DIMM(dev);
3467 Error *local_err = NULL;
3468 uint64_t size;
3469 Object *memdev;
3470 hwaddr pagesize;
3471
3472 if (!smc->dr_lmb_enabled) {
3473 error_setg(errp, "Memory hotplug not supported for this machine");
3474 return;
3475 }
3476
3477 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3478 if (local_err) {
3479 error_propagate(errp, local_err);
3480 return;
3481 }
3482
3483 if (is_nvdimm) {
3484 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3485 return;
3486 }
3487 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3488 error_setg(errp, "Hotplugged memory size must be a multiple of "
3489 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3490 return;
3491 }
3492
3493 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3494 &error_abort);
3495 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3496 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3497 return;
3498 }
3499
3500 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3501 }
3502
3503 struct SpaprDimmState {
3504 PCDIMMDevice *dimm;
3505 uint32_t nr_lmbs;
3506 QTAILQ_ENTRY(SpaprDimmState) next;
3507 };
3508
3509 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3510 PCDIMMDevice *dimm)
3511 {
3512 SpaprDimmState *dimm_state = NULL;
3513
3514 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3515 if (dimm_state->dimm == dimm) {
3516 break;
3517 }
3518 }
3519 return dimm_state;
3520 }
3521
3522 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3523 uint32_t nr_lmbs,
3524 PCDIMMDevice *dimm)
3525 {
3526 SpaprDimmState *ds = NULL;
3527
3528 /*
3529 * If this request is for a DIMM whose removal had failed earlier
3530 * (due to guest's refusal to remove the LMBs), we would have this
3531 * dimm already in the pending_dimm_unplugs list. In that
3532 * case don't add again.
3533 */
3534 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3535 if (!ds) {
3536 ds = g_malloc0(sizeof(SpaprDimmState));
3537 ds->nr_lmbs = nr_lmbs;
3538 ds->dimm = dimm;
3539 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3540 }
3541 return ds;
3542 }
3543
3544 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3545 SpaprDimmState *dimm_state)
3546 {
3547 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3548 g_free(dimm_state);
3549 }
3550
3551 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3552 PCDIMMDevice *dimm)
3553 {
3554 SpaprDrc *drc;
3555 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3556 &error_abort);
3557 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3558 uint32_t avail_lmbs = 0;
3559 uint64_t addr_start, addr;
3560 int i;
3561
3562 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3563 &error_abort);
3564
3565 addr = addr_start;
3566 for (i = 0; i < nr_lmbs; i++) {
3567 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3568 addr / SPAPR_MEMORY_BLOCK_SIZE);
3569 g_assert(drc);
3570 if (drc->dev) {
3571 avail_lmbs++;
3572 }
3573 addr += SPAPR_MEMORY_BLOCK_SIZE;
3574 }
3575
3576 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3577 }
3578
3579 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3580 {
3581 SpaprDimmState *ds;
3582 PCDIMMDevice *dimm;
3583 SpaprDrc *drc;
3584 uint32_t nr_lmbs;
3585 uint64_t size, addr_start, addr;
3586 g_autofree char *qapi_error = NULL;
3587 int i;
3588
3589 if (!dev) {
3590 return;
3591 }
3592
3593 dimm = PC_DIMM(dev);
3594 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3595
3596 /*
3597 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3598 * unplug state, but one of its DRC is marked as unplug_requested.
3599 * This is bad and weird enough to g_assert() out.
3600 */
3601 g_assert(ds);
3602
3603 spapr_pending_dimm_unplugs_remove(spapr, ds);
3604
3605 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3606 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3607
3608 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3609 &error_abort);
3610
3611 addr = addr_start;
3612 for (i = 0; i < nr_lmbs; i++) {
3613 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3614 addr / SPAPR_MEMORY_BLOCK_SIZE);
3615 g_assert(drc);
3616
3617 drc->unplug_requested = false;
3618 addr += SPAPR_MEMORY_BLOCK_SIZE;
3619 }
3620
3621 /*
3622 * Tell QAPI that something happened and the memory
3623 * hotunplug wasn't successful.
3624 */
3625 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3626 "for device %s", dev->id);
3627 qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3628 }
3629
3630 /* Callback to be called during DRC release. */
3631 void spapr_lmb_release(DeviceState *dev)
3632 {
3633 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3634 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3635 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3636
3637 /* This information will get lost if a migration occurs
3638 * during the unplug process. In this case recover it. */
3639 if (ds == NULL) {
3640 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3641 g_assert(ds);
3642 /* The DRC being examined by the caller at least must be counted */
3643 g_assert(ds->nr_lmbs);
3644 }
3645
3646 if (--ds->nr_lmbs) {
3647 return;
3648 }
3649
3650 /*
3651 * Now that all the LMBs have been removed by the guest, call the
3652 * unplug handler chain. This can never fail.
