]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock()
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90
91 #include "monitor/monitor.h"
92
93 #include <libfdt.h>
94
95 /* SLOF memory layout:
96 *
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
99 *
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
102 *
103 * We load our kernel at 4M, leaving space for SLOF initial image
104 */
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
111
112 #define MIN_RMA_SLOF (128 * MiB)
113
114 #define PHANDLE_INTC 0x00001111
115
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
119 */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
124
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
131 {
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
141 */
142 return false;
143 }
144
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 /*
147 * Hack ahead. We can't have two devices with the same name and
148 * instance id. So I rename this to pass make check.
149 * Real help from people who knows the hardware is needed.
150 */
151 .name = "icp/server",
152 .version_id = 1,
153 .minimum_version_id = 1,
154 .needed = pre_2_10_vmstate_dummy_icp_needed,
155 .fields = (const VMStateField[]) {
156 VMSTATE_UNUSED(4), /* uint32_t xirr */
157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
158 VMSTATE_UNUSED(1), /* uint8_t mfrr */
159 VMSTATE_END_OF_LIST()
160 },
161 };
162
163 /*
164 * See comment in hw/intc/xics.c:icp_realize()
165 *
166 * You have to remove vmstate_replace_hack_for_ppc() when you remove
167 * the machine types that need the following function.
168 */
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 {
171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172 (void *)(uintptr_t) i);
173 }
174
175 /*
176 * See comment in hw/intc/xics.c:icp_realize()
177 *
178 * You have to remove vmstate_replace_hack_for_ppc() when you remove
179 * the machine types that need the following function.
180 */
181 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
182 {
183 /*
184 * This used to be:
185 *
186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
187 * (void *)(uintptr_t) i);
188 */
189 }
190
191 int spapr_max_server_number(SpaprMachineState *spapr)
192 {
193 MachineState *ms = MACHINE(spapr);
194
195 assert(spapr->vsmt);
196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
197 }
198
199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
200 int smt_threads)
201 {
202 int i, ret = 0;
203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
205 int index = spapr_get_vcpu_id(cpu);
206
207 if (cpu->compat_pvr) {
208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
209 if (ret < 0) {
210 return ret;
211 }
212 }
213
214 /* Build interrupt servers and gservers properties */
215 for (i = 0; i < smt_threads; i++) {
216 servers_prop[i] = cpu_to_be32(index + i);
217 /* Hack, direct the group queues back to cpu 0 */
218 gservers_prop[i*2] = cpu_to_be32(index + i);
219 gservers_prop[i*2 + 1] = 0;
220 }
221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
222 servers_prop, sizeof(*servers_prop) * smt_threads);
223 if (ret < 0) {
224 return ret;
225 }
226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
228
229 return ret;
230 }
231
232 static void spapr_dt_pa_features(SpaprMachineState *spapr,
233 PowerPCCPU *cpu,
234 void *fdt, int offset)
235 {
236 uint8_t pa_features_206[] = { 6, 0,
237 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
238 uint8_t pa_features_207[] = { 24, 0,
239 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
240 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
241 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
243 uint8_t pa_features_300[] = { 66, 0,
244 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
245 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
246 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
247 /* 6: DS207 */
248 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
249 /* 16: Vector */
250 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
251 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
252 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
253 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
254 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
255 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
256 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
257 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
258 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
259 /* 42: PM, 44: PC RA, 46: SC vec'd */
260 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
261 /* 48: SIMD, 50: QP BFP, 52: String */
262 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
263 /* 54: DecFP, 56: DecI, 58: SHA */
264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
265 /* 60: NM atomic, 62: RNG */
266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
267 };
268 uint8_t *pa_features = NULL;
269 size_t pa_size;
270
271 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
272 pa_features = pa_features_206;
273 pa_size = sizeof(pa_features_206);
274 }
275 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
276 pa_features = pa_features_207;
277 pa_size = sizeof(pa_features_207);
278 }
279 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
280 pa_features = pa_features_300;
281 pa_size = sizeof(pa_features_300);
282 }
283 if (!pa_features) {
284 return;
285 }
286
287 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
288 /*
289 * Note: we keep CI large pages off by default because a 64K capable
290 * guest provisioned with large pages might otherwise try to map a qemu
291 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
292 * even if that qemu runs on a 4k host.
293 * We dd this bit back here if we are confident this is not an issue
294 */
295 pa_features[3] |= 0x20;
296 }
297 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
298 pa_features[24] |= 0x80; /* Transactional memory support */
299 }
300 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
301 /* Workaround for broken kernels that attempt (guest) radix
302 * mode when they can't handle it, if they see the radix bit set
303 * in pa-features. So hide it from them. */
304 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
305 }
306
307 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
308 }
309
310 static hwaddr spapr_node0_size(MachineState *machine)
311 {
312 if (machine->numa_state->num_nodes) {
313 int i;
314 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
315 if (machine->numa_state->nodes[i].node_mem) {
316 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
317 machine->ram_size);
318 }
319 }
320 }
321 return machine->ram_size;
322 }
323
324 static void add_str(GString *s, const gchar *s1)
325 {
326 g_string_append_len(s, s1, strlen(s1) + 1);
327 }
328
329 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
330 hwaddr start, hwaddr size)
331 {
332 char mem_name[32];
333 uint64_t mem_reg_property[2];
334 int off;
335
336 mem_reg_property[0] = cpu_to_be64(start);
337 mem_reg_property[1] = cpu_to_be64(size);
338
339 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
340 off = fdt_add_subnode(fdt, 0, mem_name);
341 _FDT(off);
342 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
343 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
344 sizeof(mem_reg_property))));
345 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
346 return off;
347 }
348
349 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
350 {
351 MemoryDeviceInfoList *info;
352
353 for (info = list; info; info = info->next) {
354 MemoryDeviceInfo *value = info->value;
355
356 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
357 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
358
359 if (addr >= pcdimm_info->addr &&
360 addr < (pcdimm_info->addr + pcdimm_info->size)) {
361 return pcdimm_info->node;
362 }
363 }
364 }
365
366 return -1;
367 }
368
369 struct sPAPRDrconfCellV2 {
370 uint32_t seq_lmbs;
371 uint64_t base_addr;
372 uint32_t drc_index;
373 uint32_t aa_index;
374 uint32_t flags;
375 } QEMU_PACKED;
376
377 typedef struct DrconfCellQueue {
378 struct sPAPRDrconfCellV2 cell;
379 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
380 } DrconfCellQueue;
381
382 static DrconfCellQueue *
383 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
384 uint32_t drc_index, uint32_t aa_index,
385 uint32_t flags)
386 {
387 DrconfCellQueue *elem;
388
389 elem = g_malloc0(sizeof(*elem));
390 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
391 elem->cell.base_addr = cpu_to_be64(base_addr);
392 elem->cell.drc_index = cpu_to_be32(drc_index);
393 elem->cell.aa_index = cpu_to_be32(aa_index);
394 elem->cell.flags = cpu_to_be32(flags);
395
396 return elem;
397 }
398
399 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
400 int offset, MemoryDeviceInfoList *dimms)
401 {
402 MachineState *machine = MACHINE(spapr);
403 uint8_t *int_buf, *cur_index;
404 int ret;
405 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
406 uint64_t addr, cur_addr, size;
407 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
408 uint64_t mem_end = machine->device_memory->base +
409 memory_region_size(&machine->device_memory->mr);
410 uint32_t node, buf_len, nr_entries = 0;
411 SpaprDrc *drc;
412 DrconfCellQueue *elem, *next;
413 MemoryDeviceInfoList *info;
414 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
415 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
416
417 /* Entry to cover RAM and the gap area */
418 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
419 SPAPR_LMB_FLAGS_RESERVED |
420 SPAPR_LMB_FLAGS_DRC_INVALID);
421 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422 nr_entries++;
423
424 cur_addr = machine->device_memory->base;
425 for (info = dimms; info; info = info->next) {
426 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
427
428 addr = di->addr;
429 size = di->size;
430 node = di->node;
431
432 /*
433 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
434 * area is marked hotpluggable in the next iteration for the bigger
435 * chunk including the NVDIMM occupied area.
436 */
437 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
438 continue;
439
440 /* Entry for hot-pluggable area */
441 if (cur_addr < addr) {
442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
443 g_assert(drc);
444 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
445 cur_addr, spapr_drc_index(drc), -1, 0);
446 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
447 nr_entries++;
448 }
449
450 /* Entry for DIMM */
451 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
452 g_assert(drc);
453 elem = spapr_get_drconf_cell(size / lmb_size, addr,
454 spapr_drc_index(drc), node,
455 (SPAPR_LMB_FLAGS_ASSIGNED |
456 SPAPR_LMB_FLAGS_HOTREMOVABLE));
457 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
458 nr_entries++;
459 cur_addr = addr + size;
460 }
461
462 /* Entry for remaining hotpluggable area */
463 if (cur_addr < mem_end) {
464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
465 g_assert(drc);
466 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
467 cur_addr, spapr_drc_index(drc), -1, 0);
468 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
469 nr_entries++;
470 }
471
472 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
473 int_buf = cur_index = g_malloc0(buf_len);
474 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
475 cur_index += sizeof(nr_entries);
476
477 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
478 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
479 cur_index += sizeof(elem->cell);
480 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
481 g_free(elem);
482 }
483
484 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
485 g_free(int_buf);
486 if (ret < 0) {
487 return -1;
488 }
489 return 0;
490 }
491
492 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
493 int offset, MemoryDeviceInfoList *dimms)
494 {
495 MachineState *machine = MACHINE(spapr);
496 int i, ret;
497 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
498 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
499 uint32_t nr_lmbs = (machine->device_memory->base +
500 memory_region_size(&machine->device_memory->mr)) /
501 lmb_size;
502 uint32_t *int_buf, *cur_index, buf_len;
503
504 /*
505 * Allocate enough buffer size to fit in ibm,dynamic-memory
506 */
507 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
508 cur_index = int_buf = g_malloc0(buf_len);
509 int_buf[0] = cpu_to_be32(nr_lmbs);
510 cur_index++;
511 for (i = 0; i < nr_lmbs; i++) {
512 uint64_t addr = i * lmb_size;
513 uint32_t *dynamic_memory = cur_index;
514
515 if (i >= device_lmb_start) {
516 SpaprDrc *drc;
517
518 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
519 g_assert(drc);
520
521 dynamic_memory[0] = cpu_to_be32(addr >> 32);
522 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
523 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
524 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
525 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
526 if (memory_region_present(get_system_memory(), addr)) {
527 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
528 } else {
529 dynamic_memory[5] = cpu_to_be32(0);
530 }
531 } else {
532 /*
533 * LMB information for RMA, boot time RAM and gap b/n RAM and
534 * device memory region -- all these are marked as reserved
535 * and as having no valid DRC.
536 */
537 dynamic_memory[0] = cpu_to_be32(addr >> 32);
538 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
539 dynamic_memory[2] = cpu_to_be32(0);
540 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
541 dynamic_memory[4] = cpu_to_be32(-1);
542 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
543 SPAPR_LMB_FLAGS_DRC_INVALID);
544 }
545
546 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
547 }
548 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
549 g_free(int_buf);
550 if (ret < 0) {
551 return -1;
552 }
553 return 0;
554 }
555
556 /*
557 * Adds ibm,dynamic-reconfiguration-memory node.
558 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
559 * of this device tree node.
560 */
561 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
562 void *fdt)
563 {
564 MachineState *machine = MACHINE(spapr);
565 int ret, offset;
566 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
567 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
568 cpu_to_be32(lmb_size & 0xffffffff)};
569 MemoryDeviceInfoList *dimms = NULL;
570
571 /* Don't create the node if there is no device memory. */
572 if (!machine->device_memory) {
573 return 0;
574 }
575
576 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
577
578 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
579 sizeof(prop_lmb_size));
580 if (ret < 0) {
581 return ret;
582 }
583
584 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
585 if (ret < 0) {
586 return ret;
587 }
588
589 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
590 if (ret < 0) {
591 return ret;
592 }
593
594 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
595 dimms = qmp_memory_device_list();
596 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
597 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
598 } else {
599 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
600 }
601 qapi_free_MemoryDeviceInfoList(dimms);
602
603 if (ret < 0) {
604 return ret;
605 }
606
607 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
608
609 return ret;
610 }
611
612 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
613 {
614 MachineState *machine = MACHINE(spapr);
615 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
616 hwaddr mem_start, node_size;
617 int i, nb_nodes = machine->numa_state->num_nodes;
618 NodeInfo *nodes = machine->numa_state->nodes;
619
620 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
621 if (!nodes[i].node_mem) {
622 continue;
623 }
624 if (mem_start >= machine->ram_size) {
625 node_size = 0;
626 } else {
627 node_size = nodes[i].node_mem;
628 if (node_size > machine->ram_size - mem_start) {
629 node_size = machine->ram_size - mem_start;
630 }
631 }
632 if (!mem_start) {
633 /* spapr_machine_init() checks for rma_size <= node0_size
634 * already */
635 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
636 mem_start += spapr->rma_size;
637 node_size -= spapr->rma_size;
638 }
639 for ( ; node_size; ) {
640 hwaddr sizetmp = pow2floor(node_size);
641
642 /* mem_start != 0 here */
643 if (ctzl(mem_start) < ctzl(sizetmp)) {
644 sizetmp = 1ULL << ctzl(mem_start);
645 }
646
647 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
648 node_size -= sizetmp;
649 mem_start += sizetmp;
650 }
651 }
652
653 /* Generate ibm,dynamic-reconfiguration-memory node if required */
654 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
655 int ret;
656
657 g_assert(smc->dr_lmb_enabled);
658 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
659 if (ret) {
660 return ret;
661 }
662 }
663
664 return 0;
665 }
666
667 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
668 SpaprMachineState *spapr)
669 {
670 MachineState *ms = MACHINE(spapr);
671 PowerPCCPU *cpu = POWERPC_CPU(cs);
672 CPUPPCState *env = &cpu->env;
673 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
674 int index = spapr_get_vcpu_id(cpu);
675 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
676 0xffffffff, 0xffffffff};
677 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
678 : SPAPR_TIMEBASE_FREQ;
679 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
680 uint32_t page_sizes_prop[64];
681 size_t page_sizes_prop_size;
682 unsigned int smp_threads = ms->smp.threads;
683 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
684 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
685 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
686 SpaprDrc *drc;
687 int drc_index;
688 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
689 int i;
690
691 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
692 if (drc) {
693 drc_index = spapr_drc_index(drc);
694 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
695 }
696
697 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
698 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
699
700 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
701 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
702 env->dcache_line_size)));
703 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
704 env->dcache_line_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
706 env->icache_line_size)));
707 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
708 env->icache_line_size)));
709
710 if (pcc->l1_dcache_size) {
711 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
712 pcc->l1_dcache_size)));
713 } else {
714 warn_report("Unknown L1 dcache size for cpu");
715 }
716 if (pcc->l1_icache_size) {
717 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
718 pcc->l1_icache_size)));
719 } else {
720 warn_report("Unknown L1 icache size for cpu");
721 }
722
723 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
724 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
725 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
727 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
728 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
729
730 if (ppc_has_spr(cpu, SPR_PURR)) {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
732 }
733 if (ppc_has_spr(cpu, SPR_PURR)) {
734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
735 }
736
737 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
738 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
739 segs, sizeof(segs))));
740 }
741
742 /* Advertise VSX (vector extensions) if available
743 * 1 == VMX / Altivec available
744 * 2 == VSX available
745 *
746 * Only CPUs for which we create core types in spapr_cpu_core.c
747 * are possible, and all of those have VMX */
748 if (env->insns_flags & PPC_ALTIVEC) {
749 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
751 } else {
752 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
753 }
754 }
755
756 /* Advertise DFP (Decimal Floating Point) if available
757 * 0 / no property == no DFP
758 * 1 == DFP available */
759 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
760 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
761 }
762
763 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
764 sizeof(page_sizes_prop));
765 if (page_sizes_prop_size) {
766 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
767 page_sizes_prop, page_sizes_prop_size)));
768 }
769
770 spapr_dt_pa_features(spapr, cpu, fdt, offset);
771
772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
773 cs->cpu_index / vcpus_per_socket)));
774
775 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
776 pft_size_prop, sizeof(pft_size_prop))));
777
778 if (ms->numa_state->num_nodes > 1) {
779 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
780 }
781
782 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
783
784 if (pcc->radix_page_info) {
785 for (i = 0; i < pcc->radix_page_info->count; i++) {
786 radix_AP_encodings[i] =
787 cpu_to_be32(pcc->radix_page_info->entries[i]);
788 }
789 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
790 radix_AP_encodings,
791 pcc->radix_page_info->count *
792 sizeof(radix_AP_encodings[0]))));
793 }
794
795 /*
796 * We set this property to let the guest know that it can use the large
797 * decrementer and its width in bits.