3653 */
3654 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3655 object_unparent(OBJECT(dev));
3656 }
3657
3658 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3659 {
3660 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3661 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3662
3663 /* We really shouldn't get this far without anything to unplug */
3664 g_assert(ds);
3665
3666 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3667 qdev_unrealize(dev);
3668 spapr_pending_dimm_unplugs_remove(spapr, ds);
3669 }
3670
3671 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3672 DeviceState *dev, Error **errp)
3673 {
3674 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3675 PCDIMMDevice *dimm = PC_DIMM(dev);
3676 uint32_t nr_lmbs;
3677 uint64_t size, addr_start, addr;
3678 int i;
3679 SpaprDrc *drc;
3680
3681 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3682 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3683 return;
3684 }
3685
3686 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3687 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3688
3689 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3690 &error_abort);
3691
3692 /*
3693 * An existing pending dimm state for this DIMM means that there is an
3694 * unplug operation in progress, waiting for the spapr_lmb_release
3695 * callback to complete the job (BQL can't cover that far). In this case,
3696 * bail out to avoid detaching DRCs that were already released.
3697 */
3698 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3699 error_setg(errp, "Memory unplug already in progress for device %s",
3700 dev->id);
3701 return;
3702 }
3703
3704 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3705
3706 addr = addr_start;
3707 for (i = 0; i < nr_lmbs; i++) {
3708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3709 addr / SPAPR_MEMORY_BLOCK_SIZE);
3710 g_assert(drc);
3711
3712 spapr_drc_unplug_request(drc);
3713 addr += SPAPR_MEMORY_BLOCK_SIZE;
3714 }
3715
3716 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3717 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3718 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3719 nr_lmbs, spapr_drc_index(drc));
3720 }
3721
3722 /* Callback to be called during DRC release. */
3723 void spapr_core_release(DeviceState *dev)
3724 {
3725 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3726
3727 /* Call the unplug handler chain. This can never fail. */
3728 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3729 object_unparent(OBJECT(dev));
3730 }
3731
3732 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3733 {
3734 MachineState *ms = MACHINE(hotplug_dev);
3735 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3736 CPUCore *cc = CPU_CORE(dev);
3737 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3738
3739 if (smc->pre_2_10_has_unused_icps) {
3740 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3741 int i;
3742
3743 for (i = 0; i < cc->nr_threads; i++) {
3744 CPUState *cs = CPU(sc->threads[i]);
3745
3746 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3747 }
3748 }
3749
3750 assert(core_slot);
3751 core_slot->cpu = NULL;
3752 qdev_unrealize(dev);
3753 }
3754
3755 static
3756 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3757 Error **errp)
3758 {
3759 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3760 int index;
3761 SpaprDrc *drc;
3762 CPUCore *cc = CPU_CORE(dev);
3763
3764 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3765 error_setg(errp, "Unable to find CPU core with core-id: %d",
3766 cc->core_id);
3767 return;
3768 }
3769 if (index == 0) {
3770 error_setg(errp, "Boot CPU core may not be unplugged");
3771 return;
3772 }
3773
3774 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3775 spapr_vcpu_id(spapr, cc->core_id));
3776 g_assert(drc);
3777
3778 if (!spapr_drc_unplug_requested(drc)) {
3779 spapr_drc_unplug_request(drc);
3780 }
3781
3782 /*
3783 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3784 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3785 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3786 * attempt (e.g. the kernel will refuse to remove the last online
3787 * CPU), we will never attempt it again because unplug_requested
3788 * will still be 'true' in that case.
3789 */
3790 spapr_hotplug_req_remove_by_index(drc);
3791 }
3792
3793 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3794 void *fdt, int *fdt_start_offset, Error **errp)
3795 {
3796 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3797 CPUState *cs = CPU(core->threads[0]);
3798 PowerPCCPU *cpu = POWERPC_CPU(cs);
3799 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3800 int id = spapr_get_vcpu_id(cpu);
3801 g_autofree char *nodename = NULL;
3802 int offset;
3803
3804 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3805 offset = fdt_add_subnode(fdt, 0, nodename);
3806
3807 spapr_dt_cpu(cs, fdt, offset, spapr);
3808
3809 /*
3810 * spapr_dt_cpu() does not fill the 'name' property in the
3811 * CPU node. The function is called during boot process, before
3812 * and after CAS, and overwriting the 'name' property written
3813 * by SLOF is not allowed.
3814 *
3815 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3816 * CPUs more compatible with the coldplugged ones, which have
3817 * the 'name' property. Linux Kernel also relies on this
3818 * property to identify CPU nodes.
3819 */
3820 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3821
3822 *fdt_start_offset = offset;
3823 return 0;
3824 }
3825
3826 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3827 {
3828 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3829 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3830 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3831 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3832 CPUCore *cc = CPU_CORE(dev);
3833 CPUState *cs;
3834 SpaprDrc *drc;
3835 CPUArchId *core_slot;
3836 int index;
3837 bool hotplugged = spapr_drc_hotplugged(dev);
3838 int i;
3839
3840 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3841 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3842
3843 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3844 spapr_vcpu_id(spapr, cc->core_id));
3845
3846 g_assert(drc || !mc->has_hotpluggable_cpus);
3847
3848 if (drc) {
3849 /*
3850 * spapr_core_pre_plug() already buys us this is a brand new
3851 * core being plugged into a free slot. Nothing should already
3852 * be attached to the corresponding DRC.
3853 */
3854 spapr_drc_attach(drc, dev);
3855
3856 if (hotplugged) {
3857 /*
3858 * Send hotplug notification interrupt to the guest only
3859 * in case of hotplugged CPUs.
3860 */
3861 spapr_hotplug_req_add_by_index(drc);
3862 } else {
3863 spapr_drc_reset(drc);
3864 }
3865 }
3866
3867 core_slot->cpu = OBJECT(dev);
3868
3869 /*
3870 * Set compatibility mode to match the boot CPU, which was either set
3871 * by the machine reset code or by CAS. This really shouldn't fail at
3872 * this point.
3873 */
3874 if (hotplugged) {
3875 for (i = 0; i < cc->nr_threads; i++) {
3876 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3877 &error_abort);
3878 }
3879 }
3880
3881 if (smc->pre_2_10_has_unused_icps) {
3882 for (i = 0; i < cc->nr_threads; i++) {
3883 cs = CPU(core->threads[i]);
3884 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3885 }
3886 }
3887 }
3888
3889 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3890 Error **errp)
3891 {
3892 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3893 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3894 CPUCore *cc = CPU_CORE(dev);
3895 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3896 const char *type = object_get_typename(OBJECT(dev));
3897 CPUArchId *core_slot;
3898 int index;
3899 unsigned int smp_threads = machine->smp.threads;
3900
3901 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3902 error_setg(errp, "CPU hotplug not supported for this machine");
3903 return;
3904 }
3905
3906 if (strcmp(base_core_type, type)) {
3907 error_setg(errp, "CPU core type should be %s", base_core_type);
3908 return;
3909 }
3910
3911 if (cc->core_id % smp_threads) {
3912 error_setg(errp, "invalid core id %d", cc->core_id);
3913 return;
3914 }
3915
3916 /*
3917 * In general we should have homogeneous threads-per-core, but old
3918 * (pre hotplug support) machine types allow the last core to have
3919 * reduced threads as a compatibility hack for when we allowed
3920 * total vcpus not a multiple of threads-per-core.
3921 */
3922 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3923 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3924 smp_threads);
3925 return;
3926 }
3927
3928 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3929 if (!core_slot) {
3930 error_setg(errp, "core id %d out of range", cc->core_id);
3931 return;
3932 }
3933
3934 if (core_slot->cpu) {
3935 error_setg(errp, "core %d already populated", cc->core_id);
3936 return;
3937 }
3938
3939 numa_cpu_pre_plug(core_slot, dev, errp);
3940 }
3941
3942 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3943 void *fdt, int *fdt_start_offset, Error **errp)
3944 {
3945 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3946 int intc_phandle;
3947
3948 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3949 if (intc_phandle <= 0) {
3950 return -1;
3951 }
3952
3953 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3954 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3955 return -1;
3956 }
3957
3958 /* generally SLOF creates these, for hotplug it's up to QEMU */
3959 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3960
3961 return 0;
3962 }
3963
3964 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3965 Error **errp)
3966 {
3967 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3968 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3969 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3970 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3971 SpaprDrc *drc;
3972
3973 if (dev->hotplugged && !smc->dr_phb_enabled) {
3974 error_setg(errp, "PHB hotplug not supported for this machine");
3975 return false;
3976 }
3977
3978 if (sphb->index == (uint32_t)-1) {
3979 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3980 return false;
3981 }
3982
3983 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3984 if (drc && drc->dev) {
3985 error_setg(errp, "PHB %d already attached", sphb->index);
3986 return false;
3987 }
3988
3989 /*
3990 * This will check that sphb->index doesn't exceed the maximum number of
3991 * PHBs for the current machine type.
3992 */
3993 return
3994 smc->phb_placement(spapr, sphb->index,
3995 &sphb->buid, &sphb->io_win_addr,
3996 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3997 windows_supported, sphb->dma_liobn,
3998 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3999 errp);
4000 }
4001
4002 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4003 {
4004 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4005 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4006 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4007 SpaprDrc *drc;
4008 bool hotplugged = spapr_drc_hotplugged(dev);
4009
4010 if (!smc->dr_phb_enabled) {
4011 return;
4012 }
4013
4014 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4015 /* hotplug hooks should check it's enabled before getting this far */
4016 assert(drc);
4017
4018 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4019 spapr_drc_attach(drc, dev);
4020
4021 if (hotplugged) {
4022 spapr_hotplug_req_add_by_index(drc);
4023 } else {
4024 spapr_drc_reset(drc);
4025 }
4026 }
4027
4028 void spapr_phb_release(DeviceState *dev)
4029 {
4030 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4031
4032 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4033 object_unparent(OBJECT(dev));
4034 }
4035
4036 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4037 {
4038 qdev_unrealize(dev);
4039 }
4040
4041 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4042 DeviceState *dev, Error **errp)
4043 {
4044 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4045 SpaprDrc *drc;
4046
4047 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4048 assert(drc);
4049
4050 if (!spapr_drc_unplug_requested(drc)) {
4051 spapr_drc_unplug_request(drc);
4052 spapr_hotplug_req_remove_by_index(drc);
4053 } else {
4054 error_setg(errp,
4055 "PCI Host Bridge unplug already in progress for device %s",
4056 dev->id);
4057 }
4058 }
4059
4060 static
4061 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4062 Error **errp)
4063 {
4064 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4065
4066 if (spapr->tpm_proxy != NULL) {
4067 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4068 return false;
4069 }
4070
4071 return true;
4072 }
4073
4074 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4075 {
4076 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4077 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4078