798 */
799 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
800 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
801 pcc->lrg_decr_bits)));
802 }
803
804 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
805 int cpus_offset)
806 {
807 PowerPCCPU *cpu = POWERPC_CPU(cs);
808 int index = spapr_get_vcpu_id(cpu);
809 DeviceClass *dc = DEVICE_GET_CLASS(cs);
810 g_autofree char *nodename = NULL;
811 int offset;
812
813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
814 return;
815 }
816
817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
818 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
819 _FDT(offset);
820 spapr_dt_cpu(cs, fdt, offset, spapr);
821 }
822
823
824 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
825 {
826 CPUState **rev;
827 CPUState *cs;
828 int n_cpus;
829 int cpus_offset;
830 int i;
831
832 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
833 _FDT(cpus_offset);
834 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
835 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
836
837 /*
838 * We walk the CPUs in reverse order to ensure that CPU DT nodes
839 * created by fdt_add_subnode() end up in the right order in FDT
840 * for the guest kernel the enumerate the CPUs correctly.
841 *
842 * The CPU list cannot be traversed in reverse order, so we need
843 * to do extra work.
844 */
845 n_cpus = 0;
846 rev = NULL;
847 CPU_FOREACH(cs) {
848 rev = g_renew(CPUState *, rev, n_cpus + 1);
849 rev[n_cpus++] = cs;
850 }
851
852 for (i = n_cpus - 1; i >= 0; i--) {
853 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
854 }
855
856 g_free(rev);
857 }
858
859 static int spapr_dt_rng(void *fdt)
860 {
861 int node;
862 int ret;
863
864 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
865 if (node <= 0) {
866 return -1;
867 }
868 ret = fdt_setprop_string(fdt, node, "device_type",
869 "ibm,platform-facilities");
870 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
871 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
872
873 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
874 if (node <= 0) {
875 return -1;
876 }
877 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
878
879 return ret ? -1 : 0;
880 }
881
882 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
883 {
884 MachineState *ms = MACHINE(spapr);
885 int rtas;
886 GString *hypertas = g_string_sized_new(256);
887 GString *qemu_hypertas = g_string_sized_new(256);
888 uint32_t lrdr_capacity[] = {
889 0,
890 0,
891 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
892 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
893 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
894 };
895
896 /* Do we have device memory? */
897 if (MACHINE(spapr)->device_memory) {
898 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
899 memory_region_size(&MACHINE(spapr)->device_memory->mr);
900
901 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
902 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
903 }
904
905 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
906
907 /* hypertas */
908 add_str(hypertas, "hcall-pft");
909 add_str(hypertas, "hcall-term");
910 add_str(hypertas, "hcall-dabr");
911 add_str(hypertas, "hcall-interrupt");
912 add_str(hypertas, "hcall-tce");
913 add_str(hypertas, "hcall-vio");
914 add_str(hypertas, "hcall-splpar");
915 add_str(hypertas, "hcall-join");
916 add_str(hypertas, "hcall-bulk");
917 add_str(hypertas, "hcall-set-mode");
918 add_str(hypertas, "hcall-sprg0");
919 add_str(hypertas, "hcall-copy");
920 add_str(hypertas, "hcall-debug");
921 add_str(hypertas, "hcall-vphn");
922 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
923 add_str(hypertas, "hcall-rpt-invalidate");
924 }
925
926 add_str(qemu_hypertas, "hcall-memop1");
927
928 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
929 add_str(hypertas, "hcall-multi-tce");
930 }
931
932 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
933 add_str(hypertas, "hcall-hpt-resize");
934 }
935
936 add_str(hypertas, "hcall-watchdog");
937
938 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
939 hypertas->str, hypertas->len));
940 g_string_free(hypertas, TRUE);
941 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
942 qemu_hypertas->str, qemu_hypertas->len));
943 g_string_free(qemu_hypertas, TRUE);
944
945 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
946
947 /*
948 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
949 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
950 *
951 * The system reset requirements are driven by existing Linux and PowerVM
952 * implementation which (contrary to PAPR) saves r3 in the error log
953 * structure like machine check, so Linux expects to find the saved r3
954 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
955 * does not look at the error value).
956 *
957 * System reset interrupts are not subject to interlock like machine
958 * check, so this memory area could be corrupted if the sreset is
959 * interrupted by a machine check (or vice versa) if it was shared. To
960 * prevent this, system reset uses per-CPU areas for the sreset save
961 * area. A system reset that interrupts a system reset handler could
962 * still overwrite this area, but Linux doesn't try to recover in that
963 * case anyway.
964 *
965 * The extra 8 bytes is required because Linux's FWNMI error log check
966 * is off-by-one.
967 *
968 * RTAS_MIN_SIZE is required for the RTAS blob itself.
969 */
970 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
971 RTAS_ERROR_LOG_MAX +
972 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
973 sizeof(uint64_t)));
974 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
975 RTAS_ERROR_LOG_MAX));
976 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
977 RTAS_EVENT_SCAN_RATE));
978
979 g_assert(msi_nonbroken);
980 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
981
982 /*
983 * According to PAPR, rtas ibm,os-term does not guarantee a return
984 * back to the guest cpu.
985 *
986 * While an additional ibm,extended-os-term property indicates
987 * that rtas call return will always occur. Set this property.
988 */
989 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
990
991 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
992 lrdr_capacity, sizeof(lrdr_capacity)));
993
994 spapr_dt_rtas_tokens(fdt, rtas);
995 }
996
997 /*
998 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
999 * and the XIVE features that the guest may request and thus the valid
1000 * values for bytes 23..26 of option vector 5:
1001 */
1002 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1003 int chosen)
1004 {
1005 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1006
1007 char val[2 * 4] = {
1008 23, 0x00, /* XICS / XIVE mode */
1009 24, 0x00, /* Hash/Radix, filled in below. */
1010 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1011 26, 0x40, /* Radix options: GTSE == yes. */
1012 };
1013
1014 if (spapr->irq->xics && spapr->irq->xive) {
1015 val[1] = SPAPR_OV5_XIVE_BOTH;
1016 } else if (spapr->irq->xive) {
1017 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1018 } else {
1019 assert(spapr->irq->xics);
1020 val[1] = SPAPR_OV5_XIVE_LEGACY;
1021 }
1022
1023 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1024 first_ppc_cpu->compat_pvr)) {
1025 /*
1026 * If we're in a pre POWER9 compat mode then the guest should
1027 * do hash and use the legacy interrupt mode
1028 */
1029 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1030 val[3] = 0x00; /* Hash */
1031 spapr_check_mmu_mode(false);
1032 } else if (kvm_enabled()) {
1033 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1034 val[3] = 0x80; /* OV5_MMU_BOTH */
1035 } else if (kvmppc_has_cap_mmu_radix()) {
1036 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1037 } else {
1038 val[3] = 0x00; /* Hash */
1039 }
1040 } else {
1041 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1042 val[3] = 0xC0;
1043 }
1044 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1045 val, sizeof(val)));
1046 }
1047
1048 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1049 {
1050 MachineState *machine = MACHINE(spapr);
1051 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1052 int chosen;
1053
1054 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1055
1056 if (reset) {
1057 const char *boot_device = spapr->boot_device;
1058 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1059 size_t cb = 0;
1060 g_autofree char *bootlist = get_boot_devices_list(&cb);
1061
1062 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1063 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1064 machine->kernel_cmdline));
1065 }
1066
1067 if (spapr->initrd_size) {
1068 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1069 spapr->initrd_base));
1070 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1071 spapr->initrd_base + spapr->initrd_size));
1072 }
1073
1074 if (spapr->kernel_size) {
1075 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1076 cpu_to_be64(spapr->kernel_size) };
1077
1078 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1079 &kprop, sizeof(kprop)));
1080 if (spapr->kernel_le) {
1081 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1082 }
1083 }
1084 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1085 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1086 }
1087 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1088 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1090
1091 if (cb && bootlist) {
1092 int i;
1093
1094 for (i = 0; i < cb; i++) {
1095 if (bootlist[i] == '\n') {
1096 bootlist[i] = ' ';
1097 }
1098 }
1099 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1100 }
1101
1102 if (boot_device && strlen(boot_device)) {
1103 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1104 }
1105
1106 if (spapr->want_stdout_path && stdout_path) {
1107 /*
1108 * "linux,stdout-path" and "stdout" properties are
1109 * deprecated by linux kernel. New platforms should only
1110 * use the "stdout-path" property. Set the new property
1111 * and continue using older property to remain compatible
1112 * with the existing firmware.
1113 */
1114 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1115 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1116 }
1117
1118 /*
1119 * We can deal with BAR reallocation just fine, advertise it
1120 * to the guest
1121 */
1122 if (smc->linux_pci_probe) {
1123 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1124 }
1125
1126 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1127 }
1128
1129 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1130
1131 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1132 }
1133
1134 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1135 {
1136 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1137 * KVM to work under pHyp with some guest co-operation */
1138 int hypervisor;
1139 uint8_t hypercall[16];
1140
1141 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1142 /* indicate KVM hypercall interface */
1143 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1144 if (kvmppc_has_cap_fixup_hcalls()) {
1145 /*
1146 * Older KVM versions with older guest kernels were broken
1147 * with the magic page, don't allow the guest to map it.
1148 */
1149 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1150 sizeof(hypercall))) {
1151 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1152 hypercall, sizeof(hypercall)));
1153 }
1154 }
1155 }
1156
1157 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1158 {
1159 MachineState *machine = MACHINE(spapr);
1160 MachineClass *mc = MACHINE_GET_CLASS(machine);
1161 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1162 uint32_t root_drc_type_mask = 0;
1163 int ret;
1164 void *fdt;
1165 SpaprPhbState *phb;
1166 char *buf;
1167
1168 fdt = g_malloc0(space);
1169 _FDT((fdt_create_empty_tree(fdt, space)));
1170
1171 /* Root node */
1172 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1173 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1174 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1175
1176 /* Guest UUID & Name*/
1177 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1178 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1179 if (qemu_uuid_set) {
1180 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1181 }
1182 g_free(buf);
1183
1184 if (qemu_get_vm_name()) {
1185 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1186 qemu_get_vm_name()));
1187 }
1188
1189 /* Host Model & Serial Number */
1190 if (spapr->host_model) {
1191 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1192 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1193 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1194 g_free(buf);
1195 }
1196
1197 if (spapr->host_serial) {
1198 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1199 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1200 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1201 g_free(buf);
1202 }
1203
1204 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1205 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1206
1207 /* /interrupt controller */
1208 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1209
1210 ret = spapr_dt_memory(spapr, fdt);
1211 if (ret < 0) {
1212 error_report("couldn't setup memory nodes in fdt");
1213 exit(1);
1214 }
1215
1216 /* /vdevice */
1217 spapr_dt_vdevice(spapr->vio_bus, fdt);
1218
1219 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1220 ret = spapr_dt_rng(fdt);
1221 if (ret < 0) {
1222 error_report("could not set up rng device in the fdt");
1223 exit(1);
1224 }
1225 }
1226
1227 QLIST_FOREACH(phb, &spapr->phbs, list) {
1228 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1229 if (ret < 0) {
1230 error_report("couldn't setup PCI devices in fdt");
1231 exit(1);
1232 }
1233 }
1234
1235 spapr_dt_cpus(fdt, spapr);
1236
1237 /* ibm,drc-indexes and friends */
1238 if (smc->dr_lmb_enabled) {
1239 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1240 }
1241 if (smc->dr_phb_enabled) {
1242 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1243 }
1244 if (mc->nvdimm_supported) {
1245 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1246 }
1247 if (root_drc_type_mask) {
1248 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1249 }
1250
1251 if (mc->has_hotpluggable_cpus) {
1252 int offset = fdt_path_offset(fdt, "/cpus");
1253 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1254 if (ret < 0) {
1255 error_report("Couldn't set up CPU DR device tree properties");
1256 exit(1);
1257 }
1258 }
1259
1260 /* /event-sources */
1261 spapr_dt_events(spapr, fdt);
1262
1263 /* /rtas */
1264 spapr_dt_rtas(spapr, fdt);
1265
1266 /* /chosen */
1267 spapr_dt_chosen(spapr, fdt, reset);
1268
1269 /* /hypervisor */
1270 if (kvm_enabled()) {
1271 spapr_dt_hypervisor(spapr, fdt);
1272 }
1273
1274 /* Build memory reserve map */
1275 if (reset) {
1276 if (spapr->kernel_size) {
1277 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1278 spapr->kernel_size)));
1279 }
1280 if (spapr->initrd_size) {
1281 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1282 spapr->initrd_size)));
1283 }
1284 }
1285
1286 /* NVDIMM devices */
1287 if (mc->nvdimm_supported) {
1288 spapr_dt_persistent_memory(spapr, fdt);
1289 }
1290
1291 return fdt;
1292 }
1293
1294 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1295 {
1296 SpaprMachineState *spapr = opaque;
1297
1298 return (addr & 0x0fffffff) + spapr->kernel_addr;
1299 }
1300
1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1302 PowerPCCPU *cpu)
1303 {
1304 CPUPPCState *env = &cpu->env;
1305
1306 /* The TCG path should also be holding the BQL at this point */
1307 g_assert(bql_locked());
1308
1309 g_assert(!vhyp_cpu_in_nested(cpu));
1310
1311 if (FIELD_EX64(env->msr, MSR, PR)) {
1312 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1313 env->gpr[3] = H_PRIVILEGE;
1314 } else {
1315 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1316 }
1317 }
1318
1319 struct LPCRSyncState {
1320 target_ulong value;
1321 target_ulong mask;
1322 };
1323
1324 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1325 {
1326 struct LPCRSyncState *s = arg.host_ptr;
1327 PowerPCCPU *cpu = POWERPC_CPU(cs);
1328 CPUPPCState *env = &cpu->env;
1329 target_ulong lpcr;
1330
1331 cpu_synchronize_state(cs);
1332 lpcr = env->spr[SPR_LPCR];
1333 lpcr &= ~s->mask;
1334 lpcr |= s->value;
1335 ppc_store_lpcr(cpu, lpcr);
1336 }
1337
1338 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1339 {
1340 CPUState *cs;
1341 struct LPCRSyncState s = {
1342 .value = value,
1343 .mask = mask
1344 };
1345 CPU_FOREACH(cs) {
1346 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1347 }
1348 }
1349
1350 /* May be used when the machine is not running */
1351 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1352 {
1353 CPUState *cs;
1354 CPU_FOREACH(cs) {
1355 PowerPCCPU *cpu = POWERPC_CPU(cs);
1356 CPUPPCState *env = &cpu->env;
1357 target_ulong lpcr;
1358
1359 lpcr = env->spr[SPR_LPCR];
1360 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1361 ppc_store_lpcr(cpu, lpcr);
1362 }
1363 }
1364
1365
1366 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1367 target_ulong lpid, ppc_v3_pate_t *entry)
1368 {
1369 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1370 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1371
1372 if (!spapr_cpu->in_nested) {
1373 assert(lpid == 0);
1374
1375 /* Copy PATE1:GR into PATE0:HR */
1376 entry->dw0 = spapr->patb_entry & PATE0_HR;
1377 entry->dw1 = spapr->patb_entry;
1378
1379 } else {
1380 uint64_t patb, pats;
1381
1382 assert(lpid != 0);
1383
1384 patb = spapr->nested_ptcr & PTCR_PATB;
1385 pats = spapr->nested_ptcr & PTCR_PATS;
1386
1387 /* Check if partition table is properly aligned */
1388 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1389 return false;
1390 }
1391
1392 /* Calculate number of entries */
1393 pats = 1ull << (pats + 12 - 4);
1394 if (pats <= lpid) {
1395 return false;
1396 }
1397
1398 /* Grab entry */
1399 patb += 16 * lpid;
1400 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1401 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1402 }
1403
1404 return true;
1405 }
1406
1407 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1408 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1409 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1410 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1411 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1412
1413 /*
1414 * Get the fd to access the kernel htab, re-opening it if necessary
1415 */
1416 static int get_htab_fd(SpaprMachineState *spapr)
1417 {
1418 Error *local_err = NULL;
1419
1420 if (spapr->htab_fd >= 0) {
1421 return spapr->htab_fd;
1422 }
1423
1424 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1425 if (spapr->htab_fd < 0) {
1426 error_report_err(local_err);
1427 }
1428
1429 return spapr->htab_fd;
1430 }
1431
1432 void close_htab_fd(SpaprMachineState *spapr)
1433 {
1434 if (spapr->htab_fd >= 0) {
1435 close(spapr->htab_fd);
1436 }
1437 spapr->htab_fd = -1;
1438 }
1439
1440 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1441 {
1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443
1444 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1445 }
1446
1447 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1448 {
1449 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1450
1451 assert(kvm_enabled());
1452
1453 if (!spapr->htab) {
1454 return 0;
1455 }
1456
1457 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1458 }
1459
1460 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1461 hwaddr ptex, int n)
1462 {
1463 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1464 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1465
1466 if (!spapr->htab) {
1467 /*
1468 * HTAB is controlled by KVM. Fetch into temporary buffer
1469 */
1470 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1471 kvmppc_read_hptes(hptes, ptex, n);
1472 return hptes;
1473 }
1474
1475 /*
1476 * HTAB is controlled by QEMU. Just point to the internally
1477 * accessible PTEG.