4079 /* Already checked in spapr_tpm_proxy_pre_plug() */
4080 g_assert(spapr->tpm_proxy == NULL);
4081
4082 spapr->tpm_proxy = tpm_proxy;
4083 }
4084
4085 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4086 {
4087 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4088
4089 qdev_unrealize(dev);
4090 object_unparent(OBJECT(dev));
4091 spapr->tpm_proxy = NULL;
4092 }
4093
4094 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4095 DeviceState *dev, Error **errp)
4096 {
4097 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4098 spapr_memory_plug(hotplug_dev, dev);
4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4100 spapr_core_plug(hotplug_dev, dev);
4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4102 spapr_phb_plug(hotplug_dev, dev);
4103 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4104 spapr_tpm_proxy_plug(hotplug_dev, dev);
4105 }
4106 }
4107
4108 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4109 DeviceState *dev, Error **errp)
4110 {
4111 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4112 spapr_memory_unplug(hotplug_dev, dev);
4113 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4114 spapr_core_unplug(hotplug_dev, dev);
4115 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4116 spapr_phb_unplug(hotplug_dev, dev);
4117 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4118 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4119 }
4120 }
4121
4122 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4123 {
4124 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4125 /*
4126 * CAS will process all pending unplug requests.
4127 *
4128 * HACK: a guest could theoretically have cleared all bits in OV5,
4129 * but none of the guests we care for do.
4130 */
4131 spapr_ovec_empty(spapr->ov5_cas);
4132 }
4133
4134 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4135 DeviceState *dev, Error **errp)
4136 {
4137 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138 MachineClass *mc = MACHINE_GET_CLASS(sms);
4139 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4140
4141 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4142 if (spapr_memory_hot_unplug_supported(sms)) {
4143 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4144 } else {
4145 error_setg(errp, "Memory hot unplug not supported for this guest");
4146 }
4147 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4148 if (!mc->has_hotpluggable_cpus) {
4149 error_setg(errp, "CPU hot unplug not supported on this machine");
4150 return;
4151 }
4152 spapr_core_unplug_request(hotplug_dev, dev, errp);
4153 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4154 if (!smc->dr_phb_enabled) {
4155 error_setg(errp, "PHB hot unplug not supported on this machine");
4156 return;
4157 }
4158 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4159 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4160 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4161 }
4162 }
4163
4164 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4165 DeviceState *dev, Error **errp)
4166 {
4167 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4168 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4170 spapr_core_pre_plug(hotplug_dev, dev, errp);
4171 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4172 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4173 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4174 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4175 }
4176 }
4177
4178 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4179 DeviceState *dev)
4180 {
4181 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4182 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4183 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4184 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4185 return HOTPLUG_HANDLER(machine);
4186 }
4187 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4188 PCIDevice *pcidev = PCI_DEVICE(dev);
4189 PCIBus *root = pci_device_root_bus(pcidev);
4190 SpaprPhbState *phb =
4191 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4192 TYPE_SPAPR_PCI_HOST_BRIDGE);
4193
4194 if (phb) {
4195 return HOTPLUG_HANDLER(phb);
4196 }
4197 }
4198 return NULL;
4199 }
4200
4201 static CpuInstanceProperties
4202 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4203 {
4204 CPUArchId *core_slot;
4205 MachineClass *mc = MACHINE_GET_CLASS(machine);
4206
4207 /* make sure possible_cpu are intialized */
4208 mc->possible_cpu_arch_ids(machine);
4209 /* get CPU core slot containing thread that matches cpu_index */
4210 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4211 assert(core_slot);
4212 return core_slot->props;
4213 }
4214
4215 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4216 {
4217 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4218 }
4219
4220 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4221 {
4222 int i;
4223 unsigned int smp_threads = machine->smp.threads;
4224 unsigned int smp_cpus = machine->smp.cpus;
4225 const char *core_type;
4226 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4227 MachineClass *mc = MACHINE_GET_CLASS(machine);
4228
4229 if (!mc->has_hotpluggable_cpus) {
4230 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4231 }
4232 if (machine->possible_cpus) {
4233 assert(machine->possible_cpus->len == spapr_max_cores);
4234 return machine->possible_cpus;
4235 }
4236
4237 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4238 if (!core_type) {
4239 error_report("Unable to find sPAPR CPU Core definition");
4240 exit(1);
4241 }
4242
4243 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4244 sizeof(CPUArchId) * spapr_max_cores);
4245 machine->possible_cpus->len = spapr_max_cores;
4246 for (i = 0; i < machine->possible_cpus->len; i++) {
4247 int core_id = i * smp_threads;
4248
4249 machine->possible_cpus->cpus[i].type = core_type;
4250 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4251 machine->possible_cpus->cpus[i].arch_id = core_id;
4252 machine->possible_cpus->cpus[i].props.has_core_id = true;
4253 machine->possible_cpus->cpus[i].props.core_id = core_id;
4254 }
4255 return machine->possible_cpus;
4256 }
4257
4258 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4259 uint64_t *buid, hwaddr *pio,
4260 hwaddr *mmio32, hwaddr *mmio64,
4261 unsigned n_dma, uint32_t *liobns,
4262 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4263 {
4264 /*
4265 * New-style PHB window placement.