1478 */
1479 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1480 }
1481
1482 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1483 const ppc_hash_pte64_t *hptes,
1484 hwaddr ptex, int n)
1485 {
1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1487
1488 if (!spapr->htab) {
1489 g_free((void *)hptes);
1490 }
1491
1492 /* Nothing to do for qemu managed HPT */
1493 }
1494
1495 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1496 uint64_t pte0, uint64_t pte1)
1497 {
1498 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1499 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1500
1501 if (!spapr->htab) {
1502 kvmppc_write_hpte(ptex, pte0, pte1);
1503 } else {
1504 if (pte0 & HPTE64_V_VALID) {
1505 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1506 /*
1507 * When setting valid, we write PTE1 first. This ensures
1508 * proper synchronization with the reading code in
1509 * ppc_hash64_pteg_search()
1510 */
1511 smp_wmb();
1512 stq_p(spapr->htab + offset, pte0);
1513 } else {
1514 stq_p(spapr->htab + offset, pte0);
1515 /*
1516 * When clearing it we set PTE0 first. This ensures proper
1517 * synchronization with the reading code in
1518 * ppc_hash64_pteg_search()
1519 */
1520 smp_wmb();
1521 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1522 }
1523 }
1524 }
1525
1526 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1527 uint64_t pte1)
1528 {
1529 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1530 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1531
1532 if (!spapr->htab) {
1533 /* There should always be a hash table when this is called */
1534 error_report("spapr_hpte_set_c called with no hash table !");
1535 return;
1536 }
1537
1538 /* The HW performs a non-atomic byte update */
1539 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1540 }
1541
1542 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1543 uint64_t pte1)
1544 {
1545 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1546 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1547
1548 if (!spapr->htab) {
1549 /* There should always be a hash table when this is called */
1550 error_report("spapr_hpte_set_r called with no hash table !");
1551 return;
1552 }
1553
1554 /* The HW performs a non-atomic byte update */
1555 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1556 }
1557
1558 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1559 {
1560 int shift;
1561
1562 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1563 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1564 * that's much more than is needed for Linux guests */
1565 shift = ctz64(pow2ceil(ramsize)) - 7;
1566 shift = MAX(shift, 18); /* Minimum architected size */
1567 shift = MIN(shift, 46); /* Maximum architected size */
1568 return shift;
1569 }
1570
1571 void spapr_free_hpt(SpaprMachineState *spapr)
1572 {
1573 qemu_vfree(spapr->htab);
1574 spapr->htab = NULL;
1575 spapr->htab_shift = 0;
1576 close_htab_fd(spapr);
1577 }
1578
1579 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1580 {
1581 ERRP_GUARD();
1582 long rc;
1583
1584 /* Clean up any HPT info from a previous boot */
1585 spapr_free_hpt(spapr);
1586
1587 rc = kvmppc_reset_htab(shift);
1588
1589 if (rc == -EOPNOTSUPP) {
1590 error_setg(errp, "HPT not supported in nested guests");
1591 return -EOPNOTSUPP;
1592 }
1593
1594 if (rc < 0) {
1595 /* kernel-side HPT needed, but couldn't allocate one */
1596 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1597 shift);
1598 error_append_hint(errp, "Try smaller maxmem?\n");
1599 return -errno;
1600 } else if (rc > 0) {
1601 /* kernel-side HPT allocated */
1602 if (rc != shift) {
1603 error_setg(errp,
1604 "Requested order %d HPT, but kernel allocated order %ld",
1605 shift, rc);
1606 error_append_hint(errp, "Try smaller maxmem?\n");
1607 return -ENOSPC;
1608 }
1609
1610 spapr->htab_shift = shift;
1611 spapr->htab = NULL;
1612 } else {
1613 /* kernel-side HPT not needed, allocate in userspace instead */
1614 size_t size = 1ULL << shift;
1615 int i;
1616
1617 spapr->htab = qemu_memalign(size, size);
1618 memset(spapr->htab, 0, size);
1619 spapr->htab_shift = shift;
1620
1621 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1622 DIRTY_HPTE(HPTE(spapr->htab, i));
1623 }
1624 }
1625 /* We're setting up a hash table, so that means we're not radix */
1626 spapr->patb_entry = 0;
1627 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1628 return 0;
1629 }
1630
1631 void spapr_setup_hpt(SpaprMachineState *spapr)
1632 {
1633 int hpt_shift;
1634
1635 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1636 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1637 } else {
1638 uint64_t current_ram_size;
1639
1640 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1641 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1642 }
1643 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1644
1645 if (kvm_enabled()) {
1646 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1647
1648 /* Check our RMA fits in the possible VRMA */
1649 if (vrma_limit < spapr->rma_size) {
1650 error_report("Unable to create %" HWADDR_PRIu
1651 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1652 spapr->rma_size / MiB, vrma_limit / MiB);
1653 exit(EXIT_FAILURE);
1654 }
1655 }
1656 }
1657
1658 void spapr_check_mmu_mode(bool guest_radix)
1659 {
1660 if (guest_radix) {
1661 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1662 error_report("Guest requested unavailable MMU mode (radix).");
1663 exit(EXIT_FAILURE);
1664 }
1665 } else {
1666 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1667 && !kvmppc_has_cap_mmu_hash_v3()) {
1668 error_report("Guest requested unavailable MMU mode (hash).");
1669 exit(EXIT_FAILURE);
1670 }
1671 }
1672 }
1673
1674 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1675 {
1676 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1677 PowerPCCPU *first_ppc_cpu;
1678 hwaddr fdt_addr;
1679 void *fdt;
1680 int rc;
1681
1682 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1683 /*
1684 * Record-replay snapshot load must not consume random, this was
1685 * already replayed from initial machine reset.
1686 */
1687 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1688 }
1689
1690 pef_kvm_reset(machine->cgs, &error_fatal);
1691 spapr_caps_apply(spapr);
1692
1693 first_ppc_cpu = POWERPC_CPU(first_cpu);
1694 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1695 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1696 spapr->max_compat_pvr)) {
1697 /*
1698 * If using KVM with radix mode available, VCPUs can be started
1699 * without a HPT because KVM will start them in radix mode.
1700 * Set the GR bit in PATE so that we know there is no HPT.
1701 */
1702 spapr->patb_entry = PATE1_GR;
1703 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1704 } else {
1705 spapr_setup_hpt(spapr);
1706 }
1707
1708 qemu_devices_reset(reason);
1709
1710 spapr_ovec_cleanup(spapr->ov5_cas);
1711 spapr->ov5_cas = spapr_ovec_new();
1712
1713 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1714
1715 /*
1716 * This is fixing some of the default configuration of the XIVE
1717 * devices. To be called after the reset of the machine devices.
1718 */
1719 spapr_irq_reset(spapr, &error_fatal);
1720
1721 /*
1722 * There is no CAS under qtest. Simulate one to please the code that
1723 * depends on spapr->ov5_cas. This is especially needed to test device
1724 * unplug, so we do that before resetting the DRCs.
1725 */
1726 if (qtest_enabled()) {
1727 spapr_ovec_cleanup(spapr->ov5_cas);
1728 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1729 }
1730
1731 spapr_nvdimm_finish_flushes();
1732
1733 /* DRC reset may cause a device to be unplugged. This will cause troubles
1734 * if this device is used by another device (eg, a running vhost backend
1735 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1736 * situations, we reset DRCs after all devices have been reset.
1737 */
1738 spapr_drc_reset_all(spapr);
1739
1740 spapr_clear_pending_events(spapr);
1741
1742 /*
1743 * We place the device tree just below either the top of the RMA,
1744 * or just below 2GB, whichever is lower, so that it can be
1745 * processed with 32-bit real mode code if necessary
1746 */
1747 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1748
1749 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1750 if (spapr->vof) {
1751 spapr_vof_reset(spapr, fdt, &error_fatal);
1752 /*
1753 * Do not pack the FDT as the client may change properties.
1754 * VOF client does not expect the FDT so we do not load it to the VM.
1755 */
1756 } else {
1757 rc = fdt_pack(fdt);
1758 /* Should only fail if we've built a corrupted tree */
1759 assert(rc == 0);
1760
1761 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1762 0, fdt_addr, 0);
1763 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1764 }
1765 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1766
1767 g_free(spapr->fdt_blob);
1768 spapr->fdt_size = fdt_totalsize(fdt);
1769 spapr->fdt_initial_size = spapr->fdt_size;
1770 spapr->fdt_blob = fdt;
1771
1772 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1773 machine->fdt = fdt;
1774
1775 /* Set up the entry state */
1776 first_ppc_cpu->env.gpr[5] = 0;
1777
1778 spapr->fwnmi_system_reset_addr = -1;
1779 spapr->fwnmi_machine_check_addr = -1;
1780 spapr->fwnmi_machine_check_interlock = -1;
1781
1782 /* Signal all vCPUs waiting on this condition */
1783 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1784
1785 migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1786 }
1787
1788 static void spapr_create_nvram(SpaprMachineState *spapr)
1789 {
1790 DeviceState *dev = qdev_new("spapr-nvram");
1791 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1792
1793 if (dinfo) {
1794 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1795 &error_fatal);
1796 }
1797
1798 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1799
1800 spapr->nvram = (struct SpaprNvram *)dev;
1801 }
1802
1803 static void spapr_rtc_create(SpaprMachineState *spapr)
1804 {
1805 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1806 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1807 &error_fatal, NULL);
1808 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1809 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1810 "date");
1811 }
1812
1813 /* Returns whether we want to use VGA or not */
1814 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1815 {
1816 vga_interface_created = true;
1817 switch (vga_interface_type) {
1818 case VGA_NONE:
1819 return false;
1820 case VGA_DEVICE:
1821 return true;
1822 case VGA_STD:
1823 case VGA_VIRTIO:
1824 case VGA_CIRRUS:
1825 return pci_vga_init(pci_bus) != NULL;
1826 default:
1827 error_setg(errp,
1828 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1829 return false;
1830 }
1831 }
1832
1833 static int spapr_pre_load(void *opaque)
1834 {
1835 int rc;
1836
1837 rc = spapr_caps_pre_load(opaque);
1838 if (rc) {
1839 return rc;
1840 }
1841
1842 return 0;
1843 }
1844
1845 static int spapr_post_load(void *opaque, int version_id)
1846 {
1847 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1848 int err = 0;
1849
1850 err = spapr_caps_post_migration(spapr);
1851 if (err) {
1852 return err;
1853 }
1854
1855 /*
1856 * In earlier versions, there was no separate qdev for the PAPR
1857 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1858 * So when migrating from those versions, poke the incoming offset
1859 * value into the RTC device
1860 */
1861 if (version_id < 3) {
1862 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1863 if (err) {
1864 return err;
1865 }
1866 }
1867
1868 if (kvm_enabled() && spapr->patb_entry) {
1869 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1870 bool radix = !!(spapr->patb_entry & PATE1_GR);
1871 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1872
1873 /*
1874 * Update LPCR:HR and UPRT as they may not be set properly in
1875 * the stream
1876 */
1877 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1878 LPCR_HR | LPCR_UPRT);
1879
1880 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1881 if (err) {
1882 error_report("Process table config unsupported by the host");
1883 return -EINVAL;
1884 }
1885 }
1886
1887 err = spapr_irq_post_load(spapr, version_id);
1888 if (err) {
1889 return err;
1890 }
1891
1892 return err;
1893 }
1894
1895 static int spapr_pre_save(void *opaque)
1896 {
1897 int rc;
1898
1899 rc = spapr_caps_pre_save(opaque);
1900 if (rc) {
1901 return rc;
1902 }
1903
1904 return 0;
1905 }
1906
1907 static bool version_before_3(void *opaque, int version_id)
1908 {
1909 return version_id < 3;
1910 }
1911
1912 static bool spapr_pending_events_needed(void *opaque)
1913 {
1914 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1915 return !QTAILQ_EMPTY(&spapr->pending_events);
1916 }
1917
1918 static const VMStateDescription vmstate_spapr_event_entry = {
1919 .name = "spapr_event_log_entry",
1920 .version_id = 1,
1921 .minimum_version_id = 1,
1922 .fields = (const VMStateField[]) {
1923 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1924 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1925 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1926 NULL, extended_length),
1927 VMSTATE_END_OF_LIST()
1928 },
1929 };
1930
1931 static const VMStateDescription vmstate_spapr_pending_events = {
1932 .name = "spapr_pending_events",
1933 .version_id = 1,
1934 .minimum_version_id = 1,
1935 .needed = spapr_pending_events_needed,
1936 .fields = (const VMStateField[]) {
1937 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1938 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1939 VMSTATE_END_OF_LIST()
1940 },
1941 };
1942
1943 static bool spapr_ov5_cas_needed(void *opaque)
1944 {
1945 SpaprMachineState *spapr = opaque;
1946 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1947 bool cas_needed;
1948
1949 /* Prior to the introduction of SpaprOptionVector, we had two option
1950 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1951 * Both of these options encode machine topology into the device-tree
1952 * in such a way that the now-booted OS should still be able to interact
1953 * appropriately with QEMU regardless of what options were actually
1954 * negotiatied on the source side.
1955 *
1956 * As such, we can avoid migrating the CAS-negotiated options if these
1957 * are the only options available on the current machine/platform.
1958 * Since these are the only options available for pseries-2.7 and
1959 * earlier, this allows us to maintain old->new/new->old migration
1960 * compatibility.
1961 *
1962 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1963 * via default pseries-2.8 machines and explicit command-line parameters.
1964 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1965 * of the actual CAS-negotiated values to continue working properly. For
1966 * example, availability of memory unplug depends on knowing whether
1967 * OV5_HP_EVT was negotiated via CAS.
1968 *
1969 * Thus, for any cases where the set of available CAS-negotiatable
1970 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1971 * include the CAS-negotiated options in the migration stream, unless
1972 * if they affect boot time behaviour only.
1973 */
1974 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1975 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1976 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1977
1978 /* We need extra information if we have any bits outside the mask
1979 * defined above */
1980 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1981
1982 spapr_ovec_cleanup(ov5_mask);
1983
1984 return cas_needed;
1985 }
1986
1987 static const VMStateDescription vmstate_spapr_ov5_cas = {
1988 .name = "spapr_option_vector_ov5_cas",
1989 .version_id = 1,
1990 .minimum_version_id = 1,
1991 .needed = spapr_ov5_cas_needed,
1992 .fields = (const VMStateField[]) {
1993 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1994 vmstate_spapr_ovec, SpaprOptionVector),
1995 VMSTATE_END_OF_LIST()
1996 },
1997 };
1998
1999 static bool spapr_patb_entry_needed(void *opaque)
2000 {
2001 SpaprMachineState *spapr = opaque;
2002
2003 return !!spapr->patb_entry;
2004 }
2005
2006 static const VMStateDescription vmstate_spapr_patb_entry = {
2007 .name = "spapr_patb_entry",
2008 .version_id = 1,
2009 .minimum_version_id = 1,
2010 .needed = spapr_patb_entry_needed,
2011 .fields = (const VMStateField[]) {
2012 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2013 VMSTATE_END_OF_LIST()
2014 },
2015 };
2016
2017 static bool spapr_irq_map_needed(void *opaque)
2018 {
2019 SpaprMachineState *spapr = opaque;
2020
2021 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2022 }
2023
2024 static const VMStateDescription vmstate_spapr_irq_map = {
2025 .name = "spapr_irq_map",
2026 .version_id = 1,
2027 .minimum_version_id = 1,
2028 .needed = spapr_irq_map_needed,
2029 .fields = (const VMStateField[]) {
2030 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2031 VMSTATE_END_OF_LIST()
2032 },
2033 };
2034
2035 static bool spapr_dtb_needed(void *opaque)
2036 {
2037 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2038
2039 return smc->update_dt_enabled;
2040 }
2041
2042 static int spapr_dtb_pre_load(void *opaque)
2043 {
2044 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2045
2046 g_free(spapr->fdt_blob);
2047 spapr->fdt_blob = NULL;
2048 spapr->fdt_size = 0;
2049
2050 return 0;
2051 }
2052
2053 static const VMStateDescription vmstate_spapr_dtb = {
2054 .name = "spapr_dtb",
2055 .version_id = 1,
2056 .minimum_version_id = 1,
2057 .needed = spapr_dtb_needed,
2058 .pre_load = spapr_dtb_pre_load,
2059 .fields = (const VMStateField[]) {
2060 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2061 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2062 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2063 fdt_size),
2064 VMSTATE_END_OF_LIST()
2065 },
2066 };
2067
2068 static bool spapr_fwnmi_needed(void *opaque)
2069 {
2070 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2071
2072 return spapr->fwnmi_machine_check_addr != -1;
2073 }
2074
2075 static int spapr_fwnmi_pre_save(void *opaque)
2076 {
2077 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2078
2079 /*
2080 * Check if machine check handling is in progress and print a
2081 * warning message.