4266 *
4267 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4268 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4269 * windows.
4270 *
4271 * Some guest kernels can't work with MMIO windows above 1<<46
4272 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4273 *
4274 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4275 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4276 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4277 * 1TiB 64-bit MMIO windows for each PHB.
4278 */
4279 const uint64_t base_buid = 0x800000020000000ULL;
4280 int i;
4281
4282 /* Sanity check natural alignments */
4283 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4284 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4285 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4286 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4287 /* Sanity check bounds */
4288 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4289 SPAPR_PCI_MEM32_WIN_SIZE);
4290 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4291 SPAPR_PCI_MEM64_WIN_SIZE);
4292
4293 if (index >= SPAPR_MAX_PHBS) {
4294 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4295 SPAPR_MAX_PHBS - 1);
4296 return false;
4297 }
4298
4299 *buid = base_buid + index;
4300 for (i = 0; i < n_dma; ++i) {
4301 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4302 }
4303
4304 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4305 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4306 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4307
4308 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4309 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4310 return true;
4311 }
4312
4313 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4314 {
4315 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4316
4317 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4318 }
4319
4320 static void spapr_ics_resend(XICSFabric *dev)
4321 {
4322 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4323
4324 ics_resend(spapr->ics);
4325 }
4326
4327 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4328 {
4329 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4330
4331 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4332 }
4333
4334 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4335 Monitor *mon)
4336 {
4337 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4338
4339 spapr_irq_print_info(spapr, mon);
4340 monitor_printf(mon, "irqchip: %s\n",
4341 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4342 }
4343
4344 /*
4345 * This is a XIVE only operation
4346 */
4347 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4348 uint8_t nvt_blk, uint32_t nvt_idx,
4349 bool cam_ignore, uint8_t priority,
4350 uint32_t logic_serv, XiveTCTXMatch *match)
4351 {
4352 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4353 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4354 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4355 int count;
4356
4357 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4358 priority, logic_serv, match);
4359 if (count < 0) {
4360 return count;
4361 }
4362
4363 /*
4364 * When we implement the save and restore of the thread interrupt
4365 * contexts in the enter/exit CPU handlers of the machine and the
4366 * escalations in QEMU, we should be able to handle non dispatched
4367 * vCPUs.
4368 *
4369 * Until this is done, the sPAPR machine should find at least one
4370 * matching context always.
4371 */
4372 if (count == 0) {
4373 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4374 nvt_blk, nvt_idx);
4375 }
4376
4377 return count;
4378 }
4379
4380 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4381 {
4382 return cpu->vcpu_id;
4383 }
4384
4385 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4386 {
4387 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4388 MachineState *ms = MACHINE(spapr);
4389 int vcpu_id;
4390
4391 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4392
4393 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4394 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4395 error_append_hint(errp, "Adjust the number of cpus to %d "
4396 "or try to raise the number of threads per core\n",
4397 vcpu_id * ms->smp.threads / spapr->vsmt);
4398 return false;
4399 }
4400
4401 cpu->vcpu_id = vcpu_id;
4402 return true;
4403 }
4404
4405 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4406 {
4407 CPUState *cs;
4408
4409 CPU_FOREACH(cs) {
4410 PowerPCCPU *cpu = POWERPC_CPU(cs);
4411
4412 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4413 return cpu;
4414 }
4415 }
4416
4417 return NULL;
4418 }
4419
4420 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4421 {
4422 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4423
4424 /* These are only called by TCG, KVM maintains dispatch state */
4425
4426 spapr_cpu->prod = false;
4427 if (spapr_cpu->vpa_addr) {
4428 CPUState *cs = CPU(cpu);
4429 uint32_t dispatch;
4430
4431 dispatch = ldl_be_phys(cs->as,
4432 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4433 dispatch++;
4434 if ((dispatch & 1) != 0) {
4435 qemu_log_mask(LOG_GUEST_ERROR,
4436 "VPA: incorrect dispatch counter value for "
4437 "dispatched partition %u, correcting.\n", dispatch);
4438 dispatch++;
4439 }
4440 stl_be_phys(cs->as,
4441 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4442 }
4443 }
4444
4445 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4446 {
4447 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4448
4449 if (spapr_cpu->vpa_addr) {
4450 CPUState *cs = CPU(cpu);
4451 uint32_t dispatch;
4452
4453 dispatch = ldl_be_phys(cs->as,
4454 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4455 dispatch++;
4456 if ((dispatch & 1) != 1) {
4457 qemu_log_mask(LOG_GUEST_ERROR,
4458 "VPA: incorrect dispatch counter value for "
4459 "preempted partition %u, correcting.\n", dispatch);
4460 dispatch++;
4461 }
4462 stl_be_phys(cs->as,
4463 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4464 }
4465 }
4466
4467 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4468 {
4469 MachineClass *mc = MACHINE_CLASS(oc);
4470 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4471 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4472 NMIClass *nc = NMI_CLASS(oc);
4473 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4474 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4475 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4476 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4477 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4478
4479 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4480 mc->ignore_boot_device_suffixes = true;
4481
4482 /*
4483 * We set up the default / latest behaviour here. The class_init
4484 * functions for the specific versioned machine types can override
4485 * these details for backwards compatibility
4486 */
4487 mc->init = spapr_machine_init;
4488 mc->reset = spapr_machine_reset;
4489 mc->block_default_type = IF_SCSI;
4490 mc->max_cpus = 1024;
4491 mc->no_parallel = 1;
4492 mc->default_boot_order = "";
4493 mc->default_ram_size = 512 * MiB;
4494 mc->default_ram_id = "ppc_spapr.ram";
4495 mc->default_display = "std";
4496 mc->kvm_type = spapr_kvm_type;
4497 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4498 mc->pci_allow_0_address = true;
4499 assert(!mc->get_hotplug_handler);
4500 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4501 hc->pre_plug = spapr_machine_device_pre_plug;
4502 hc->plug = spapr_machine_device_plug;
4503 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4504 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4505 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4506 hc->unplug_request = spapr_machine_device_unplug_request;
4507 hc->unplug = spapr_machine_device_unplug;
4508
4509 smc->dr_lmb_enabled = true;
4510 smc->update_dt_enabled = true;
4511 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4512 mc->has_hotpluggable_cpus = true;
4513 mc->nvdimm_supported = true;
4514 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4515 fwc->get_dev_path = spapr_get_fw_dev_path;
4516 nc->nmi_monitor_handler = spapr_nmi;
4517 smc->phb_placement = spapr_phb_placement;
4518 vhc->hypercall = emulate_spapr_hypercall;
4519 vhc->hpt_mask = spapr_hpt_mask;
4520 vhc->map_hptes = spapr_map_hptes;
4521 vhc->unmap_hptes = spapr_unmap_hptes;
4522 vhc->hpte_set_c = spapr_hpte_set_c;
4523 vhc->hpte_set_r = spapr_hpte_set_r;
4524 vhc->get_pate = spapr_get_pate;
4525 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4526 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4527 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4528 xic->ics_get = spapr_ics_get;
4529 xic->ics_resend = spapr_ics_resend;
4530 xic->icp_get = spapr_icp_get;
4531 ispc->print_info = spapr_pic_print_info;
4532 /* Force NUMA node memory size to be a multiple of
4533 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4534 * in which LMBs are represented and hot-added
4535 */
4536 mc->numa_mem_align_shift = 28;
4537 mc->auto_enable_numa = true;
4538
4539 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4540 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4541 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4542 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4543 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4544 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4545 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4546 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4547 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4548 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4549 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4550 spapr_caps_add_properties(smc);
4551 smc->irq = &spapr_irq_dual;
4552 smc->dr_phb_enabled = true;
4553 smc->linux_pci_probe = true;
4554 smc->smp_threads_vsmt = true;
4555 smc->nr_xirqs = SPAPR_NR_XIRQS;
4556 xfc->match_nvt = spapr_match_nvt;
4557 }
4558
4559 static const TypeInfo spapr_machine_info = {
4560 .name = TYPE_SPAPR_MACHINE,
4561 .parent = TYPE_MACHINE,
4562 .abstract = true,
4563 .instance_size = sizeof(SpaprMachineState),
4564 .instance_init = spapr_instance_init,
4565 .instance_finalize = spapr_machine_finalizefn,
4566 .class_size = sizeof(SpaprMachineClass),
4567 .class_init = spapr_machine_class_init,
4568 .interfaces = (InterfaceInfo[]) {
4569 { TYPE_FW_PATH_PROVIDER },
4570 { TYPE_NMI },
4571 { TYPE_HOTPLUG_HANDLER },
4572 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4573 { TYPE_XICS_FABRIC },
4574 { TYPE_INTERRUPT_STATS_PROVIDER },
4575 { TYPE_XIVE_FABRIC },
4576 { }
4577 },
4578 };
4579
4580 static void spapr_machine_latest_class_options(MachineClass *mc)
4581 {
4582 mc->alias = "pseries";
4583 mc->is_default = true;
4584 }
4585
4586 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4587 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4588 void *data) \
4589 { \
4590 MachineClass *mc = MACHINE_CLASS(oc); \
4591 spapr_machine_##suffix##_class_options(mc); \
4592 if (latest) { \
4593 spapr_machine_latest_class_options(mc); \
4594 } \
4595 } \
4596 static const TypeInfo spapr_machine_##suffix##_info = { \
4597 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4598 .parent = TYPE_SPAPR_MACHINE, \
4599 .class_init = spapr_machine_##suffix##_class_init, \
4600 }; \
4601 static void spapr_machine_register_##suffix(void) \
4602 { \
4603 type_register(&spapr_machine_##suffix##_info); \
4604 } \
4605 type_init(spapr_machine_register_##suffix)
4606
4607 /*
4608 * pseries-6.0
4609 */
4610 static void spapr_machine_6_0_class_options(MachineClass *mc)
4611 {
4612 /* Defaults for the latest behaviour inherited from the base class */
4613 }
4614
4615 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4616
4617 /*
4618 * pseries-5.2
4619 */
4620 static void spapr_machine_5_2_class_options(MachineClass *mc)
4621 {
4622 spapr_machine_6_0_class_options(mc);
4623 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4624 }
4625
4626 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4627
4628 /*
4629 * pseries-5.1
4630 */
4631 static void spapr_machine_5_1_class_options(MachineClass *mc)
4632 {
4633 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4634
4635 spapr_machine_5_2_class_options(mc);
4636 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4637 smc->pre_5_2_numa_associativity = true;
4638 }
4639
4640 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4641
4642 /*
4643 * pseries-5.0
4644 */