2082 */
2083 if (spapr->fwnmi_machine_check_interlock != -1) {
2084 warn_report("A machine check is being handled during migration. The"
2085 "handler may run and log hardware error on the destination");
2086 }
2087
2088 return 0;
2089 }
2090
2091 static const VMStateDescription vmstate_spapr_fwnmi = {
2092 .name = "spapr_fwnmi",
2093 .version_id = 1,
2094 .minimum_version_id = 1,
2095 .needed = spapr_fwnmi_needed,
2096 .pre_save = spapr_fwnmi_pre_save,
2097 .fields = (const VMStateField[]) {
2098 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2099 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2100 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2101 VMSTATE_END_OF_LIST()
2102 },
2103 };
2104
2105 static const VMStateDescription vmstate_spapr = {
2106 .name = "spapr",
2107 .version_id = 3,
2108 .minimum_version_id = 1,
2109 .pre_load = spapr_pre_load,
2110 .post_load = spapr_post_load,
2111 .pre_save = spapr_pre_save,
2112 .fields = (const VMStateField[]) {
2113 /* used to be @next_irq */
2114 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2115
2116 /* RTC offset */
2117 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2118
2119 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2120 VMSTATE_END_OF_LIST()
2121 },
2122 .subsections = (const VMStateDescription * const []) {
2123 &vmstate_spapr_ov5_cas,
2124 &vmstate_spapr_patb_entry,
2125 &vmstate_spapr_pending_events,
2126 &vmstate_spapr_cap_htm,
2127 &vmstate_spapr_cap_vsx,
2128 &vmstate_spapr_cap_dfp,
2129 &vmstate_spapr_cap_cfpc,
2130 &vmstate_spapr_cap_sbbc,
2131 &vmstate_spapr_cap_ibs,
2132 &vmstate_spapr_cap_hpt_maxpagesize,
2133 &vmstate_spapr_irq_map,
2134 &vmstate_spapr_cap_nested_kvm_hv,
2135 &vmstate_spapr_dtb,
2136 &vmstate_spapr_cap_large_decr,
2137 &vmstate_spapr_cap_ccf_assist,
2138 &vmstate_spapr_cap_fwnmi,
2139 &vmstate_spapr_fwnmi,
2140 &vmstate_spapr_cap_rpt_invalidate,
2141 NULL
2142 }
2143 };
2144
2145 static int htab_save_setup(QEMUFile *f, void *opaque)
2146 {
2147 SpaprMachineState *spapr = opaque;
2148
2149 /* "Iteration" header */
2150 if (!spapr->htab_shift) {
2151 qemu_put_be32(f, -1);
2152 } else {
2153 qemu_put_be32(f, spapr->htab_shift);
2154 }
2155
2156 if (spapr->htab) {
2157 spapr->htab_save_index = 0;
2158 spapr->htab_first_pass = true;
2159 } else {
2160 if (spapr->htab_shift) {
2161 assert(kvm_enabled());
2162 }
2163 }
2164
2165
2166 return 0;
2167 }
2168
2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2170 int chunkstart, int n_valid, int n_invalid)
2171 {
2172 qemu_put_be32(f, chunkstart);
2173 qemu_put_be16(f, n_valid);
2174 qemu_put_be16(f, n_invalid);
2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2176 HASH_PTE_SIZE_64 * n_valid);
2177 }
2178
2179 static void htab_save_end_marker(QEMUFile *f)
2180 {
2181 qemu_put_be32(f, 0);
2182 qemu_put_be16(f, 0);
2183 qemu_put_be16(f, 0);
2184 }
2185
2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2187 int64_t max_ns)
2188 {
2189 bool has_timeout = max_ns != -1;
2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2191 int index = spapr->htab_save_index;
2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193
2194 assert(spapr->htab_first_pass);
2195
2196 do {
2197 int chunkstart;
2198
2199 /* Consume invalid HPTEs */
2200 while ((index < htabslots)
2201 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2202 CLEAN_HPTE(HPTE(spapr->htab, index));
2203 index++;
2204 }
2205
2206 /* Consume valid HPTEs */
2207 chunkstart = index;
2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209 && HPTE_VALID(HPTE(spapr->htab, index))) {
2210 CLEAN_HPTE(HPTE(spapr->htab, index));
2211 index++;
2212 }
2213
2214 if (index > chunkstart) {
2215 int n_valid = index - chunkstart;
2216
2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2218
2219 if (has_timeout &&
2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221 break;
2222 }
2223 }
2224 } while ((index < htabslots) && !migration_rate_exceeded(f));
2225
2226 if (index >= htabslots) {
2227 assert(index == htabslots);
2228 index = 0;
2229 spapr->htab_first_pass = false;
2230 }
2231 spapr->htab_save_index = index;
2232 }
2233
2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2235 int64_t max_ns)
2236 {
2237 bool final = max_ns < 0;
2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2239 int examined = 0, sent = 0;
2240 int index = spapr->htab_save_index;
2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2242
2243 assert(!spapr->htab_first_pass);
2244
2245 do {
2246 int chunkstart, invalidstart;
2247
2248 /* Consume non-dirty HPTEs */
2249 while ((index < htabslots)
2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2251 index++;
2252 examined++;
2253 }
2254
2255 chunkstart = index;
2256 /* Consume valid dirty HPTEs */
2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2258 && HPTE_DIRTY(HPTE(spapr->htab, index))
2259 && HPTE_VALID(HPTE(spapr->htab, index))) {
2260 CLEAN_HPTE(HPTE(spapr->htab, index));
2261 index++;
2262 examined++;
2263 }
2264
2265 invalidstart = index;
2266 /* Consume invalid dirty HPTEs */
2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2268 && HPTE_DIRTY(HPTE(spapr->htab, index))
2269 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2270 CLEAN_HPTE(HPTE(spapr->htab, index));
2271 index++;
2272 examined++;
2273 }
2274
2275 if (index > chunkstart) {
2276 int n_valid = invalidstart - chunkstart;
2277 int n_invalid = index - invalidstart;
2278
2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2280 sent += index - chunkstart;
2281
2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2283 break;
2284 }
2285 }
2286
2287 if (examined >= htabslots) {
2288 break;
2289 }
2290
2291 if (index >= htabslots) {
2292 assert(index == htabslots);
2293 index = 0;
2294 }
2295 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2296
2297 if (index >= htabslots) {
2298 assert(index == htabslots);
2299 index = 0;
2300 }
2301
2302 spapr->htab_save_index = index;
2303
2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2305 }
2306
2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2308 #define MAX_KVM_BUF_SIZE 2048
2309
2310 static int htab_save_iterate(QEMUFile *f, void *opaque)
2311 {
2312 SpaprMachineState *spapr = opaque;
2313 int fd;
2314 int rc = 0;
2315
2316 /* Iteration header */
2317 if (!spapr->htab_shift) {
2318 qemu_put_be32(f, -1);
2319 return 1;
2320 } else {
2321 qemu_put_be32(f, 0);
2322 }
2323
2324 if (!spapr->htab) {
2325 assert(kvm_enabled());
2326
2327 fd = get_htab_fd(spapr);
2328 if (fd < 0) {
2329 return fd;
2330 }
2331
2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2333 if (rc < 0) {
2334 return rc;
2335 }
2336 } else if (spapr->htab_first_pass) {
2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2338 } else {
2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2340 }
2341
2342 htab_save_end_marker(f);
2343
2344 return rc;
2345 }
2346
2347 static int htab_save_complete(QEMUFile *f, void *opaque)
2348 {
2349 SpaprMachineState *spapr = opaque;
2350 int fd;
2351
2352 /* Iteration header */
2353 if (!spapr->htab_shift) {
2354 qemu_put_be32(f, -1);
2355 return 0;
2356 } else {
2357 qemu_put_be32(f, 0);
2358 }
2359
2360 if (!spapr->htab) {
2361 int rc;
2362
2363 assert(kvm_enabled());
2364
2365 fd = get_htab_fd(spapr);
2366 if (fd < 0) {
2367 return fd;
2368 }
2369
2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2371 if (rc < 0) {
2372 return rc;
2373 }
2374 } else {
2375 if (spapr->htab_first_pass) {
2376 htab_save_first_pass(f, spapr, -1);
2377 }
2378 htab_save_later_pass(f, spapr, -1);
2379 }
2380
2381 /* End marker */
2382 htab_save_end_marker(f);
2383
2384 return 0;
2385 }
2386
2387 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2388 {
2389 SpaprMachineState *spapr = opaque;
2390 uint32_t section_hdr;
2391 int fd = -1;
2392 Error *local_err = NULL;
2393
2394 if (version_id < 1 || version_id > 1) {
2395 error_report("htab_load() bad version");
2396 return -EINVAL;
2397 }
2398
2399 section_hdr = qemu_get_be32(f);
2400
2401 if (section_hdr == -1) {
2402 spapr_free_hpt(spapr);
2403 return 0;
2404 }
2405
2406 if (section_hdr) {
2407 int ret;
2408
2409 /* First section gives the htab size */
2410 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2411 if (ret < 0) {
2412 error_report_err(local_err);
2413 return ret;
2414 }
2415 return 0;
2416 }
2417
2418 if (!spapr->htab) {
2419 assert(kvm_enabled());
2420
2421 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2422 if (fd < 0) {
2423 error_report_err(local_err);
2424 return fd;
2425 }
2426 }
2427
2428 while (true) {
2429 uint32_t index;
2430 uint16_t n_valid, n_invalid;
2431
2432 index = qemu_get_be32(f);
2433 n_valid = qemu_get_be16(f);
2434 n_invalid = qemu_get_be16(f);
2435
2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2437 /* End of Stream */
2438 break;
2439 }
2440
2441 if ((index + n_valid + n_invalid) >
2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2443 /* Bad index in stream */
2444 error_report(
2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2446 index, n_valid, n_invalid, spapr->htab_shift);
2447 return -EINVAL;
2448 }
2449
2450 if (spapr->htab) {
2451 if (n_valid) {
2452 qemu_get_buffer(f, HPTE(spapr->htab, index),
2453 HASH_PTE_SIZE_64 * n_valid);
2454 }
2455 if (n_invalid) {
2456 memset(HPTE(spapr->htab, index + n_valid), 0,
2457 HASH_PTE_SIZE_64 * n_invalid);
2458 }
2459 } else {
2460 int rc;
2461
2462 assert(fd >= 0);
2463
2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2465 &local_err);
2466 if (rc < 0) {
2467 error_report_err(local_err);
2468 return rc;
2469 }
2470 }
2471 }
2472
2473 if (!spapr->htab) {
2474 assert(fd >= 0);
2475 close(fd);
2476 }
2477
2478 return 0;
2479 }
2480
2481 static void htab_save_cleanup(void *opaque)
2482 {
2483 SpaprMachineState *spapr = opaque;
2484
2485 close_htab_fd(spapr);
2486 }
2487
2488 static SaveVMHandlers savevm_htab_handlers = {
2489 .save_setup = htab_save_setup,
2490 .save_live_iterate = htab_save_iterate,
2491 .save_live_complete_precopy = htab_save_complete,
2492 .save_cleanup = htab_save_cleanup,
2493 .load_state = htab_load,
2494 };
2495
2496 static void spapr_boot_set(void *opaque, const char *boot_device,
2497 Error **errp)
2498 {
2499 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2500
2501 g_free(spapr->boot_device);
2502 spapr->boot_device = g_strdup(boot_device);
2503 }
2504
2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2506 {
2507 MachineState *machine = MACHINE(spapr);
2508 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2509 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2510 int i;
2511
2512 g_assert(!nr_lmbs || machine->device_memory);
2513 for (i = 0; i < nr_lmbs; i++) {
2514 uint64_t addr;
2515
2516 addr = i * lmb_size + machine->device_memory->base;
2517 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2518 addr / lmb_size);
2519 }
2520 }
2521
2522 /*
2523 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2524 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2525 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2526 */
2527 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2528 {
2529 int i;
2530
2531 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2532 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2533 " is not aligned to %" PRIu64 " MiB",
2534 machine->ram_size,
2535 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2536 return;
2537 }
2538
2539 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2540 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2541 " is not aligned to %" PRIu64 " MiB",
2542 machine->ram_size,
2543 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2544 return;
2545 }
2546
2547 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2548 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2549 error_setg(errp,
2550 "Node %d memory size 0x%" PRIx64
2551 " is not aligned to %" PRIu64 " MiB",
2552 i, machine->numa_state->nodes[i].node_mem,
2553 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2554 return;
2555 }
2556 }
2557 }
2558
2559 /* find cpu slot in machine->possible_cpus by core_id */
2560 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2561 {
2562 int index = id / ms->smp.threads;
2563
2564 if (index >= ms->possible_cpus->len) {
2565 return NULL;
2566 }
2567 if (idx) {
2568 *idx = index;
2569 }
2570 return &ms->possible_cpus->cpus[index];
2571 }
2572
2573 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2574 {
2575 MachineState *ms = MACHINE(spapr);
2576 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2577 Error *local_err = NULL;
2578 bool vsmt_user = !!spapr->vsmt;
2579 int kvm_smt = kvmppc_smt_threads();
2580 int ret;
2581 unsigned int smp_threads = ms->smp.threads;
2582
2583 if (tcg_enabled()) {
2584 if (smp_threads > 1 &&
2585 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2586 spapr->max_compat_pvr)) {
2587 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2588 return;
2589 }
2590
2591 if (smp_threads > 8) {
2592 error_setg(errp, "TCG cannot support more than 8 threads/core "
2593 "on a pseries machine");
2594 return;
2595 }
2596 }
2597 if (!is_power_of_2(smp_threads)) {
2598 error_setg(errp, "Cannot support %d threads/core on a pseries "
2599 "machine because it must be a power of 2", smp_threads);
2600 return;
2601 }
2602
2603 /* Determine the VSMT mode to use: */
2604 if (vsmt_user) {
2605 if (spapr->vsmt < smp_threads) {
2606 error_setg(errp, "Cannot support VSMT mode %d"
2607 " because it must be >= threads/core (%d)",
2608 spapr->vsmt, smp_threads);
2609 return;
2610 }
2611 /* In this case, spapr->vsmt has been set by the command line */
2612 } else if (!smc->smp_threads_vsmt) {
2613 /*
2614 * Default VSMT value is tricky, because we need it to be as
2615 * consistent as possible (for migration), but this requires
2616 * changing it for at least some existing cases. We pick 8 as
2617 * the value that we'd get with KVM on POWER8, the
2618 * overwhelmingly common case in production systems.
2619 */
2620 spapr->vsmt = MAX(8, smp_threads);
2621 } else {
2622 spapr->vsmt = smp_threads;
2623 }
2624
2625 /* KVM: If necessary, set the SMT mode: */
2626 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2627 ret = kvmppc_set_smt_threads(spapr->vsmt);
2628 if (ret) {
2629 /* Looks like KVM isn't able to change VSMT mode */
2630 error_setg(&local_err,
2631 "Failed to set KVM's VSMT mode to %d (errno %d)",
2632 spapr->vsmt, ret);
2633 /* We can live with that if the default one is big enough
2634 * for the number of threads, and a submultiple of the one
2635 * we want. In this case we'll waste some vcpu ids, but
2636 * behaviour will be correct */
2637 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2638 warn_report_err(local_err);
2639 } else {
2640 if (!vsmt_user) {
2641 error_append_hint(&local_err,
2642 "On PPC, a VM with %d threads/core"
2643 " on a host with %d threads/core"
2644 " requires the use of VSMT mode %d.\n",
2645 smp_threads, kvm_smt, spapr->vsmt);
2646 }
2647 kvmppc_error_append_smt_possible_hint(&local_err);
2648 error_propagate(errp, local_err);
2649 }
2650 }
2651 }
2652 /* else TCG: nothing to do currently */
2653 }
2654
2655 static void spapr_init_cpus(SpaprMachineState *spapr)
2656 {
2657 MachineState *machine = MACHINE(spapr);
2658 MachineClass *mc = MACHINE_GET_CLASS(machine);
2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2660 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2661 const CPUArchIdList *possible_cpus;
2662 unsigned int smp_cpus = machine->smp.cpus;
2663 unsigned int smp_threads = machine->smp.threads;
2664 unsigned int max_cpus = machine->smp.max_cpus;
2665 int boot_cores_nr = smp_cpus / smp_threads;
2666 int i;
2667
2668 possible_cpus = mc->possible_cpu_arch_ids(machine);
2669 if (mc->has_hotpluggable_cpus) {
2670 if (smp_cpus % smp_threads) {
2671 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2672 smp_cpus, smp_threads);
2673 exit(1);
2674 }
2675 if (max_cpus % smp_threads) {
2676 error_report("max_cpus (%u) must be multiple of threads (%u)",
2677 max_cpus, smp_threads);
2678 exit(1);
2679 }
2680 } else {
2681 if (max_cpus != smp_cpus) {
2682 error_report("This machine version does not support CPU hotplug");
2683 exit(1);
2684 }
2685 boot_cores_nr = possible_cpus->len;
2686 }
2687
2688 if (smc->pre_2_10_has_unused_icps) {
2689 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2690 /* Dummy entries get deregistered when real ICPState objects
2691 * are registered during CPU core hotplug.