4645 static void spapr_machine_5_0_class_options(MachineClass *mc)
4646 {
4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4648 static GlobalProperty compat[] = {
4649 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4650 };
4651
4652 spapr_machine_5_1_class_options(mc);
4653 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4654 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4655 mc->numa_mem_supported = true;
4656 smc->pre_5_1_assoc_refpoints = true;
4657 }
4658
4659 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4660
4661 /*
4662 * pseries-4.2
4663 */
4664 static void spapr_machine_4_2_class_options(MachineClass *mc)
4665 {
4666 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4667
4668 spapr_machine_5_0_class_options(mc);
4669 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4670 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4671 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4672 smc->rma_limit = 16 * GiB;
4673 mc->nvdimm_supported = false;
4674 }
4675
4676 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4677
4678 /*
4679 * pseries-4.1
4680 */
4681 static void spapr_machine_4_1_class_options(MachineClass *mc)
4682 {
4683 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4684 static GlobalProperty compat[] = {
4685 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4686 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4687 };
4688
4689 spapr_machine_4_2_class_options(mc);
4690 smc->linux_pci_probe = false;
4691 smc->smp_threads_vsmt = false;
4692 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4693 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4694 }
4695
4696 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4697
4698 /*
4699 * pseries-4.0
4700 */
4701 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4702 uint64_t *buid, hwaddr *pio,
4703 hwaddr *mmio32, hwaddr *mmio64,
4704 unsigned n_dma, uint32_t *liobns,
4705 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4706 {
4707 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4708 liobns, nv2gpa, nv2atsd, errp)) {
4709 return false;
4710 }
4711
4712 *nv2gpa = 0;
4713 *nv2atsd = 0;
4714 return true;
4715 }
4716 static void spapr_machine_4_0_class_options(MachineClass *mc)
4717 {
4718 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4719
4720 spapr_machine_4_1_class_options(mc);
4721 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4722 smc->phb_placement = phb_placement_4_0;
4723 smc->irq = &spapr_irq_xics;
4724 smc->pre_4_1_migration = true;
4725 }
4726
4727 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4728
4729 /*
4730 * pseries-3.1
4731 */
4732 static void spapr_machine_3_1_class_options(MachineClass *mc)
4733 {
4734 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735
4736 spapr_machine_4_0_class_options(mc);
4737 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4738
4739 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4740 smc->update_dt_enabled = false;
4741 smc->dr_phb_enabled = false;
4742 smc->broken_host_serial_model = true;
4743 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4744 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4745 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4746 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4747 }
4748
4749 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4750
4751 /*
4752 * pseries-3.0
4753 */
4754
4755 static void spapr_machine_3_0_class_options(MachineClass *mc)
4756 {
4757 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4758
4759 spapr_machine_3_1_class_options(mc);
4760 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4761
4762 smc->legacy_irq_allocation = true;
4763 smc->nr_xirqs = 0x400;
4764 smc->irq = &spapr_irq_xics_legacy;
4765 }
4766
4767 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4768
4769 /*
4770 * pseries-2.12
4771 */
4772 static void spapr_machine_2_12_class_options(MachineClass *mc)
4773 {
4774 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4775 static GlobalProperty compat[] = {
4776 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4777 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4778 };
4779
4780 spapr_machine_3_0_class_options(mc);
4781 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4782 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4783
4784 /* We depend on kvm_enabled() to choose a default value for the
4785 * hpt-max-page-size capability. Of course we can't do it here
4786 * because this is too early and the HW accelerator isn't initialzed
4787 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4788 */
4789 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4790 }
4791
4792 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4793
4794 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4795 {
4796 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4797
4798 spapr_machine_2_12_class_options(mc);
4799 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4800 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4801 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4802 }
4803
4804 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4805
4806 /*
4807 * pseries-2.11
4808 */
4809
4810 static void spapr_machine_2_11_class_options(MachineClass *mc)
4811 {
4812 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4813
4814 spapr_machine_2_12_class_options(mc);
4815 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4816 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4817 }
4818
4819 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4820
4821 /*
4822 * pseries-2.10
4823 */
4824
4825 static void spapr_machine_2_10_class_options(MachineClass *mc)
4826 {
4827 spapr_machine_2_11_class_options(mc);
4828 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4829 }
4830
4831 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4832
4833 /*
4834 * pseries-2.9
4835 */
4836
4837 static void spapr_machine_2_9_class_options(MachineClass *mc)
4838 {
4839 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4840 static GlobalProperty compat[] = {
4841 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4842 };
4843
4844 spapr_machine_2_10_class_options(mc);