2692 */
2693 pre_2_10_vmstate_register_dummy_icp(i);
2694 }
2695 }
2696
2697 for (i = 0; i < possible_cpus->len; i++) {
2698 int core_id = i * smp_threads;
2699
2700 if (mc->has_hotpluggable_cpus) {
2701 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2702 spapr_vcpu_id(spapr, core_id));
2703 }
2704
2705 if (i < boot_cores_nr) {
2706 Object *core = object_new(type);
2707 int nr_threads = smp_threads;
2708
2709 /* Handle the partially filled core for older machine types */
2710 if ((i + 1) * smp_threads >= smp_cpus) {
2711 nr_threads = smp_cpus - i * smp_threads;
2712 }
2713
2714 object_property_set_int(core, "nr-threads", nr_threads,
2715 &error_fatal);
2716 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2717 &error_fatal);
2718 qdev_realize(DEVICE(core), NULL, &error_fatal);
2719
2720 object_unref(core);
2721 }
2722 }
2723 }
2724
2725 static PCIHostState *spapr_create_default_phb(void)
2726 {
2727 DeviceState *dev;
2728
2729 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2730 qdev_prop_set_uint32(dev, "index", 0);
2731 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2732
2733 return PCI_HOST_BRIDGE(dev);
2734 }
2735
2736 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2737 {
2738 MachineState *machine = MACHINE(spapr);
2739 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2740 hwaddr rma_size = machine->ram_size;
2741 hwaddr node0_size = spapr_node0_size(machine);
2742
2743 /* RMA has to fit in the first NUMA node */
2744 rma_size = MIN(rma_size, node0_size);
2745
2746 /*
2747 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2748 * never exceed that
2749 */
2750 rma_size = MIN(rma_size, 1 * TiB);
2751
2752 /*
2753 * Clamp the RMA size based on machine type. This is for
2754 * migration compatibility with older qemu versions, which limited
2755 * the RMA size for complicated and mostly bad reasons.
2756 */
2757 if (smc->rma_limit) {
2758 rma_size = MIN(rma_size, smc->rma_limit);
2759 }
2760
2761 if (rma_size < MIN_RMA_SLOF) {
2762 error_setg(errp,
2763 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2764 "ldMiB guest RMA (Real Mode Area memory)",
2765 MIN_RMA_SLOF / MiB);
2766 return 0;
2767 }
2768
2769 return rma_size;
2770 }
2771
2772 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2773 {
2774 MachineState *machine = MACHINE(spapr);
2775 int i;
2776
2777 for (i = 0; i < machine->ram_slots; i++) {
2778 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2779 }
2780 }
2781
2782 /* pSeries LPAR / sPAPR hardware init */
2783 static void spapr_machine_init(MachineState *machine)
2784 {
2785 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2786 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2787 MachineClass *mc = MACHINE_GET_CLASS(machine);
2788 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2789 const char *bios_name = machine->firmware ?: bios_default;
2790 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2791 const char *kernel_filename = machine->kernel_filename;
2792 const char *initrd_filename = machine->initrd_filename;
2793 PCIHostState *phb;
2794 bool has_vga;
2795 int i;
2796 MemoryRegion *sysmem = get_system_memory();
2797 long load_limit, fw_size;
2798 Error *resize_hpt_err = NULL;
2799
2800 if (!filename) {
2801 error_report("Could not find LPAR firmware '%s'", bios_name);
2802 exit(1);
2803 }
2804 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2805 if (fw_size <= 0) {
2806 error_report("Could not load LPAR firmware '%s'", filename);
2807 exit(1);
2808 }
2809
2810 /*
2811 * if Secure VM (PEF) support is configured, then initialize it
2812 */
2813 pef_kvm_init(machine->cgs, &error_fatal);
2814
2815 msi_nonbroken = true;
2816
2817 QLIST_INIT(&spapr->phbs);
2818 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2819
2820 /* Determine capabilities to run with */
2821 spapr_caps_init(spapr);
2822
2823 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2824 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2825 /*
2826 * If the user explicitly requested a mode we should either
2827 * supply it, or fail completely (which we do below). But if
2828 * it's not set explicitly, we reset our mode to something
2829 * that works
2830 */
2831 if (resize_hpt_err) {
2832 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2833 error_free(resize_hpt_err);
2834 resize_hpt_err = NULL;
2835 } else {
2836 spapr->resize_hpt = smc->resize_hpt_default;
2837 }
2838 }
2839
2840 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2841
2842 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2843 /*
2844 * User requested HPT resize, but this host can't supply it. Bail out
2845 */
2846 error_report_err(resize_hpt_err);
2847 exit(1);
2848 }
2849 error_free(resize_hpt_err);
2850
2851 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2852
2853 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2854 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2855
2856 /*
2857 * VSMT must be set in order to be able to compute VCPU ids, ie to
2858 * call spapr_max_server_number() or spapr_vcpu_id().
2859 */
2860 spapr_set_vsmt_mode(spapr, &error_fatal);
2861
2862 /* Set up Interrupt Controller before we create the VCPUs */
2863 spapr_irq_init(spapr, &error_fatal);
2864
2865 /* Set up containers for ibm,client-architecture-support negotiated options
2866 */
2867 spapr->ov5 = spapr_ovec_new();
2868 spapr->ov5_cas = spapr_ovec_new();
2869
2870 if (smc->dr_lmb_enabled) {
2871 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2872 spapr_validate_node_memory(machine, &error_fatal);
2873 }
2874
2875 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2876
2877 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2878 if (!smc->pre_6_2_numa_affinity) {
2879 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2880 }
2881
2882 /* advertise support for dedicated HP event source to guests */
2883 if (spapr->use_hotplug_event_source) {
2884 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2885 }
2886
2887 /* advertise support for HPT resizing */
2888 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2889 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2890 }
2891
2892 /* advertise support for ibm,dyamic-memory-v2 */
2893 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2894
2895 /* advertise XIVE on POWER9 machines */
2896 if (spapr->irq->xive) {
2897 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2898 }
2899
2900 /* init CPUs */
2901 spapr_init_cpus(spapr);
2902
2903 /* Init numa_assoc_array */
2904 spapr_numa_associativity_init(spapr, machine);
2905
2906 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2907 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2908 spapr->max_compat_pvr)) {
2909 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2910 /* KVM and TCG always allow GTSE with radix... */
2911 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2912 }
2913 /* ... but not with hash (currently). */
2914
2915 if (kvm_enabled()) {
2916 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2917 kvmppc_enable_logical_ci_hcalls();
2918 kvmppc_enable_set_mode_hcall();
2919
2920 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2921 kvmppc_enable_clear_ref_mod_hcalls();
2922
2923 /* Enable H_PAGE_INIT */
2924 kvmppc_enable_h_page_init();
2925 }
2926
2927 /* map RAM */
2928 memory_region_add_subregion(sysmem, 0, machine->ram);
2929
2930 /* initialize hotplug memory address space */
2931 if (machine->ram_size < machine->maxram_size) {
2932 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2933 hwaddr device_mem_base;
2934
2935 /*
2936 * Limit the number of hotpluggable memory slots to half the number
2937 * slots that KVM supports, leaving the other half for PCI and other
2938 * devices. However ensure that number of slots doesn't drop below 32.
2939 */
2940 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2941 SPAPR_MAX_RAM_SLOTS;
2942
2943 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2944 max_memslots = SPAPR_MAX_RAM_SLOTS;
2945 }
2946 if (machine->ram_slots > max_memslots) {
2947 error_report("Specified number of memory slots %"
2948 PRIu64" exceeds max supported %d",
2949 machine->ram_slots, max_memslots);
2950 exit(1);
2951 }
2952
2953 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2954 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2955 }
2956
2957 if (smc->dr_lmb_enabled) {
2958 spapr_create_lmb_dr_connectors(spapr);
2959 }
2960
2961 if (mc->nvdimm_supported) {
2962 spapr_create_nvdimm_dr_connectors(spapr);
2963 }
2964
2965 /* Set up RTAS event infrastructure */
2966 spapr_events_init(spapr);
2967
2968 /* Set up the RTC RTAS interfaces */
2969 spapr_rtc_create(spapr);
2970
2971 /* Set up VIO bus */
2972 spapr->vio_bus = spapr_vio_bus_init();
2973
2974 for (i = 0; serial_hd(i); i++) {
2975 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2976 }
2977
2978 /* We always have at least the nvram device on VIO */
2979 spapr_create_nvram(spapr);
2980
2981 /*
2982 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2983 * connectors (described in root DT node's "ibm,drc-types" property)
2984 * are pre-initialized here. additional child connectors (such as
2985 * connectors for a PHBs PCI slots) are added as needed during their
2986 * parent's realization.
2987 */
2988 if (smc->dr_phb_enabled) {
2989 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2990 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2991 }
2992 }
2993
2994 /* Set up PCI */
2995 spapr_pci_rtas_init();
2996
2997 phb = spapr_create_default_phb();
2998
2999 for (i = 0; i < nb_nics; i++) {
3000 NICInfo *nd = &nd_table[i];
3001
3002 if (!nd->model) {
3003 nd->model = g_strdup("spapr-vlan");
3004 }
3005
3006 if (g_str_equal(nd->model, "spapr-vlan") ||
3007 g_str_equal(nd->model, "ibmveth")) {
3008 spapr_vlan_create(spapr->vio_bus, nd);
3009 } else {
3010 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3011 }
3012 }
3013
3014 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3015 spapr_vscsi_create(spapr->vio_bus);
3016 }
3017
3018 /* Graphics */
3019 has_vga = spapr_vga_init(phb->bus, &error_fatal);
3020 if (has_vga) {
3021 spapr->want_stdout_path = !machine->enable_graphics;
3022 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3023 } else {
3024 spapr->want_stdout_path = true;
3025 }
3026
3027 if (machine->usb) {
3028 if (smc->use_ohci_by_default) {
3029 pci_create_simple(phb->bus, -1, "pci-ohci");
3030 } else {
3031 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3032 }
3033
3034 if (has_vga) {
3035 USBBus *usb_bus = usb_bus_find(-1);
3036
3037 usb_create_simple(usb_bus, "usb-kbd");
3038 usb_create_simple(usb_bus, "usb-mouse");
3039 }
3040 }
3041
3042 if (kernel_filename) {
3043 uint64_t loaded_addr = 0;
3044
3045 spapr->kernel_size = load_elf(kernel_filename, NULL,
3046 translate_kernel_address, spapr,
3047 NULL, &loaded_addr, NULL, NULL, 1,
3048 PPC_ELF_MACHINE, 0, 0);
3049 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3050 spapr->kernel_size = load_elf(kernel_filename, NULL,
3051 translate_kernel_address, spapr,
3052 NULL, &loaded_addr, NULL, NULL, 0,
3053 PPC_ELF_MACHINE, 0, 0);
3054 spapr->kernel_le = spapr->kernel_size > 0;
3055 }
3056 if (spapr->kernel_size < 0) {
3057 error_report("error loading %s: %s", kernel_filename,
3058 load_elf_strerror(spapr->kernel_size));
3059 exit(1);
3060 }
3061
3062 if (spapr->kernel_addr != loaded_addr) {
3063 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3064 " to 0x%"PRIx64,
3065 spapr->kernel_addr, loaded_addr);
3066 spapr->kernel_addr = loaded_addr;
3067 }
3068
3069 /* load initrd */
3070 if (initrd_filename) {
3071 /* Try to locate the initrd in the gap between the kernel
3072 * and the firmware. Add a bit of space just in case
3073 */
3074 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3075 + 0x1ffff) & ~0xffff;
3076 spapr->initrd_size = load_image_targphys(initrd_filename,
3077 spapr->initrd_base,
3078 load_limit
3079 - spapr->initrd_base);
3080 if (spapr->initrd_size < 0) {
3081 error_report("could not load initial ram disk '%s'",
3082 initrd_filename);
3083 exit(1);
3084 }
3085 }
3086 }
3087
3088 /* FIXME: Should register things through the MachineState's qdev
3089 * interface, this is a legacy from the sPAPREnvironment structure
3090 * which predated MachineState but had a similar function */
3091 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3092 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3093 &savevm_htab_handlers, spapr);
3094
3095 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3096
3097 qemu_register_boot_set(spapr_boot_set, spapr);
3098
3099 /*
3100 * Nothing needs to be done to resume a suspended guest because
3101 * suspending does not change the machine state, so no need for
3102 * a ->wakeup method.
3103 */
3104 qemu_register_wakeup_support();
3105
3106 if (kvm_enabled()) {
3107 /* to stop and start vmclock */
3108 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3109 &spapr->tb);
3110
3111 kvmppc_spapr_enable_inkernel_multitce();
3112 }
3113
3114 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3115 if (spapr->vof) {
3116 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3117 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3118 }
3119
3120 spapr_watchdog_init(spapr);
3121 }
3122
3123 #define DEFAULT_KVM_TYPE "auto"
3124 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3125 {
3126 /*
3127 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3128 * accommodate the 'HV' and 'PV' formats that exists in the
3129 * wild. The 'auto' mode is being introduced already as
3130 * lower-case, thus we don't need to bother checking for
3131 * "AUTO".
3132 */
3133 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3134 return 0;
3135 }
3136
3137 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3138 return 1;
3139 }
3140
3141 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3142 return 2;
3143 }
3144
3145 error_report("Unknown kvm-type specified '%s'", vm_type);
3146 return -1;
3147 }
3148
3149 /*
3150 * Implementation of an interface to adjust firmware path
3151 * for the bootindex property handling.
3152 */
3153 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3154 DeviceState *dev)
3155 {
3156 #define CAST(type, obj, name) \
3157 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3158 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3159 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3160 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3161 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3162
3163 if (d && bus) {
3164 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3165 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3166 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3167
3168 if (spapr) {
3169 /*
3170 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3171 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3172 * 0x8000 | (target << 8) | (bus << 5) | lun
3173 * (see the "Logical unit addressing format" table in SAM5)
3174 */
3175 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3176 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3177 (uint64_t)id << 48);
3178 } else if (virtio) {
3179 /*
3180 * We use SRP luns of the form 01000000 | (target << 8) | lun
3181 * in the top 32 bits of the 64-bit LUN
3182 * Note: the quote above is from SLOF and it is wrong,
3183 * the actual binding is:
3184 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3185 */
3186 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3187 if (d->lun >= 256) {
3188 /* Use the LUN "flat space addressing method" */
3189 id |= 0x4000;
3190 }
3191 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3192 (uint64_t)id << 32);
3193 } else if (usb) {
3194 /*
3195 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3196 * in the top 32 bits of the 64-bit LUN
3197 */
3198 unsigned usb_port = atoi(usb->port->path);
3199 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3200 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3201 (uint64_t)id << 32);
3202 }
3203 }
3204
3205 /*
3206 * SLOF probes the USB devices, and if it recognizes that the device is a
3207 * storage device, it changes its name to "storage" instead of "usb-host",
3208 * and additionally adds a child node for the SCSI LUN, so the correct
3209 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3210 */
3211 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3212 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3213 if (usb_device_is_scsi_storage(usbdev)) {
3214 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3215 }
3216 }
3217
3218 if (phb) {
3219 /* Replace "pci" with "pci@800000020000000" */
3220 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3221 }
3222
3223 if (vsc) {
3224 /* Same logic as virtio above */
3225 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3226 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3227 }
3228
3229 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3230 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3231 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3232 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3233 }
3234
3235 if (pcidev) {
3236 return spapr_pci_fw_dev_name(pcidev);
3237 }
3238
3239 return NULL;
3240 }
3241
3242 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3243 {
3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246 return g_strdup(spapr->kvm_type);
3247 }
3248
3249 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3250 {
3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252
3253 g_free(spapr->kvm_type);
3254 spapr->kvm_type = g_strdup(value);
3255 }
3256
3257 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3258 {
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260
3261 return spapr->use_hotplug_event_source;
3262 }
3263
3264 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3265 Error **errp)
3266 {
3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268
3269 spapr->use_hotplug_event_source = value;
3270 }
3271
3272 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3273 {
3274 return true;
3275 }
3276
3277 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3278 {
3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280
3281 switch (spapr->resize_hpt) {
3282 case SPAPR_RESIZE_HPT_DEFAULT:
3283 return g_strdup("default");
3284 case SPAPR_RESIZE_HPT_DISABLED:
3285 return g_strdup("disabled");
3286 case SPAPR_RESIZE_HPT_ENABLED:
3287 return g_strdup("enabled");
3288 case SPAPR_RESIZE_HPT_REQUIRED:
3289 return g_strdup("required");
3290 }
3291 g_assert_not_reached();
3292 }
3293
3294 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3295 {
3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297
3298 if (strcmp(value, "default") == 0) {
3299 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3300 } else if (strcmp(value, "disabled") == 0) {
3301 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3302 } else if (strcmp(value, "enabled") == 0) {
3303 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3304 } else if (strcmp(value, "required") == 0) {
3305 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3306 } else {
3307 error_setg(errp, "Bad value for \"resize-hpt\" property");
3308 }
3309 }
3310
3311 static bool spapr_get_vof(Object *obj, Error **errp)
3312 {
3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314
3315 return spapr->vof != NULL;
3316 }
3317
3318 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3319 {
3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3321
3322 if (spapr->vof) {
3323 vof_cleanup(spapr->vof);
3324 g_free(spapr->vof);
3325 spapr->vof = NULL;
3326 }
3327 if (!value) {
3328 return;
3329 }
3330 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3331 }
3332
3333 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3334 {
3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3336
3337 if (spapr->irq == &spapr_irq_xics_legacy) {
3338 return g_strdup("legacy");
3339 } else if (spapr->irq == &spapr_irq_xics) {
3340 return g_strdup("xics");
3341 } else if (spapr->irq == &spapr_irq_xive) {
3342 return g_strdup("xive");
3343 } else if (spapr->irq == &spapr_irq_dual) {
3344 return g_strdup("dual");
3345 }
3346 g_assert_not_reached();
3347 }
3348
3349 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3350 {
3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352
3353 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3354 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3355 return;
3356 }
3357
3358 /* The legacy IRQ backend can not be set */
3359 if (strcmp(value, "xics") == 0) {
3360 spapr->irq = &spapr_irq_xics;
3361 } else if (strcmp(value, "xive") == 0) {
3362 spapr->irq = &spapr_irq_xive;
3363 } else if (strcmp(value, "dual") == 0) {
3364 spapr->irq = &spapr_irq_dual;
3365 } else {
3366 error_setg(errp, "Bad value for \"ic-mode\" property");
3367 }
3368 }
3369
3370 static char *spapr_get_host_model(Object *obj, Error **errp)
3371 {
3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3373
3374 return g_strdup(spapr->host_model);
3375 }
3376
3377 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3378 {
3379 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3380
3381 g_free(spapr->host_model);
3382 spapr->host_model = g_strdup(value);
3383 }
3384
3385 static char *spapr_get_host_serial(Object *obj, Error **errp)
3386 {
3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3388
3389 return g_strdup(spapr->host_serial);
3390 }
3391
3392 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3393 {
3394 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395
3396 g_free(spapr->host_serial);
3397 spapr->host_serial = g_strdup(value);
3398 }
3399
3400 static void spapr_instance_init(Object *obj)
3401 {
3402 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3403 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3404 MachineState *ms = MACHINE(spapr);
3405 MachineClass *mc = MACHINE_GET_CLASS(ms);
3406
3407 /*
3408 * NVDIMM support went live in 5.1 without considering that, in
3409 * other archs, the user needs to enable NVDIMM support with the
3410 * 'nvdimm' machine option and the default behavior is NVDIMM
3411 * support disabled. It is too late to roll back to the standard
3412 * behavior without breaking 5.1 guests.