4845 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4846 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4847 smc->pre_2_10_has_unused_icps = true;
4848 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4849 }
4850
4851 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4852
4853 /*
4854 * pseries-2.8
4855 */
4856
4857 static void spapr_machine_2_8_class_options(MachineClass *mc)
4858 {
4859 static GlobalProperty compat[] = {
4860 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4861 };
4862
4863 spapr_machine_2_9_class_options(mc);
4864 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4865 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4866 mc->numa_mem_align_shift = 23;
4867 }
4868
4869 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4870
4871 /*
4872 * pseries-2.7
4873 */
4874
4875 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4876 uint64_t *buid, hwaddr *pio,
4877 hwaddr *mmio32, hwaddr *mmio64,
4878 unsigned n_dma, uint32_t *liobns,
4879 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4880 {
4881 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4882 const uint64_t base_buid = 0x800000020000000ULL;
4883 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4884 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4885 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4886 const uint32_t max_index = 255;
4887 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4888
4889 uint64_t ram_top = MACHINE(spapr)->ram_size;
4890 hwaddr phb0_base, phb_base;
4891 int i;
4892
4893 /* Do we have device memory? */
4894 if (MACHINE(spapr)->maxram_size > ram_top) {
4895 /* Can't just use maxram_size, because there may be an
4896 * alignment gap between normal and device memory regions
4897 */
4898 ram_top = MACHINE(spapr)->device_memory->base +
4899 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4900 }
4901
4902 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4903
4904 if (index > max_index) {
4905 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4906 max_index);
4907 return false;
4908 }
4909
4910 *buid = base_buid + index;
4911 for (i = 0; i < n_dma; ++i) {
4912 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4913 }
4914
4915 phb_base = phb0_base + index * phb_spacing;
4916 *pio = phb_base + pio_offset;
4917 *mmio32 = phb_base + mmio_offset;
4918 /*
4919 * We don't set the 64-bit MMIO window, relying on the PHB's
4920 * fallback behaviour of automatically splitting a large "32-bit"
4921 * window into contiguous 32-bit and 64-bit windows
4922 */
4923
4924 *nv2gpa = 0;
4925 *nv2atsd = 0;
4926 return true;
4927 }
4928
4929 static void spapr_machine_2_7_class_options(MachineClass *mc)
4930 {
4931 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4932 static GlobalProperty compat[] = {
4933 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4934 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4935 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4936 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4937 };
4938
4939 spapr_machine_2_8_class_options(mc);
4940 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4941 mc->default_machine_opts = "modern-hotplug-events=off";
4942 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4943 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4944 smc->phb_placement = phb_placement_2_7;
4945 }
4946
4947 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4948
4949 /*
4950 * pseries-2.6
4951 */
4952
4953 static void spapr_machine_2_6_class_options(MachineClass *mc)
4954 {
4955 static GlobalProperty compat[] = {
4956 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4957 };
4958
4959 spapr_machine_2_7_class_options(mc);
4960 mc->has_hotpluggable_cpus = false;
4961 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4962 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4963 }
4964
4965 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4966
4967 /*
4968 * pseries-2.5
4969 */
4970
4971 static void spapr_machine_2_5_class_options(MachineClass *mc)
4972 {
4973 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4974 static GlobalProperty compat[] = {
4975 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4976 };
4977
4978 spapr_machine_2_6_class_options(mc);
4979 smc->use_ohci_by_default = true;
4980 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4981 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4982 }
4983
4984 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4985
4986 /*
4987 * pseries-2.4
4988 */
4989
4990 static void spapr_machine_2_4_class_options(MachineClass *mc)
4991 {
4992 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4993
4994 spapr_machine_2_5_class_options(mc);
4995 smc->dr_lmb_enabled = false;
4996 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4997 }
4998
4999 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5000
5001 /*
5002 * pseries-2.3
5003 */
5004
5005 static void spapr_machine_2_3_class_options(MachineClass *mc)
5006 {
5007 static GlobalProperty compat[] = {
5008 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5009 };
5010 spapr_machine_2_4_class_options(mc);
5011 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5012 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5013 }
5014 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5015
5016 /*
5017 * pseries-2.2
5018 */
5019
5020 static void spapr_machine_2_2_class_options(MachineClass *mc)
5021 {
5022 static GlobalProperty compat[] = {
5023 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5024 };
5025
5026 spapr_machine_2_3_class_options(mc);
5027 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5028 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5029 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5030 }
5031 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5032
5033 /*
5034 * pseries-2.1
5035 */
5036
5037 static void spapr_machine_2_1_class_options(MachineClass *mc)
5038 {
5039 spapr_machine_2_2_class_options(mc);
5040 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5041 }
5042 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5043
5044 static void spapr_machine_register_types(void)
5045 {
5046 type_register_static(&spapr_machine_info);
5047 }
5048
5049 type_init(spapr_machine_register_types)