3413 */
3414 if (mc->nvdimm_supported) {
3415 ms->nvdimms_state->is_enabled = true;
3416 }
3417
3418 spapr->htab_fd = -1;
3419 spapr->use_hotplug_event_source = true;
3420 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3421 object_property_add_str(obj, "kvm-type",
3422 spapr_get_kvm_type, spapr_set_kvm_type);
3423 object_property_set_description(obj, "kvm-type",
3424 "Specifies the KVM virtualization mode (auto,"
3425 " hv, pr). Defaults to 'auto'. This mode will use"
3426 " any available KVM module loaded in the host,"
3427 " where kvm_hv takes precedence if both kvm_hv and"
3428 " kvm_pr are loaded.");
3429 object_property_add_bool(obj, "modern-hotplug-events",
3430 spapr_get_modern_hotplug_events,
3431 spapr_set_modern_hotplug_events);
3432 object_property_set_description(obj, "modern-hotplug-events",
3433 "Use dedicated hotplug event mechanism in"
3434 " place of standard EPOW events when possible"
3435 " (required for memory hot-unplug support)");
3436 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3437 "Maximum permitted CPU compatibility mode");
3438
3439 object_property_add_str(obj, "resize-hpt",
3440 spapr_get_resize_hpt, spapr_set_resize_hpt);
3441 object_property_set_description(obj, "resize-hpt",
3442 "Resizing of the Hash Page Table (enabled, disabled, required)");
3443 object_property_add_uint32_ptr(obj, "vsmt",
3444 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3445 object_property_set_description(obj, "vsmt",
3446 "Virtual SMT: KVM behaves as if this were"
3447 " the host's SMT mode");
3448
3449 object_property_add_bool(obj, "vfio-no-msix-emulation",
3450 spapr_get_msix_emulation, NULL);
3451
3452 object_property_add_uint64_ptr(obj, "kernel-addr",
3453 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3454 object_property_set_description(obj, "kernel-addr",
3455 stringify(KERNEL_LOAD_ADDR)
3456 " for -kernel is the default");
3457 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3458
3459 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3460 object_property_set_description(obj, "x-vof",
3461 "Enable Virtual Open Firmware (experimental)");
3462
3463 /* The machine class defines the default interrupt controller mode */
3464 spapr->irq = smc->irq;
3465 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3466 spapr_set_ic_mode);
3467 object_property_set_description(obj, "ic-mode",
3468 "Specifies the interrupt controller mode (xics, xive, dual)");
3469
3470 object_property_add_str(obj, "host-model",
3471 spapr_get_host_model, spapr_set_host_model);
3472 object_property_set_description(obj, "host-model",
3473 "Host model to advertise in guest device tree");
3474 object_property_add_str(obj, "host-serial",
3475 spapr_get_host_serial, spapr_set_host_serial);
3476 object_property_set_description(obj, "host-serial",
3477 "Host serial number to advertise in guest device tree");
3478 }
3479
3480 static void spapr_machine_finalizefn(Object *obj)
3481 {
3482 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3483
3484 g_free(spapr->kvm_type);
3485 }
3486
3487 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3488 {
3489 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3490 PowerPCCPU *cpu = POWERPC_CPU(cs);
3491 CPUPPCState *env = &cpu->env;
3492
3493 cpu_synchronize_state(cs);
3494 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3495 if (spapr->fwnmi_system_reset_addr != -1) {
3496 uint64_t rtas_addr, addr;
3497
3498 /* get rtas addr from fdt */
3499 rtas_addr = spapr_get_rtas_addr();
3500 if (!rtas_addr) {
3501 qemu_system_guest_panicked(NULL);
3502 return;
3503 }
3504
3505 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3506 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3507 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3508 env->gpr[3] = addr;
3509 }
3510 ppc_cpu_do_system_reset(cs);
3511 if (spapr->fwnmi_system_reset_addr != -1) {
3512 env->nip = spapr->fwnmi_system_reset_addr;
3513 }
3514 }
3515
3516 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3517 {
3518 CPUState *cs;
3519
3520 CPU_FOREACH(cs) {
3521 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3522 }
3523 }
3524
3525 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3526 void *fdt, int *fdt_start_offset, Error **errp)
3527 {
3528 uint64_t addr;
3529 uint32_t node;
3530
3531 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3532 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3533 &error_abort);
3534 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3535 SPAPR_MEMORY_BLOCK_SIZE);
3536 return 0;
3537 }
3538
3539 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3540 bool dedicated_hp_event_source)
3541 {
3542 SpaprDrc *drc;
3543 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3544 int i;
3545 uint64_t addr = addr_start;
3546 bool hotplugged = spapr_drc_hotplugged(dev);
3547
3548 for (i = 0; i < nr_lmbs; i++) {
3549 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3550 addr / SPAPR_MEMORY_BLOCK_SIZE);
3551 g_assert(drc);
3552
3553 /*
3554 * memory_device_get_free_addr() provided a range of free addresses
3555 * that doesn't overlap with any existing mapping at pre-plug. The
3556 * corresponding LMB DRCs are thus assumed to be all attachable.
3557 */
3558 spapr_drc_attach(drc, dev);
3559 if (!hotplugged) {
3560 spapr_drc_reset(drc);
3561 }
3562 addr += SPAPR_MEMORY_BLOCK_SIZE;
3563 }
3564 /* send hotplug notification to the
3565 * guest only in case of hotplugged memory
3566 */
3567 if (hotplugged) {
3568 if (dedicated_hp_event_source) {
3569 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3570 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3571 g_assert(drc);
3572 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3573 nr_lmbs,
3574 spapr_drc_index(drc));
3575 } else {
3576 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3577 nr_lmbs);
3578 }
3579 }
3580 }
3581
3582 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3583 {
3584 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3585 PCDIMMDevice *dimm = PC_DIMM(dev);
3586 uint64_t size, addr;
3587 int64_t slot;
3588 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3589
3590 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3591
3592 pc_dimm_plug(dimm, MACHINE(ms));
3593
3594 if (!is_nvdimm) {
3595 addr = object_property_get_uint(OBJECT(dimm),
3596 PC_DIMM_ADDR_PROP, &error_abort);
3597 spapr_add_lmbs(dev, addr, size,
3598 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3599 } else {
3600 slot = object_property_get_int(OBJECT(dimm),
3601 PC_DIMM_SLOT_PROP, &error_abort);
3602 /* We should have valid slot number at this point */
3603 g_assert(slot >= 0);
3604 spapr_add_nvdimm(dev, slot);
3605 }
3606 }
3607
3608 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3609 Error **errp)
3610 {
3611 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3612 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3613 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3614 PCDIMMDevice *dimm = PC_DIMM(dev);
3615 Error *local_err = NULL;
3616 uint64_t size;
3617 Object *memdev;
3618 hwaddr pagesize;
3619
3620 if (!smc->dr_lmb_enabled) {
3621 error_setg(errp, "Memory hotplug not supported for this machine");
3622 return;
3623 }
3624
3625 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3626 if (local_err) {
3627 error_propagate(errp, local_err);
3628 return;
3629 }
3630
3631 if (is_nvdimm) {
3632 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3633 return;
3634 }
3635 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3636 error_setg(errp, "Hotplugged memory size must be a multiple of "
3637 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3638 return;
3639 }
3640
3641 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3642 &error_abort);
3643 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3644 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3645 return;
3646 }
3647
3648 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3649 }
3650
3651 struct SpaprDimmState {
3652 PCDIMMDevice *dimm;
3653 uint32_t nr_lmbs;
3654 QTAILQ_ENTRY(SpaprDimmState) next;
3655 };
3656
3657 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3658 PCDIMMDevice *dimm)
3659 {
3660 SpaprDimmState *dimm_state = NULL;
3661
3662 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3663 if (dimm_state->dimm == dimm) {
3664 break;
3665 }
3666 }
3667 return dimm_state;
3668 }
3669
3670 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3671 uint32_t nr_lmbs,
3672 PCDIMMDevice *dimm)
3673 {
3674 SpaprDimmState *ds = NULL;
3675
3676 /*
3677 * If this request is for a DIMM whose removal had failed earlier
3678 * (due to guest's refusal to remove the LMBs), we would have this
3679 * dimm already in the pending_dimm_unplugs list. In that
3680 * case don't add again.
3681 */
3682 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3683 if (!ds) {
3684 ds = g_new0(SpaprDimmState, 1);
3685 ds->nr_lmbs = nr_lmbs;
3686 ds->dimm = dimm;
3687 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3688 }
3689 return ds;
3690 }
3691
3692 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3693 SpaprDimmState *dimm_state)
3694 {
3695 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3696 g_free(dimm_state);
3697 }
3698
3699 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3700 PCDIMMDevice *dimm)
3701 {
3702 SpaprDrc *drc;
3703 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3704 &error_abort);
3705 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3706 uint32_t avail_lmbs = 0;
3707 uint64_t addr_start, addr;
3708 int i;
3709
3710 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3711 &error_abort);
3712
3713 addr = addr_start;
3714 for (i = 0; i < nr_lmbs; i++) {
3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3716 addr / SPAPR_MEMORY_BLOCK_SIZE);
3717 g_assert(drc);
3718 if (drc->dev) {
3719 avail_lmbs++;
3720 }
3721 addr += SPAPR_MEMORY_BLOCK_SIZE;
3722 }
3723
3724 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3725 }
3726
3727 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3728 {
3729 SpaprDimmState *ds;
3730 PCDIMMDevice *dimm;
3731 SpaprDrc *drc;
3732 uint32_t nr_lmbs;
3733 uint64_t size, addr_start, addr;
3734 g_autofree char *qapi_error = NULL;
3735 int i;
3736
3737 if (!dev) {
3738 return;
3739 }
3740
3741 dimm = PC_DIMM(dev);
3742 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3743
3744 /*
3745 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3746 * unplug state, but one of its DRC is marked as unplug_requested.
3747 * This is bad and weird enough to g_assert() out.
3748 */
3749 g_assert(ds);
3750
3751 spapr_pending_dimm_unplugs_remove(spapr, ds);
3752
3753 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3754 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3755
3756 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3757 &error_abort);
3758
3759 addr = addr_start;
3760 for (i = 0; i < nr_lmbs; i++) {
3761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3762 addr / SPAPR_MEMORY_BLOCK_SIZE);
3763 g_assert(drc);
3764
3765 drc->unplug_requested = false;
3766 addr += SPAPR_MEMORY_BLOCK_SIZE;
3767 }
3768
3769 /*
3770 * Tell QAPI that something happened and the memory
3771 * hotunplug wasn't successful. Keep sending
3772 * MEM_UNPLUG_ERROR even while sending
3773 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3774 * MEM_UNPLUG_ERROR is due.
3775 */
3776 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3777 "for device %s", dev->id);
3778
3779 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3780
3781 qapi_event_send_device_unplug_guest_error(dev->id,
3782 dev->canonical_path);
3783 }
3784
3785 /* Callback to be called during DRC release. */
3786 void spapr_lmb_release(DeviceState *dev)
3787 {
3788 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3789 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3790 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3791
3792 /* This information will get lost if a migration occurs
3793 * during the unplug process. In this case recover it. */
3794 if (ds == NULL) {
3795 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3796 g_assert(ds);
3797 /* The DRC being examined by the caller at least must be counted */
3798 g_assert(ds->nr_lmbs);
3799 }
3800
3801 if (--ds->nr_lmbs) {
3802 return;
3803 }
3804
3805 /*
3806 * Now that all the LMBs have been removed by the guest, call the
3807 * unplug handler chain. This can never fail.
3808 */
3809 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3810 object_unparent(OBJECT(dev));
3811 }
3812
3813 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3814 {
3815 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3816 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3817
3818 /* We really shouldn't get this far without anything to unplug */
3819 g_assert(ds);
3820
3821 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3822 qdev_unrealize(dev);
3823 spapr_pending_dimm_unplugs_remove(spapr, ds);
3824 }
3825
3826 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3827 DeviceState *dev, Error **errp)
3828 {
3829 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3830 PCDIMMDevice *dimm = PC_DIMM(dev);
3831 uint32_t nr_lmbs;
3832 uint64_t size, addr_start, addr;
3833 int i;
3834 SpaprDrc *drc;
3835
3836 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3837 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3838 return;
3839 }
3840
3841 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3842 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3843
3844 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3845 &error_abort);
3846
3847 /*
3848 * An existing pending dimm state for this DIMM means that there is an
3849 * unplug operation in progress, waiting for the spapr_lmb_release
3850 * callback to complete the job (BQL can't cover that far). In this case,
3851 * bail out to avoid detaching DRCs that were already released.
3852 */
3853 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3854 error_setg(errp, "Memory unplug already in progress for device %s",
3855 dev->id);
3856 return;
3857 }
3858
3859 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3860
3861 addr = addr_start;
3862 for (i = 0; i < nr_lmbs; i++) {
3863 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3864 addr / SPAPR_MEMORY_BLOCK_SIZE);
3865 g_assert(drc);
3866
3867 spapr_drc_unplug_request(drc);
3868 addr += SPAPR_MEMORY_BLOCK_SIZE;
3869 }
3870
3871 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3872 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3873 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3874 nr_lmbs, spapr_drc_index(drc));
3875 }
3876
3877 /* Callback to be called during DRC release. */
3878 void spapr_core_release(DeviceState *dev)
3879 {
3880 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3881
3882 /* Call the unplug handler chain. This can never fail. */
3883 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3884 object_unparent(OBJECT(dev));
3885 }
3886
3887 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3888 {
3889 MachineState *ms = MACHINE(hotplug_dev);
3890 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3891 CPUCore *cc = CPU_CORE(dev);
3892 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3893
3894 if (smc->pre_2_10_has_unused_icps) {
3895 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3896 int i;
3897
3898 for (i = 0; i < cc->nr_threads; i++) {
3899 CPUState *cs = CPU(sc->threads[i]);
3900
3901 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3902 }
3903 }
3904
3905 assert(core_slot);
3906 core_slot->cpu = NULL;
3907 qdev_unrealize(dev);
3908 }
3909
3910 static
3911 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3912 Error **errp)
3913 {
3914 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3915 int index;
3916 SpaprDrc *drc;
3917 CPUCore *cc = CPU_CORE(dev);
3918
3919 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3920 error_setg(errp, "Unable to find CPU core with core-id: %d",
3921 cc->core_id);
3922 return;
3923 }
3924 if (index == 0) {
3925 error_setg(errp, "Boot CPU core may not be unplugged");
3926 return;
3927 }
3928
3929 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3930 spapr_vcpu_id(spapr, cc->core_id));
3931 g_assert(drc);
3932
3933 if (!spapr_drc_unplug_requested(drc)) {
3934 spapr_drc_unplug_request(drc);
3935 }
3936
3937 /*
3938 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3939 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3940 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3941 * attempt (e.g. the kernel will refuse to remove the last online
3942 * CPU), we will never attempt it again because unplug_requested
3943 * will still be 'true' in that case.
3944 */
3945 spapr_hotplug_req_remove_by_index(drc);
3946 }
3947
3948 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3949 void *fdt, int *fdt_start_offset, Error **errp)
3950 {
3951 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3952 CPUState *cs = CPU(core->threads[0]);
3953 PowerPCCPU *cpu = POWERPC_CPU(cs);
3954 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3955 int id = spapr_get_vcpu_id(cpu);
3956 g_autofree char *nodename = NULL;
3957 int offset;
3958
3959 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3960 offset = fdt_add_subnode(fdt, 0, nodename);
3961
3962 spapr_dt_cpu(cs, fdt, offset, spapr);
3963
3964 /*
3965 * spapr_dt_cpu() does not fill the 'name' property in the
3966 * CPU node. The function is called during boot process, before
3967 * and after CAS, and overwriting the 'name' property written
3968 * by SLOF is not allowed.
3969 *
3970 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3971 * CPUs more compatible with the coldplugged ones, which have
3972 * the 'name' property. Linux Kernel also relies on this
3973 * property to identify CPU nodes.
3974 */
3975 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3976
3977 *fdt_start_offset = offset;
3978 return 0;
3979 }
3980
3981 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3982 {
3983 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3984 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3986 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3987 CPUCore *cc = CPU_CORE(dev);
3988 CPUState *cs;
3989 SpaprDrc *drc;
3990 CPUArchId *core_slot;
3991 int index;
3992 bool hotplugged = spapr_drc_hotplugged(dev);
3993 int i;
3994
3995 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3996 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3997
3998 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3999 spapr_vcpu_id(spapr, cc->core_id));
4000
4001 g_assert(drc || !mc->has_hotpluggable_cpus);
4002
4003 if (drc) {
4004 /*
4005 * spapr_core_pre_plug() already buys us this is a brand new
4006 * core being plugged into a free slot. Nothing should already
4007 * be attached to the corresponding DRC.
4008 */
4009 spapr_drc_attach(drc, dev);
4010
4011 if (hotplugged) {
4012 /*
4013 * Send hotplug notification interrupt to the guest only
4014 * in case of hotplugged CPUs.
4015 */
4016 spapr_hotplug_req_add_by_index(drc);
4017 } else {
4018 spapr_drc_reset(drc);
4019 }
4020 }
4021
4022 core_slot->cpu = OBJECT(dev);
4023
4024 /*
4025 * Set compatibility mode to match the boot CPU, which was either set
4026 * by the machine reset code or by CAS. This really shouldn't fail at
4027 * this point.
4028 */
4029 if (hotplugged) {
4030 for (i = 0; i < cc->nr_threads; i++) {
4031 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4032 &error_abort);
4033 }
4034 }
4035
4036 if (smc->pre_2_10_has_unused_icps) {
4037 for (i = 0; i < cc->nr_threads; i++) {
4038 cs = CPU(core->threads[i]);
4039 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4040 }
4041 }
4042 }
4043
4044 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4045 Error **errp)
4046 {
4047 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4048 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4049 CPUCore *cc = CPU_CORE(dev);
4050 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4051 const char *type = object_get_typename(OBJECT(dev));
4052 CPUArchId *core_slot;
4053 int index;
4054 unsigned int smp_threads = machine->smp.threads;
4055
4056 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4057 error_setg(errp, "CPU hotplug not supported for this machine");
4058 return;
4059 }
4060
4061 if (strcmp(base_core_type, type)) {
4062 error_setg(errp, "CPU core type should be %s", base_core_type);
4063 return;
4064 }
4065
4066 if (cc->core_id % smp_threads) {
4067 error_setg(errp, "invalid core id %d", cc->core_id);
4068 return;
4069 }
4070
4071 /*
4072 * In general we should have homogeneous threads-per-core, but old
4073 * (pre hotplug support) machine types allow the last core to have
4074 * reduced threads as a compatibility hack for when we allowed
4075 * total vcpus not a multiple of threads-per-core.
4076 */
4077 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4078 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4079 smp_threads);
4080 return;
4081 }
4082
4083 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4084 if (!core_slot) {
4085 error_setg(errp, "core id %d out of range", cc->core_id);
4086 return;
4087 }
4088
4089 if (core_slot->cpu) {
4090 error_setg(errp, "core %d already populated", cc->core_id);
4091 return;
4092 }
4093
4094 numa_cpu_pre_plug(core_slot, dev, errp);
4095 }
4096
4097 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4098 void *fdt, int *fdt_start_offset, Error **errp)
4099 {
4100 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4101 int intc_phandle;
4102
4103 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4104 if (intc_phandle <= 0) {
4105 return -1;
4106 }
4107
4108 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4109 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4110 return -1;
4111 }
4112
4113 /* generally SLOF creates these, for hotplug it's up to QEMU */
4114 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4115
4116 return 0;
4117 }
4118
4119 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4120 Error **errp)
4121 {
4122 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4124 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4125 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4126 SpaprDrc *drc;
4127
4128 if (dev->hotplugged && !smc->dr_phb_enabled) {
4129 error_setg(errp, "PHB hotplug not supported for this machine");
4130 return false;
4131 }
4132
4133 if (sphb->index == (uint32_t)-1) {
4134 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4135 return false;
4136 }
4137
4138 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4139 if (drc && drc->dev) {
4140 error_setg(errp, "PHB %d already attached", sphb->index);
4141 return false;
4142 }
4143
4144 /*
4145 * This will check that sphb->index doesn't exceed the maximum number of
4146 * PHBs for the current machine type.
4147 */
4148 return
4149 smc->phb_placement(spapr, sphb->index,
4150 &sphb->buid, &sphb->io_win_addr,
4151 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4152 windows_supported, sphb->dma_liobn,
4153 errp);
4154 }
4155
4156 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4157 {
4158 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4159 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4160 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4161 SpaprDrc *drc;
4162 bool hotplugged = spapr_drc_hotplugged(dev);
4163
4164 if (!smc->dr_phb_enabled) {
4165 return;
4166 }
4167
4168 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4169 /* hotplug hooks should check it's enabled before getting this far */
4170 assert(drc);
4171
4172 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4173 spapr_drc_attach(drc, dev);
4174
4175 if (hotplugged) {
4176 spapr_hotplug_req_add_by_index(drc);
4177 } else {
4178 spapr_drc_reset(drc);
4179 }
4180 }
4181
4182 void spapr_phb_release(DeviceState *dev)
4183 {
4184 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4185
4186 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4187 object_unparent(OBJECT(dev));
4188 }
4189
4190 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4191 {
4192 qdev_unrealize(dev);
4193 }
4194
4195 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4196 DeviceState *dev, Error **errp)
4197 {
4198 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4199 SpaprDrc *drc;
4200
4201 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4202 assert(drc);
4203
4204 if (!spapr_drc_unplug_requested(drc)) {
4205 spapr_drc_unplug_request(drc);
4206 spapr_hotplug_req_remove_by_index(drc);
4207 } else {
4208 error_setg(errp,
4209 "PCI Host Bridge unplug already in progress for device %s",
4210 dev->id);
4211 }
4212 }
4213
4214 static
4215 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4216 Error **errp)
4217 {
4218 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4219
4220 if (spapr->tpm_proxy != NULL) {
4221 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4222 return false;
4223 }
4224
4225 return true;
4226 }
4227
4228 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4229 {
4230 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4231 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4232
4233 /* Already checked in spapr_tpm_proxy_pre_plug() */
4234 g_assert(spapr->tpm_proxy == NULL);
4235
4236 spapr->tpm_proxy = tpm_proxy;
4237 }
4238
4239 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4240 {
4241 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4242
4243 qdev_unrealize(dev);
4244 object_unparent(OBJECT(dev));
4245 spapr->tpm_proxy = NULL;
4246 }
4247
4248 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4249 DeviceState *dev, Error **errp)
4250 {
4251 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4252 spapr_memory_plug(hotplug_dev, dev);
4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4254 spapr_core_plug(hotplug_dev, dev);
4255 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4256 spapr_phb_plug(hotplug_dev, dev);
4257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4258 spapr_tpm_proxy_plug(hotplug_dev, dev);
4259 }
4260 }
4261
4262 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4263 DeviceState *dev, Error **errp)
4264 {
4265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4266 spapr_memory_unplug(hotplug_dev, dev);
4267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4268 spapr_core_unplug(hotplug_dev, dev);
4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4270 spapr_phb_unplug(hotplug_dev, dev);
4271 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4272 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4273 }
4274 }
4275
4276 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4277 {
4278 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4279 /*
4280 * CAS will process all pending unplug requests.
4281 *
4282 * HACK: a guest could theoretically have cleared all bits in OV5,
4283 * but none of the guests we care for do.
4284 */
4285 spapr_ovec_empty(spapr->ov5_cas);
4286 }
4287
4288 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4289 DeviceState *dev, Error **errp)
4290 {
4291 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4292 MachineClass *mc = MACHINE_GET_CLASS(sms);
4293 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4294
4295 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4296 if (spapr_memory_hot_unplug_supported(sms)) {
4297 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4298 } else {
4299 error_setg(errp, "Memory hot unplug not supported for this guest");
4300 }
4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4302 if (!mc->has_hotpluggable_cpus) {
4303 error_setg(errp, "CPU hot unplug not supported on this machine");
4304 return;
4305 }
4306 spapr_core_unplug_request(hotplug_dev, dev, errp);
4307 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4308 if (!smc->dr_phb_enabled) {
4309 error_setg(errp, "PHB hot unplug not supported on this machine");
4310 return;
4311 }
4312 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4313 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4314 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4315 }
4316 }
4317
4318 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4319 DeviceState *dev, Error **errp)
4320 {
4321 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4322 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4323 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4324 spapr_core_pre_plug(hotplug_dev, dev, errp);
4325 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4326 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4327 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4328 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4329 }
4330 }
4331
4332 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4333 DeviceState *dev)
4334 {
4335 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4336 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4337 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4338 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4339 return HOTPLUG_HANDLER(machine);
4340 }
4341 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4342 PCIDevice *pcidev = PCI_DEVICE(dev);
4343 PCIBus *root = pci_device_root_bus(pcidev);
4344 SpaprPhbState *phb =
4345 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4346 TYPE_SPAPR_PCI_HOST_BRIDGE);
4347
4348 if (phb) {
4349 return HOTPLUG_HANDLER(phb);
4350 }
4351 }
4352 return NULL;
4353 }
4354
4355 static CpuInstanceProperties
4356 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4357 {
4358 CPUArchId *core_slot;
4359 MachineClass *mc = MACHINE_GET_CLASS(machine);
4360
4361 /* make sure possible_cpu are initialized */
4362 mc->possible_cpu_arch_ids(machine);
4363 /* get CPU core slot containing thread that matches cpu_index */
4364 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4365 assert(core_slot);
4366 return core_slot->props;
4367 }
4368
4369 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4370 {
4371 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4372 }
4373
4374 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4375 {
4376 int i;
4377 unsigned int smp_threads = machine->smp.threads;
4378 unsigned int smp_cpus = machine->smp.cpus;
4379 const char *core_type;
4380 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4381 MachineClass *mc = MACHINE_GET_CLASS(machine);
4382
4383 if (!mc->has_hotpluggable_cpus) {
4384 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4385 }
4386 if (machine->possible_cpus) {
4387 assert(machine->possible_cpus->len == spapr_max_cores);
4388 return machine->possible_cpus;
4389 }
4390
4391 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4392 if (!core_type) {
4393 error_report("Unable to find sPAPR CPU Core definition");
4394 exit(1);
4395 }
4396
4397 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4398 sizeof(CPUArchId) * spapr_max_cores);
4399 machine->possible_cpus->len = spapr_max_cores;
4400 for (i = 0; i < machine->possible_cpus->len; i++) {
4401 int core_id = i * smp_threads;
4402
4403 machine->possible_cpus->cpus[i].type = core_type;
4404 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4405 machine->possible_cpus->cpus[i].arch_id = core_id;
4406 machine->possible_cpus->cpus[i].props.has_core_id = true;
4407 machine->possible_cpus->cpus[i].props.core_id = core_id;
4408 }
4409 return machine->possible_cpus;
4410 }
4411
4412 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4413 uint64_t *buid, hwaddr *pio,
4414 hwaddr *mmio32, hwaddr *mmio64,
4415 unsigned n_dma, uint32_t *liobns, Error **errp)
4416 {
4417 /*
4418 * New-style PHB window placement.
4419 *
4420 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4421 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4422 * windows.
4423 *
4424 * Some guest kernels can't work with MMIO windows above 1<<46
4425 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4426 *
4427 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4428 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4429 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4430 * 1TiB 64-bit MMIO windows for each PHB.
4431 */
4432 const uint64_t base_buid = 0x800000020000000ULL;
4433 int i;
4434
4435 /* Sanity check natural alignments */
4436 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4437 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4438 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4439 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4440 /* Sanity check bounds */
4441 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4442 SPAPR_PCI_MEM32_WIN_SIZE);
4443 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4444 SPAPR_PCI_MEM64_WIN_SIZE);
4445
4446 if (index >= SPAPR_MAX_PHBS) {
4447 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4448 SPAPR_MAX_PHBS - 1);
4449 return false;
4450 }
4451
4452 *buid = base_buid + index;
4453 for (i = 0; i < n_dma; ++i) {
4454 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4455 }
4456
4457 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4458 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4459 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4460 return true;
4461 }
4462
4463 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4464 {
4465 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4466
4467 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4468 }
4469
4470 static void spapr_ics_resend(XICSFabric *dev)
4471 {
4472 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4473
4474 ics_resend(spapr->ics);
4475 }
4476
4477 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4478 {
4479 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4480
4481 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4482 }
4483
4484 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4485 Monitor *mon)
4486 {
4487 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4488
4489 spapr_irq_print_info(spapr, mon);
4490 monitor_printf(mon, "irqchip: %s\n",
4491 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4492 }
4493
4494 /*
4495 * This is a XIVE only operation
4496 */
4497 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4498 uint8_t nvt_blk, uint32_t nvt_idx,
4499 bool cam_ignore, uint8_t priority,
4500 uint32_t logic_serv, XiveTCTXMatch *match)
4501 {
4502 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4503 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4504 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4505 int count;
4506
4507 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4508 priority, logic_serv, match);
4509 if (count < 0) {
4510 return count;
4511 }
4512
4513 /*
4514 * When we implement the save and restore of the thread interrupt
4515 * contexts in the enter/exit CPU handlers of the machine and the
4516 * escalations in QEMU, we should be able to handle non dispatched
4517 * vCPUs.
4518 *
4519 * Until this is done, the sPAPR machine should find at least one
4520 * matching context always.
4521 */
4522 if (count == 0) {
4523 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4524 nvt_blk, nvt_idx);
4525 }
4526
4527 return count;
4528 }
4529
4530 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4531 {
4532 return cpu->vcpu_id;
4533 }
4534
4535 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4536 {
4537 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4538 MachineState *ms = MACHINE(spapr);
4539 int vcpu_id;
4540
4541 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4542
4543 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4544 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4545 error_append_hint(errp, "Adjust the number of cpus to %d "
4546 "or try to raise the number of threads per core\n",
4547 vcpu_id * ms->smp.threads / spapr->vsmt);
4548 return false;
4549 }
4550
4551 cpu->vcpu_id = vcpu_id;
4552 return true;
4553 }
4554
4555 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4556 {
4557 CPUState *cs;
4558
4559 CPU_FOREACH(cs) {
4560 PowerPCCPU *cpu = POWERPC_CPU(cs);
4561
4562 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4563 return cpu;
4564 }
4565 }
4566
4567 return NULL;
4568 }
4569
4570 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4571 {
4572 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4573
4574 return spapr_cpu->in_nested;
4575 }
4576
4577 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4578 {
4579 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4580
4581 /* These are only called by TCG, KVM maintains dispatch state */
4582
4583 spapr_cpu->prod = false;
4584 if (spapr_cpu->vpa_addr) {
4585 CPUState *cs = CPU(cpu);
4586 uint32_t dispatch;
4587
4588 dispatch = ldl_be_phys(cs->as,
4589 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4590 dispatch++;
4591 if ((dispatch & 1) != 0) {
4592 qemu_log_mask(LOG_GUEST_ERROR,
4593 "VPA: incorrect dispatch counter value for "
4594 "dispatched partition %u, correcting.\n", dispatch);
4595 dispatch++;
4596 }
4597 stl_be_phys(cs->as,
4598 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4599 }
4600 }
4601
4602 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4603 {
4604 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4605
4606 if (spapr_cpu->vpa_addr) {
4607 CPUState *cs = CPU(cpu);
4608 uint32_t dispatch;
4609
4610 dispatch = ldl_be_phys(cs->as,
4611 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4612 dispatch++;
4613 if ((dispatch & 1) != 1) {
4614 qemu_log_mask(LOG_GUEST_ERROR,
4615 "VPA: incorrect dispatch counter value for "
4616 "preempted partition %u, correcting.\n", dispatch);
4617 dispatch++;
4618 }
4619 stl_be_phys(cs->as,
4620 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4621 }
4622 }
4623
4624 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4625 {
4626 MachineClass *mc = MACHINE_CLASS(oc);
4627 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4628 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4629 NMIClass *nc = NMI_CLASS(oc);
4630 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4631 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4632 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4633 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4634 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4635 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4636
4637 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4638 mc->ignore_boot_device_suffixes = true;
4639
4640 /*
4641 * We set up the default / latest behaviour here. The class_init
4642 * functions for the specific versioned machine types can override
4643 * these details for backwards compatibility
4644 */
4645 mc->init = spapr_machine_init;
4646 mc->reset = spapr_machine_reset;
4647 mc->block_default_type = IF_SCSI;
4648
4649 /*
4650 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4651 * should be limited by the host capability instead of hardcoded.
4652 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4653 * guests are welcome to have as many CPUs as the host are capable
4654 * of emulate.
4655 */
4656 mc->max_cpus = INT32_MAX;
4657
4658 mc->no_parallel = 1;
4659 mc->default_boot_order = "";
4660 mc->default_ram_size = 512 * MiB;
4661 mc->default_ram_id = "ppc_spapr.ram";
4662 mc->default_display = "std";
4663 mc->kvm_type = spapr_kvm_type;
4664 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4665 mc->pci_allow_0_address = true;
4666 assert(!mc->get_hotplug_handler);
4667 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4668 hc->pre_plug = spapr_machine_device_pre_plug;
4669 hc->plug = spapr_machine_device_plug;
4670 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4671 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4672 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4673 hc->unplug_request = spapr_machine_device_unplug_request;
4674 hc->unplug = spapr_machine_device_unplug;
4675
4676 smc->dr_lmb_enabled = true;
4677 smc->update_dt_enabled = true;
4678 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4679 mc->has_hotpluggable_cpus = true;
4680 mc->nvdimm_supported = true;
4681 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4682 fwc->get_dev_path = spapr_get_fw_dev_path;
4683 nc->nmi_monitor_handler = spapr_nmi;
4684 smc->phb_placement = spapr_phb_placement;
4685 vhc->cpu_in_nested = spapr_cpu_in_nested;
4686 vhc->deliver_hv_excp = spapr_exit_nested;
4687 vhc->hypercall = emulate_spapr_hypercall;
4688 vhc->hpt_mask = spapr_hpt_mask;
4689 vhc->map_hptes = spapr_map_hptes;
4690 vhc->unmap_hptes = spapr_unmap_hptes;
4691 vhc->hpte_set_c = spapr_hpte_set_c;
4692 vhc->hpte_set_r = spapr_hpte_set_r;
4693 vhc->get_pate = spapr_get_pate;
4694 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4695 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4696 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4697 xic->ics_get = spapr_ics_get;
4698 xic->ics_resend = spapr_ics_resend;
4699 xic->icp_get = spapr_icp_get;
4700 ispc->print_info = spapr_pic_print_info;
4701 /* Force NUMA node memory size to be a multiple of
4702 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4703 * in which LMBs are represented and hot-added
4704 */
4705 mc->numa_mem_align_shift = 28;
4706 mc->auto_enable_numa = true;
4707
4708 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4709 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4710 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4711 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4712 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4713 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4714 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4715 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4716 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4717 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4718 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4719 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4720
4721 /*
4722 * This cap specifies whether the AIL 3 mode for
4723 * H_SET_RESOURCE is supported. The default is modified
4724 * by default_caps_with_cpu().
4725 */
4726 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4727 spapr_caps_add_properties(smc);
4728 smc->irq = &spapr_irq_dual;
4729 smc->dr_phb_enabled = true;
4730 smc->linux_pci_probe = true;
4731 smc->smp_threads_vsmt = true;
4732 smc->nr_xirqs = SPAPR_NR_XIRQS;
4733 xfc->match_nvt = spapr_match_nvt;
4734 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4735 vmc->quiesce = spapr_vof_quiesce;
4736 vmc->setprop = spapr_vof_setprop;
4737 }
4738
4739 static const TypeInfo spapr_machine_info = {
4740 .name = TYPE_SPAPR_MACHINE,
4741 .parent = TYPE_MACHINE,
4742 .abstract = true,
4743 .instance_size = sizeof(SpaprMachineState),
4744 .instance_init = spapr_instance_init,
4745 .instance_finalize = spapr_machine_finalizefn,
4746 .class_size = sizeof(SpaprMachineClass),
4747 .class_init = spapr_machine_class_init,
4748 .interfaces = (InterfaceInfo[]) {
4749 { TYPE_FW_PATH_PROVIDER },
4750 { TYPE_NMI },
4751 { TYPE_HOTPLUG_HANDLER },
4752 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4753 { TYPE_XICS_FABRIC },
4754 { TYPE_INTERRUPT_STATS_PROVIDER },
4755 { TYPE_XIVE_FABRIC },
4756 { TYPE_VOF_MACHINE_IF },
4757 { }
4758 },
4759 };
4760
4761 static void spapr_machine_latest_class_options(MachineClass *mc)
4762 {
4763 mc->alias = "pseries";
4764 mc->is_default = true;
4765 }
4766
4767 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4768 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4769 void *data) \
4770 { \
4771 MachineClass *mc = MACHINE_CLASS(oc); \
4772 spapr_machine_##suffix##_class_options(mc); \
4773 if (latest) { \
4774 spapr_machine_latest_class_options(mc); \
4775 } \
4776 } \
4777 static const TypeInfo spapr_machine_##suffix##_info = { \
4778 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4779 .parent = TYPE_SPAPR_MACHINE, \
4780 .class_init = spapr_machine_##suffix##_class_init, \
4781 }; \
4782 static void spapr_machine_register_##suffix(void) \
4783 { \
4784 type_register(&spapr_machine_##suffix##_info); \
4785 } \
4786 type_init(spapr_machine_register_##suffix)
4787
4788 /*
4789 * pseries-9.0
4790 */
4791 static void spapr_machine_9_0_class_options(MachineClass *mc)
4792 {
4793 /* Defaults for the latest behaviour inherited from the base class */
4794 }
4795
4796 DEFINE_SPAPR_MACHINE(9_0, "9.0", true);
4797
4798 /*
4799 * pseries-8.2
4800 */
4801 static void spapr_machine_8_2_class_options(MachineClass *mc)
4802 {
4803 spapr_machine_9_0_class_options(mc);
4804 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4805 }
4806
4807 DEFINE_SPAPR_MACHINE(8_2, "8.2", false);
4808
4809 /*
4810 * pseries-8.1
4811 */
4812 static void spapr_machine_8_1_class_options(MachineClass *mc)
4813 {
4814 spapr_machine_8_2_class_options(mc);
4815 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4816 }
4817
4818 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4819
4820 /*
4821 * pseries-8.0
4822 */
4823 static void spapr_machine_8_0_class_options(MachineClass *mc)
4824 {
4825 spapr_machine_8_1_class_options(mc);
4826 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4827 }
4828
4829 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4830
4831 /*
4832 * pseries-7.2
4833 */
4834 static void spapr_machine_7_2_class_options(MachineClass *mc)
4835 {
4836 spapr_machine_8_0_class_options(mc);
4837 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4838 }
4839
4840 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4841
4842 /*
4843 * pseries-7.1
4844 */
4845 static void spapr_machine_7_1_class_options(MachineClass *mc)
4846 {
4847 spapr_machine_7_2_class_options(mc);
4848 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4849 }
4850
4851 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4852
4853 /*
4854 * pseries-7.0
4855 */
4856 static void spapr_machine_7_0_class_options(MachineClass *mc)
4857 {
4858 spapr_machine_7_1_class_options(mc);
4859 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4860 }
4861
4862 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4863
4864 /*
4865 * pseries-6.2
4866 */
4867 static void spapr_machine_6_2_class_options(MachineClass *mc)
4868 {
4869 spapr_machine_7_0_class_options(mc);
4870 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4871 }
4872
4873 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4874
4875 /*
4876 * pseries-6.1
4877 */
4878 static void spapr_machine_6_1_class_options(MachineClass *mc)
4879 {
4880 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4881
4882 spapr_machine_6_2_class_options(mc);
4883 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4884 smc->pre_6_2_numa_affinity = true;
4885 mc->smp_props.prefer_sockets = true;
4886 }
4887
4888 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4889
4890 /*
4891 * pseries-6.0
4892 */
4893 static void spapr_machine_6_0_class_options(MachineClass *mc)
4894 {
4895 spapr_machine_6_1_class_options(mc);
4896 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4897 }
4898
4899 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4900
4901 /*
4902 * pseries-5.2
4903 */
4904 static void spapr_machine_5_2_class_options(MachineClass *mc)
4905 {
4906 spapr_machine_6_0_class_options(mc);
4907 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4908 }
4909
4910 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4911
4912 /*
4913 * pseries-5.1
4914 */
4915 static void spapr_machine_5_1_class_options(MachineClass *mc)
4916 {
4917 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4918
4919 spapr_machine_5_2_class_options(mc);
4920 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4921 smc->pre_5_2_numa_associativity = true;
4922 }
4923
4924 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4925
4926 /*
4927 * pseries-5.0
4928 */
4929 static void spapr_machine_5_0_class_options(MachineClass *mc)
4930 {
4931 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4932 static GlobalProperty compat[] = {
4933 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4934 };
4935
4936 spapr_machine_5_1_class_options(mc);
4937 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4938 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4939 mc->numa_mem_supported = true;
4940 smc->pre_5_1_assoc_refpoints = true;
4941 }
4942
4943 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4944
4945 /*
4946 * pseries-4.2
4947 */
4948 static void spapr_machine_4_2_class_options(MachineClass *mc)
4949 {
4950 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4951
4952 spapr_machine_5_0_class_options(mc);
4953 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4954 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4955 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4956 smc->rma_limit = 16 * GiB;
4957 mc->nvdimm_supported = false;
4958 }
4959
4960 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4961
4962 /*
4963 * pseries-4.1
4964 */
4965 static void spapr_machine_4_1_class_options(MachineClass *mc)
4966 {
4967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4968 static GlobalProperty compat[] = {
4969 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4970 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4971 };
4972
4973 spapr_machine_4_2_class_options(mc);
4974 smc->linux_pci_probe = false;
4975 smc->smp_threads_vsmt = false;
4976 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4977 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4978 }
4979
4980 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4981
4982 /*
4983 * pseries-4.0
4984 */
4985 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4986 uint64_t *buid, hwaddr *pio,
4987 hwaddr *mmio32, hwaddr *mmio64,
4988 unsigned n_dma, uint32_t *liobns, Error **errp)
4989 {
4990 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4991 liobns, errp)) {
4992 return false;
4993 }
4994 return true;
4995 }
4996 static void spapr_machine_4_0_class_options(MachineClass *mc)
4997 {
4998 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4999
5000 spapr_machine_4_1_class_options(mc);
5001 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5002 smc->phb_placement = phb_placement_4_0;
5003 smc->irq = &spapr_irq_xics;
5004 smc->pre_4_1_migration = true;
5005 }
5006
5007 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
5008
5009 /*
5010 * pseries-3.1
5011 */
5012 static void spapr_machine_3_1_class_options(MachineClass *mc)
5013 {
5014 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5015
5016 spapr_machine_4_0_class_options(mc);
5017 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5018
5019 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5020 smc->update_dt_enabled = false;
5021 smc->dr_phb_enabled = false;
5022 smc->broken_host_serial_model = true;
5023 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5024 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5025 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5026 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5027 }
5028
5029 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5030
5031 /*
5032 * pseries-3.0
5033 */
5034
5035 static void spapr_machine_3_0_class_options(MachineClass *mc)
5036 {
5037 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5038
5039 spapr_machine_3_1_class_options(mc);
5040 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5041
5042 smc->legacy_irq_allocation = true;
5043 smc->nr_xirqs = 0x400;
5044 smc->irq = &spapr_irq_xics_legacy;
5045 }
5046
5047 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5048
5049 /*
5050 * pseries-2.12
5051 */
5052 static void spapr_machine_2_12_class_options(MachineClass *mc)
5053 {
5054 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5055 static GlobalProperty compat[] = {
5056 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5057 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5058 };
5059
5060 spapr_machine_3_0_class_options(mc);
5061 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5062 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5063
5064 /* We depend on kvm_enabled() to choose a default value for the
5065 * hpt-max-page-size capability. Of course we can't do it here
5066 * because this is too early and the HW accelerator isn't initialized
5067 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5068 */
5069 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5070 }
5071
5072 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5073
5074 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5075 {
5076 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5077
5078 spapr_machine_2_12_class_options(mc);
5079 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5080 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5081 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5082 }
5083
5084 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5085
5086 /*
5087 * pseries-2.11
5088 */
5089
5090 static void spapr_machine_2_11_class_options(MachineClass *mc)
5091 {
5092 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5093
5094 spapr_machine_2_12_class_options(mc);
5095 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5096 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5097 }
5098
5099 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5100
5101 /*
5102 * pseries-2.10
5103 */
5104
5105 static void spapr_machine_2_10_class_options(MachineClass *mc)
5106 {
5107 spapr_machine_2_11_class_options(mc);
5108 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5109 }
5110
5111 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5112
5113 /*
5114 * pseries-2.9
5115 */
5116
5117 static void spapr_machine_2_9_class_options(MachineClass *mc)
5118 {
5119 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5120 static GlobalProperty compat[] = {
5121 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5122 };
5123
5124 spapr_machine_2_10_class_options(mc);
5125 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5126 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5127 smc->pre_2_10_has_unused_icps = true;
5128 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5129 }
5130
5131 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5132
5133 /*
5134 * pseries-2.8
5135 */
5136
5137 static void spapr_machine_2_8_class_options(MachineClass *mc)
5138 {
5139 static GlobalProperty compat[] = {
5140 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5141 };
5142
5143 spapr_machine_2_9_class_options(mc);
5144 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5145 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5146 mc->numa_mem_align_shift = 23;
5147 }
5148
5149 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5150
5151 /*
5152 * pseries-2.7
5153 */
5154
5155 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5156 uint64_t *buid, hwaddr *pio,
5157 hwaddr *mmio32, hwaddr *mmio64,
5158 unsigned n_dma, uint32_t *liobns, Error **errp)
5159 {
5160 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5161 const uint64_t base_buid = 0x800000020000000ULL;
5162 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5163 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5164 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5165 const uint32_t max_index = 255;
5166 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5167
5168 uint64_t ram_top = MACHINE(spapr)->ram_size;
5169 hwaddr phb0_base, phb_base;
5170 int i;
5171
5172 /* Do we have device memory? */
5173 if (MACHINE(spapr)->device_memory) {
5174 /* Can't just use maxram_size, because there may be an
5175 * alignment gap between normal and device memory regions
5176 */
5177 ram_top = MACHINE(spapr)->device_memory->base +
5178 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5179 }
5180
5181 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5182
5183 if (index > max_index) {
5184 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5185 max_index);
5186 return false;
5187 }
5188
5189 *buid = base_buid + index;
5190 for (i = 0; i < n_dma; ++i) {
5191 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5192 }
5193
5194 phb_base = phb0_base + index * phb_spacing;
5195 *pio = phb_base + pio_offset;
5196 *mmio32 = phb_base + mmio_offset;
5197 /*
5198 * We don't set the 64-bit MMIO window, relying on the PHB's
5199 * fallback behaviour of automatically splitting a large "32-bit"
5200 * window into contiguous 32-bit and 64-bit windows
5201 */
5202
5203 return true;
5204 }
5205
5206 static void spapr_machine_2_7_class_options(MachineClass *mc)
5207 {
5208 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5209 static GlobalProperty compat[] = {
5210 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5211 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5212 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5213 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5214 };
5215
5216 spapr_machine_2_8_class_options(mc);
5217 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5218 mc->default_machine_opts = "modern-hotplug-events=off";
5219 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5220 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5221 smc->phb_placement = phb_placement_2_7;
5222 }
5223
5224 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5225
5226 /*
5227 * pseries-2.6
5228 */
5229
5230 static void spapr_machine_2_6_class_options(MachineClass *mc)
5231 {
5232 static GlobalProperty compat[] = {
5233 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5234 };
5235
5236 spapr_machine_2_7_class_options(mc);
5237 mc->has_hotpluggable_cpus = false;
5238 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5239 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5240 }
5241
5242 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5243
5244 /*
5245 * pseries-2.5
5246 */
5247
5248 static void spapr_machine_2_5_class_options(MachineClass *mc)
5249 {
5250 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5251 static GlobalProperty compat[] = {
5252 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5253 };
5254
5255 spapr_machine_2_6_class_options(mc);
5256 smc->use_ohci_by_default = true;
5257 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5258 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5259 }
5260
5261 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5262
5263 /*
5264 * pseries-2.4
5265 */
5266
5267 static void spapr_machine_2_4_class_options(MachineClass *mc)
5268 {
5269 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5270
5271 spapr_machine_2_5_class_options(mc);
5272 smc->dr_lmb_enabled = false;
5273 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5274 }
5275
5276 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5277
5278 /*
5279 * pseries-2.3
5280 */
5281
5282 static void spapr_machine_2_3_class_options(MachineClass *mc)
5283 {
5284 static GlobalProperty compat[] = {
5285 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5286 };
5287 spapr_machine_2_4_class_options(mc);
5288 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5289 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5290 }
5291 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5292
5293 /*
5294 * pseries-2.2
5295 */
5296
5297 static void spapr_machine_2_2_class_options(MachineClass *mc)
5298 {
5299 static GlobalProperty compat[] = {
5300 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5301 };
5302
5303 spapr_machine_2_3_class_options(mc);
5304 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5305 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5306 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5307 }
5308 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5309
5310 /*
5311 * pseries-2.1
5312 */
5313
5314 static void spapr_machine_2_1_class_options(MachineClass *mc)
5315 {
5316 spapr_machine_2_2_class_options(mc);
5317 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5318 }
5319 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5320
5321 static void spapr_machine_register_types(void)
5322 {
5323 type_register_static(&spapr_machine_info);
5324 }
5325
5326 type_init(spapr_machine_register_types)